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Abstract
We study the enumerativity of Gromov–Witten invariants where the domain curve is fixed in moduli and required to
pass through the maximum possible number of points. We say a Fano manifold satisfies asymptotic enumerativity
if such invariants are enumerative whenever the degree of the curve is sufficiently large. Lian and Pandharipande
speculate that every Fano manifold satisfies asymptotic enumerativity. We give the first counterexamples, as well as
some new examples where asymptotic enumerativity holds. The negative examples include special hypersurfaces
of low Fano index and certain projective bundles, and the new positive examples include many Fano threefolds and
all smooth hypersurfaces of degree 𝑑 ≤ (𝑛 + 3)/3 in P𝑛.
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2 R. Beheshti et al.

1. Introduction

The problem of ‘counting’ subvarieties of a fixed projective variety has a long and illustrious history (see
Section 1.4). One of the most successful modern theories for ‘counting curves’ is the Gromov–Witten
(GW) theory. However, it is often the case that the virtual counts arising in GW theory do not answer
the corresponding geometric enumerative questions. For example, the higher-genus GW invariants of
P3 include many positive-dimensional contributions from the boundary of the moduli space of stable
maps and therefore often fail to count smooth, embedded curves in P3. For other targets, the question of
whether the virtual counts are enumerative can be subtle.

In this paper, we focus on a particular class of GW invariant, where the domain curve is fixed in
moduli and required to pass through the maximum number of points. Given a smooth projective variety
X overC, the fixed-domain GW invariant GW𝑋,fd

𝑔,𝛽,𝑚 (𝑝1, . . . , 𝑝𝑚) is a virtual count of the number of maps
𝑓 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋 where the stabilization (𝐶, 𝑞1, . . . , 𝑞𝑚) of (𝐶, 𝑞1, . . . , 𝑞𝑚) is a fixed pointed
curve which is general in moduli, 𝑓 (𝐶) has class 𝛽, and the morphism f satisfies 𝑓 (𝑞𝑖) = 𝑝𝑖 for fixed
general points 𝑝1, . . . , 𝑝𝑚 ∈ 𝑋 . Such invariants are particularly interesting for the following reasons:

◦ A (nonprojective) Kähler manifold X might have very few complex analytic subvarieties, but GW
invariants with point insertions make sense for any X.

◦ Due to the generality of the pointed curve (𝐶, 𝑞1, . . . , 𝑞𝑚) and the points {𝑝𝑖}, we can hope to
avoid the most pathological subvarieties of the moduli space of stable maps and therefore achieve
transversality of intersections. Indeed, [LP23, Speculation 12] asks whether, for every Fano variety X,
the virtual count GW𝑋,fd

𝑔,𝛽,𝑚(𝑝1, . . . , 𝑝𝑚) is enumerative when the anticanonical degree is sufficiently
large compared to the genus.

◦ Formulas for virtual counts GW𝑋,fd
𝑔,𝛽,𝑚 (𝑝1, . . . , 𝑝𝑚) are much simpler in many examples than arbitrary

GW invariants; see, for example, [BP21].

In this paper, we solve the enumerativity question for fixed-domain GW invariants of several classes
of complex Fano varieties. We give the first examples of Fano varieties for which the virtual counts
GW𝑋,fd

𝑔,𝛽,𝑚 (𝑝1, . . . , 𝑝𝑚) fail to be enumerative (even in large degree), confuting [LP23, Speculation 12].
We also give several new examples where enumerativity holds, including all smooth hypersurfaces in
P𝑛 of degree at most 𝑛+3

3 . In practice, deciding whether GW𝑋,fd
𝑔,𝛽,𝑚(𝑝1, . . . , 𝑝𝑚) is enumerative comes

down to the concrete geometric question of the existence of reducible pointed curves with stabilization
isomorphic to (𝐶, 𝑞1, . . . , 𝑞𝑚) and passing through the points 𝑝1, . . . , 𝑝𝑚. In particular, we will not
need to use any properties of the GW counts to verify asymptotic enumerativity.

Remark 1.1. For certain targets X, the problem may also be considered in terms of the space of
quasimaps, and the corresponding virtual counts can be related to the stable-map invariants via wall-
crossing; see [CFKM14, CFK14]. Many of our arguments can be adapted equally well to the quasimap
setting.

1.1. Fixed-domain GW invariants

Early computations of fixed-domain GW invariants were on Grassmannians; see, for instance, [Ber94,
BDW96]. The Vafa–Intriligator formula, proven by Siebert–Tian [ST97] in large degree and by Marian–
Oprea in all degrees [MO07], determines many virtual integrals of tautological classes on Quot schemes
of trivial bundles on curves, and in particular determines the fixed-domain GW invariants of Grassman-
nians. More generally, descendent integrals on the space of stable quotients determine all GW invariants
of Grassmannians [MOP11].

In the formulation we give below, the invariants GW𝑋,fd
𝑔,𝛽,𝑚 (𝑝1, . . . , 𝑝𝑚) were recently studied system-

atically by Buch and Pandharipande [BP21] under the name ‘virtual Tevelev degrees’. The term ‘Tevelev
degrees’ was introduced by Cela–Pandharipande–Schmitt [CPS22] after work of Tevelev [Tev20] on
covers of P1. More recent calculations include partial results for Fano complete intersections [Cel23]
and blowups of projective spaces [CL23, §4].
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We now give a precise definition. For a smooth projective variety X, we let 𝑁1 (𝑋)Z denote the abelian
group of numerical classes of curves and let Nef1(𝑋) ⊂ 𝑁1 (𝑋)Z ⊗Z R denote the nef cone of curves.
Fix nonnegative integers 𝑔, 𝑚 satisfying 3𝑔 − 3 + 𝑚 ≥ 0; this guarantees that the moduli stack M𝑔,𝑚

of stable curves of genus g with m marked points is well defined. Let 𝛽 ∈ 𝑁1 (𝑋)Z be an effective curve
class, and let M𝑔,𝑚(𝑋, 𝛽) denote the Kontsevich moduli stack of stable maps of genus g and class 𝛽
with m marked points on X. We let M𝑔,𝑚(𝑋, 𝛽) ⊂ M𝑔,𝑚(𝑋, 𝛽) denote the open substack parametrizing
stable maps with smooth domain.

Consider the morphism

𝜙 : M𝑔,𝑚(𝑋, 𝛽) → M𝑔,𝑚 × 𝑋×𝑚

which combines the m-fold evaluation map with identification of the underlying curve. We would expect
the fibers of this map to be finite precisely when the expected dimensions match, or equivalently, when

−𝐾𝑋 · 𝛽 + dim(𝑋) (1 − 𝑔) = 𝑚 dim(𝑋).

Definition 1.2. Given X, a fixed-domain triple is a triple (𝑔, 𝛿, 𝑚) of nonnegative integers such that

𝛿 + dim(𝑋) (1 − 𝑔) = 𝑚 dim(𝑋).

If furthermore we have a numerical curve class 𝛽 ∈ Nef1(𝑋) of anticanonical degree 𝛿, the fixed-
domain GW invariant GW𝑋,fd

𝑔,𝛽,𝑚(𝑝1, . . . , 𝑝𝑚) is the degree of 𝜙∗ [M𝑔,𝑚(𝑋, 𝛽)]
𝑣𝑖𝑟 as a multiple of the

fundamental class M𝑔,𝑚 × 𝑋×𝑚. One can more generally replace the 𝑝𝑖 with other cohomology classes
on X, but we will work only with point incidence conditions. We will henceforth suppress the points
𝑞𝑖 , 𝑝𝑖 from the notation and write simply GW𝑋,fd

𝑔,𝛽,𝑚.
We say that the virtual count GW𝑋,fd

𝑔,𝛽,𝑚 is enumerative if a general fiber of 𝜙 consists of exactly
GW𝑋,fd

𝑔,𝛽,𝑚 smooth points, all of which correspond to maps 𝑓 : 𝐶 → 𝑋 with irreducible (and hence
smooth) domain. Note that this includes the possibility that the general fiber of 𝜙 is empty and
GW𝑋,fd

𝑔,𝛽,𝑚 = 0.

The virtual count GW𝑋,fd
𝑔,𝛽,𝑚 can fail to be enumerative if a general fiber of 𝜙 contains maps 𝑓 : 𝐶 → 𝑋

where𝐶 is reducible, but the stable contraction of𝐶 is a general point of M𝑔,𝑚 (and hence irreducible).

Example 1.3. Suppose that 𝑋 = P𝑛, and let 𝛽 be e times the class of a line, where

𝑒(𝑛 + 1) + 𝑛(1 − 𝑔) = 𝑚𝑛.

If 𝑒 ≥ 𝑚 − 1 (or equivalently, 𝑒 ≤ 𝑛𝑔), then there exist stable maps of the following form contributing
to GW𝑋,fd

𝑔,𝛽,𝑚. The domain curve consists of a smooth genus g curve C attached to 𝑚 − 1 rational tails.
The point 𝑝𝑚 is on C and each of the rational tails contains one of the points 𝑝1, . . . , 𝑝𝑚−1. The map
contracts C to 𝑝𝑚 and maps the jth tail to a rational curve on P𝑛 through 𝑝𝑚 and 𝑝 𝑗 . (The condition
that 𝑒 ≥ 𝑚 − 1 guarantees that we can choose the degrees of the tails so that the total degree is e.) In
particular, the virtual count GW𝑋,fd

𝑔,𝛽,𝑚 fails to be enumerative.

By definition, the geometric Tevelev degree Tev𝑋𝑔,𝛽,𝑚 is the number of maps 𝑓 : 𝐶 → 𝑋 in a general
fiber of 𝜙 with C smooth, assuming such a fiber is finite and reduced upon restriction to the open locus
M𝑔,𝑚 (𝑋, 𝛽). Geometric Tevelev degrees, while having a more transparent definition, are often more
difficult to compute than the corresponding GW invariants and at present are only fully understood
for all curve classes when X is a projective space [Lia23b]. However, if the virtual count GW𝑋,fd

𝑔,𝛽,𝑚 is
enumerative, then GW𝑋,fd

𝑔,𝛽,𝑚 = Tev𝑋𝑔,𝛽,𝑚. According to our terminology, the converse is not necessarily
true: It may happen that contributions to GW𝑋,fd

𝑔,𝛽,𝑚 from curves of reducible domain exist, but all cancel
upon integration against the virtual fundamental class; see Example 1.4.
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Example 1.4. Suppose that 𝑋 = P1 × P1, and let 𝛽 be the class of a (𝑒1, 𝑒2)-curve, where

𝑚 = 𝑒1 + 𝑒2 − 𝑔 + 1

and furthermore 𝑚 − 1 ≤ 𝑒1 < 𝑒2. Note first that there are no maps 𝐶 → P1 × P1 in class 𝛽 satisfying
the conditions 𝑓 (𝑞𝑖) = 𝑝𝑖 because the map 𝐶 → P1 obtained by projection to the first factor would be
required to satisfy 𝑚 > 2𝑒1 − 𝑔 + 1 incidence conditions, which is impossible. Furthermore, we have
GW𝑋,fd

𝑔,𝛽,𝑚 = 0 by the GW product formula; see [BP21, §2.2].
On the other hand, adapting the construction of Example 1.3 gives stable maps of M𝑔,𝑚(𝑋, 𝛽) that

map to a general point of M𝑔,𝑚 × 𝑋×𝑚. Thus, in our terminology, we say that GW𝑋,fd
𝑔,𝛽,𝑚 fails to be

enumerative, despite the fact that it is equal to Tev𝑋𝑔,𝛽,𝑚.

The main question we consider is:

Motivating Question 1.5. Let X be a Fano variety and fix a numerical curve class 𝛽 and nonnegative
integers 𝑔, 𝑚 satisfying 3𝑔 − 3 + 𝑚 ≥ 0 and −𝐾𝑋 · 𝛽 + dim(𝑋) (1 − 𝑔) = 𝑚 dim(𝑋). When is the
fixed-domain GW invariant GW𝑋,fd

𝑔,𝛽,𝑚 enumerative?

As we saw earlier in Example 1.3, one can only hope that GW𝑋,fd
𝑔,𝛽,𝑚 is enumerative when the number

of points m (or equivalently, the anticanonical degree 𝛿 of the curve) is large compared to the genus of
the underlying curve. Lian and Pandharipande [LP23] speculate that for any Fano X, the virtual count
GW𝑋,fd

𝑔,𝛽,𝑚 for a fixed-domain triple (𝑔, 𝛿, 𝑚) is enumerative whenever 𝛿 is sufficiently large relative to
g. This speculation is captured by the following definition:

Definition 1.6. We say X satisfies asymptotic enumerativity for a given genus g if, for all fixed-domain
triples (𝑔, 𝛿, 𝑚) with m sufficiently large (depending only on X and g), the virtual count GW𝑋,fd

𝑔,𝛽,𝑚 is
enumerative.

Remark 1.7. The notion of asymptotic enumerativity differs from that of strong asymptotic enumer-
ativity [CL23, Definition 5] in that we do not require in genus 0 that GW𝑋,fd

0,𝛽,𝑚 be enumerative for all
fixed-domain triples (0, 𝛿, 𝑚).

Asymptotic enumerativity has previously been verified in the following examples:

◦ X is a Grassmannian [Ber94, BDW96].
◦ 𝑋 = 𝐺/𝑃 is a homogeneous space [LP23, Theorem 10].
◦ X is a hypersurface of degree d in P𝑛, where 𝑛 − 1 > (𝑑 + 1) (𝑑 − 2) [LP23, Theorem 11].
◦ 𝑋 = Bl𝑞P𝑛 is the blowup of P𝑛 in a single point [CL23, Theorem 23].
◦ X is a del Pezzo surface [CL23, Theorem 24].

We disprove the speculation of [LP23] by giving several examples of Fano varieties for which
asymptotic enumerativity fails: certain Fano threefolds, hypersurfaces with a conical linear section and
Fano projective bundles over P𝑛 with sufficiently negative sections. We also give several new examples
where asymptotic enumerativity holds: certain Fano threefolds and many Fano hypersurfaces.

