
Publications of the Astronomical Society of Australia (2025), 42, e019, 18 pages

doi:10.1017/pasa.2024.128

Research Article

Performance of the segment anything model in various RFI/events
detection in radio astronomy
Yanbin Yang1,2,3 , Feiyu Zhao1,2 , Ruxi Liang1, Quan Guo1,4, Junhua Gu5, Yan Huang5 and Yun Yu1
1Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China, 2University of Chinese Academy of Sciences, Beijing, China, 3School of Physical
Science and Technology, ShanghaiTech University, Shanghai, China, 4Key Laboratory of Radio Astronomy and Technology, Chinese Academy of Sciences, Beijing,
China and 5National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China

Abstract
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep
learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face lim-
itations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications
within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything
Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across
various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance
that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs,
HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability,
SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.

Keywords:Methods: data analysis; methods: observational; techniques: image processing

(Received 11 August 2024; revised 24 September 2024; accepted 1 November 2024)

1. Introduction

In recent years, significant advances have been made in radio
astronomy. The Square Kilometre Array (SKA, Dewdney et al.
2009), the world’s largest radio telescope currently under con-
struction, is expected to deliver groundbreaking discoveries while
addressing the challenge of handling the vast amounts of data
it will generate. Meanwhile, many exciting scientific endeavours,
such as understanding the cosmic dawn (CD) and the epoch of
reionisation (EoR) by observing the ultra-faint neutral hydrogen
redshifted 21-cm line signal at low frequencies, will require excep-
tionally high-quality data, minimising radio frequency interferenc
(RFI) (Fridman & Baan 2001; Offringa et al. 2010) as much as
possible. There is evidence suggesting that even fainter RFIs in
Murchison Widefield Array (MWA, Tingay et al. 2013) data are
likely to contaminate the EoR power spectrum (Wilensky et al.
2023). The need for larger and higher-quality datasets drives the
development of automatic RFI mitigation methods to reduce the
manual burden and increase the efficiency and precision of the
results.

Generally, RFI is different from celestial radio signals, which
will contaminate the astronomical data and severely affect the
observation results of radio telescopes (Fridman & Baan 2001).
The sources of RFI are diverse, including radio broadcasts
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(Huang et al. 2016), digital television (DTV, Wilensky et al.
2019), satellites (Sokołowski et al. 2015), meteor trails (Zhao et al.
2023), lightning (Sokołowski et al. 2015), aircraft communication
(Gehlot et al. 2023), and internal sources such as computers and
screens (Porko et al. 2011). Due to the continuous expansion of
human activities and the rapid development of radio technol-
ogy, radio telescopes are facing an increasing amount of RFI.
Mitigating the RFI has become increasingly challenging. With the
deluge of big data from new radio telescopes coming into opera-
tion and the need for high-quality data, the mitigation of RFI must
be considered a pressing and crucial issue that must be addressed
(Anstey & Leeney 2023).

The complex temporal and frequency structures of RFI make it
challenging to model and obtain a universal method of RFI mit-
igation (Fridman & Baan 2001). In fact, many different methods
have been proposed and adopted based on specific circumstances.
In the proactive mitigation stage, there are approaches such as
establishing a radio quiet zone (RQZ,Wang et al. 2023), setting up
protected frequency bands (Furlanetto, Peng Oh, & Briggs 2006),
choosing locations with topographical features such as mountains
(Klein Wolt et al. 2012), and using multi-layer electromagnetic
shielding (Wang et al. 2023; Ambrosini et al. 2009). It is still nec-
essary to adopt reactive mitigation methods in subsequent steps.
Offringa et al. (2010) proposed a combinatorial threshold algo-
rithm: the SumThreshold method. AOFlagger, developed based
on this threshold method, has been applied in Low Frequency
Array (LOFAR) and MWA (Offringa, van de Gronde, & Roerdink
2012; Offringa et al. 2015). Wilensky et al. (2019) introduced
a new method called Sky-Subtracted Incoherent Noise Spectra
(SSINS), and its effectiveness was demonstrated by applying it
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to several kinds of RFI identified in data from MWA. For the
21 CentiMeter Array (21CMA), time-varying RFI is mitigated by
handling weighted visibilities (Huang et al. 2016; An et al. 2017).

With rapid advancements in machine learning and deep learn-
ing, an increasing number of studies are applying machine learn-
ing to the field of astronomy in the face of vast observational data.
In research on the mitigation of RFI, a large number of models
based on deep learning have been used to detect RFI. Haomin
et al. (2022) proposed a model using the convolutional neural
network (CNN) to identify RFI. Akeret et al. (2016) successfully
developed the U-Net in the field of RFI detection. To address the
frequent errors encountered when CNN is used for the RFI flag-
ging of FAST data, RFI-net was developed (Yang et al. 2020). The
mask region-based convolutional neural network (mask R-CNN)
has been integrated with point-based rendering (PointRend) to
identify RFI when finding HI galaxies (Liang et al. 2023).

Compared with traditional methods that require manual inter-
vention to specify algorithm parameters, deep learning greatly
improves the efficiency of data processing. However, it also has
certain limitations. Model training, for instance, requires that a
large amount of RFI data to be prepared as a training set, which
is a burden. Using simulated RFI data to train models is a com-
mon choice. However, considering that real-world RFIs are often
much more complex than mock data, models trained on simple
simulated RFI may not perform optimally for complicated RFI
recognition (Yang et al. 2020). Additionally, there is a risk that the
model may become dependent on training data or overfit, lead-
ing to missed detections of unknown RFI. Existing models are
usually designed for specific tasks or telescopes and often lack suf-
ficient generalisation capability, making them cumbersome to use
for other applications.The same issues arise in other fields where
deep learning is applied, such as solar radio burst (SRB) detection
and the search for pulsars or FRBs. These applications also suf-
fer from problems like too few samples to build a training set and
data imbalance (Guo et al. 2022; Liu et al. 2021). Thus, we won-
der if it is possible to develop a method based on an open-source
model with strong generalisation capability that researchers from
various fields can use directly with minimal fine-tuning or struc-
tural adjustment. This approach would not only reduce the burden
of designing and training models from scratch but also minimise
the drawbacks associated with model training, while hopefully
retaining the ability to identify unknown events.

