COMPOSITIO MATHEMATICA

There are at most finitely many singular moduli
that are S-units

Sebastidan Herrero, Ricardo Menares © and Juan Rivera-Letelier

Compositio Math. 160 (2024), 732-770.

doi:10.1112/50010437X23007704

Q. | LONDON
FOUNDATION V}\\\g MATHEMATICAL
COMPOSITIO Q/\ //A SOCIETY
MATHEMATICA L\\/T/ EST. 1865

Check for
https://doi.org/10.1112/S0010437X23007704 Published online by Cambridge University Press updates


https://orcid.org/0000-0001-5819-5347
https://doi.org/10.1112/S0010437X23007704
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X23007704&domain=pdf
https://doi.org/10.1112/S0010437X23007704

/A Compositio Math. 160 (2024) 732-770
\\

/ doi:10.1112/S0010437X23007704

There are at most finitely many singular moduli
that are S-units

Sebastidan Herrero, Ricardo Menares ® and Juan Rivera-Letelier

ABSTRACT

We show that for every finite set of prime numbers S, there are at most finitely many
singular moduli that are S-units. The key new ingredient is that for every prime num-
ber p, singular moduli are p-adically disperse. We prove analogous results for the Weber
modular functions, the A-invariants and the McKay—Thompson series associated with
the elements of the monster group. Finally, we also obtain that a modular function that
specializes to infinitely many algebraic units at quadratic imaginary numbers must be
a weak modular unit.

1. Introduction

A singular modulus is the j-invariant of an elliptic curve with complex multiplication. These
algebraic numbers lie at the heart of the theory of abelian extensions of imaginary quadratic
fields, as they generate the ring class fields of quadratic imaginary orders. This was predicted by
Kronecker and referred to by himself as his liebsten Jugendtraum.

A result going back at least to Weber, states that every singular modulus is an algebraic
integer [Web08, §115, Satz VI|. Thus, the absolute norm of a singular modulus is a rational
integer, and the same holds for a difference of singular moduli. Gross and Zagier gave an explicit
formula for the factorization of the absolute norms of differences of singular moduli [GZ85].
Roughly speaking, this formula shows that these absolute norms are highly divisible numbers.
In fact, Li showed recently that the absolute norm of every difference of singular moduli is
divisible by at least one prime number [Li21]. Equivalently, that no difference of singular moduli
is an algebraic unit. Li’s work extends previous results of Habegger [Hab15] and of Bilu, Habegger
and Kithne [BHK20]. These results answered a question raised by Masser in 2011, which was
motivated by results of André-Oort type.

In view of these results, one is naturally led to look at differences of singular moduli whose
absolute norms are only divisible by a given set of prime numbers. To be precise, recall that for
a set of prime numbers S, an algebraic integer is an S-unit if the only prime numbers dividing
its absolute norm are in S. The following is our main result.

MAIN THEOREM. Let S be a finite set of prime numbers and jy a singular modulus. Then, there
are at most finitely many singular moduli j such that j —jg is an S-unit.

To prove this result we follow Habegger’s original strategy in the case where S = () in [Hab15].
The main new ingredient is that for every prime number p, singular moduli are p-adically disperse
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(Theorem B in §1.2). We also prove analogous results for a more general class of modular
functions that includes the Weber modular functions, the A-invariants and the McKay—Thompson
series associated with the elements of the monster group (Theorem A in §1.1). In the course of
the proof of these results, we obtain that a modular function that specializes to infinitely many
algebraic units at quadratic imaginary numbers must be a weak modular unit (Theorem D in
§1.4).

We also propose a conjecture whose affirmative solution would yield a vast generalization of
the Main Theorem. The conjecture is that for every prime number p, every algebraic number
is p-adically badly approximable by singular moduli (Conjecture 1.3 in §1.3). We show that an
affirmative solution to this conjecture, would imply a version of the Main Theorem for every
nonconstant modular function f for a congruence or genus zero group and every algebraic value
of f (Corollary 5.2 in §5).

