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Abstract

We extend a result of Lieb [‘On the lowest eigenvalue of the Laplacian for the intersection of two domains’,
Invent. Math. 74(3) (1983), 441–448] to the fractional setting. We prove that if A and B are two bounded
domains in RN and λs(A), λs(B) are the lowest eigenvalues of (−Δ)s, 0 < s < 1, with Dirichlet boundary
conditions, there exists some translation Bx of B such that λs(A ∩ Bx) < λs(A) + λs(B). Moreover, without
the boundedness assumption on A and B, we show that for any ε > 0, there exists some translation Bx of B
such that λs(A ∩ Bx) < λs(A) + λs(B) + ε.
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1. Introduction

Let Ω be an open subset of RN . Denote by λ(Ω) the lowest eigenvalue of the Laplace
operator −Δ in Ω with Dirichlet boundary conditions. It is well known that if λ(Ω) is
small, then Ω must be ‘large’. For example, when Ω is empty, then λ(Ω) = +∞. The
Faber–Krahn inequality for the Laplace operator states that

λ(Ω) ≥ CN |Ω|−2/N ,

where CN is the lowest eigenvalue of a ball with unit volume and |Ω| is the volume
of Ω [3, 5]. In other words, among all domains with fixed volume, the ball has the
smallest λ.

Geometrically, when λ(Ω) is small, Ω is not only large, but also ‘fat’ in some sense.
As shown in [6], the inequality λ(Ω) ≥ αNR−2, where R is the radius of the largest ball
contained in Ω, is not true when N > 1. This implies that Ω need not contain any ball
of fixed radius R, even if λ(Ω) is sufficiently small. Nevertheless, if λ(Ω) is small, then
Ω contains ‘most of’ a ball of radius R ∼ λ−1/2(Ω). This assertion is derived from the
following inequality: for any ε ∈ (0, 1), there exists αN(ε), with αN(ε)→ 0 as ε→ 1,
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such that

λ(Ω) ≥ αN(ε)R−2, (1.1)

where R is the largest radius such that |Ω ∩ BR| ≥ ε|BR| for some ball BR. More
precisely, fix ε ∈ (0, 1) (ε may be close to 1) and let R > 0 be the largest radius such
that |Ω ∩ BR| ≥ ε|BR| for some ball BR. By (1.1),

R >
√
αN(ε)λ−1/2(Ω).

This means that Ω contains ‘most of’ the ball B√αN (ε)λ−1/2(Ω) of large radius when λ(Ω)
is small.

The inequality (1.1) follows from [6, Corollary 2] which is a consequence of the
following theorem.

THEOREM 1.1. Let A and B be nonempty open sets in RN, N ≥ 1, and let λ(A), λ(B)
be the corresponding lowest eigenvalues of the Laplacian −Δ with Dirichlet boundary
conditions. Let Bx = x + B denote B translated by x ∈ RN. Let ε > 0. Then, there exists
an x such that

λ(A ∩ Bx) < λ(A) + λ(B) + ε. (1.2)

If A and B are both bounded, then there is an x ∈ RN such that

λ(A ∩ Bx) < λ(A) + λ(B). (1.3)

Moreover, the mapping x 	→ λ(A ∩ Bx) is upper-semicontinuous, so that the set of x for
which (1.2) or (1.3) holds is open.

Lieb [6] used Theorem 1.1 to prove two important corollaries: a lower bound for
supx{Volume(A ∩ Bx)} in terms of λ(A) when B is a ball (see [6, Corollary 2]) and a
compactness lemma for certain sequences in W1,p(RN) that under some conditions, a
bounded sequence in W1,p(RN) has a nonzero weak limit (see [6, Lemma 6]).

Inspired by [6], our purpose in this paper is to generalise the main result in [6] for
the fractional Laplacian (−Δ)s, 0 < s < 1. The fractional Laplacian (−Δ)s is defined as
a nonlocal pseudodifferential operator on the space of rapidly decreasing functions by

(−Δ)su(x) = cN,sP.V .
∫
RN

u(x) − u(ξ)
|x − ξ|N+2s dξ = cN,s lim

ε→0

∫
RN\B(x,ε)

u(x) − u(ξ)
|x − ξ|N+2s dξ,

where cN,s is a normalisation constant. By using the Fourier transform, the fractional
Laplacian can also be defined as

F ((−Δ)su)(ξ) = |ξ|2sF u(ξ).