Kirillov et al. (2023) proposed a model called the Segment
Anything Model (SAM) for image recognition and segmentation.
They utilised model-in-the-loop dataset annotation to construct
the largest segmentation dataset to date, containing over 1 billion
masks on 11million images, for training. This approach gave SAM
powerful generalisation and zero-shot capability, which has been
proven by its application in various fields (Yu et al. 2023; Shen
et al. 2023). HQ-SAM builds on SAM by adding a High-Quality
Output Token to improve the quality of the predicted masks
while preserving SAM’s generalisation capability (Ke et al. 2023).
Inspired by the impressive generalisation capability and ease of
use of HQ-SAM (SAM), in this paper, we apply it to the field of
radio astronomy. We explore its performance in RFI or events
detection such as SRB, demonstrating themodel’s good generalisa-
tion capability and recognition ability in this domain. By using the
HQ-SAM (SAM) model, along with minor fine-tuning and modi-
fications, we hope to find a better solution to the aforementioned
challenges.

The structure of this paper is as follows. Section 2 introduces
SAM, HQ-SAM, and the SumThreshold method, which we use for

comparison with the first two in detail. Section 3 shows the real
RFI from the 21CMA and the detection results using the three
methods. Section 4 demonstrates the recognition results of our
mock RFI. Section 5 applies HQ-SAM to the search for SRB. We
discuss our findings in Section 6 and provide our conclusions in
Section 7.

2. Method

In this section, we will introduce several methods and techniques
used in subsequent research, including SAM, HQ-SAM, and the
SumThreshold method.

2.1 Segment Anything Model (SAM) and HQ-SAM

The Segment Anything Model is a groundbreaking image recog-
nition and segmentation model capable of generating valid seg-
mentation masks when provided with any form of segmentation
prompt (points, box, mask, text, etc.). SAM consists of three com-
ponents: an image encoder, a prompt encoder, and a lightweight
mask decoder that combines the information from the first two
to predict segmentation masks (Kirillov et al. 2023). When using
SAM, one simply needs to provide prompts indicating the content
to be segmented in the image. SAM offers an automatic segmen-
tation mode that evenly distributes points on the segmentation
image to act as point prompts. The output will include multi-
ple masks due to SAM’s ambiguity-aware feature. Because the
researchers built a massive segmentation dataset named SA-1B,
containing over 1 billion masks and 11 million images to train the
model, SAM has strong zero-shot capability (meaning the model
can successfully identify or segment objects it has never specifi-
cally been trained on) and demonstrates outstanding performance
across many tasks.

Due to the impressive zero-shot and generalisation capability of
SAM, it has been applied to a wide range of fields. Ma et al. (2024)
proposed MedSAM by fine-tuning SAM with a medical image
training dataset, demonstrating that this model can produce accu-
rate segmentation in various medical image segmentation tasks.
RSPrompter (Chen et al. 2023) is a method that creates appropri-
ate prompts for SAM, enabling SAM to perform well in instance
segmentation tasks for remote sensing images. Nguyen, Phung, &
Cao (2023) utilised two pre-trained object detection models, You
Only Look Once (YOLO)-v8 and DETR with Improved deNois-
ing anchOr boxes (DINO), to first detect objects in the image and
then used the detected bounding boxes as box prompts for SAM.
This approach allowed SAM to achieve good scores in panoptic
segmentation tasks for weeds and crops.

Although SAM has shown promising results in various fields,
there are still some limitations in its application. SAM cannot
automatically interpret images from different domains to gener-
ate appropriate prompts for itself or provide semantic categories
for the predicted masks (Liu et al. 2024). As a result, many works
design additional components to automatically generate suitable
prompts when applying SAM, such as Chen et al. (2023) and
Nguyen et al. (2023), which were mentioned earlier. Additionally,
SAM exhibits certain shortcomings when dealing with targets fea-
turing complex background interference, ambiguous boundaries,
or low image contrast (Wu et al. 2023).

Ke et al. (2023) identified two key issues with the segmentation
results of SAM in some cases: coarse mask boundaries and incor-
rect predictions, which can significantly affect SAM’s applicability
and effectiveness. To address these problems, they proposed an
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upgraded model called HQ-SAM.a HQ-SAM enhances the qual-
ity of predicted masks by incorporating a learnable High-Quality
Output Token into SAM’s mask decoder. This method allows
HQ-SAM to retain the pre-trained model weights of SAM, thus
preserving SAM’s original zero-shot capability, while also enabling
more precise segmentation across various tasks.

Overall, there is no significant difference between running HQ-
SAM and SAM. SAM resizes input images of any size to 1 024×1
024 pixels, meaning that smaller images will be enlarged more,
which facilities better features extraction by the model. However,
there is a potential risk of image quality loss with this enlarge-
ment, so it is important to ensure the clarity and detail of the input
images. Considering the above points, users need to select the
size best suited to their specific task. In automatic segmentation
mode, SAM provides several adjustable parameters to optimise
performance. For example, the parameter points_per_side deter-
mines the number of sampling points along one side of the image,
with the total number of points being points_per_side2. Generally,
increasing the number of sampling points improves recognition
accuracy but also demands longer processing times, necessitating
a trade-off. For more details on these parameters, please refer to
SAM’s documentation.b

In this work, our primary focus is on applying SAM (HQ-SAM)
to astronomical research areas including RFI and SRB, where deep
learning techniques can offer significant benefits. We aim to assess
whether we can achieve a broadly applicable model in astronomy
with minimal cost (i.e. without extensive fine-tuning or structural
modifications) while mitigating common issues associated with
model training. To this end, we utilise the automatic segmentation
mode provided by SAM, employing the same parameters for both
SAM and HQ-SAM. Except for images of SRBs, which are sized
at 1 225×645 pixels, all other images are standardised to 200×200
pixels so that it will be enlarged by about 25 times, allowing for
better recognition results.