1.2. Negative results

We present two families of examples of Fano varieties X for which asymptotic enumerativity fails. The
first is Fano varieties which carry a ‘conical’ divisor.

Proposition 1.8. Let X be a smooth Fano variety of dimension N, Picard rank 1 and Fano index r.
Furthermore, assume that:

◦ X carries an irreducible divisor D and a point 𝑝 ∈ 𝐷 such that every point of D is contained in an
anticanonical line through p in D, and
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◦ There is a positive integer 𝑡 ≤ 𝑁
𝑟 −1 such that X carries a family of free rational curves of anticanonical

degree 𝑡𝑟 .
Then X fails to satisfy asymptotic enumerativity for all 𝑔 > 0. If furthermore 𝑡 < 𝑁

𝑟 − 1, then X also fails
to satisfy asymptotic enumerativity for 𝑔 = 0.

An example of a variety X satisfying the conditions of Proposition 1.8 for 𝑔 > 0 is a Fermat hyper-
surface X of degree 𝑑 ∈

[
𝑛+3

2 , 𝑛 − 1
]

in P𝑛 when 𝑛 ≥ 4. More generally, one can apply Proposition 1.8
to any hypersurface of degree 𝑑 ∈

[
𝑛+3

2 , 𝑛 − 1
]

which admits a hyperplane section which is a cone over
a lower-dimensional hypersurface of the same degree. See Examples 3.2 and 3.4 for more details.

Our second family of examples is certain Fano projective bundles X over projective space. When
X is defined by a vector bundle which is very unstable, then certain numerical classes on X cannot
possibly be represented by free rational curves with balanced restricted tangent bundle. The following
result ‘upgrades’ this observation to a failure of asymptotic enumerativity.
Proposition 1.9. Fix positive integers 𝑛, 𝑟 satisfying 𝑛 > 𝑟 + 1. Consider the vector bundle E =⊕𝑟

𝑖=0 O(𝑎𝑖) on P𝑛−𝑟 , where 𝑎0 = 0 and 𝑎𝑖 ≥ 0 for 𝑖 ≥ 1. Suppose that

𝑟∑
𝑖=1
𝑎𝑖 ≤ 𝑛 − 𝑟

so that X is Fano, and suppose further that

𝑟∑
𝑖=1
𝑎𝑖 ≥ 2.

Then asymptotic enumerativity fails for the projective bundle 𝑋 = PP𝑛−𝑟 (E) in every genus.

1.3. Positive results

We also identify several new situations in which asymptotic enumerativity holds. The first addresses
asymptotic enumerativity for a Fano threefold X. We show that asymptotic enumerativity is only
obstructed by the presence of certain divisors 𝑌 ⊂ 𝑋 .
Theorem 1.10. Let X be a smooth Fano threefold. Suppose that there is no divisor 𝑌 ⊂ 𝑋 that is swept
out by anticanonical lines. Then X satisfies asymptotic enumerativity for every genus g.
Example 1.11. Theorem 1.10 shows that smooth cubic threefolds satisfy asymptotic enumerativity.
Smooth cubic hypersurfaces of dimension ≥ 5 satisfy asymptotic enumerativity by [LP23, Theorem
11]. However, the case of cubic hypersurfaces of dimension 4 is still open.

Theorem 4.3 is a stronger version of Theorem 1.10 which includes more information about the types
of curves which can violate asymptotic enumerativity. When a smooth Fano threefold X carries a divisor
Y swept out by anticanonical lines, it is usually possible to combine Theorem 4.3 with a geometric
argument to determine whether one can use this divisor to violate asymptotic enumerativity. We do not
prove a precise statement in this direction but instead give several examples; see Example 4.4, Example
4.5, Example 4.6 and Example 4.7.
Remark 1.12. The Fujita invariant of a polarized variety (𝑌, 𝐿) compares the negativity of the canonical
divisor against the positivity of L (see Definition 2.5). If a Fano variety X admits a subvariety Y swept
out by a family of rational curves whose dimension is larger than expected, then [LT19, Theorem 1.1]
shows that (𝑌,−𝐾𝑋 ) has Fujita invariant larger than 1. Conjecturally, the reverse implication is also true.

As demonstrated in the proof of Theorem 1.10, the condition on Y in Theorem 1.10 is the same as
requiring that the Fujita invariant of Y with respect to −𝐾𝑋 is at least 2. More generally, we expect that
asymptotic enumerativity will often fail for Fano varieties X which carry a subvariety with large Fujita
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invariant (which conjecturally admit ‘too many’ rational curves). Unfortunately, it is too much to hope
for an implication in either direction. Example 4.7 gives an example of a smooth Fano threefold which
satisfies asymptotic enumerativity in every genus even though it carries a divisor of Fujita invariant 2.
Conversely, Example 3.6 shows that one can construct curves which violate asymptotic enumerativity
even when no irreducible component of the curve lies on a subvariety Y with Fujita invariant > 1.

Our final result builds off of [LP23] to prove new examples of asymptotic enumerativity for hyper-
surfaces.

Theorem 1.13. Suppose X is a smooth hypersurface of degree d in P𝑛 such that

(1) 𝑑 ≤ 𝑛 − 2 and X is general, or
(2) 𝑑 ≤ (𝑛 + 3)/3.

Then, X satisfies asymptotic enumerativity for every genus g.

In particular, we obtain transversality in the geometric calculations of [Lia23a] when 𝑑 ≤ (𝑛 + 2)/2
and X in addition satisfies (1) or (2). Note that the linear bound (2) is a significant improvement over
the quadratic bound of [LP23, Theorem 11]. We expect that the condition in (2) can be weakened to
‘𝑑 ≤ 𝑛+1

2 .’ Our proof method could conceivably extend to this larger degree range, but it would require
solving a conjecture concerning the dimension of the space of nonfree lines for the corresponding
hypersurfaces.

1.4. History

For a compact Kähler manifold, what effective complex analytic cycles can we ‘count’, and are those
‘counts’ invariant under deformation? In the special case of complex projective manifolds, this is one of
the oldest problems in algebraic geometry, dating back at least 150 years to work of Steiner, Chasles, de
Jonquiéres and, especially, Schubert [EH16]. Hilbert’s search for a rigorous foundation for Schubert’s
(unpublished) methods for counting cycles eventually led to the invention of the cohomology ring
[Kle76]. The modern perspective on ‘counting’ cycles of complex dimension 1 led to the invention
of the quantum cohomology ring whose ring product is a deformation of the usual cup product with
‘corrections’ coming from GW invariants. In particular, these are invariant under complex deformation
and even under symplectic deformation. However, this does not completely solve the problem of
counting cycles, since GW invariants allow contributions that are classically prohibited, for example,
GW invariants can be fractional and even negative whereas true ‘counts’ are nonnegative integers. This
leads to a sharper question: When are GW invariants of a Kähler manifold enumerative?

Recall a Kähler manifold is a connected, compact differentiable manifold M whose (real) dimension
is even, say 2𝑛, together with a symplectic form 𝜔 (real, closed, everywhere nondegenerate differential
2-form) with class [𝜔] ∈ 𝐻2 (𝑀;R) and an 𝜔-compatible complex structure J, that is, the bilinear
form 𝜔(•, 𝐽 (•)) is everywhere symmetric and positive definite. There are many cohomology classes
associated to (𝑀,𝜔, 𝐽) that are invariant under complex deformations and even under symplectic
deformations of 𝜔, for example, the Chern classes 𝑐𝑖 (𝑇𝑀,𝐽 ) of the holomorphic tangent bundle for
𝑖 = 0, . . . , 𝑛 and thus also all polynomials in these classes. In fact, these are all of Hodge (𝑝, 𝑝)-type, so
potentially in the image of the cycle class map so perhaps arising from cycles that we can count. In fact,
there are many Kähler manifolds where the only connected, closed analytic cycles are M and points. By
contrast, note that the real (1, 1)-class [𝜔] is almost never invariant under symplectic deformations, yet it
is always the image of an effective Q-cycle if this (1, 1)-class is in 𝐻2 (𝑀;Q) by the Kodaira embedding
theorem. We can finesse this by restricting to Kähler manifolds (𝑀,𝜔, 𝐽) such that [𝜔] is a specified
positive rational multiple of 𝑐1(𝑇𝑀,𝐽 ), that is, Fano manifolds, or such that [𝜔] is a specified negative
rational multiple of 𝑐1 (𝑇𝑀,𝐽 ), that is, manifolds of general type with ample canonical divisor class.

In [Gro85], Gromov showed that often there are complex analytic subvarieties of complex dimen-
sion 1, and these J-holomorphic curves can often be ‘counted’ to produce a rational number that is
independent of symplectic deformations. Over the next decade, with much input from Witten and other
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physicists, this developed into the GW theory. The definition within algebraic geometry applies to
every smooth projective variety X defined over an arbitrary field k (of arbitrary characteristic). The
foundational papers for GW invariants in algebraic geometry are [Kon95], [BF97], [BM96], [Beh97],
[LT98] and [Pom15]. There are excellent surveys of the constructions in algebraic geometry: [FP97]
and [CK99]. (For constructions in symplectic side, we refer to [Rua96, RT95].)

A ‘curve class’ 𝛽 on X can either be interpreted as an element in 𝐻2𝑛−2(𝑋) for an appropriate
Weil cohomology theory or, more often, as an element in the finitely generated group 𝑁1 (𝑋)Z :=
HomZ−mod(Pic(𝑋)/Pic0(𝑋),Z). For every integer 𝑔 ≥ 0, for every integer 𝑚 ≥ 0, and for every curve
class 𝛽, there is a (homological) algebraic cycle class (with Q-coefficients),

𝐺𝑊
𝑋,𝛽
𝑔,𝑚 ∈ CH𝑑 (𝑋×𝑚 ×𝔐𝑔,𝑚)Q,

where 𝑑 = 𝑑𝑋,𝛽𝑔,𝑚 is the virtual dimension

〈𝑐1 (𝑇𝑋 ), 𝛽〉 + (dim(𝑋) − 3) (1 − 𝑔) + 𝑚

and where 𝔐𝑔,𝑚 is the Artin stack of genus-g, m-pointed, prestable curves. This Artin stack is smooth
of dimension 3𝑔 − 3 + 𝑚. Thus, for (cohomological) classes 𝛾𝑖 of (complex) codimensions 𝑑𝑖 on X for
𝑖 = 1, . . . , 𝑚, and for a (cohomological) class 𝜆 of (complex) codimension e on 𝔐𝑔,𝑚, the cap product
pairing of the homological cycle class 𝐺𝑊𝑋,𝛽𝑔,𝑚 against the cohomological classes gives an associated
number,

𝐺𝑊
𝑋,𝛽
𝑔,𝑚 (𝛾1, . . . , 𝛾𝑚, 𝜆),

which is zero unless the sum 𝑑1 + · · · + 𝑑𝑚 + 𝑒 equals 𝑑𝑋,𝛽𝑔,𝑚 . This is the typical formulation of GW
invariants: as a functional on the set of 𝑚 + 1-tuples of cohomological classes.

The cycle class 𝐺𝑊𝑋,𝛽𝑔,𝑚 is the proper pushforward with respect to a regular 1-morphism of Artin
stacks

(Φ, ev) : M𝑔,𝑚(𝑋, 𝛽) → 𝔐𝑔,𝑚 × 𝑋×𝑚,

of a virtual fundamental class

[M𝑔,𝑚(𝑋, 𝛽)]
vir ∈ CH𝑑 (M𝑔,𝑚(𝑋, 𝛽))Q.

Here, M𝑔,𝑚(𝑋, 𝛽) is an Artin stack with finite diagonal (in characteristic 0 it is a Deligne–Mumford
stack). It parametrizes isomorphism classes of flat families of genus-g, m-pointed stable maps (𝑢 : 𝐶 →

𝑋, 𝑞1, . . . , 𝑞𝑚) to X from a connected, proper, reduced, at-worst-nodal curve 𝐶 of arithmetic genus g
with m specified (rational) points 𝑞1, . . . , 𝑞𝑚 contained in the smooth locus of 𝐶, and with a specified
morphism 𝑢 : 𝐶 → 𝑋 such that the log dualizing sheaf 𝜔𝐶 (𝑞1

+ · · · + 𝑞
𝑚
) is u-ample. The 1-morphism

Φ gives the stabilization of the m-pointed, prestable curve (𝐶, 𝑞1, . . . , 𝑞𝑚), and ev gives the m-tuple
(𝑢(𝑞1), . . . , 𝑢(𝑞𝑚)).

In particular, primary GW invariants are those with 𝜆 equal to 1. When also each class 𝛾𝑖 is the
Poincaré dual of the class of a closed subscheme 𝑍𝑖 of X with pure dimension 𝑑𝑖 , then the cap product
above is the pushforward of a 0-cycle inside the closed substack ev−1 (𝑍1 × · · · × 𝑍𝑚) ⊂ M𝑔,𝑚(𝑋, 𝛽)
parameterizing stable maps with 𝑢(𝑞𝑖) contained in 𝑍𝑖 . When this closed substack is a disjoint union
(possibly empty) of points, then the GW invariant is enumerative: The GW invariant equals the number
of stable maps mapping each marked point 𝑝𝑖 into 𝑍𝑖 .

Notice that the expected dimension is negative if 〈𝑐1 (𝑇𝑋 ), 𝛽〉 is negative and we replace 𝛽 by a suitably
positive multiple 𝑒𝛽 of the curve class. For this reason, most enumerative results are proved under the
hypothesis that 〈𝑐1 (𝑇𝑋 ), 𝛽〉 is positive for all nonzero, effective curve classes 𝛽: this is conjecturally
equivalent to the condition that X is Fano.
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Some of the most striking examples of enumerativity are the oldest: For example, every smooth
cubic hypersurface in P3 contains precisely 27 lines. One can leverage this into proving enumerativity
for genus 0 curves on cubic surfaces (and del Pezzo manifolds more generally) of higher anticanonical
degree, for example, [GP98]. Combining techniques from the Mori program with techniques (particularly
deformation theory) introduced for GW theory, there are now many enumerativity theorems for genus
0 GW invariants on Fano manifolds: for example, [Tho98, KP01, HRS04, BK13, RY19, Bou16, Cas04,
Tes09, CS09, LT19, LT21, LT24, LT22, BLRT22, ST22, BJ22, Oka24].