1.1 Singular moduli that are S-units

Consider the usual action of SL(2,R) on the upper-half plane H and consider the j-invariant as
a holomorphic function defined on H that is invariant under SL(2,7Z). Moreover, denote by Q
the algebraic closure of Q inside C.

A subgroup I' of SL(2,R) is commensurable to SL(2,7Z), if the intersection I' N SL(2,Z) has
finite index in I" and in SL(2, Z). For such a group, denote by X (I") the Riemann surface obtained
by compactifying the quotient I'\H. The genus of T"is the genus of X (I"). A modular function
for T' is a meromorphic function defined on H that is obtained by lifting the restriction to I'\H
of a meromorphic function defined on X (I'). A meromorphic function defined on H is a modular
function if and only if it is algebraically dependent with the j-invariant over C (Proposition 2.1).

A modular function is defined over Q, if it is algebraically dependent with the j-invariant
over Q. In this case, a singular modulus of f is a finite value that f takes at a quadratic imaginary
number. Every singular modulus of f is in Q (Proposition 2.3(i) in §2.2). We show that every
modular function whose Fourier series expansion at ico has coefficients in Q is defined over Q
(Proposition A.1 in Appendix A).

Recall that for a set of prime numbers S, a number in Q is an S-unit if the leading and
constant coefficients of its minimal polynomial in Z[X] have all their prime factors in S.

THEOREM A. Let f be a nonconstant modular function defined over Q for a genus-zero group.
Moreover, let fo be a singular modulus of f and let S be a finite set of prime numbers. Then,
there are at most finitely many singular moduli f of f such that f — o is an S-unit.

Since SL(2,Z) is of genus zero and the j-invariant is a nonconstant modular func-
tion for SL(2,Z) defined over Q, the Main Theorem is Theorem A applied to the
j-invariant. Theorem A also applies to the Weber modular functions, the A-invariants and the
McKay—Thompson series associated with the elements of the monster group. See § 1.5 for details.

The following corollary is a direct consequence of Theorem A with f equal to the j-invariant
and fo = 0, which is the j-invariant of every elliptic curve whose endomorphism ring is isomorphic

to Z[(1 4+ /3i)/2].

COROLLARY 1.1. For every finite set of prime numbers S, there are at most finitely many
singular moduli of the j-invariant that are S-units.
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When restricted to the j-invariant and S = (), Theorem A is a particular instance of [Hab15,
Theorem 2] and of [Li21, Corollary 1.3 with m = 1].! This last result extends the main result
of [BHK20], that in the case where S = () the set of singular moduli in Corollary 1.1 is empty.
In contrast to these results, the proof of Theorem A, which follows the strategy of proof of
[Hab15, Theorem 2] in the case where f is the j-invariant and S = (), does not give an effectively
computable upper bound.

The number —21% is an example of a singular modulus of the j-invariant that is a {2}-unit.
In fact, —2' is the j-invariant of every elliptic curve whose endomorphism ring is isomor-
phic to Z[(1 + v/11)/2]. Numerical computations suggest an affirmative answer to the following
question; see, e.g., [Sut].

Question 1.2. Is —21° the unique singular modulus of the j-invariant that is a {2}-unit?

For jo = 0 or 1728 and for the infinite set of prime numbers S for which every elliptic curve
with j-invariant equal to jpo has potential ordinary reduction, Campagna showed the following
in [Cam21]: if j is a singular modulus of the j-invariant such that j — jo is an S-unit, then j — jo is,
in fact, an algebraic unit. A combination of the Main Theorem and the arguments of Campagna
shows that when jo = 0 or 1728, the conclusion of the Main Theorem holds for some infinite sets
of prime numbers S; see §1.5.

1.2 Singular moduli are disperse

Denote by Mg the set of all prime numbers together with co, put Co = C and denote by | - |
the usual absolute value on C. Moreover, for each prime number p let (C,, | - |,) be a completion
of an algebraic closure of the field of p-adic numbers Q,,, and identify the algebraic closure of Q
inside C,, with Q. For all v in Mg, ain C, and r > 0, put

D,(a,r) ={z€Cy: |z —al, <T}.