2.2 The SumThreshold method

In the post-correlation stage (i.e. the stage following the corre-
lation of signals) of RFI mitigation, thresholding is an effective
method for removing strong RFI. The VarThreshold method, a
combinatorial thresholding technique, iteratively combines sam-
ples and compares them with a strictly decreasing series of sample
thresholds {χi}Ni=1, where N is the number of iteration. If the abso-
lute values of all the samples exceed the threshold χN , then these
samples are flagged as RFI.

Offringa et al. (2010) proposed the SumThreshold method,
which optimises the VarThreshold method. The SumThreshold
method retains the content of the VarThreshold method regard-
ing sample number selection and thresholds for each iteration.
Unlike the VarThreshold method, the SumThreshold method cal-
culates the sum of the statistics of M samples and compares it
with M times the corresponding threshold χN(M). If it exceeds
the threshold, all M samples are flagged as contaminated. To
prevent excessive false positives, the SumThreshold method also
includes an additional condition: if a higher threshold has already
flagged samples as RFI contaminated, the samples will be excluded
from the summation in subsequent iterations, and their values

ahttps://github.com/SysCV/sam-hq.
bhttps://github.com/facebookresearch/segment-anything.

will be replaced by the value of the current iteration’s thresh-
old. Compared to the VarThreshold method, the SumThreshold
method allows the flagging of a sequence containing samples with
values below the thresholds (Offringa et al. 2010). Thus, it pro-
duces fewer false negatives, can flag weaker contaminations, and
is more easily applied to various types of data. It also exhibits
stronger robustness to abnormal values and noise in the samples.
Refer to Appendix A for more details about the SumThreshold
method.

The SumThreshold method has been widely applied in astro-
nomical data processing, including the AOflagger pipeline for
LOFAR (Offringa et al. 2010) and an open-source Python pack-
age: Signal Extraction and Emission Kartographer (SEEK) (Akeret
et al. 2017). However, the SumThreshold method also faces some
challenges, such as the need for manual fine-tuning of thresh-
olds or algorithm parameters in practical applications (Yang et al.
2020), limitations in flagging RFI fainter than the single baseline
thermal noise (Wilensky et al. 2019), as well as being less effec-
tive in identifying broadband signals or extremely large amounts
of RFI (Yang et al. 2020). In our work, we use the SEEKc Python
package to implement the SumThreshold method.

3. RFI detection of real data of the 21CMA

In this section, we will demonstrate the results of applying the
three methods, introduced in Section 2, on the real RFI of the
21CMA.

3.1 Observational data of 21CMA

The 21CMA (Zheng et al. 2012) is located at Ulastai, Xinjiang,
China, which consists of 81 stations with a total of 10 287 log-
periodic antennas. It operates in the frequency range of 50–200
MHz, designed to detect the EoR.

Our data is the same as in the work of Gao et al. (2022), which
are the self-correlation spectra from two stations respectively: E5
(the 5th station in the east) and E9 (the 9th station in the east). The
time resolution is about 1 ms, and the frequency range is 50–200
MHz. The observations were made on January 3, 4, and 5, 2021,
with a total accumulated observation time of 42 h and a total data
volume of 4.6 TB (Gao et al. 2022).

The raw spectrum data of the 21CMA is split into 8 192 chan-
nels covering the frequency band 0 200 MHz. We cut the waterfall
of the 21CMA data with 8 192 pixels in frequency axis into stripes
with 200 pixels to create images of size 200×200. Fig. 1 presents
an example of RFI from the 21CMA in the form of a waterfall plot.
The horizontal axis represents the frequency, ranging from 101
MHz to approximately 106 MHz, while the vertical axis represents
time, with a duration of 200 ms. The plot exhibits characteristics
of intensity changes and fluctuations across multiple frequency
channels over time, appearing more like compact polylines rather
than straight lines. This pattern is a typical example of scattered
frequency modulation (FM) radio signals. Within our observed
frequency band, there are numerous remote FM broadcast sig-
nals, such as Urumqi Traffic Radio (97.4 MHz) and News Music
Radio (99.0 MHz). These RFI may be attributed to the scatter-
ing of FM broadcasts by meteor trails or airplanes. In our real
RFI detection, we also find long-duration continuous narrowband

chttps://github.com/cosmo-ethz/seek.
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Figure 1. An example of transient narrowband RFI (scattered FM radio signals) from
the 21CMA is shown below. The horizontal axis represents frequency, while the vertical
axis represents time. The image is 200×200 in size.

RFI corresponding to FM broadcasts. More details about the char-
acteristics of RFI in the 21CMA will be discussed in Section 3.3.

3.2 The comparion of detection results by different methods

Two waterfall plots are selected as representatives of continuous
narrowband RFI and transient narrowband RFI, and the detec-
tion results of RFI are demonstrated. The horizontal axis of the
waterfall plot represents frequency, spanning approximately 4.9
MHz of bandwidth, and the vertical axis represents time, with a
duration of 200 ms (the subsequent waterfall plots follow the same
specifications).

In the field of deep learning, it is common to compare detec-
tion results with a preset ground truth, providing quantitative
metrics to reflect the model’s capability. However, we consider
the approach of flagging real data manually or using other deep
learning methods as ground truth and comparing it with detection
results to be not rigorous. This is because these labelling methods
inevitably produce false positives and false negatives, which could
affect the evaluation metrics. Therefore, in this part, we only qual-
itatively present the detection results, as shown in Figs. 2 and 3.
The white areas in the images correspond to the detected RFI (the
same for the subsequent images). For the quantitative compari-
son of the three methods, in Section 4, we adopt an acceptable
approach by simulating RFI. This allows us to artificially preset
the RFI within the image as ground truth and compare it with the
detection results to evaluate the model.