Returning to an arbitrary Kähler manifold 𝑋 = (𝑀, 𝐽), as mentioned before, the only connected
complex analytic subvarieties might be M and points. Thus, the only primary GW invariants for which
we can always discuss enumerativity are the primary GW invariants where every 𝛾𝑖 equals the Poincaré
dual of the class of a point. Of course the invariant is zero for degree reasons unless

𝑚dim(𝑋) + 3𝑔 − 3 + 𝑚 = 𝑑 = 〈𝑐1 (𝑇𝑋 ), 𝛽〉 + (dim(𝑋) − 3) (1 − 𝑔) + 𝑚.

Recall that we restrict in this paper to GW invariants with point insertions where we also fix
the isomorphism type of the underlying stable curve. Just as for all GW invariants, there are many
cases where the virtual count GW𝑋,fd

𝑔,𝛽,𝑚 is not enumerative. What is remarkable is that there are many
cases where these counts are enumerative. For example, it had essentially been understood that fixed-
domain GW invariants of Grassmannians, as computed (in various guises) in [Ber94, BDW96, ST97,
MO07, MOP11], give geometric counts of curves when the anticanonical degree is sufficiently large.
This philosophy was revisited for more general targets in [LP23]. Equally remarkable, the proofs are
asymptotic in the anticanonical degree without any careful analysis of a ‘base case.’ This finally brings
us to our motivating question: For which Fano manifolds are the virtual counts GW𝑋,fd

𝑔,𝛽,𝑚 asymptotically
enumerative?

2. Background

We recall some basic definitions regarding Fano varieties and expected dimension.

Definition 2.1. A smooth projective variety X of positive dimension is a Fano manifold of Picard rank
one if every ample divisor class is Q-numerically equivalent to a positive multiple of the first Chern
class of the tangent bundle, 𝑐1 (𝑇𝑋 ) = −𝐾𝑋 . The Fano index is the largest positive integer r such that
𝑐1 (𝑇𝑋 ) equals r times an integral divisor class.

Example 2.2. For every 𝑛 ≥ 3, a smooth codimension-c intersection in P𝑛+𝑐 of c hypersurfaces of
degrees (𝑑1, . . . , 𝑑𝑐) is a Fano manifold of Picard rank one if and only if 𝑑1 + · · · + 𝑑𝑐 ≤ 𝑛 + 𝑐, in which
case the Fano index equals (𝑛 + 𝑐 + 1) − (𝑑1 + · · · + 𝑑𝑐).

For morphisms u to a smooth projective variety Z from local complete intersection curves C of
arithmetic genus g such that the morphism has a finite automorphism group, there is a deformation-
obstruction theory that gives an isomorphism of the completion of the local ring of the moduli space
of such maps at the point corresponding to (𝑢 : 𝐶 → 𝑍) with the quotient of a power series ring of
dimension ℎ0 by an ideal generated by ℎ1 elements, for integers ℎ0 and ℎ1 that satisfy the identity,

ℎ0 − ℎ1 = deg𝐶 (𝑢∗𝑇𝑍 ) + (dim(𝑍) − 3) (1 − 𝑔).

By Krull’s Hauptidealsatz, this is a lower bound for the dimension of the moduli space near (𝑢 : 𝐶 → 𝑍),
and the moduli space is locally a complete intersection (as a Deligne–Mumford stack) if this lower bound
equals the dimension.

Definition 2.3. The difference ℎ0 − ℎ1 above is the virtual dimension or expected dimension of the
moduli space near the point (𝑢 : 𝐶 → 𝑍).
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The following notion plays a crucial role in this paper:

Definition 2.4. Let X be a smooth projective variety. Let 𝑓 : P1 → 𝑋 be a rational curve that is not
contracted to a point. We say f is free if the restricted tangent bundle 𝑓 ∗𝑇𝑋 is nef. We say it is very free
if 𝑓 ∗𝑇𝑋 is ample.

When f is free, the obstruction space 𝐻1(P1, 𝑁 𝑓 ) vanishes where 𝑁 𝑓 is the normal sheaf. In
particular, the moduli stack M0,0 (𝑋) is smooth at the point corresponding to f.

If f is a free curve, then the deformations of f yield a dominant family of rational curves on X.
Conversely, if we have a dominant family of rational curves then for a general point 𝑥 ∈ 𝑋 every curve
f that meets x is free. (See [Kol96, II.3.5 Proposition].) By [Kol96, II.3.13 Lemma], every free curve
𝑓 : P1 → 𝑋 must satisfy deg( 𝑓 ∗𝑇𝑋 ) ≥ 2.

We also need the following birational invariant in the analysis of Fano threefolds:

Definition 2.5. Let X be a smooth projective variety and L be a big and nef Q-Cartier divisor on X. We
define the Fujita invariant 𝑎(𝑋, 𝐿) to be

𝑎(𝑋, 𝐿) = inf{𝑡 ∈ R | 𝑡𝐿 + 𝐾𝑋 is pseudo-effective.}.

It follows from [BDPP13] that 𝑎(𝑋, 𝐿) is positive if and only if X is uniruled. When L is nef but not
big, we formally set 𝑎(𝑋, 𝐿) = +∞.

When X is singular, we define the Fujita invariant 𝑎(𝑋, 𝐿) by taking a smooth resolution 𝛽 : 𝑋 → 𝑋:

𝑎(𝑋, 𝐿) := 𝑎(𝑋, 𝛽∗𝐿).

This is well defined due to the birational invariance of 𝑎(𝑋, 𝐿) (see [HTT15, Proposition 2.7]).

2.1. Notation

In this paper, we use Grothendieck’s notation for projective bundles, that is, P(𝑉) parametrizes rank 1
quotients of V.

We will use the following notation when we discuss GW invariants. We will denote an object
parametrized by M𝑔,𝑚(𝑋, 𝛽) using the notation 𝑓 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋 , where 𝑓 : 𝐶 → 𝑋 is a
stable map and the 𝑞𝑖 are the marked points on 𝐶. We will also let (𝐶, 𝑞1, . . . , 𝑞𝑚) ∈ M𝑔,𝑚 denote the
stabilization of the prestable curve (𝐶, 𝑞1, . . . , 𝑞𝑚). Note that for every irreducible component 𝐶 𝑗 of C
there is a unique irreducible component𝐶 𝑗 ⊂ 𝐶 that maps birationally to𝐶 𝑗 under the stabilization map.
(When 𝐶 𝑗 and 𝐶 𝑗 are isomorphic, we will often abuse notation and write 𝐶 𝑗 ⊂ 𝐶.) Since every marked
point 𝑞𝑖 is contained in a unique irreducible component 𝐶 𝑗 , we can uniquely identify corresponding
points 𝑞𝑖 ∈ 𝐶 𝑗 ⊂ 𝐶 (which may be either marked points or nodes in 𝐶).

3. Failure of asymptotic enumerativity

In this section, we describe two types of Fano varieties X not satisfying asymptotic enumerativity, giving
counterexamples to [LP23, Speculation 12].

3.1. Conical Fano manifolds

For this subsection, X will denote a Fano manifold of Picard rank 1 and Fano index r and we say that
a rational curve C on X is a line if it has anticanonical degree r (or equivalently, degree 1 against an
ample generator of the Picard group).

Definition 3.1. Let X be a Fano manifold with Picard rank 1 and Fano index r. For any positive integer t,
we say that X is t-general if there exists a family of free rational curves of anticanonical degree 𝑡𝑟 on X.
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We say that X is conical if also there exists an irreducible divisor D in X containing a point p, the
vertex, such that every point of D is contained in a line ℓ ⊂ 𝐷 through p.

Example 3.2. Let 𝑋 ⊂ P𝑛 be a smooth hypersurface of degree 𝑑 ≤ 𝑛 with 𝑛 ≥ 4. Then, X has Picard
rank 1 and Fano index 𝑛 − 𝑑 + 1. If 𝑑 ≤ 𝑛 − 1, then X is 1-general [Deb15, Proposition 2.13], that is,
covered by free lines. If 𝑑 = 𝑛, then X is 2-general, that is, covered by free conics [Lew85]; see also
[Deb15, Exercise 3.8]. More generally, a smooth Fano complete intersection X of type (𝑑1, . . . , 𝑑𝑐) in
P𝑛 is 1-general if the Fano index 𝑛 − (𝑑1 + · · · + 𝑑𝑐) + 1 is at least 2 and 2-general if 𝑛 = 𝑑1 + · · · + 𝑑𝑐
(see [CR19, Theorem 5.2]).

A smooth Fano complete intersection X as above is also conical if there exists a hyperplane section D
of X that is itself a cone over a complete intersection of type (𝑑1, . . . , 𝑑𝑐) in P𝑛−2. For example, a Fermat
hypersurface X satisfies this property. Indeed, if a Fermat hypersurface is defined by the equation

𝑥𝑑0 + · · · + 𝑥𝑑𝑛 = 0

in P𝑛, then the hyperplane section D given by 𝑥0 − (−1) 1
𝑑 𝑥1 = 0 is a cone with the vertex 𝑝 = ((−1) 1

𝑑 :
1 : 0 : · · · : 0).

Proposition 3.3. Let X be a conical Fano manifold of dimension N, Picard rank 1 and Fano index r.
Suppose that X is t-general for some positive integer t such that

𝑡 ≤
𝑁

𝑟
− 1.

Then X fails to satisfy asymptotic enumerativity for all 𝑔 > 0. If furthermore

𝑡 <
𝑁

𝑟
− 1,

then X also fails to satisfy asymptotic enumerativity for 𝑔 = 0.

Note that the hypothesis on t can only hold if 𝑟 ≤ 𝑁
2 .

Proof. Let (𝐶, 𝑞1, . . . , 𝑞𝑚) ∈ M𝑔,𝑚 be a general curve, and let 𝑝1, . . . , 𝑝𝑚 ∈ 𝑋 be general points. Let
𝑒, 𝑚 be any integers for which

−𝐾𝑋 · 𝛽 = 𝑒𝑟 = 𝑁 (𝑚 + 𝑔 − 1).

For all m if 𝑔 > 0 and m sufficiently large if 𝑔 = 0, we have

𝑒 =
𝑁

𝑟
· 𝑚 +

𝑁

𝑟
(𝑔 − 1) ≥ (𝑡 + 1)𝑚.

Let (𝐶, 𝑞1, . . . , 𝑞𝑚) be the nodal curve depicted in Figure 1, obtained by attaching to C at each 𝑞𝑖 a
chain of two rational curves 𝑅𝑖∪𝑆𝑖 , where 𝑅𝑖 intersects C at 𝑞𝑖 and 𝑆𝑖 at 𝑧𝑖 , and 𝑞𝑖 ∈ 𝑆𝑖 is a smooth point.

We define a stable map 𝑓 : 𝐶 → 𝑋 as follows:

◦ 𝑓 |𝐶 : 𝐶 → 𝑋 is a constant map with image 𝑝 ∈ 𝐷.
◦ 𝑓 |𝑆𝑖 : 𝑆𝑖 → 𝑋 is a free curve of degree 𝑡𝑟 with 𝑓 (𝑞𝑖) = 𝑝𝑖 and 𝑓 (𝑧𝑖) ∈ 𝐷: Such a map 𝑓 |𝑆𝑖 exists

because X is t-general and of Picard rank 1, hence D is ample.
◦ 𝑓 |𝑅𝑖 : 𝑅𝑖 → 𝑋 is an isomorphism onto a line in D with 𝑓 (𝑞𝑖) = 𝑝 and 𝑓 |𝑅𝑖 (𝑧𝑖) = 𝑓 |𝑆𝑖 (𝑧𝑖).

As defined above, f has degree 𝑚(𝑡 + 1)𝑟 ≤ 𝑒𝑟 but can be modified to be a stable map of degree exactly
𝑒𝑟 by replacing any 𝑓 |𝑅𝑖 with a multiple cover of the appropriate degree.

Since f is a point in the boundary of M𝑔,𝑚(𝑋, 𝛽) over a general point of M𝑔,𝑚 × 𝑋×𝑚, GW𝑋,fd
𝑔,𝛽,𝑚

fails to be enumerative. �
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𝐶

𝑅1

𝑆1

• 𝑞1

𝑞1

𝑧1 · · ·

𝑅𝑚

𝑆𝑚

• 𝑞𝑚

𝑞𝑚

𝑧𝑚

Figure 1. The curve 𝐶 = 𝐶 ∪ (𝑅1 ∪ 𝑆1) · · · ∪ (𝑅𝑚 ∪ 𝑆𝑚).

Example 3.4. In particular, when X is a Fermat hypersurface X of degree d in P𝑛 such that 𝑛 − 1 ≥ 𝑑 >
𝑛+3

2 , then asymptotic enumerativity fails in every genus.

Example 3.5. Suppose X is a smooth quartic threefold with a conical hyperplane section D. Proposi-
tion 3.3 shows that X does not satisfy asymptotic enumerativity for any 𝑔 > 0.

Example 3.6. Recall that in Remark 1.12 we discussed the relationship between Fujita invariants and
the failure of asymptotic enumerativity. Proposition 3.3 shows one of the claims in Remark 1.12: The
failure of asymptotic enumerativity cannot always be explained by the Fujita invariant. More precisely,
suppose that X is a smooth hypersurface of degree d in P𝑛 which admits a conical hyperplane section D.
Furthermore, suppose the degree d satisfies

𝑛 + 3
2

< 𝑑 < 𝑛 − 2.