In the distributional sense, the fractional Laplacian can be extended on Ls(RN), where

Ls(RN) =
{
u ∈ L1

loc(RN) :
∫
RN

|u(x)|
(|x| + 1)N+2s dx < ∞

}
,

by

((−Δ)su,ϕ) = (u, (−Δ)sϕ), ϕ ∈ C∞0 (RN).
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Some elementary properties of the fractional Laplacian can be found in [2]. Recent
progress on the eigenvalue bounds for the fractional Laplacian and the fractional
Schrödinger operator can be found in the survey [4] and the references given therein.

Denote by
.

Hs(RN) the space of functions f ∈ L2(RN) such that

‖ f ‖2.
Hs(RN )

=

�
R2N

( f (x) − f (y))2

|x − y|N+2s dx dy < ∞. (1.4)

For A ⊂ RN , we define the space Hs
0(A) as the completion of C∞0 (A) with norm ‖·‖ .

Hs(RN )
and

λs(A) = inf{‖ f ‖2.
Hs(RN )

: f ∈ Hs
0(A), ‖ f ‖L2(A) = 1 and f � 0}.

We can now state our main result.

THEOREM 1.2. Let 0 < s < 1. Suppose that A and B are two nonempty open sets in RN,
N ≥ 1. Let λs(A) and λs(B) be the corresponding lowest eigenvalues of the fractional
Laplacian (−Δ)s with Dirichlet boundary conditions. Then, the following assertions
hold.

(i) For any ε > 0, there exists an x ∈ RN such that

λs(A ∩ Bx) < λs(A) + λs(B) + ε,

where Bx is the translate of B by x.
(ii) In addition, if A and B are bounded, then there is an x ∈ RN such that

λs(A ∩ Bx) < λs(A) + λs(B).

(iii) The mapping x 	→ λs(A ∩ Bx) is upper-semicontinuous.

As applications of Theorem 1.2, by the same arguments as [6, Corollary 2], we can
first prove a lower bound for supx{Volume(A ∩ Bx)} in terms of λs(A) when B is a ball.

COROLLARY 1.3. Let A be a nonempty open set in RN, N ≥ 1. Let Br be a ball of
radius r. Given δ with 0 < δ < 1, put

σN,s(δ) = αN,sw
−2s/N
N (δ−2s/N − 1) > 0,

where wN is the volume of the unit ball and αN,s is the lowest eigenvalue of (−Δ)s on a
ball of unit volume. Suppose that for R > 0,

λs(A) ≤ σN,s(δ)R−2s.

Then, for every r with 0 < r < R, there is an x ∈ RN and a ball B(x, r) of radius r
centred at x such that

|A ∩ B(x, r)| > δ|Br | = δwNrN .

Second, we can use Theorem 1.2 to give a different proof of the compactness lemma
(see [1, Lemma 2.1]) in the space Hs(RN) with 0 < s < 1. The proof is similar to the
one of [6, Lemma 6] and we omit the details. The proof of Theorem 1.2 is inspired
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by the approach in [6]. However, because of the presence of the fractional Laplacian,
some difficulties arise. For instance, the product rule for derivatives cannot be applied
and one needs to use delicate integral estimates (see the proof below).

The rest of this paper is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.2

In this section, we give the proof of our main result. We begin with the first assertion
in Theorem 1.2.

2.1. Proof of assertion (i). By the definition,

λs(A) = inf{‖ f ‖2.
Hs(RN )

: f ∈ Hs
0(A), ‖ f ‖L2(A) = 1 and f � 0}

= inf{‖ f ‖2.
Hs(RN )

: f ∈ C∞0 (A), ‖ f ‖L2(A) = 1 and f � 0},

where we have used the density of C∞0 (A) in Hs
0(A).