3.3 The results of HQ-SAM (SAM) of the 21CMA data

We conducted a preliminary search of the 21CMA observational
data (4.6 TB) using HQ-SAM and identified that the majority
of the RFI consists of narrowband RFIs. Additionally, there are
instances of broadband RFI events that contaminate a large num-
ber of frequency channels (see Fig. 8). Based on the characteristics
of RFI in time, frequency, and quantity, we divide narrowband
RFI into three main categories, while broadband RFI is treated
separately as a special case. As shown in Fig. 4, in addition to

the common slender signals, narrowband RFIs demonstrate a fre-
quency modulation pattern similar to FM radio signals. Fig. 5
shows that the duration of narrowband RFI can mainly be clas-
sified into two groups. Apart from the transient or short-duration
signals with durations around 50–200ms shown in Fig. 4, there are
numerous continuous RFIs lasting for tens of seconds ormore (the
entire event of RFI is not fully displayed in Fig. 5). Furthermore,
narrowband RFI is observed both sporadically as depicted in
Figs. 4 and 5, and in large bursts dispersed across multiple fre-
quency bands, as illustrated in Fig. 6. For continuous narrowband
RFI, it is intriguing to find transitions between straight lines and
polylines during transmission (Fig. 7). Fig. 8 illustrates the broad-
band signals detected by us, which span a frequency range of up to
20 MHz.

According to Gao et al. (2022), we believe that the primary
cause of transient narrowband RFI is the scattering of FM broad-
casts by meteor trails. For the continuous narrowband signals,
the number of events varies with time, similar to the variation in
meteor events due to the Earth’s rotation. The quantity of narrow-
band RFIs far exceeds that of the known nearby FM broadcasts.
In fact, there are no constant FM radio signals at the 21CMA
site. Apart from the narrowband signals originating from FM
broadcasts, the remaining sources require further investigation.

In summary, we find that HQ-SAM (SAM) performs compa-
rably to the SumThreshold method when applied to real obser-
vational data from the 21CMA, especially in finding as many
RFIs as possible. We conducted a sanity check of the detec-
tion results by comparing the results from HQ-SAM (SAM) with
those from human visual inspection. HQ-SAM (SAM) effectively
identifies most of the RFIs detected by human visual inspec-
tion. Furthermore, HQ-SAM outputs less noise and higher quality
masks compared to SAM in actual detection results, thus confirm-
ing the assertion by Ke et al. (2023). In Appendix B, the results
of the three methods for Figs. 2 and 3 are plotted pairwise on the
same layer to show the differences in the masks obtained by each
method.

However, HQ-SAM (SAM) also presents several issues wor-
thy of optimisation: when two RFI events are too close in the
waterfall plot, the model may classify them as a single RFI event;
there is a certain amount of noise present in the output results;
the segmentation of RFI profiles is relatively coarse; and although
HQ-SAM (SAM) can identify some faint RFI, it still has limita-
tions with extremely faint RFI signals, which are barely noticeable
to the human eye as well. The SumThreshold method faces similar
challenges.

4. RFI detection of simulation data

In this section, by mock RFI data, we can further evaluate the per-
formance of the three methods and provide specific evaluation
metrics to illustrate their respective strengths and weaknesses.

4.1 RFI simulation

We use the hera_simd to simulate RFI signals. The hera_sim is a
basic simulation package for HERA-like redundant interferomet-
ric arrays, which can also generate RFI (Chen & La Plante 2021;
Kerrigan et al. 2019; Haomin et al. 2022; Liang et al. 2023). There
are two types of RFI data that have been created, each consisting

dhttps://github.com/HERA-Team/hera_sim
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(a) (b) (c) (d)

Figure 2. The raw data of the continuous narrowband RFI from the 21CMA and the detection results of three methods are shown in the following plots. The horizontal axis
represents frequency, and the vertical axis represents time. (a) shows the raw data, which includes a large amount of continuous narrowband RFI. (b) shows the flagging results
using HQ-SAM. (c) shows the flagging results using SAM. (d) shows the flagging results using the SumThresholdmethod. The white areas in the images correspond to the detected
RFI.

(a) (b) (c) (d)

Figure 3. The same as in Fig. 2 but another example of the detection results of the 21CMA data.

(a) (b) (c) (d)

Figure 4. Classification of narrowband RFI in frequency. (a) is a common slender signal. (b) is the result of detecting (a) using HQ-SAM. (c) is RFI with fluctuating frequencies, and
(d) is the detection result of (c) by HQ-SAM.

of 300 waterfall plots with RFI signals, all of which are 200×200
in size. The horizontal axis of these waterfall plots represents fre-
quency, and the vertical axis represents time. For the first type of
mock RFI (as shown in Fig. 9), referred to as Type A, basic thermal

noise and EoR-like visibilities are simulated using hera_sim. This
tool allows us to generate several types of RFI, and we select nar-
rowband RFI and RFI arising from digital TV channels (DTV
RFI). The DTV RFI are set to be distributed with a probability
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(a) (b) (c) (d)

Figure 5. Two types of continuous RFI. (a) and (c) are respectively slender RFI and RFI with fluctuating frequencies similar to frequency modulation. Unlike the RFI in Fig. 4, which
last only around 50–200 ms, these RFI last for tens of seconds or more (the entire event of RFI is not fully displayed here).

(a) (b) (c) (d)

Figure 6. The bursts of transient RFI and continuous RFI.

(a) (b)

Figure 7. transitions between straight lines and polylines during transmission for continuous RFI.
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(a) (b)

Figure 8. An example of broadband RFI which can contaminate frequency range of up to 20MHz.