The proof of Proposition 3.3 shows that we can violate asymptotic enumerativity using curves which
connect through the conical hyperplane section D. However, we show that 𝑎(𝐷,−𝐾𝑋 ) < 𝑎(𝑋,−𝐾𝑋 ).
(This should be contrasted with Theorem 4.3 which guarantees that no such example exists amongst
Fano threefolds.)

Note that D is a cone over a hypersurface Z of dimension 𝑛 − 3 and degree d in P𝑛−2. The variety
𝐷 = P𝑍 (O⊕O(1)) is a resolution of singularities of D. We let 𝜉 denote a divisor representing O𝐷̃/𝑍 (1)
and L denote the pullback of a hyperplane on Z. Then

𝐾𝐷̃ = −2𝜉 + (−𝑛 + 𝑑 + 2)𝐿.

The pseudo-effective cone of divisors on 𝐾𝐷̃ is generated by L and by 𝜉 − 𝐿. Consider divisors of the
form 𝐾𝐷̃ + 𝑎𝜉. The assumption 𝑑 < 𝑛 − 2 implies that the smallest value of a for which this divisor lies
in the pseudo-effective cone of 𝐷 is 𝑎 = 𝑛 − 𝑑. Since −𝜙∗𝐾𝑋 = (𝑛 + 1 − 𝑑)𝜉, we conclude that

𝑎(𝐷,−𝜙∗𝐾𝑋 ) =
𝑛 − 𝑑

𝑛 + 1 − 𝑑
< 1 = 𝑎(𝑋,−𝐾𝑋 ).

3.2. Projective bundles

Choose positive integers 𝑛, 𝑟 with 𝑛 > 𝑟 + 1, and choose an r-tuple (𝑎1, . . . , 𝑎𝑟 ) of nonnegative integers
arranged in nondecreasing order. Set E = OP𝑛−𝑟 ⊕ OP𝑛−𝑟 (𝑎1) ⊕ . . .OP𝑛−𝑟 (𝑎𝑟 ). (Note that the first
summand of E is trivial.)
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𝐶

𝑇1

𝑞1

𝑞1 · · ·•

𝑇𝑚

𝑞𝑚

𝑞𝑚

•

Figure 2. The curve 𝐶 = 𝐶 ∪ 𝑇1 ∪ · · · ∪ 𝑇𝑚.

Let 𝑋 = PP𝑛−𝑟 (E) equipped with the projective bundle morphism 𝜋 : 𝑋 → P𝑛−𝑟 . We let Z denote the
‘most rigid’ section of 𝜋 corresponding to the surjection E → O onto the first factor. If we let H denote
the 𝜋-pullback of the hyperplane class from P𝑛−𝑟 and 𝜉 denote the class of the relative O(1), then

Nef1 (𝑋) = 〈𝜉, 𝐻〉 Eff
1
(𝑋) = 〈𝜉 − 𝑎𝑟𝐻, 𝐻〉.

Dually, if we let ℓ denote the class of a line in a fiber of 𝜋 and C denote the class of a line in Z, then

Eff1 (𝑋) = 〈ℓ, 𝐶〉 Nef1 (𝑋) = 〈ℓ, 𝑎𝑟ℓ + 𝐶〉.

The anticanonical divisor is −𝐾𝑋 = (𝑟 + 1)𝜉 + (𝑛 − 𝑟 + 1 −
∑𝑟
𝑖=1 𝑎𝑖)𝐻. In particular, X will be Fano if

and only if
∑𝑟
𝑖=1 𝑎𝑖 ≤ 𝑛 − 𝑟 .

In this section, we show that fixed-domain GW invariants GW𝑋,fd
𝑔,𝛽,𝑚 fail to be enumerative for many

Fano varieties X given by the construction above.

Proposition 3.7. Let 𝑋 = PP𝑛−𝑟 (E) be a Fano projective bundle with 𝑛 > 𝑟 + 1 and with notation as
above. Suppose that

𝑟∑
𝑖=1
𝑎𝑖 ≥ 2.

Let 𝑔 ≥ 0 be any genus.
Then, there exist fixed-domain triples (𝑔, 𝛿, 𝑚) with m arbitrarily large for which there exists a

positive-dimensional family of genus g reducible curves of degree 𝛿 with fixed moduli through m general
points. In particular, asymptotic enumerativity fails for X in every genus.

The construction is simple: Through m general points, we can find a comb whose handle is a genus
g curve which lies in Z and whose teeth are rational curves in the fibers of 𝜋. Such combs will have
higher than expected dimension.

Proof. For any 𝑔, 𝑚 ≥ 0 with 3𝑔−3+𝑚 ≥ 0, define 𝛿 = 𝑛(𝑚 +𝑔−1) so that (𝑔, 𝛿, 𝑚) is a fixed-domain
triple. Fix general points 𝑝1, . . . , 𝑝𝑚 ∈ 𝑋 , and let (𝐶, 𝑞1, . . . , 𝑞𝑚) ∈ M𝑔,𝑚 be a general curve. Let
(𝐶, 𝑞1, . . . , 𝑞𝑚) be the nodal curve obtained by attaching to C at 𝑞𝑖 a single rational tail 𝑇𝑖 with smooth
marked point 𝑞𝑖; see Figure 2.

Consider the set of morphisms 𝑓 : 𝐶 → 𝑋 of the following form.

◦ each 𝑇𝑖 is mapped to a rational curve in the fiber of 𝜋 such that 𝑓 (𝑞𝑖) = 𝑝𝑖 and 𝑓 (𝑞𝑖) ∈ 𝑍;
◦ C is mapped to Z, necessarily containing the points 𝑓 |𝑇𝑖 (𝑞𝑖).

Write 𝛾 = 𝑛 − 𝑟 + 1 −
∑𝑟
𝑖=1 𝑎𝑖 . Let 𝛿0 be the degree of 𝑓 |𝐶 in Z, and let 𝑚′ denote the intersection

𝜉 ·
(∑𝑚

𝑗=1 𝑓 (𝑇𝑗 )
)

recording the total degree of the teeth𝑇1, . . . , 𝑇𝑚 with respect to the relative hyperplane
class. The condition 𝛿 = 𝑛(𝑚 + 𝑔 − 1) implies that these constants must satisfy
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𝛿0𝛾 + 𝑚
′(𝑟 + 1) = 𝑛(𝑚 + 𝑔 − 1).

Fix a sufficiently large positive integer k, and set 𝑚 = 𝑘𝛾 − 𝑔 + 1. We may choose our curve 𝐶 so that
𝑚′ = (𝑘 + 1)𝛾 ≥ 𝑚. We find that

𝛿0 = 𝑛𝑘 − (𝑘 + 1) (𝑟 + 1) = 𝑘 (𝑛 − 𝑟 − 1) − (𝑟 + 1).

Since we are assuming that 𝑛 > 𝑟 + 1, the degree 𝛿0 is positive for k sufficiently large.
Next, consider the space parametrizing morphisms 𝑓0 : 𝐶 → 𝑍 � P𝑛−𝑟 of degree 𝛿0 for which

𝑓0(𝑞𝑖) = 𝑓 |𝑇𝑖 (𝑞𝑖). This space is nonempty of dimension

𝛿0 (𝑛 − 𝑟 + 1) + (𝑛 − 𝑟) − (𝑚 + 𝑔) (𝑛 − 𝑟)

so long as this number is nonnegative, by [Lar16, Corollary 1.3] and the Brill–Noether theorem.
Substituting our earlier value for 𝛿0, this number is equal to

(𝑘 (𝑛 − 𝑟 − 1) − (𝑟 + 1))(𝑛 − 𝑟 + 1) + (𝑛 − 𝑟) − (𝑚 + 𝑔) (𝑛 − 𝑟)

= 𝑘 [(𝑛 − 𝑟 − 1) (𝑛 − 𝑟 + 1) − 𝛾(𝑛 − 𝑟)] + 𝐵,

where B only depends on 𝑛, 𝑟, 𝑔. Thus, the dimension of this space of maps is positive as long as k is
sufficiently large and

𝑛 − 𝑟 + 1 −

𝑟∑
𝑖=1
𝑎𝑖 = 𝛾 <

(𝑛 − 𝑟 − 1) (𝑛 − 𝑟 + 1)
𝑛 − 𝑟

,

which happens whenever
∑𝑟
𝑖=1 𝑎𝑖 ≥ 2.

Thus, there is a positive-dimensional family of such 𝑓 : 𝐶 → 𝑋 with the needed properties,
completing the proof. �

Remark 3.8. The bound
∑𝑟
𝑖=1 𝑎𝑖 ≥ 2 is sharp. When 𝑟 = 1 and 𝑎1 = 1, 𝑋 = PP𝑛−1 (O ⊕ O(1)) is

isomorphic to the blowup of P𝑛 at one point, for which asymptotic enumerativity holds by [CL23,
Theorem 23].
Example 3.9. The unique example of a Fano projective bundle of dimension 3 that satisfies the conditions
of Proposition 3.7 is 𝑋 = PP2 (O ⊕ O(2)).

4. Fano threefolds

In this section, we study enumerativity of fixed-domain GW invariants for Fano threefolds. Our intuition
is shaped by [BLRT22, Theorem 1.2] which shows that if X carries a nondominant family of rational
curves then these curves must sweep out a surface 𝑌 ⊂ 𝑋 satisfying one of the following conditions:
1. Y is swept out by anticanonical lines, or
2. Y is an exceptional divisor for a birational contraction on X.
In other words, divisors Y as above account for all ‘unexpected’ families of rational curves. We prove
that the failure of asymptotic enumerativity for a Fano threefold is also explained by the presence of
such divisors Y.

We will frequently use Mori’s classification of the exceptional divisors E on smooth Fano threefolds
into five types ([Mor82]):
◦ E1: an exceptional divisor for a blowup along a smooth curve
◦ E2: an exceptional divisor for a blowup at a smooth point
◦ E3: the polarized surface (𝐸,−𝐾𝑋 |𝐸 ) is isomorphic to (𝑄,O(1, 1)) where Q is a smooth quadric

surface
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◦ E4: the polarized surface (𝐸,−𝐾𝑋 |𝐸 ) is isomorphic to (𝑄,O(1)) where Q is a quadric cone in P3

◦ E5: the polarized surface (𝐸,−𝐾𝑋 |𝐸 ) is isomorphic to (P2,O(1)).

In this section, we will say that a rational curve 𝐶 ⊂ 𝑋 is a line (respectively, conic, cubic) if C has
anticanonical degree 1 (resp. 2, 3). Note that this differs from the conventions for complete intersections
in P𝑛 used in Section 3.1 and Section 5. We first need the following result of [LP23] which applies to
stable maps with irreducible domain:

Lemma 4.1 ([LP23] Proposition 13 and Proposition 14). Let X be a smooth projective variety, and fix
𝑚 ≥ 𝑔 + 1. Suppose that 𝑠 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋 is an element of M𝑔,𝑚 (𝑋, 𝛽) that lies over a general
point ((𝐶, 𝑞1, . . . , 𝑞𝑚), 𝑝1, . . . , 𝑝𝑚) ∈ M𝑔,𝑚 × 𝑋×𝑚. Then the local dimension of M𝑔,𝑚(𝑋, 𝛽) at s has
the expected value

dim[𝑠] M𝑔,𝑚(𝑋, 𝛽) = −𝐾𝑋 · 𝛽 + (dim(𝑋) − 3) (1 − 𝑔) + 𝑚.

We also need the following estimate for stable maps with irreducible domain:

Lemma 4.2. Let X be a smooth projective variety, and fix𝑚 ≥ 1. Suppose that 𝑠 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋
is an element of M𝑔,𝑚 (𝑋, 𝛽) that lies over a general point (𝐶, 𝑝1) ∈ M𝑔 × 𝑋 , where 𝑝1 denotes
the image of 𝑞1 under the first evaluation map 𝑒𝑣1 : M𝑔,𝑚(𝑋, 𝛽) → 𝑋 . Then the local dimension of
M𝑔,𝑚 (𝑋, 𝛽) at s satisfies

dim[𝑠] M𝑔,𝑚 (𝑋, 𝛽) ≤ −𝐾𝑋 · 𝛽 + dim(𝑋) − 3 + 2𝑔 + 𝑚.

Proof. It follows from deformation theory that we have

dim[𝑠] M𝑔,𝑚 (𝑋, 𝛽) = dim[𝑠] M𝑔,0 (𝑋, 𝛽) + 𝑚 ≤ −𝐾𝑋 · 𝛽 + (dim(𝑋) − 3) (1 − 𝑔) + ℎ1 (𝐶, 𝑁𝑠/𝑋 ) + 𝑚.

Since 𝑠 : 𝐶 → 𝑋 deforms to cover X, we conclude that 𝑁𝑠/𝑋 is generically globally generated. (See,
e.g., [LT22, Proposition 3.3]) It follows from [LRT23, Lemma 2.8] that we have

ℎ1 (𝐶, 𝑁𝑠/𝑋 ) ≤ (dim(𝑋) − 1)𝑔.

Thus, our assertion follows. �

Our main statement for Fano threefolds relates the enumerativity of fixed-domain GW invariants
with the existence of subvarieties𝑌 ⊂ 𝑋 with large Fujita invariant. Recall that for an m-pointed genus g
curve of anticanonical degree d on a Fano threefold the fixed-domain triple condition is 𝑑 = 3𝑚+3𝑔−3.

Theorem 4.3. Let X be a smooth Fano threefold. Let 𝑔 ≥ 0 be a fixed genus. Suppose that there exist
arbitrarily large 𝑚 ≥ 0 with the following property. There exists 𝛽 ∈ 𝑁1 (𝑋)Z of anticanonical degree
𝑑 ≤ 3𝑚 + 3𝑔 − 3 and an irreducible component 𝑀𝑚 ⊂ M𝑔,𝑚(𝑋, 𝛽) such that 𝑀𝑚 is contained in the
boundary of M𝑔,𝑚(𝑋, 𝛽) and such that the map

𝜙|𝑀𝑚 : 𝑀𝑚 → M𝑔,𝑚 × 𝑋×𝑚

is dominant.
Then, for any m sufficiently large, a general point 𝑓 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋 of the fiber 𝑀𝑚,0 ⊂ 𝑀𝑚

over a general point (𝐶, 𝑞1, . . . , 𝑞𝑚) ∈ M𝑔,𝑚 has one of the following three properties.