For ε > 0, there are real-valued functions f ∈ C∞0 (A) and g ∈ C∞0 (B) such that

‖ f ‖L2(A) = 1, ‖g‖L2(B) = 1,

‖ f ‖2.
Hs(RN )

< λs(A) +
ε

2
and ‖g‖2.

Hs(RN )
< λs(B) +

ε

2
.

Following [6], given x ∈ RN , we define hx(y) = f (y)g(y − x), for y ∈ RN , and note that
hx(y) belongs to C∞0 (A ∩ Bx). Put

D(x) := ‖hx‖2L2(RN ).

By Fubini’s theorem,
∫
RN

D(x) dx =
�
R2N

f 2(y)g2(y − x) dx dy = 1.

We next estimate ‖hx‖ .
Hs(RN ). In the local case s = 1, by using the product rule ∇hx(y) =

∇ f (y)g(y − x) + f (y)∇g(y − x), Lieb proved that
∫
RN

∫
RN
|∇hx|2 dy dx =

∫
RN
|∇ f |2 dx +

∫
RN
|∇g|2 dx.

This is the key estimate in the proof of Lieb [6]. However, in the case of the fractional
Laplacian, one cannot use the product rule as above. Instead, we use the integral
representation of the fractional norm and some integral estimates. We shall establish
the following inequality:

∫
RN
‖hx‖2.

Hs(RN )
dx ≤ ‖ f ‖2.

Hs(RN )
+ ‖g‖2.

Hs(RN )
, (2.1)
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which is also the key in our proof. From the definition (1.4),

‖hx‖2.
Hs(RN )

=

�
R2N

( f (y)g(y − x) − f (z)g(z − x))2

|y − z|N+2s dz dy

=

�
R2N

( f (y) − f (z))g(y − x) + f (z)(g(y − x) − g(z − x))2

|y − z|N+2s dz dy

= I1(x) + I2(x) + 2I3(x),

(2.2)

where

I1(x) :=
�
R2N

( f (y) − f (z))2g2(y − x)
|y − z|N+2s dz dy,

I2(x) :=
�
R2N

f 2(z)(g(y − x) − g(z − x))2

|y − z|N+2s dz dy,

I3(x) :=
�
R2N

( f (y) − f (z)) f (z)g(y − x)(g(y − x) − g(z − x))
|y − z|N+2s dz dy.

By Fubini’s theorem,∫
RN

I1(x) dx =
�
R2N

( f (y) − f (z))2

|y − z|N+2s dz dy
∫
RN

g2(y − x) dx = ‖ f ‖2.
Hs(RN )

.

However, by a change of variable,

I2(x) =
�
R2N

f 2(z)(g(y − x) − g(z − x))2

|y − z|N+2s dz dy

=

�
R2N

f 2(z + x)(g(y) − g(z))2

|y − z|N+2s dz dy.

Using Fubini’s theorem again, ∫
RN

I2(x) dx = ‖g‖2.
Hs(RN )

.

For I3, after a change of variable y = z + h, we obtain

I3(x) =
�
R2N

( f (z + h) − f (z)) f (z)
|h|N+2s g(z − x + h)(g(z − x + h) − g(z − x)) dz dh.

It follows from Fubini’s theorem that∫
RN

I3(x) dx =
∫
RN

K(h)
|h|N+2s L(h) dh,

where

K(h) =
∫
RN

g(z − x + h)(g(z − x + h) − g(z − x)) dx =
∫
RN

g(x)(g(x) − g(x − h)) dx

and

L(h) =
∫
RN

( f (z + h) − f (z)) f (z) dz.
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Applying Hölder’s inequality,∫
RN

g(x)g(x − h) dx ≤
( ∫
RN

g2(x) dx
∫
RN

g2(x − h) dx
)1/2
=

∫
RN

g2(x) dx.

This implies that K(h) ≥ 0. In the same way, we also obtain L(h) ≤ 0. Consequently,∫
RN

I3(x) dx ≤ 0.

Combining the integral estimates of I1, I2, I3 and (2.2), we arrive at the estimate (2.1).
Using (2.1) and the choice of f and g, we obtain∫

RN
‖hx‖2.