Figure 9. An example of Type Amock RFI, which contains dtv RFI and narrowband RFI.

of 0.005 over a certain frequency range and appear as rectan-
gular blocks, with an amplitude approximately 0.71 mag higher
than the background (in base-10 logarithm; the following is sim-
plified to approximate numbers). Considering the characteristics
mentioned in Section 3, including intensity variations, frequency
fluctuations, and differences in durations (transient or contin-
uous), we adjust the code for narrowband RFI to better reflect
real-world scenarios. Hence, the following sorts of narrowband
RFI can be observed in Fig. 9: continuous RFI with fixed intensity
(0.84), continuous and transient RFI with intensity varying over
time (0.54–0.84; 0.54–0.71), and a transient event with a notice-
able frequency width (a simple imitation of RFI in Fig. 4c which
has frequency fluctuations; 0.54–0.71). Within their respective fre-
quency ranges, the probabilities of these events are 0.01, 0.01, and
0.04, respectively, and the transient event is set to appear with
a probability of 0.6 per picture. It is worth mentioning that the
SEEK package performs median normalisation on the data before

Figure 10. An example of Type B mock RFI. Compared to Type A, it includes an
additional type of broadband RFI.

applying the SumThreshold method. If there are continuous nar-
rowband RFI that do not vary dramatically in intensity, they will
be removed at this step, resulting in their undetection. We specu-
late that this may be because the designers did not anticipate facing
this kind of RFI mitigation. In this paper, the code is modified to
remove this normalisation step.

Inspired by the broadband streaks reported in Wilensky et al.
(2019) and the broadband event shown in Fig. 8, the second type of
mock RFI, Type B, introduces a new category of broadband signals
(0.24–0.54) with a probability of 0.6 per picture, while the other
aspects remain the same as in the first type. Fig. 10 is an example of
such simulated signals. There is a broadband event with intensity
changing by frequency, set as a rectangle.

4.2 Evaluationmetrics

By simulating, we obtain spectra data containing the RFI and
the corresponding ground truth. Then, utilise HQ-SAM, SAM,
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Table 1. Accuracy, Recall, Precision, and F1 Score of three methods for the
Type Amock RFI recognition task.

Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 99.67 97.74 87.67 92.43

SAM 99.55 97.12 82.04 88.95

SumThreshold 99.97 98.38 98.98 98.68

Table 2. Accuracy, Recall, Precision, and F1 Score of three methods for the
Type Bmock RFI recognition task.

Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 99.66 98.19 91.54 94.75

SAM 99.29 97.27 82.35 89.19

SumThreshold 98.90 74.66 93.80 83.14

and the SumThreshold method to recognise the mock signals
and, respectively, compare the recognition results with the ground
truth to get quantitative evaluation metrics.

The evaluation metrics used in this article include precision,
recall, precision, and F1 score. They are defined as follows:

Accuracy= TP+TN
TP+TN+FP+FN

(1)

Recall= TP
TP+FN

(2)

Precision= TP
TP+FP

(3)

F1= 2× Precision× Recall
Precision+Recall

(4)

In this work, the counts of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are based on individual
pixels, where each pixel is classified as either RFI or non-RFI.

The evaluation results of the three methods for the Type A
recognition task are shown in Table 1. And the evaluation results
for Type B are shown in Table 2.

4.3 Results

According to Section 4.2, we are able to provide quantitative
evaluations for the three methods.

In RFI recognition tasks, RFI typically exhibit complex struc-
tures and characteristics. In the two types of simulated data, HQ-
SAM outperforms SAM in terms of metrics (especially Precision),
indicating that HQ-SAM demonstrates better performance than
SAM, thus confirming the claims made in Ke et al. (2023).

For Type A mock data recognition, the SumThreshold method
shows excellent performance with an F1 Score of 98.68%. HQ-
SAM, without fine-tuning or structural additions, also performs
commendably with an F1 Score of 92.43%. SAM, while capable
of recognising most RFI, shows worse performance in Precision
compared to the first two methods. This is because, under the
same conditions, SAM outputs more miscellaneous items than
HQ-SAM, which lowers the Precision score and, consequently, the
F1 Score.

For Type B mock data recognition, where broadband RFI or
large areas of RFI are present, HQ-SAM (and SAM) demonstrates

superior performance compared to the SumThreshold method,
with an F1 Score of 94.75% compared to 83.14%. Notably, HQ-
SAM (and SAM) excels in Recall, achieving 98.19% versus 74.66%
for the SumThresholdmethod. This high Recall is particularly cru-
cial for our goal of identifying and removing as many RFI events
as possible.

Since SAM outputs multiple masks and we use automatic
evenly sprinkling points as prompts, there will be miscellaneous
masks mixed with the masks we need. We use mask area and
predicted Intersection over Union (IoU) limits to filter out these
miscellaneous masks. Therefore, if one plans to use it, additional
filtering conditions may be necessary from the start. In fact, man-
ual inspection reveals that SAM and HQ-SAM actually achieve
better performance metrics than those listed. This discrepancy
arises because some miscellaneous and over-recognition masks,
which overwrite the precise segmentation masks, were not filtered
by our simple conditions, leading to a lower Precision score than
what could actually be achieved.

In addition to the problems mentioned in Section 3.3, we
note that for continuous narrowband RFI, which morphologically
presents as a straight line and lasts the entire observation time, if it
is too close to the edge of the image, the model may recognise the
region between it and the boundary without properly identifying
the narrowband itself. Similarly, when two narrowbands are too
close together, both the RFI and the region between them may be
identified as a single entity. As a result, the output masks in these
cases are filtered out, which reduces the Recall score.

In summary, we conlcude that, on one hand, HQ-SAM can
be used directly to identify RFI due to its strong generalisation
capability and recognition ability. On the other hand, it is worth
fine-tuning HQ-SAM (SAM) in this domain to optimise perfor-
mance, or developing better automatic mask filtering methods to
achieve more precise segmentation results.