(i) f contracts the central genus g component 𝐶 ⊂ 𝐶 to a point 𝑝 ∈ 𝑋 (independent of the 𝑞𝑖), through
which there exists a one-parameter *family of* lines in X,

(ii) the central genus g component 𝐶 ⊂ 𝐶 sweeps out a curve 𝑍 ⊂ 𝑋 (independent of the 𝑞𝑖) which is
contained in an E5 divisor 𝑌 ⊂ 𝑋 , or

(iii) the central genus g component 𝐶 ⊂ 𝐶 sweeps out a surface 𝑍 ⊂ 𝑋 with the property that
𝑎(𝑍,−𝐾𝑋 |𝑍 ) ≥ 2.
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[LTT18, Proposition 4.1] shows that any surface 𝑍 ⊂ 𝑋 swept out by lines satisfies 𝑎(𝑍,−𝐾𝑋 |𝑍 ) ≥ 2.
Thus, in case (i) the surface Z swept out by the one-parameter lines through p will still have Fujita
invariant at least 2. In case (ii), the E5 divisor Y has Fujita invariant 3. Therefore, X must contain a
divisor of Fujita invariant at least 2 in all three cases.

Proof. Suppose that 𝑓 : (𝐶, 𝑞1, . . . , 𝑞𝑚) → 𝑋 is a general stable map parametrized by 𝑀𝑚 over a
general point of M𝑔,𝑚 × 𝑋×𝑚. Then the domain of f is the union of an irreducible genus g curve C with
b genus 0 trees 𝑇1, . . . , 𝑇𝑏 . After relabeling, we may suppose that if 𝑇𝑖 contains any marked point then it
contains 𝑞𝑖 , and it meets C at 𝑞𝑖 . We fix the moduli of the stabilized curve (𝐶, 𝑞1, . . . , 𝑞𝑚) throughout
the proof and assume that 𝜙|𝑀𝑚 remains dominant upon pullback over [(𝐶, 𝑞1, . . . , 𝑞𝑚)] ∈ M𝑔,𝑚 for
arbitrarily large m. That is, we assume that 𝑀𝑚,0 dominates 𝑋×𝑚.

We first make a series of reductions to constrain the topology of f. At the cost of decreasing d
(preserving the inequality 𝑑 ≤ 3𝑚 + 3𝑔 − 3), we may assume that the tree 𝑇𝑖 contains the marked point
𝑞𝑖 by deleting all trees 𝑇𝑖 that do not contain a marked point. We may furthermore assume that 𝑇𝑖 is a
chain of rational curves with 𝑞𝑖 on the component furthest away from C, by successively deleting leaves
on 𝑇𝑖 not containing 𝑞𝑖 , also at the cost of decreasing d.

Now, suppose that 𝑇𝑖 has anticanonical degree at least 4. Then, deleting 𝑇𝑖 and the points 𝑝𝑖 ∈ 𝑋
and 𝑞𝑖 ∈ 𝐶 decreases d by at least 4 and m by 1, so still have 𝑑 ≤ 3𝑚 + 3𝑔 − 3. On the other hand, this
operation can be performed at most 𝑑4 ≤ 3

4𝑚 + 𝑂 (1) times, where here and in the rest of the proof the
implicit constant 𝑂 (1) is allowed to depend on 𝑔, 𝑋 but not on m. In particular, we still have 𝑚 → ∞

after this reduction. (We may also relabel the chains 𝑇𝑖 with the indices 𝑖 = 1, 2, . . . , 𝑏 after deleting
some indices i.)

If any components are deleted in the process described above, then we have 𝑑 < 3𝑚 + 3𝑔 − 3. If the
resulting curve 𝐶 is irreducible (that is, 𝑏 = 0) and m is sufficiently large, then by Lemma 4.1, the map
𝜙|𝑀𝑚 cannot be dominant. Thus, we may assume that 𝑏 > 0.

Because the image of each chain 𝑇𝑖 contains a general point of X, we have deg(𝑇𝑖) ≥ 2 for each
𝑖 ≤ 𝑏. Indeed, the tree 𝑇𝑖 must contain a free curve of class 𝛽𝑖 , that is, we have a dominant map
ev : 𝑀0,1 (𝑋, 𝛽𝑖) → 𝑋 . Lemma 4.1 shows that the anticanonical degree of 𝛽𝑖 must be at least 2. Thus,
we may assume that deg(𝑇𝑖) ∈ {2, 3} whenever 𝑇𝑖 is nonempty.

If deg(𝑇𝑖) = 2, then the image of 𝑇𝑖 is an irreducible conic through a general point. Amongst the set
of chains 𝑇1, . . . , 𝑇𝑏 , we let 𝑇1, . . . , 𝑇𝑐 denote the trees which have anticanonical degree 2. The stability
of f requires that such 𝑇𝑖 are irreducible.

If deg(𝑇𝑖) = 3, then the image of 𝑇𝑖 with 𝑖 ≤ 𝑏 is either the union of a conic with a line or it is an
irreducible cubic. Let 𝑇𝑐+1, . . . , 𝑇𝑐+𝑠 denote the chains which have anticanonical degree 3 and contain
a unique free component of degree 3. Again, the stability of f requires that such 𝑇𝑖 are irreducible. Let
𝑇𝑐+𝑠+1, . . . , 𝑇𝑏 denote the remaining trees which have anticanonical degree 3 and therefore contain both
a line and a free conic. Write 𝑠′ = 𝑏 − 𝑐 − 𝑠. Then, by the stability of f and the assumption that 𝑇𝑖 is a
chain, we must have 𝑇𝑖 = 𝐿𝑖 ∪ 𝐶𝑖 , where the line 𝐿𝑖 appears between C and the free conic 𝐶𝑖 , which
contains 𝑞𝑖 .

The topology of 𝐶 is depicted in Figure 3. We write 𝑑0 = 𝑑 − 2𝑐 − 3𝑠 − 3𝑠′ for the anticanonical
degree of C and 𝑠+ = 𝑠 + 𝑠′.

As we vary the points 𝑝1, . . . , 𝑝𝑚 ∈ 𝑋 in moduli, the corresponding maps 𝑓 : 𝐶 → 𝑋 will also
deform. Let 𝑍 ⊂ 𝑋 be the subvariety of X swept out by C. We analyze the maps that appear depending
on the dimension of Z, and show that, in order for such stable maps f through general points 𝑝1, . . . , 𝑝𝑚
to exist with m arbitrarily large, the stable map f must be of one of the three possible forms in the
statement of the Theorem.

Case 1: dim(𝑍) = 0.
In this case, f contracts C to a point 𝑝 ∈ 𝑋 . Neither a family of free conics nor cubics through

a general point of X may pass through a fixed point 𝑝 ∈ 𝑋 because passing through p imposes the
expected number of conditions on any family of free curves. So we have 𝑐 = 𝑠 = 0 and 𝑠′ > 0. We have
𝑇1 = 𝐿1 ∪𝐶1, where 𝐿1 � 𝑝 is a line and 𝐶1 is a free conic. If there is no positive-dimensional family of
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𝐶

𝑇1

• · · ·

𝑇𝑐+𝑠

•

𝑇𝑐+𝑠+1

•

· · ·

𝑇𝑏

•

•

𝑞𝑏+1

· · ·

•

𝑞𝑚

Figure 3. The curve 𝐶 = 𝐶 ∪ 𝑇1 · · · ∪ 𝑇𝑏 .

lines through p, then there are only finitely many options for 𝐿1. On the other hand, a general member
of a family of free conics will avoid any fixed codimension 2 locus in X. Thus, a free conic 𝐶1 through a
general point cannot meet any of the finitely many lines through p, a contradiction. Thus, (i) must hold.

Case 2: 𝑍 = 𝑋 .
Because C sweeps out all of X, by Lemma 4.2 the space of deformations of 𝑓 |𝐶 that preserve the

pointed moduli of C has dimension at most 𝑑0 +𝑂 (1). We now estimate the dimension of the image of
𝑀𝑚,0 under 𝜙. First, observe that, given a fixed choice of 𝑓 |𝐶 , we have:

◦ One parameter for the choice of a point 𝑝𝑖 on a free conic through 𝑓 (𝑞𝑖), and
◦ Two parameters for the choice of a point 𝑝𝑖 on a free cubic through 𝑓 (𝑞𝑖).

that is, if the restriction of f to C is specified, then we get one (resp. two) additional degrees of freedom
for the position of 𝑓 (𝑞𝑖) = 𝑝𝑖 if 𝑇𝑖 � 𝑞𝑖 is a free conic (resp. free cubic).

Suppose instead that 𝑇𝑖 is a chain 𝐿𝑖 ∪ 𝐶𝑖 . We may have a full three-parameter family of 𝑝𝑖 arising
from choices of such 𝑇𝑖 . However, returning to our original setup, note that the lines 𝐿𝑖 on X sweep out
a finite union of divisors {𝐸 𝑗 }. Since by assumption the deformations of C in the family 𝑀𝑚,0 dominate
X, the same is true if we consider the larger sublocus of 𝑀𝑚 where we fix C but allow the points
(𝑞1, . . . , 𝑞𝑚) to vary in moduli on C. In this larger family, we see that forcing 𝑞𝑖 to map to one of the
divisors 𝐸 𝑗 imposes one condition on the family of maps 𝑓 |𝐶 . Since our original curve (𝐶, 𝑞1, . . . , 𝑞𝑚)
is general in moduli, the conditions imposed at all such 𝑞𝑖 are independent. Therefore, we conclude that
the dimension of the image of 𝑀𝑚,0 under 𝜙 is at most

𝑑0 +𝑂 (1) + 𝑐 + 2𝑠 + 2𝑠′ = 𝑑 − (𝑐 + 𝑠+) +𝑂 (1)
= 3𝑚 − 𝑏 +𝑂 (1).

On the other hand, in order for 𝑀𝑚,0 to dominate 𝑋×𝑚, we need

3𝑚 − 𝑏 +𝑂 (1) ≥ 3𝑚,

hence 𝑏 ≤ 𝑂 (1). In particular, 𝑚 − 𝑏 ≥ 𝑔 + 1 if m is sufficiently large. Then, by Lemma 4.1, it follows
that 𝑓 |𝐶 moves in a family of the expected dimension of 𝑑0 −3𝑔+3 (we have subtracted 3𝑔−3+𝑚 from
the right-hand side of the formula of Lemma 4.1 to account for the fact that we have fixed the moduli
of C). We now repeat the calculation of the dimension of the space of deformations of f, with this more
precise estimate. The dimension of the image of 𝑀𝑚,0 under 𝜙 is at most

(𝑑0 − 3𝑔 + 3) + 𝑐 + 2𝑠+ = (𝑑 − 3𝑔 + 3) − (𝑐 + 𝑠+)

= (𝑑 − 3𝑔 + 3) − 𝑏,

which is b less than the expected dimension. Thus, the deformations of f cannot dominate 𝑋×𝑚, which
has dimension 3𝑚 > (𝑑 − 3𝑔 + 3) − 𝑏.
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Case 3: dim(𝑍) = 1.
As in the case where C is contracted, we need 𝑐 = 0 since a free conic through a general point does

not meet a fixed curve 𝑍 ⊂ 𝑋 . Also, we need 𝑏 = 𝑚 or else C sweeps out all of X. Thus,

𝑑0 = 𝑑 − 3𝑚 ≤ 𝑂 (1),

and in particular, the space of deformations of 𝑓 |𝐶 has bounded dimension 𝑂 (1). First, suppose that
a general point of Z is not contained in a one-parameter family of lines. Then arguing in the previous
case, the space of deformations of f has dimension at most

𝑂 (1) + 2𝑠+ = 𝑂 (1) + 2𝑚.

Thus, this space of deformations cannot dominate 𝑋×𝑚.
On the other hand, if a general (and hence, every) point of Z is contained in a one-parameter family

of lines, then these lines must sweep out a surface Y carrying a two-dimensional family of lines. By
[BLRT22, Lemma 4.4], Y is an E5 divisor, and we are now in case (ii) of the theorem.

Case 4: dim(𝑍) = 2.
Let 𝜓 : 𝑍 → 𝑋 denote the composition of a resolution of Z with the inclusion. Let 𝑓̃ : 𝐶 → 𝑍 be the

map obtained by strict transform from a general point of 𝑀𝑚,0 over (𝐶, 𝑞1, . . . , 𝑞𝑚). Then, by Lemma
4.2, the map 𝑓̃ moves in a family of dimension at most

−𝐾𝑍 · 𝑓̃∗ [𝐶] +𝑂 (1).

Suppose for a contradiction that we have 𝑎(𝑍, 𝜓∗(−𝐾𝑋 )) < 2. Since deformations of C sweep out Z,
we have

(𝐾𝑍 − 𝑎(𝑍, 𝜓∗(−𝐾𝑋 ))𝜓
∗𝐾𝑋 ) · 𝑓̃∗ [𝐶] ≥ 0.

Choose 𝜖 > 0 so that 2 − 𝜖 > 𝑎(𝑍, 𝜓∗(−𝐾𝑋 )). Then for any 𝑂 (1) constants, we find that in sufficiently
large degrees

−𝐾𝑍 · 𝑓̃∗ [𝐶] +𝑂 (1) ≤ (2 − 𝜖)𝑑0 +𝑂 (1),

where 𝑑0 = −𝐾𝑋 · 𝑓∗ [𝐶] as before. The same estimate also gives an upper bound on the dimension of
the space of deformations of 𝑓 |𝐶 : 𝐶 → 𝑍 .