Hs(RN )
dx < λs(A) + λs(B) + ε.

Hence, ∫
RN

[‖hx‖2.
Hs(RN )

− (λs(A) + λs(B) + ε)D(x)] dx < 0,

which yields 0 ≤ ‖hx‖2.
Hs(RN )

< (λs(A) + λs(B) + ε)D(x) on a set of positive measure. By
the definition, we get

λs(A ∩ Bx) < λs(A) + λs(B) + ε,

for x in a set of positive measure. The existence of x is proved.

2.2. Proof of assertion (ii). Suppose that A and B are bounded. Then the embedding
L2(A)→ Hs

0(A) is compact (see, for example, [2]). It follows that there is a function
f̃ ∈ Hs

0(A) such that ‖ f̃ ‖L2(A) = 1 and

λs(A) = ‖ f̃ ‖2.
Hs(RN )

.

Similarly, there exists g̃ ∈ Hs
0(B) satisfying ‖g̃‖L2(B) = 1 and

λs(B) = ‖g̃‖2.
Hs(RN )

.

As above, we also define

h̃x(y) = f̃ (y)g̃(y − x) and D̃(x) =
∫
RN

h̃2
x dy.

Applying Fubini’s theorem, ∫
RN

D̃(x) dx = 1. (2.3)

This implies that D̃(x) < ∞ for almost all x ∈ RN or h̃x ∈ L2(RN) for almost all x ∈ RN .
Define again ‖h̃x‖2.

Hs(RN )
as in (2.2). Using the same argument as for ‖hx‖2.

Hs(RN )
above,

we also obtain ∫
RN
‖h̃x‖2.

Hs(RN )
dx ≤ ‖ f̃ ‖2.

Hs(RN )
+ ‖g̃‖2.

Hs(RN )
< ∞. (2.4)
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This implies that ‖h̃x‖ .
Hs(RN ) < ∞ for almost all x ∈ RN or h̃x ∈

.
Hs(RN) for almost all

x ∈ RN .
Combining (2.3) and (2.4), we arrive at∫

RN
(‖h̃x‖2.

Hs(RN )
− (λs(A) + λs(B))D̃(x)) dx ≤ 0,

which gives

0 ≤ ‖h̃x‖2.
Hs(RN )

≤ (λs(A) + λs(B))D̃(x)

on a set of positive measure. Consequently,

λs(A ∩ Bx) ≤ λs(A) + λs(B) with x in a set of positive measure.

It remains to show the strict inequality. It is sufficient to prove that

‖h̃x‖2.
Hs(RN )

= (λs(A) + λs(B))D̃(x)

is not true for almost all x. Indeed, denote by χA the characteristic function of the set A.
Put

χ(x) = χA ∗ χB(x) = |A ∩ Bx|.
Then, χ ∈ C0(RN). Given any ε > 0, there exists an open set C such that 0 < χ(x) < ε
and both f̃ (y) and g̃(y − x) are positive in A ∩ Bx for all x ∈ C (we can choose connected
components of A and B if necessary). Hence, D̃(x) > 0 on C and if ‖h̃x‖2.

Hs(RN )
=

(λs(A) + λs(B))D̃(x) on C, then

λs(A ∩ Bx) ≤ λs(A) + λs(B). (2.5)

However, by the fractional Faber–Krahn inequality (see, for example, [4]),

CN,sε
−2s/N < λs(A ∩ Bx). (2.6)

Letting ε ↓ 0, we obtain a contradiction from (2.5) and (2.6).

2.3. Proof of assertion (iii). It is not difficult to see that

λs(A ∩ Bx) = inf
{‖hx‖2.

Hs(RN )

D(x)
: hx = f (·)g(· − x), f ∈ C∞0 (A), g ∈ C∞0 (B)

}
,

where the function ‖hx‖2.
Hs(RN )

/D(x) is the quotient of two continuous functions and

then is extended to an upper-semicontinuous function by putting ‖hx‖2.
Hs(RN )

/D(x) = ∞
if D(x) = 0. Hence, x 	→ λs(A ∩ Bx) is upper-semicontinuous.
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