4.4 Resource requirements and speed

Compared to the SumThreshold method, HQ-SAM (and SAM)
does not require manual adjustment of thresholds and iteration
counts. However, it does incur additional GPU requirements (the
model can run on both CPU and GPU). Our server is equipped
with a Tesla P100 PCIe 16 GB GPU. SAM using the vit_h check-
point requires 6.5 GB of GPU memory, while HQ-SAM requires
10.5 GB.

Besides calculating evaluation metrics, we also measure the
runtime of the three methods. HQ-SAM (and SAM) require more
time compared to the SumThreshold method. Under the same
conditions for HQ-SAM and SAM (points_per_side = 96), SAM
takes approximately four times longer than the SumThreshold
method, while HQ-SAM takes nearly six times longer.

For SAM, when points_per_side = 40, the runtime is com-
parable to that of the SumThreshold method. For HQ-SAM,
however, points_per_side = 34 is required. In this case, for both
Type A and Type B mock data recognition, Recall of the two
models decrease significantly (for Type A, Recall of SAM and HQ-
SAM decrease by 33% and 45%, respectively, while for Type B,
the decreases are 20% and 30%), while Precision change little.
Therefore, we do not recommend excessively reducing compu-
tational performance for the sake of speed. Regarding Type B,
if we compare the performance of the three method using F1
Score, SAM and HQ-SAM achieve F1 Score that are roughly com-
parable to the SumThreshold method when points_per_side = 64
and points_per_side = 40, respectively, with their runtime being
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Several types of SRB data used in the Detection. There are Type II-IV alone and in pairs. The horizontal axis represents time, while the vertical axis represents frequency.

approximately 2.2 times and 1.3 times that of the SumThreshold
method. Specific details about the evaluation metrics can be found
in 10.

In some scenarios that require real-time processing, SAM may
not be suitable due to the significant computational cost intro-
duced by its image encoder. Many works have attempted to
improve the efficiency of SAM. For example, MobileSAM (Zhang
et al. 2023) distills the knowledge from the heavy image encoder
to a lightweight one. To enhance the speed of SAM in recognising
RFI, replacing the image encoder with a lightweight model may be
a promising direction for our future efforts.

5. SRB detection by HQ-SAM

The intricate characteristics of SRBs pose significant challenges for
their automatic detection and classification. Currently, there are
few studies on deep learning for SRB detection, and they are often

limited by insufficient training data. Many of these studies adopt
methods such as transfer learning (Guo et al. 2022) or SRB simu-
lation (Scully et al. 2023) to address this problem. Here, we apply
HQ-SAM in the detection of SRBs, aiming to determine whether
it demonstrates strong zero-shot and generalisation capabilities in
such applications.

5.1 SRB data

The SRB data for this study are images of SRBs observed by
the Green Bank Solar Radio Burst Spectrometer (GBSRBS), pro-
vided by the National Radio Astronomy Observatory website.e
The horizontal axis represents time, while the vertical axis rep-
resents frequency. According to the shape, frequency, and time
length of the SRBs, these images are classified into three types:

ehttps://www.astro.umd.edu/white/gb/.
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(a)

(b)

(c)

Figure 12. Examples of successful detection for Type II-IV SRBs. The right side is the raw data, and the left side is the output masks.

Type II, Type III, and Type IV (Guo et al. 2022). We obtained a
total of 636 images, all cropped to the size of 1225×645. Fig. 11
shows several types of SRB data: Type II-IV alone and in pairs.

5.2 Detection results by HQ-SAM

Here, we present the detection results of HQ-SAM for SRB data
in the form of output masks. Our goal is to recognise the pres-
ence of all SRB events in the data and accurately identify the
main portions of these events. A small amount of over-marking
or under-marking is acceptable. We overlay the masks onto the
original images and manually check for differences. Detection is
considered successful if the events are recognised and the corre-
sponding masks align well with the SRB contours in the image. If
events are undetected, detected incorrectly, or if the masks over-
label or under-label by more than 30% area, even if the presence
of the event has been detected, it is deemed a detection fail-
ure. Fig. 12 shows examples of successful detection for separate
Type II-IV, while Fig. 13 demonstrates examples of failures for the
corresponding types. A more comprehensive display of the detec-
tion results for all six types can be found in Appendix E. In the
qualitative presentation of these results, the axes are omitted.

Table 3 shows the ratio of successful detections by HQ-SAM in
recognising various SRBs, determined by manual inspection.

5.3 Results

When appearing isolated in spectrograms (e.g. Figs. 12 and 13),
Type II and Type III SRBs can be effectively identified. However,
HQ-SAM’s ability to recognise Type IV SRBs is weaker than for
the first two types. Despite this, nearly half of the Type IV instances
in this study are successfully detected.

In cases where two types of SRB events coexist (e.g. Figs. 17
and 18), effective detection is achieved when Type II and Type III
occur simultaneously. However, when Type IV coexists with the
other two types, recognising the Type IV is challenging. If there
is overlap between Type IV and any of the other types, it further
interferes with the detection of Type II and Type III because of
Type IV morphological dispersion. During manual inspection, we
notice that failures in detecting Type II/IV or Type III/IV data
often occur due to difficulties in identifying Type IV SRBs, while
Type II and Type III are frequently successfully identified.

Particularly, the large area, relatively diffuse distribution, and
low intensity of Type IV SRBs – which often appear dim on
spectrograms – make it challenging for the model to capture
their features, affecting detection accuracy. Even when HQ-SAM
successfully identifies Type IV SRBs, there may be errors in deter-
mining the exact contours of these events, leading to issues of
over-labelling or under-labelling. For instance, Type IV SRBs and
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Figure 13. Examples of detection failure for Type II-IV SRBs.

their surrounding background may sometimes be recognised as a
single entity, resulting in masks that over-label with large areas.
This issue is illustrated in Fig. E.3c and f, and such masks are often
filtered out. The rare cases of detection failures of Type II, Type III,
and Type II/III suggest that when these types of SRB or their back-
grounds are too dim or diffuse, under-labelling can also occur.