Consider now the space of deformations of f. As in case 2, the free conics and cubics add one and
two parameters, respectively. We claim that reducible chains of the form 𝑇𝑖 = 𝐿𝑖 ∪ 𝐶𝑖 also add two
parameters. First, suppose that 𝑓 (𝑞𝑖) is contained in a 1-parameter family of lines. Then, because 𝑓 (𝑞𝑖)
is a general point of the divisor Z, and a family of lines cannot cover X, this one-parameter family of
lines must be contained in Z and thus sweeps out Z. Therefore, the lines have anticanonical degree at
least 2 on 𝑍 , which contradicts the assumption that 𝑎(𝑍,−𝐾𝑋 |𝑍 ) < 2. Thus, only finitely many lines
pass through 𝑓 (𝑞𝑖). Then, there is a one-parameter family of free conics 𝐶𝑖 incident to 𝐿𝑖 , and there is
a one-parameter family of points on 𝐶𝑖 . In total, the chains 𝑇𝑖 also add two parameters to the space of
deformations of f.

We conclude that the space of deformations of f has dimension at most

(2 − 𝜖) (𝑑 − 2𝑐 − 3𝑠+) +𝑂 (1) + 𝑐 + 2𝑠+ ≤ (2 − 𝜖) (3𝑚 − 2𝑐 − 3𝑠+) + 𝑐 + 2𝑠+ +𝑂 (1)
= (6 − 3𝜖)𝑚 − (3 − 2𝜖)𝑐 − (4 − 3𝜖)𝑠+ +𝑂 (1)
= (3 − 𝜖)𝑚 − (1 − 𝜖)𝑠+ +𝑂 (1)
< 3𝑚,
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for m sufficiently large. In the next-to-last line, we have used the equality 𝑐 + 𝑠+ = 𝑏 = 𝑚. In the last
line, we have used the fact that (1 − 𝜖)𝑠+ ≥ 0 if 𝜖 ≤ 1, whereas if 𝜖 > 1, then (3 − 𝜖)𝑚 − (1 − 𝜖)𝑠+ =
2𝑚 + (1 − 𝜖) (𝑚 − 𝑠+) < 2𝑚. Thus, 𝑀𝑚,0 cannot dominate 𝑋×𝑚. �

Proof of Theorem 1.10. Let X be a smooth Fano threefold, and assume first that there is an infinite
sequence of positive integers m and nef curve classes 𝛽 on X such that (𝑔,−𝐾𝑋 · 𝛽, 𝑚) is a fixed-domain
triple and a sequence of irreducible components 𝑀𝑚 ⊂ M𝑔,𝑚(𝑋, 𝛽) such that a general fiber of the
morphism 𝑀𝑚 → M𝑔,𝑚 × 𝑋×𝑚 consists only of maps with reducible domains. By Theorem 4.3, X
admits a divisor Y with 𝑎(𝑌,−𝐾𝑋 |𝑌 ) ≥ 2.

According to [BLRT22, Theorem 4.1], if X is a smooth Fano threefold and 𝑌 ⊂ 𝑋 is a surface
satisfying 𝑎(𝑌,−𝐾𝑋 |𝑌 ) > 1, then either Y is swept out by anticanonical lines or Y is an exceptional
divisor on X. The exceptional divisors with Fujita invariant ≥ 2 have types E1, E3, E4, E5, and each
admits a dominant family of anticanonical lines.

Therefore, if X is a smooth Fano threefold without a divisor Y as in the statement of Theorem 1.10,
then a general fiber of the morphismM𝑔,𝑚(𝑋, 𝛽) → M𝑔,𝑚×𝑋

×𝑚 consists only of maps with irreducible
(hence smooth) domains, for any fixed-domain triple (𝑔,−𝐾𝑋 · 𝛽, 𝑚) with m sufficiently large compared
to g. By [LP23, Proposition 13 and Proposition 14], the generic fiber of 𝜙 is furthermore reduced of
dimension 0. It follows that X satisfies asymptotic enumerativity. �

When X is a smooth Fano threefold which carries a divisor swept out by lines it is usually straight-
forward to tell directly whether one can obstruct asymptotic enumerativity using stable maps consisting
of rational curves attached to a central genus g curve C as described by Theorem 4.3.

Example 4.4. Consider the Fano threefold 𝑋 = PP2 (O ⊕ O(2)). The rigid section Z of the P1-bundle
𝑋 → P2 is an E5 divisor with Fujita invariant 3. Proposition 3.7 demonstrated the failure of asymptotic
enumerativity on X using the existence of the divisor Z. As predicted by Theorem 4.3, the ‘bad’ curves
are obtained by attaching m fibers of the projective bundle to a genus g curve in Z.

Example 4.5. Let 𝑋 ⊂ P4 be a conical quartic threefold. Then X fails to satisfy asymptotic enumerativity
by Example 3.5. By definition the conical divisor of X contains a one-parameter family of lines through
the cone point p. As predicted by the proof of Theorem 4.3, asymptotic enumerativity is violated by
curves 𝐶 for which the central genus g curve C is contracted to p.

Example 4.6. Let X be the Fano threefold PP1×P1 (O ⊕ O(1, 1)), and let 𝜋 : 𝑋 → P1 × P1 be the
projection. Let 𝑍 ⊂ 𝑋 be the section of 𝜋 corresponding to the projection O ⊕ O(1, 1) → O. Then Z
is an E1 divisor with Fujita invariant 2. However, no point on Z (or X) is contained in a one-parameter
family of lines.

Repeating the contruction of §3.2, for any positive integer m with 𝑚 + 𝑔 ≡ 1(mod 2), we construct
reducible curves of genus g with general moduli through m general points of 𝑝𝑖 ∈ 𝑋 of anticanonical
degree 3𝑚 + 𝑔 − 1 as follows. Attach a

(
𝑚+𝑔−1

2 , 𝑚+𝑔−1
2

)
-curve of genus g in 𝑍 � P1 × P1 at the points

𝑞𝑖 ∈ 𝐶 to rational tails mapping isomorphically to the fibers of 𝜋 over the 𝑝𝑖 . Such a curve with general
moduli in Z exists, for example, by [Lar16, Corollary 1.3]. If 𝑔 > 0, then one may replace the rational
tails with multiple covers of arbitrary degree to obtain a map of degree exactly 3𝑚 + 3𝑔 − 3. In this way,
X fails to satisfy asymptotic enumerativity for any 𝑔 > 0.

The following example shows that a Fano threefold can satisfy asymptotic enumerativity in every
genus even if it carries a divisor with Fujita invariant 2.

Example 4.7. Let X be the blowup of P3 along the intersection Z of a smooth quadric and a smooth
cubic. Then X carries two divisors with Fujita invariant 2: the exceptional divisor E for the blowup (of
type E1) and the strict transform Q of the quadric (of type E3). However, no point of X is contained in
a one-parameter family of lines.
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We claim that X satisfies asymptotic enumerativity in every genus. By Theorem 4.3, it suffices to
show that asymptotic enumerativity cannot be violated by families of reducible curves where the central
genus g curve C deforms to sweep out Q or E.

First, we show that it is not possible to obstruct asymptotic enumerativity using a family of reducible
curves 𝐶 such that the genus g component C sweeps out Q. The only dominant family of anticanonical
conics T on X is given by the strict transforms of lines meeting Z twice. For every such curve, 𝑄 ·𝑇 = 0
and thus a general conic cannot meet Q. To finish the argument, we repeat the computation in Case 4 of
the proof of Theorem 4.3. In the notation of this proof, we have shown that 𝑐 = 0 so that 𝑠+ = 𝑚. The
computation in this proof shows that curves of this type deform in dimension at most 2𝑚 +𝑂 (1). Since
the dimension of 𝑋×𝑚 is 3𝑚, we see that asymptotic enumerativity cannot be violated using such curves.

Next, we show that it is not possible to obstruct asymptotic enumerativity using a family of reducible
curves 𝐶 such that the genus g component C sweeps out E. Since Z has genus 4, it does not receive a
map from a general curve of genus g for any g. Thus, the only way to violate enumerativity using maps
to E is if C is a multiple cover of a fiber of 𝐸 → 𝑍 or is contracted to a point. Note that such a curve
can meet at most one general anticanonical conic. Repeating the computation in Case 4 of the proof of
Theorem 4.3, we see that 𝑠+ ≥ 𝑚−1 so that curves of this type deform in dimension at most 2𝑚 +𝑂 (1).
Thus, asymptotic enumerativity cannot be violated using such curves.

5. Hypersurfaces

The goal in this section is to prove the following theorem describing enumerativity of fixed-domain GW
invariants for certain hypersurfaces.

Theorem 5.1. Suppose X is a smooth hypersurface of degree d in P𝑛 such that

(1) 𝑑 ≤ 𝑛 − 2 and X is general, or
(2) 𝑑 ≤ (𝑛 + 3)/3.

Then X satisfies asymptotic enumerativity for every genus g.

The strategy of proof is as follows. It is enough to establish an upper bound, independent of g, on ℎ1

of the restricted tangent bundle for a stable map of genus g to X with general stabilized domain passing
through m points. (See Lemma 5.4 for a precise statement.) We obtain such a bound by degeneration.
When 𝑔 = 0, we replace the general domain curve with a maximally degenerate chain of rational curves,
see Lemma 5.5 and Proposition 5.6, using results established in §5.1 to obtain bounds on ℎ1. The case
of arbitrary genus is finally reduced to the case of genus 0 by replacing a general pointed curve of genus
g by one with a rational tail containing all of the marked points.

In this section, we will say that a rational curve 𝐶 ⊂ 𝑋 is a line or conic if C is a line or conic in the
ambient projective space.

5.1. Chains of curves on hypersurfaces

Let X be a smooth hypersurface of degree d in P𝑛. We assume throughout that 𝑑 ≤ 𝑛 and that 𝑛 ≥ 4. By
the parameter space of chains of rational curves of degree e with t components, we mean the closure
of the locus in 𝑀0,0(𝑋, 𝑒) parametrizing stable maps 𝑓 : 𝐶 → 𝑋 of degree e such that C is a chain
𝐶 = 𝐶1 ∪ · · · ∪ 𝐶𝑡 of t smooth rational curves such that 𝐶𝑖 intersects 𝐶𝑖−1 and 𝐶𝑖+1. The expected
dimension of the parameter space of chains of rational curves on X of degree e with t components is

𝑒(𝑛 + 1 − 𝑑) + 𝑛 − 3 − 𝑡.

When X is general and 𝑑 ≤ 𝑛 − 2, by [RY19, Theorem 3.3], the space of rational curves of a given
degree through any point of X has the expected dimension 𝑒(𝑛 + 1 − 𝑑) − 2, so every component of the
parameter space of chains of rational curves in X has the expected dimension.
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Proposition 5.2. If 𝑋 ⊂ P𝑛 is a smooth hypersurface of degree d, then the space of nonfree lines on X
has dimension at most 𝑛 + 𝑑 − 5.

Proof. Suppose S is a family of nonfree lines sweeping out an irreducible subvariety Y in X. Let l be a
general line parametrized by S. Then by [BR21, Theorem 2.4], dim 𝑆 ≤ dim𝑌 +𝑛−3− ℎ0(𝑁𝑙/𝑋 (−1)) ≤
2𝑛−5−ℎ0 (𝑁𝑙/𝑋 (−1)). Since l is not free, the proof of [BR21, Theorem 2.4] shows that ℎ0 (𝑁𝑙/𝑋 (−1)) ≥
𝑛 − 𝑑 and we get the desired result. �

Proposition 5.3. Let 𝑋 ⊂ P𝑛 be any smooth hypersurface of degree 𝑑 ≤ (𝑛+3)/3. Then every irreducible
component of the space parametrizing chains of lines and free conics has the expected dimension.

Proof. We argue by induction on the number of irreducible components t in the chain. If 𝑡 = 1, then we
either have a line or a free conic. By [BR21, Theorem 1.3], the space of lines has the expected dimension
2𝑛 − 𝑑 − 3 for every smooth hypersurface of degree ≤ (𝑛 + 4)/2. Thus, in both cases the dimension is
the expected dimension.

For the induction step, suppose the statement holds for 𝑡 ′ < 𝑡. Write𝐶 = 𝐶1∪· · ·∪𝐶𝑡 for the irreducible
components of 𝐶. First, suppose that 𝐶𝑡 is a free conic or a free line. By induction, the deformation
space of the chain of curves 𝐶1 ∪ . . . ∪ 𝐶𝑡−1 has the expected dimension. Since we are attaching a free
curve to this chain, the total family also has the expected dimension. Indeed, the deformation space of
the free curve has the expected dimension, and the requirement that the free curve be incident to the
chain at any fixed point also imposes the expected number of conditions on the free curve.

Next, suppose 𝐶𝑡 is a nonfree line. There are two cases:

◦ 𝐶𝑡−1 is a line: In this case, the space of deformations of 𝐶1 ∪ · · · ∪ 𝐶𝑡−2 has dimension at most
(𝑒 − 2) (𝑛 + 1 − 𝑑) + 𝑛 − 3 − (𝑡 − 2) by our induction hypothesis, and the space of nonfree lines
has dimension ≤ 𝑛 + 𝑑 − 5 by Proposition 5.2. Since we are assuming that 𝑑 ≤ (𝑛 + 3)/3, the total
dimension is at most

[(𝑒 − 2) (𝑛 + 1 − 𝑑) + 𝑛 − 3 − (𝑡 − 2)] + 1 + [𝑛 + 𝑑 − 5] + 1
≤ 𝑒(𝑛 + 1 − 𝑑) + 𝑛 − 3 − 𝑡,

where the terms in brackets come from the deformations of the chain and the component 𝐶𝑡−1,
respectively, and the additional summands +1 from the possible degrees of freedom from the points
to which these components are attached.