For a finite extension K of Q inside Q, consider the Galois group Gal(Q|K) and for each « in Q
denote by Ok («) its orbit by Gal(Q|K). The following result is stated for a modular function
that is ‘defined over K’ in the sense of Definition 2.2 in §2.2. For a modular function to be
defined over K, it is sufficient that its Fourier series expansion at ioco has coefficients in K
(Proposition A.1 in Appendix A).

THEOREM B (Singular moduli are disperse). Let K be a finite extension of Q inside C and let f
be a nonconstant modular function defined over K. Then, for all v in Mg, o in C,, and € > 0,
there is r > 0 such that the following property holds. For every singular modulus f of f such
that # Ok (f) is sufficiently large, we have

#(Ox(f) N Dy(a, 7)) < & - # Ok (f)-

We first establish this result for the j-invariant, and then deduce the general case from
this special case. The case where v = co and f is the j-invariant is a direct consequence of the
fact that the asymptotic distribution of the singular moduli of the j-invariant is given by a
nonatomic measure [Duk88, CUO04]. In the case where v is a prime number p, there are infinitely
many measures that describe the p-adic asymptotic distribution of the singular moduli of the
j-invariant. The main ingredient in the proof of Theorem B is that none of these measures has
an atom in C, (Theorem 3.1 in §3). We also prove an analogous result for the Hecke orbit of
every point in C, (Theorem 3.2 in §3.1). As a consequence, we obtain that a Hecke orbit cannot

! See Theorem D in §1.4 for an extension of Habegger’s result to a general modular function defined over Q and
§ 1.5 for further comments on Li’s result.
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have a significant proportion of good approximations of a given point in C, (Corollary 3.4 in
§3.1), thus improving a result of Charles in [Chal8]. The proofs of these results are based on the
description of all the measures describing the p-adic asymptotic distribution of singular moduli
and Hecke orbits, given in the companion papers [HMR20, HMR21].

1.3 Approximation by singular moduli
Let f be a nonconstant modular function, denote by I' its stabilizer in SL(2,R) and denote
by fo the meromorphic function defined on X (I") induced by f. A complex number is a cuspidal
value of f if it is a value that fy takes at a cusp of X (I'). Note that the number of cuspidal
values is finite. Moreover, f is a Hauptmodul if X (T') is of genus zero and fj is a biholomorphism
from X (I') onto the Riemann sphere.

Let f be a nonconstant modular function defined over Q and let v be in Mg. A number «
in C, is badly approximable in C, by the singular moduli of f,if there are constants A > 0 and B
such that for every singular modulus { of f different from a we have

—log|f — al, < Alog(# Oq(f)) + B.
If this property does not hold, then « is well approzimated in C, by the singular moduli of f.

THEOREM C. Let f be a nonconstant modular function defined over Q, let fy be a singular
modulus of f and let v be in Mg. In the case where v = oo, assume that fo is a non-cuspidal
value of f and in the case where v is a prime number, assume that f is a Hauptmodul. Then, fg
is badly approximable in C, by the singular moduli of f.

In the case where v = 0o, the hypothesis that fo is a non-cuspidal value of f is necessary; see
Proposition 2.7(i).

In the case where f is the j-invariant and v = oo, the theorem above is a direct consequence
of a result of Habegger [Hab15, Lemmas 5 and 8 and formula (11), or the proof of Lemma 6]. In
fact, using results of David and Hirata-Kohno in [DH09], Habegger proved the stronger result
that every algebraic number is badly approximable in C by the singular moduli of the j-invariant.
It is unclear to us whether the analogous result holds in the p-adic setting.

CONJECTURE 1.3. Let p be a prime number. Then, every algebraic number is badly approx-
imable in C, by the singular moduli of the j-invariant.

We show that an affirmative solution to this conjecture would yield a version of Theorem A
for a general congruence or genus zero group and a general algebraic value (Corollary 5.2 in §5).

1.4 Weak modular units are the only source of singular units

A modular unit is a modular function without zeros or poles in H. A weak modular unit is a
modular function u for which 0 is a cuspidal value of w and of 1/u. Note that every nonconstant
modular unit is a weak modular unit.