In addition, the model’s inherent characteristics, instrument-
generated stripes, and noise in the spectrogram can introduce
various artefacts into the output masks, including small random
points and large erroneous areas. Without appropriate filtering
criteria, even if HQ-SAM accurately identifies the main structures
of SRBs, the results may still be contaminated by these artefacts.
Therefore, establishing effective filtering conditions for the masks
is crucial.

Overall, HQ-SAM exhibits impressive performance in SRB
detection tasks, particularly in identifying Type II and Type III
SRBs. This is notable given that these results are achieved without
additional model optimisation, and the model and its weights are
readily accessible from the relevant website. Thus, we believe it is
highly worthwhile to further explore the application of HQ-SAM
in the field of SRB recognition.

6. Discussion

We have demonstrated that SAM and HQ-SAM hold significant
potential for detecting various types of RFI and events. However,

there is still room for improvement in the SAM and HQ-SAM
models. For generalisedmodels, specifying prompts helps filter the
output masks, ensuring that the results focus on areas of inter-
est. Since SAM cannot automatically generate suitable prompts
for itself, we use the automatic segmentation mode provided by
SAM, which involves evenly distributing points across the image.
This method may lead to insufficient attention to important parts
of the image. Alternatively, SAM offers the option to manually
provide point or box prompts. Our experiments show that man-
ually providing points results in more accurate target recognition
compared to the automatic mode.

Nguyen et al. (2023) suggests using YOLO-v8 for initial image
detection and obtaining bounding boxes around targets, which
then serve as prompts to enhance segmentation quality. While this
approach can improve precision in segmentation tasks, introduc-
ing a trained YOLO-v8 might reduce the model’s ability to detect
unknown phenomena when aiming to identify all potential tar-
gets. A possible solution is to combine evenly distributed points
with YOLO-v8, assigning different weights to each method based
on specific needs. This combination could potentially improve
recognition performance while preserving the model’s capacity to
identify unknown events.

Additionally, implementing appropriate transfer learning for
the model could be advantageous. Analysis of detection results
from real and simulated RFI provided byHQ-SAM reveals that the
model’s prior training, which primarily involved rich landscape
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Table 3. The ratio of successful detection by HQ-SAM in recognising various
SRBs.

Type Total quantity Ratio of successful detection (%)

Type II 108 87.04

Type III 301 96.68

Type IV 78 44.87

Type II/III 87 90.80

Type II/IV 44 45.45

Type III/IV 18 22.22

images, inadequately addressed dim line images. This discrepancy
sometimes leads the model to mistakenly interpret an RFI line as
a boundary of an adjacent area. Therefore, targeted transfer learn-
ing can enhance the model’s ability to recognise and understand
dim line features without introducing excessive data dependency
or diminishing its capability to detect unknown phenomena.

It has been observed that the colour of an image significantly
impacts the model’s recognition performance. The HQ-SAM
model shows varying performance with different colour schemes.
Specifically, for the simulated narrowband RFI discussed in
Section 4, converting RGB images to pseudocolour greyscale pro-
duces coarser output masks, causing Precision to decline signifi-
cantly (generally over 30%), as shown in Tables D.1 and D.2.

These variations are likely due to the high-dimensional nature
of RGB values, where even minor colour changes can produce
significantly different feature vectors. This variability affects the
model’s recognition accuracy. Therefore, it is crucial to consider
factors such as image colour, detection target size, and image
resolution when setting recognition targets to ensure optimal
performance of the model.

7. Conclusions

In this paper, we apply HQ-SAM (SAM) to various scenarios
of RFI and event detection in radio astronomy, demonstrat-
ing its impressive recognition and generalisation capabilities.
For RFI detection, HQ-SAM (SAM) is utilised to identify both
real RFI data from the 21CMA and simulated RFI data gener-
ated with the hera_sim package. The performance of HQ-SAM
is compared with the SumThreshold method, showing supe-
rior results. Specifically, for broadband or large-area mock RFI,
HQ-SAM achieves higher recall compared to the SumThreshold
method, effectively reducing false negatives. Additionally, HQ-
SAM demonstrates strong recognition abilities in detecting SRBs,
including Type II and Type III bursts.

However, the model has some limitations, including the need
for additional filtering due to miscellaneous items in the recog-
nition results, coarse mask profiles, the computational limitations
caused by the heavy image encoder, and the absence of seman-
tic categorisation. Deep learning models often face challenges
such as insufficient training data, data imbalance, over-reliance on
training sets, and limited generalisation capabilities, as they are
typically designed for specific tasks. Furthermore, designing and
training models from scratch is a significant burden. HQ-SAM
(SAM) stands out with its powerful generalisation capabilities,
enabling easy deployment without extensive transfer learning or
modifications. It functions as a plug-and-play solution and may
help address or mitigate these common issues, making it a promis-
ing candidate for broader applications in astronomy.
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Appendix A. Supplement to the SumThreshold Method

For two neighbouring samples, A and B, traditional thresholding
involves independently comparing a statistic from each sample
to a fixed threshold, which can lead to false positives and false
negatives. In contrast, the VarThreshold method improves upon
this by using combinatorial thresholding. It iteratively combines
samples and compares them against a strictly decreasing series of
thresholds, {χi}Ni=1, where N is the number of iterations.

Initially, if A and B individually do not exceed the first thresh-
old, χ1, they are evaluated together with a lower threshold, χ2. If
both samples exceed χ2, they are flagged. Otherwise, A, B, and the
next neighbouring sample, C, are combined and compared with a
further threshold, χ3 (Offringa et al. 2010). This process continues
iteratively and can be represented as:

flagvM(v, t)= ∃i ∈ {0...M − 1} :
∀j ∈ {0...M − 1} : ∣∣R(v+ (i− j)�v, t)

∣
∣ > χN(M)

(A1)

where M is the number of samples. If the absolute values of all
samples exceed the threshold χN(M), these samples are flagged as
RFI. Empirically, M = {1, 2, 4, 8, 16, 32, 64} has been found to be
most effective and time-efficient, corresponding to 7 iterations.