◦ 𝐶𝑡−1 is a free conic: The argument is similar to the previous case. First, note that the space of free
conics through any two fixed points of X has dimension ≤ 𝑛 − 𝑑 + 1. Indeed, 𝑁𝐶/𝑋 is a subbundle
of 𝑁𝐶/P𝑛 = O(4) ⊕ O(2)𝑛−2 of degree 2𝑛 − 2𝑑 with no negative summand. Thus, 𝑁𝐶/𝑋 (−2) has
either: 1) at most 𝑛 − 𝑑 summands of degree 0 and all the other summands negative or 2) at most
𝑛 − 𝑑 − 2 summands of degree 0, 1 summand of degree 2, and all the rest negative. In both cases,
𝐻0 (𝐶, 𝑁𝐶/𝑋 (−2)) is at most 𝑛 − 𝑑 + 1.

By our induction hypothesis, the space of deformations of 𝐶1 ∪ · · · ∪ 𝐶𝑡−2 has dimension at most
(𝑒 − 3) (𝑛 + 1 − 𝑑) + 𝑛 − 3 − (𝑡 − 2). By choosing the connection points of the free conic 𝐶𝑡−1 with
the curves 𝐶𝑡−2, 𝐶𝑡 , we get that the dimension of the space of such chains is at most

[(𝑒 − 3) (𝑛 + 1 − 𝑑) + 𝑛 − 3 − (𝑡 − 2)] + 1 + [𝑛 + 𝑑 − 5] + 1 + [𝑛 − 𝑑 + 1]
≤ 𝑒(𝑛 + 1 − 𝑑) + 𝑛 − 3 − 𝑡. �

5.2. Asymptotic enumerativity for hypersurfaces

We build up the proof of Theorem 5.1 in several steps. Consider the map

𝜙 : M𝑔,𝑚(𝑋, 𝑒) → M𝑔,𝑚 × 𝑋×𝑚.
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𝐶

•𝑞1 · · ·

•

𝑞𝑡

•
𝑞𝑡+1

•
𝑞𝑚

· · ·

· · ·

Figure 4. The curve 𝐶, obtained from C by attaching rational trees.

Lemma 5.4. Let X be a smooth hypersurface of degree d in P𝑛 and fix a genus g.
Suppose that there is a constant A depending only on X and g such that, for any positive integers 𝑚, 𝑒

with 𝑒(𝑛 + 1 − 𝑑) = (𝑛 − 1) (𝑚 + 𝑔 − 1), for a general ([𝐶], 𝑝1, . . . , 𝑝𝑚) ∈ M𝑔,𝑚 × 𝑋×𝑚, and for any
(𝐶, 𝑓 , 𝑞1, . . . , 𝑞𝑚) in the fiber of 𝜙 over ([𝐶], 𝑝1, . . . , 𝑝𝑚), we have ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) ≤ 𝐴.

Suppose further that X satisfies one of the hypotheses (1), (2) of Theorem 5.1. Then, Theorem 5.1
holds for X and genus g.

Proof. Suppose otherwise. Then, for arbitrarily large m and e and for general ([𝐶], 𝑝1, . . . , 𝑝𝑚) ∈

M𝑔,𝑚 × 𝑋×𝑚, there exist (𝐶, 𝑓 , 𝑞1, . . . , 𝑞𝑚) in the fiber of 𝜙 such that 𝐶 is reducible. Indeed, when 𝐶 is
irreducible, our assertion follows from [LP23, Proposition 13 and Proposition 14]. It follows that 𝐶 has
a component isomorphic to C, to which trees of rational curves, each containing at most one marked
point, are attached. Assume without loss of generality that the first t marked points are on the attached
trees and the last 𝑚 − 𝑡 marked points are on C; see Figure 4.

Let 𝜄 : 𝐶 → 𝐶 be the natural closed embedding. From the surjection 𝑓 ∗𝑇𝑋 → 𝜄∗𝜄
∗ 𝑓 ∗𝑇𝑋 of sheaves

on 𝐶, we have

ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 |𝐶 ) = ℎ
1 (𝐶, 𝜄∗𝜄

∗ 𝑓 ∗𝑇𝑋 ) ≤ ℎ
1 (𝐶, 𝑓 ∗𝑇𝑋 ) ≤ 𝐴.

First, suppose that 𝑑 < (𝑛 + 3)/2. Then, as X has Fano index at least 𝑛/2, the hypothesis (ii) from
[LP23, Proposition 22] is satisfied. Furthermore, because ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 |𝐶 ) ≤ 𝐴, we have condition (★)𝑔,
hence condition (★★)𝑔; see [LP23, Definition 18], at least upon restriction to f over a general point of
𝜙. Therefore, [LP23, Proposition 22] (which only requires working over a general point of 𝜙) applies,
and the conclusion of Theorem 5.1 follows. In particular, if X has degree 𝑑 ≤ (𝑛 + 3)/3, then we obtain
the conclusion.

Now, suppose that 𝑑 ≤ 𝑛 − 2 and that X is general. Let 𝐶 ′ be the connected curve obtained by
successively deleting components on the attached trees which do not contain a marked point and whose
removal does not make the tree disconnected. Let 𝑒𝑖 be the degree of f restricted to the irreducible
component containing the ith marked point for 1 ≤ 𝑖 ≤ 𝑡. Let 𝐶 ′′ be the curve obtained by removing the
components with marked points on the attached trees in 𝐶 ′, and suppose the total degree of 𝑓 |𝐶′′ is 𝑒′′.
The curves 𝐶 ′, 𝐶 ′′ are depicted in Figure 5.

Because ℎ1 (𝐶 ′′, 𝑓 ∗𝑇𝑋 |𝐶′′ ) ≤ 𝐴, we have that 𝑓 |𝐶′′ : 𝐶 ′′ → 𝑋 moves in a family of dimension
at most

𝑒′′(𝑛 + 1 − 𝑑) + (𝑛 − 1) (1 − 𝑔) + 𝐴,
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•𝑞1 · · ·

•

𝑞𝑡

•
𝑞𝑡+1

•
𝑞𝑚

· · ·
•
𝑞𝑡+1

•
𝑞𝑚

· · ·

Figure 5. The curves 𝐶 ′ (left) and 𝐶 ′′ (right), obtained by deleting components from 𝐶.

•

𝑞4

•

𝑞3
•𝑞2

•𝑞1

𝐵1

· · ·

•

𝑞𝑚−3

•

𝑞𝑚−2
• 𝑞𝑚−1

• 𝑞𝑚

𝐵𝑚−2

Figure 6. The curve 𝐵 = 𝐵1 ∪ · · · 𝐵𝑚−2.

and𝐶 ′, which is obtained from𝐶 ′′ by attaching t free curves of degree 𝑒𝑖 , moves in a family of dimension
at most

𝑒′′(𝑛 + 1 − 𝑑) + (𝑛 − 1) (1 − 𝑔) + 𝐴 +

𝑡∑
𝑖=1

(𝑒𝑖 (𝑛 + 1 − 𝑑) − 1).

Because 𝐶 ′ also passes through m general points, we also have

𝑒′′(𝑛 + 1 − 𝑑) + (𝑛 − 1) (1 − 𝑔) + 𝐴 +

𝑡∑
𝑖=1

(𝑒𝑖 (𝑛 + 1 − 𝑑) − 1) ≥ 𝑚(𝑛 − 1).

Since 𝑚(𝑛 − 1) = 𝑒(𝑛 + 1− 𝑑) + (𝑛 − 1) (1− 𝑔) and 𝑒 ≥ 𝑒′′ +
∑𝑡
𝑖=1 𝑒𝑖 , we get 𝑡 ≤ 𝐴. Therefore, for large

enough m, we have 𝑚 − 𝑡 ≥ 𝑔 + 1. We conclude from [LP23, Proposition 13 and Proposition 14] that
ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 |𝐶 ) = 0. In particular, 𝑓 |𝐶 : 𝐶 → 𝑋 moves in a family of the expected dimension.

Now, by [RY19], the space of rational curves passing through any fixed point of X has the expected
dimension, and therefore the space of trees of rational curves passing through any fixed point of X has
the expected dimension. As 𝑓 |𝐶 : 𝐶 → 𝑋 also moves in a family of the expected dimension, the same is
true of f. By assumption, the domain of f is reducible, so f moves in a family of dimension strictly less
than 𝑒(𝑛 + 1 − 𝑑) + (𝑛 − 1) (1 − 𝑔) = 𝑚(𝑛 − 1), which therefore cannot dominate 𝑋×𝑚. This completes
the proof. �

We still need to verify the ℎ1 condition used in Lemma 5.4. We first need a lemma.

Lemma 5.5. Let 𝑚 ≥ 3 be an integer. Let 𝑋 ⊂ P𝑛 be a smooth hypersurface of degree 𝑑 ≤ (𝑛 + 3)/3,
and let 𝑝1, . . . , 𝑝𝑚 in X be general points. Let (𝐵, 𝑞1, . . . , 𝑞𝑚) ∈ 𝑀0,𝑚 be the unique point of 𝑀0,𝑚 if
𝑚 = 3 and the pointed stable curve depicted in Figure 6 if 𝑚 ≥ 4. So if 𝑚 ≥ 4, then B is given by a chain
of smooth rational curves 𝐵1 ∪ · · · ∪ 𝐵𝑚−2 with 𝑞𝑖 ∈ 𝐵𝑖−1 for 𝑖 = 2, . . . , 𝑚 − 1 and additionally 𝑞1 ∈ 𝐵1
and 𝑞𝑚 ∈ 𝐵𝑚−2. Assume that there exists an m-pointed stable map 𝑓 : 𝐵 → 𝑋 with 𝑓 (𝑞𝑖) = 𝑝𝑖 for
𝑖 = 1, 2, . . . , 𝑚 such that the stable contraction of the domain (𝐵, 𝑞1, . . . , 𝑞𝑚) is equal to (𝐵, 𝑞1, . . . , 𝑞𝑚).

Then, 𝑒(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) ≥ 0 and if 𝑒(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) = 0, then 𝐵 = 𝐵.
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𝑞𝑖 •

𝐵𝑖 𝐵𝑖+1
• 𝑞𝑖+1

Figure 7. A piece of the curve 𝐵. Here, the subcurve 𝐵𝑖,𝑖+1 is given by the union of the four components
connecting 𝐵𝑖 to 𝐵𝑖+1, and 𝑆𝑖 is the chain of five curves 𝐵𝑖 ∪ 𝐵𝑖,𝑖+1. The bold components are part of
the spine 𝐵𝑠 , whereas the gray components are among the trees T.

Proof. Let 𝑐 : 𝐵 → 𝐵 be the stabilization map. If 𝑚 ≥ 4, then we abusively denote by 𝐵𝑖 the unique
component of 𝐵mapping isomorphically to 𝐵𝑖 ⊂ 𝐵. For 𝑖 = 1, 2, . . . , 𝑚−3, let 𝐵𝑖,𝑖+1 ⊂ 𝐵 be the unique
chain of rational curves connecting 𝐵𝑖 to 𝐵𝑖+1 (but not containing either component). Note that 𝐵𝑖,𝑖+1
may be (and in fact, in the end, will be) empty. For 𝑖 = 1, 2, . . . , 𝑚 − 3, let 𝑆𝑖 = 𝐵𝑖 ∪ 𝐵𝑖,𝑖+1, and let
𝑆𝑚−2 = 𝐵𝑚−2. Let 𝐵𝑠 ⊂ 𝐵 be the union of all of the 𝑆𝑖 . A piece of the curve 𝐵 is depicted in Figure 7.

Note that 𝐵𝑠 ⊂ 𝐵 is itself a chain of rational curves, and 𝐵 is obtained from 𝐵𝑠 by attaching pairwise
disjoint trees of rational curves at smooth points. Let T be such a rational tree. The stability of f shows
that T cannot be contracted by f.

Let 𝐵𝑖 be the union of 𝑆𝑖 and all of the rational trees T attached to 𝑆𝑖 . Thus, 𝐵 is the union of all 𝐵𝑖 ,
for 𝑖 = 1, 2, . . . , 𝑚 − 2, and every component of 𝐵 belongs to exactly one 𝐵𝑖 .

We now proceed to the proof of the Lemma. We may assume that 𝑒(𝑛 + 1 − 𝑑) ≤ (𝑚 − 1) (𝑛 − 1);
we argue by induction on m that equality must hold (and the resulting curve has the claimed form). If
𝑚 = 3, then let 𝐵𝑠 be the unique component of 𝐵 mapping isomorphically to B. Then 𝑒 ≤ 2(𝑛−1)

𝑛+1−𝑑 , and
since 𝑑 ≤ (𝑛 + 3)/3, we have 𝑒 ≤ 2. So we have the following cases:

1. deg(𝐵𝑠) = 2, in which case 𝐵 must be irreducible,
2. deg(𝐵𝑠) = 1, in which case 𝐵𝑠 must map to a line between two of 𝑝1, 𝑝2, 𝑝3, and a second component
𝑇 ⊂ 𝐵 must map to a line through the third point, or

3. deg(𝐵𝑠) = 0, in which case 𝐵𝑠 must be contracted to one of 𝑝1, 𝑝2, 𝑝3, and two other components
must be attached to 𝐵𝑠 at the other two points, mapping isomorphically to lines on X.

In the first case, 𝑓 : 𝐵 → 𝑋 is an irreducible free conic, thus moving in a family of the expected
dimension, and such an f passes through three general points only when 𝑒(𝑛 + 1 − 𝑑) = (𝑚 − 1) (𝑛 − 1).
(Here, we get simply 𝑑 = 2, that is, X is a quadric.) In the second case, f is a chain of two free lines, which
moves (as a pointed stable map) in a family of the expected dimension of 𝑒(𝑛+1−𝑑)+(𝑛−1)−1 < 𝑚(𝑛−1),
so f cannot pass through 𝑚 = 3 general points. The third case is similarly impossible. This establishes
the base case.