The singular moduli of modular units defined over Q are a natural source of algebraic units;
see, e.g., [KL81]. Roughly speaking, the following result asserts that among modular functions
defined over Q, weak modular units are the only source of singular moduli that are algebraic
units.

THEOREM D. Let f be a nonconstant modular function defined over Q that is not a weak
modular unit. Then, there are at most finitely many singular moduli of f that are algebraic
units.
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We also show that an affirmative solution to Conjecture 1.3 would imply a version of
Theorem D for S-units (Corollary 5.1 in §5) and a version of Theorem D that holds under
the weaker hypothesis that f is not a modular unit, but that is restricted to congruence or to
genus-zero groups (Corollary 5.2 in §5). Note that for every modular unit f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-unit; see
Corollary 2.5(ii) in §2.3.

An elliptic unit is an algebraic unit that is the value of a modular unit defined over Q
at a quadratic imaginary number. A natural problem that arises from Theorem D is to deter-
mine those modular units that specialize to infinitely many elliptic units at quadratic imaginary
numbers. Examples of such can be easily extracted from Weber’s book [Web08]. Recall that the
Weber modular functions f, f; and fy are given in terms of Dedekind’s n function by

_ mi\n((r+1)/2) _ 1(1/2) _ 7).

f(1) == exp (—24> TR fi(r) = ) and  fo(7) = V2 ()

see, e.g., [Web08, § 34, (9)]. If p is a prime number satisfying p = —1 mod 8 and we put 7, = /pi,

then the singular modulus f((7, — 1)/(7, + 1)) of f is equal to v/2/f(7,) by [Web08, §34, (18)]

and it is an algebraic unit by [Web08, § 142, p. 540]. Together with [Web08, §34, (13), (14)],

this implies that the singular moduli f;(—2/(7, + 1)) and fo((7, +1)/2) of f; and f, are both

algebraic units.

Other examples of modular units that specialize to infinitely many elliptic units can be found

in [KL81]. We mention the A-invariants or modular \ functions. These are six Hauptmoduln for
the principal congruence group of level two, which can be defined as the roots of

256(1 — X + X?)3 — jX?(1 - X)? =0, (1.1)

see, e.g., [Lan87, Chapter 18, § 6]. Clearly, every singular modulus of a A-invariant is a {2}-unit.
By, e.g., [Lan87, Chapter 12, § 2, Corollary of Theorem 5] or the more recent results of Yang, Yin
and Yu [YYY21, Theorem 1.1], each of the six A-invariants has infinitely many singular moduli
that are algebraic units.?

To prove Theorem D, we follow the strategy of proof of [Hab15, Theorem 2]. In particular,
we use [Hab15, Lemmas 5 and 8 and formula (11)], whose proof is based on results of David and
Hirata-Kohno in [DHO09].

1.5 Notes and references

Theorem A applies to the Weber modular functions f, f; and fo; see § 1.4 for the definition. In
fact, f5 is a Hauptmodul by [YY16, Theorem 1.3(2)(a) and p. 19], and therefore so are f and f;
by [Web08, §34, (13) and (14)]. On the other hand, each of these functions is defined over Q in
the sense of Definition 2.2 in § 2.1 because it is a root of either

(X216 = X% =0 or (X" +16)® - X?j=0; (1.2)

see, e.g., [YZ97] or [Web08, § 126, (1)]. The singular moduli of Weber modular functions provide
generators of ring class fields of quadratic imaginary orders; see [Web08, §126] and [Sch76,
Satz 4.2]. In addition, the arithmetic complexity of these generators is sometimes significantly
lower than that of the corresponding singular moduli of the j-invariant; see [YZ97] and [ES10]
for a computational perspective. Since each of the functions f, f; and f; is a root of one of

2 Although these results only apply directly to one of the six A-invariants, they automatically imply analogous
results for each of the remaining five A-invariants. Note that for every pair of A-invariants Ao and A1, there is ~
in SL(2,Z) such that Ay = Xp07.
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the polynomials in (1.2), each of their singular moduli is an algebraic integer and a {2}-unit.
Moreover, as mentioned in § 1.4, the results of Weber imply that the singular moduli of f, f;
and f5 are often algebraic units, in contrast to the singular moduli of the j-invariant. Note that 0
is a singular modulus of the j-invariant, but not of f, f; or f5. In fact, f, f; and f; are all modular
units; see, e.g., Corollary 2.5(ii) in §2.3.