The strictly decreasing series of thresholds, {χi}Ni=1, is
given by:

χi = χ1

ρ log2 i
(A2)

Empirically, ρ = 1.5 is a suitable choice for both the VarThreshold
and the subsequent SumThreshold methods.

The SumThreshold method calculates the sum of statistics
from M samples and compares it to M times the corresponding
threshold, χN(M). If samples flagged as RFI in previous itera-
tions are encountered again, their values are replaced by the
current iteration’s threshold. For example, consider the sample set
[2, 2, 5, 7, 2, 2], where [5, 7] are the RFI to be flagged. With thresh-
olds (6, 4, 3.16) for 3 iterations, and sample numbers (1, 2, 4),
without applying the condition, [2, 2, 5, 7, 2, 2] would yield 4 false
positives. By applying the condition, [7] is flagged first, result-
ing in samples [2, 2, 5, 4, 2, 2]. Then, [5, 4] are flagged, and in
the third iteration, [2, 2, 3.16, 3.16, 2, 2] yields no additional flags.
Thus, only [5, 7] are flagged, avoiding false positives.

The SumThreshold method also allows for flagging sequences
of samples with values below the thresholds. For a sample set
[1, 3, 4, 7, 4, 3, 1], where [3, 4, 7, 4, 3] represent RFI with varying
intensities, setting thresholds to [6, 4, 3.16] and sample numbers
to [1, 2, 4], the VarThreshold method flags only [7], whereas the
SumThreshold method flags [3, 4, 7, 4, 3].

Appendix B. Supplement to RFI Detection Results of Real
Data

We plot the detection results of the three methods for Figs. 2 and 3
pairwise on the same layer, using different colours to represent the
differences in the masks obtained by each method. As shown in
Figs. B.1a and B.2a, HQ-SAM demonstrates similar performance
to the SumThreshold method when utilised on real observational
data from the 21CMA, especially in finding as many RFIs as pos-
sible. Figs. B.1b, c, B.2b, and c show that SAM outputs more noise
than HQ-SAM and the SumThreshold method.
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(a) (b) (c)

Figure B.1. The differences in the masks obtained by each methods for Fig. 2 are as follows: (a) shows the difference between HQ-SAM and the SumThreshold method; (b) shows
the difference between SAM and the SumThreshold method; and (c) shows the difference between HQ-SAM and SAM.

(a) (b) (c)

Figure B.2. The same as in Fig. B.1, but comparing the results from the three methods for Fig. 3.

Appendix C. Supplement to RFI Recognition Speed

For SAM and HQ-SAM, their runtime are comparable to that
of the SumThreshold method when points_per_side = 40 and
points_per_side = 34. Under these parameter conditions, the eval-
uation metrics for Type A and Type B mock RFI recognition
tasks can be found in Tables C.1 and C.2. Table C.2 also includes
the evaluation metrics for SAM and HQ-SAM when they achieve
F1 Score roughly comparable to the SumThreshold method at
points_per_side = 64 and points_per_side = 40, respectively.

Table C.1. Accuracy, Recall, Precision, and F1 Score of SAM and HQ-SAM
for the Type A mock RFI recognition task when the three methods have
comparable runtime.

pps Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 34 99.15 52.27 83.89 64.41

SAM 40 99.21 64.60 80.78 71.79
Note: pps refers to points_per_side.

Table C.2. Accuracy, Recall, Precision, and F1 Score of SAM and HQ-SAM
for the Type B mock RFI recognition task when the three methods have
comparable runtime or F1 Score.

pps Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 34 99.09 68.08 90.41 77.67

HQ-SAM 40 99.28 78.98 91.56 84.81

SAM 40 98.96 76.83 82.11 79.38

SAM 64 99.20 89.72 82.59 86.01
Note: pps refers to points_per_side.

Appendix D. Supplement to SAM’s Dependency of Colour

When the simulated narrowband RFI in Section 4 is converted
from RGB format to pseudocolour greyscale images, the detec-
tion results of SAM and HQ-SAM are shown in Tables D.1 and
D.2. By comparing the evaluation metrics in Tables 1 and 2, we
observe that Recall remain largely unchanged, while Precision
show a significant decline (generally over 30%). This is because
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Table D.1. Accuracy, Recall, Precision, and F1 Score of SAM and HQ-SAM for
the Type A mock RFI recognition task when the images are in pseudocolour
greyscale format.

Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 98.62 92.65 54.10 68.31

SAM 97.75 97.12 38.67 55.32

Table D.2. Accuracy, Recall, Precision, and F1 Score of SAM and HQ-SAM for
the Type B mock RFI recognition task when the images are in pseudocolour
greyscale format.

Accuracy (%) Recall (%) Precision (%) F1 score (%)

HQ-SAM 98.52 92.65 66.61 77.96

SAM 97.33 96.73 49.35 65.36

when recognising pseudocolour greyscale images, the models tend
to produce coarser boundaries for the detected narrowband RFI
compared to images in colourmap ’viridis’ format, flagging more
non-RFI signals in the surrounding areas.

Appendix E. Supplement to Sular Radio Burst Detection
Results

More examples of SRB detection results in Section 5.2 are pre-
sented here (as shown in Figs. E.1, E.2, and E.3).

https://doi.org/10.1017/pasa.2024.128
Downloaded from https://www.cambridge.org/core. IP address: 3.142.130.239, on 11 Feb 2025 at 10:31:05, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/pasa.2024.128
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


16 Y. Yang et al.

(a)

(b)

(c)

(d)

(e)

(f)

Figure E.1. More examples of successful detection for separat Type II-IV SRBs are shown here.
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(a)

(b)

(c)

(d)

Figure E.2. Examples of successful detection for pairs of Type II-IV SRBs.
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(a)
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(d)
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(g)

Figure E.3. More examples of failed detection for different types of SRBs are shown here.
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