Suppose now that the Lemma holds for every 𝑚′ < 𝑚. We use the induction hypotheses and the
assumption 𝑑 ≤ (𝑛 + 3)/3 to show that 𝐵 is a chain of lines and free conics to which some free lines are
attached. Fix an index i, and let 𝐵′ =

⋃
𝑗<𝑖 𝐵 𝑗 and 𝐵′′ =

⋃
𝑗>𝑖 𝐵 𝑗 . Note that 𝐵′ or 𝐵′′ is empty if 𝑖 = 1

or 𝑖 = 𝑚 − 2, respectively. Let 𝑒′, 𝑒′′ be the total degree of f restricted to 𝐵′, 𝐵′′, respectively, and let 𝑒𝑖
be the degree upon restriction to 𝐵𝑖 .

Let 𝑎′ = 𝑒′(𝑛 + 1 − 𝑑) − (𝑖 − 1) (𝑛 − 1) and 𝑎′′ = 𝑒′′(𝑛 + 1 − 𝑑) − ((𝑚 − 𝑖 − 1) − 1) (𝑛 − 1). If
3 ≤ 𝑖 ≤ 𝑚 − 2, then by our induction hypothesis 𝑎′ ≥ 0. If 𝑖 = 2, then either 𝑑 = 1, or 𝑑 ≥ 2 and there
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is no line through two general points of X, so 𝑒′ ≥ 2. So in all cases 𝑎′ ≥ 0. Similarly, 𝑎′′ ≥ 0. Because
𝑒 = 𝑒′ + 𝑒′′ + 𝑒𝑖 , we have

𝑎′ + 𝑎′′ = 𝑒(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) − 𝑒𝑖 (𝑛 + 1 − 𝑑) + 2(𝑛 − 1)
≤ −𝑒𝑖 (𝑛 + 1 − 𝑑) + 2(𝑛 − 1).

If 𝑒𝑖 (𝑛 + 1 − 𝑑) > 2(𝑛 − 1), we obtain a contradiction. Therefore, we have 𝑒𝑖 ≤ 2(𝑛−1)
𝑛+1−𝑑 < 3, so 𝑒𝑖 ≤ 2.

We now reduce to the case in which every component of 𝐵 that is a leaf (that is, is connected to only
one other component of 𝐵) contains a marked point. Indeed, if 𝐵 contains a leaf without a marked point,
then deleting that component, and stabilizing f if necessary, decreases e while leaving m the same. Thus,
it suffices to show that the new stable map, of strictly smaller degree, cannot exist.

In particular, any tree attached to 𝐵𝑠 must contain a marked point. By construction, this marked point
is unique, so in fact, the tree must be a chain, and all components must map to X with positive degree.

Now, let 𝑠𝑖 = deg(𝑆𝑖) and 𝑡𝑖 = deg(𝐵𝑖) − deg(𝑆𝑖). Since 𝑒𝑖 ≤ 2, the only possibilities are that:

1. 𝑡𝑖 = 0, in which case 𝑠𝑖 ≤ 2,
2. 𝑡𝑖 = 1, in which case 𝑠𝑖 ≤ 1, or
3. 𝑡𝑖 = 2, in which case 𝑠𝑖 = 0.

Case (3) is only possible if 𝑖 = 1 or 𝑖 = 𝑚−2. Indeed, if 2 ≤ 𝑖 ≤ 𝑚−3, then after contracting 𝑆𝑖 and deleting
the (necessarily unique) tree attached to it, we obtain an instance of this Lemma with e replaced by 𝑒−2
and m replaced by𝑚−1. In this case, since 𝑑 ≤ (𝑛+3)/3, we have (𝑒−2) (𝑛+1−𝑑)− (𝑚−2) (𝑛−1) < 0,
so f cannot exist by the inductive hypothesis. On the other hand, if 𝑖 = 1 or 𝑖 = 𝑚 − 2, then the same
argument and the stability of f force 𝑆𝑖 to consist of a single contracted component, with two free lines
passing through the two points 𝑝1, 𝑝2 or 𝑝𝑚−1, 𝑝𝑚.

In case (2), the unique tree attached to 𝑆𝑖 must consist of a single line containing a marked point, so
in particular, the line is free. In case (1), 𝑆𝑖 consists of a free irreducible conic or a union of two lines.

To conclude, 𝐵 consists of a chain of components of degree 0, 1 or free components of degree 2 (and
the contracted components are necessarily stable), with possibly some additional free lines containing
marked points 𝑞𝑖 attached to the chain. Note that after contracting the degree 0 components in 𝐵𝑠 , we
get a chain of lines and free conics, so by Proposition 5.3, 𝐵𝑠 moves in a family of expected dimension.
Since the family of free lines through any point of X has the expected dimension 𝑛 − 𝑑 − 1, it follows
that f moves in a family of the expected dimension and can therefore only pass through all of the 𝑝𝑖 if
𝑒(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) = 0 and 𝐵 = 𝐵. �

We first prove the genus 0 case of Theorem 5.1 using the previous lemmas. We then build off this
case to prove the statement for arbitrary genus.

Proposition 5.6. Let X be a smooth hypersurface of degree d in P𝑛 as in Theorem 5.1. For any integer
𝑎 ≥ 0, there is a constant𝑄𝑎 with the following property: If 𝑒, 𝑚 are such that 𝑒(𝑛+1−𝑑)−(𝑚−1) (𝑛−1) ≤
𝑎, then for a general (𝐶, 𝑝1, . . . , 𝑝𝑚) ∈ 𝑀0,𝑚 × 𝑋×𝑚 and for every (𝐶, 𝑓 , 𝑞1, . . . , 𝑞𝑚) in the fiber of 𝜙
over (𝐶, 𝑝1, . . . , 𝑝𝑚), we have ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) ≤ 𝑄𝑎.

Proof. We prove the statement by induction on a. First, suppose 𝑎 = 0. If X is general, then the
statement follows from the irreducibility of the space of rational curves of any given degree on a general
hypersurface of degree ≤ 𝑛 − 2 in P𝑛.

Now, assume 𝑎 = 0 and X is an arbitrary smooth hypersurface of degree 𝑑 ≤ (𝑛+3)/3 in P𝑛. Then by
Proposition 5.3 the spaces of chains of lines and free conics in X have the expected dimension. We show
for general [𝐶] ∈ 𝑀0,𝑚 and for general points 𝑝1, . . . , 𝑝𝑚 ∈ 𝑋 , we have ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) = 0 for every [ 𝑓 ]
in the fiber of 𝜙 over ([𝐶], 𝑝1, . . . , 𝑝𝑚), so𝑄0 = 0. By upper semicontinuity of ℎ1, it is enough to show
there exists (𝐶, 𝑝1, . . . , 𝑝𝑚) ∈ 𝑀0,𝑚 × 𝑋×𝑚 such that ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) = 0 for every point [ 𝑓 ] in the fiber
of 𝜙 over (𝐶, 𝑝1, . . . , 𝑝𝑚). Taking C to be the point (𝐵, 𝑞1, . . . , 𝑞𝑚) ∈ 𝑀0,𝑚 defined in the statement of
Lemma 5.5, the conclusion of the same lemma shows that C has the required property.
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Figure 8. The curve 𝐶 = 𝐶𝑔 ∪ 𝐶0 with 𝑞𝑖 ∈ 𝐶0.

Next, suppose the statement holds for any integer smaller than a. Then for general C, 𝑝1, . . . , 𝑝𝑚, we
use the same argument as in Lemma 5.5. We define𝐶𝑖 , 𝐶𝑖,𝑖+1, 𝑆𝑖 , 𝐶𝑠 , 𝐶𝑖 ⊂ 𝐶 as in the proof of Lemma 5.5
(where we have replaced all instances of B with C), and for any index i, define 𝑒′, 𝑒′′, 𝑎′, 𝑎′′, 𝑒𝑖 , as before.
Then,

𝑎′ + 𝑎′′ = 𝑎 − 𝑒𝑖 (𝑛 + 1 − 𝑑) + 2(𝑛 − 1).

Thus, if 𝑒𝑖 ≥ 3 for some i, then since 𝑎′, 𝑎′′ ≥ 0, we have 𝑎′, 𝑎′′ < 𝑎. Also, 𝑒𝑖 is bounded in
terms of 𝑎, 𝑛, 𝑑 (since, for example, 𝑎 − 𝑒𝑖 (𝑛 + 1 − 𝑑) + 2(𝑛 − 1) ≥ 0). Thus, there is a constant
A which depends only on 𝑎, 𝑛, 𝑑 such that the contribution to ℎ1 from 𝐶𝑖 is at most A. Therefore,
ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) ≤ 𝐴 +𝑄𝑎′ +𝑄𝑎′′ + 2𝑛 − 2, and we are done.

So we may assume 𝑒𝑖 ≤ 2 for every i. As in the proof of Lemma 5.5, we next reduce to the case
in which all leaves of 𝐶 contain a marked point. A leaf without a marked point would need to have
degree 1 or 2, and deleting it from 𝐶 and stabilizing the resulting stable map gives an instance of the
Proposition with a replaced by some 𝑎′ < 𝑎. Then, ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) ≤ 𝑄𝑎′ + 𝐴 + (𝑛 − 1), where A denotes
here the maximum value of ℎ1 ( 𝑓 ∗𝑇𝑋 ) for a line or conic on X. As this operation can be performed no
more than a times, we obtain an upper bound on ℎ1(𝐶, 𝑓 ∗𝑇𝑋 ) depending only on a.

Now, we have the same three cases for the degrees of 𝑠𝑖 , 𝑡𝑖 as in Lemma 5.5. As before, if we are
in case (3) and there exists a tree of degree at least 2 attached to 𝐶𝑠 , then deleting it and contracting
𝑆𝑖 yields an instance of the Proposition with a replaced by some 𝑎′ < 𝑎. As before, ℎ1(𝐶, 𝑓 ∗𝑇𝑋 ) is
bounded above in terms of (the finitely many constants)𝑄𝑎′ , n and the maximum value of ℎ1 ( 𝑓 ∗𝑇𝑋 ) for
a line or conic on X.

Finally, we conclude that otherwise, as in Lemma 5.5, f is given by a chain of lines and free conics,
possibly along with free lines attached as tails and contracted components. In particular, f moves in a
family of the expected dimension. Note that all conics comprising f are free, as they arise from case (1)
of the analysis of Lemma 5.5.

On the other hand, f may contain nonfree lines L, which necessarily do not contain any of the
marked points. We claim, however, that there can be at most a such components. Indeed, each additional
component with no marked point decreases the expected dimension, hence the actual dimension by 1. By
assumption, the expected dimension of the space of maps is a more than the dimension of M𝑔,𝑚×𝑋×𝑚.
So if there are more than a nonfree components, the space of maps cannot dominate M𝑔,𝑚 × 𝑋×𝑚.

Now, the only nontrivial contributions to ℎ1(𝐶, 𝑓 ∗𝑇𝑋 ) come from such components L, of which there
are a bounded number. Note that ℎ1(𝐿, 𝑇𝑋 |𝐿) is uniformly bounded depending only on X. It follows
again that ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) is bounded uniformly in terms of X and a. �

Proof of Theorem 5.1 for arbitrary g. It suffices to verify the hypothesis of Lemma 5.4. Assume that
no such constant A as in the statement of the Lemma exists. Then, given any integer 𝐴′, there exist
integers m and e satisfying 𝑒(𝑛 + 1 − 𝑑) = (𝑚 + 𝑔 − 1) (𝑛 − 1) and with the following property. Let
[𝐶] = (𝐶, 𝑞1, . . . , 𝑞𝑚) be a point ofM𝑔,𝑚 given by a union of a general pointed curve (𝐶0, 𝑞1, . . . , 𝑞𝑚) ∈
𝑀0,𝑚 and a smooth curve𝐶𝑔 of genus g, attached at a smooth point of𝐶0; see Figure 8. Then, there exists
(𝐶, 𝑓 , 𝑞1, . . . , 𝑞𝑚) in the fiber over ([𝐶], 𝑝1, . . . , 𝑝𝑚) ∈ M𝑔,𝑚 × 𝑋×𝑚 such that ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) > 𝐴

′.
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Write 𝐶 = 𝐶 ′ ∪ 𝐶 ′′ so that 𝐶 ′ is a tree of rational curves and contains all m marked points, and 𝐶 ′′

contains 𝐶𝑔, possibly along with additional rational components. Let 𝑒′, 𝑒′′ be the total degrees of the
restriction of f to 𝐶 ′, 𝐶 ′′, respectively.

Then

𝑒′(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) ≤ 𝑒(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) = 𝑔(𝑛 − 1),

so by Proposition 5.6, ℎ1 ( 𝑓 ∗𝑇𝑋 |𝐶′ ) is bounded by a constant. On the other hand, if

𝑒′′ >
𝑔(𝑛 − 1)
𝑛 + 1 − 𝑑

= 𝑒 −
(𝑚 − 1) (𝑛 − 1)
𝑛 + 1 − 𝑑

,

then

𝑒′(𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) = (𝑒 − 𝑒′′) (𝑛 + 1 − 𝑑) − (𝑚 − 1) (𝑛 − 1) < 0,

so the case 𝑔 = 0 implies that no such f can exist. Therefore, 𝑒′′ is bounded, so ℎ1( 𝑓 ∗𝑇𝑋 |𝐶′′ ) is bounded
as well.

On the other hand, we have assumed that ℎ1 (𝐶, 𝑓 ∗𝑇𝑋 ) > 𝐴
′ for some 𝐴′ arbitrarily large, so we have

reached a contradiction. The conclusion now follows from Lemma 5.4. �

Remark 5.7. The same induction argument as in the proofs of Lemma 5.5 and Proposition 5.6 shows
that when 𝑑 < (𝑛 + 3)/2, we may only consider the case where 𝑒𝑖 ≤ 3 for every i. So the statements,
and hence the statement of Theorem 1.13, hold for any smooth hypersurface X in this degree range if
we know families of certain trees of lines, conics and free cubics on X have the expected dimension. In
fact, one can use Bend-and-Break to reduce this statement to a question about families of trees of lines.
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