Theorem A also applies to each of the six M-invariants; see § 1.4 for the definition. This solves
affirmatively a conjecture of Habegger (private communication, 2021). Note that each of these
functions is defined over Q, because it is a root of (1.1). As mentioned in § 1.4, the singular moduli
of each of the six A-invariants are often algebraic units, in contrast to those of the j-invariant.
Note that each of the A-invariants is a modular unit; see, e.g., Corollary 2.5(ii) in §2.3.

The representation theory of the monster group provides a wealth of modular functions sat-
isfying the hypotheses of Theorem A. In fact, by Borcherds’ solution [Bor92, Theorem 1.1] of the
monstrous moonshine conjecture of Conway and Norton [CN79], the McKay-Thompson series
associated with a given element of the monster group is a Hauptmodul defined over Q; see
Proposition A.1 in Appendix A. Moreover, the singular moduli of a fundamental
McKay—Thompson series are often algebraic integers [CY96, Theorem 1.

For distinct singular moduli j and j* of the j-invariant, Li gives in [Li21] an explicit lower
bound for the absolute norm of j — j’ that implies that this algebraic integer is not an algebraic
unit. When restricted to j’ = 0, this is [BHK20, Theorem 1.1]. In fact, Li proves a stronger result
for the values of modular polynomials at pairs of singular moduli of the j-invariant. Li’s approach
makes use of (extensions of) the work of Gross and Zagier in [GZ85], and it is different from
those in [Hab15, BHK20]. Li does not treat the case of S-units in [Li21].

In the case where jy = 0 (respectively, 1728), the conclusion of the Main Theorem holds for
certain classes of infinite sets of prime numbers S. In fact, if we put

So := {q: prime number, ¢ = 1 mod 3}
(respectively, {¢: prime number, ¢ = 1 mod 4}),

then the conclusion of the Main Theorem holds for every set of prime numbers .S such that S ~\. Sy
is finite and does not contain {2,3,5} (respectively, {2,3,7}). This is a direct consequence of the
Main Theorem and the proof of [Cam21, Theorems 1.2 and 6.1].

1.6 Organization
In §2 we establish general properties of modular functions (§2.1), their singular moduli (§2.2)
and their cuspidal and omitted values (§2.3).

In §3 we prove Theorem B. We first establish it in the special case of the j-invariant. The
main ingredient in the proof of this special case, is that no measure describing the v-adic asymp-
totic distribution of the singular moduli of the j-invariant has an atom in C,. This follows from
[CU04, Théoréme 2.4] if v = co and is stated as Theorem 3.1 in the case where v is a prime
number. Together with [HMR21, Theorems A and B], this implies Theorem B in the case of
the j-invariant as a direct consequence. The proof of Theorem 3.1 is based on the description of
all these measures given in the companion papers [HMR20, HMR21]. We also use an analogous
description for Hecke orbits given in [HMR20, HMR21]. We first establish a result analogous
to Theorem 3.1 for Hecke orbits (Theorem 3.2) in §3.1, and in §3.2 we deduce Theorem 3.1
from this result. To prove Theorem 3.2, we first show that the images of a point under Hecke
correspondences associated with different prime numbers are nearly disjoint (Lemma 3.5). We
use this to show that an atom in C, of an accumulation measure of a Hecke orbit would
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replicate indefinitely, thus creating infinite mass.® In §3.3 we deduce Theorem B in the gen-
eral case from the special case of the j-invariant, using the results about modular functions
in §2.

In §4 we prove Theorem C. We first establish it in the special case of the j-invariant, which
is stated in a slightly different form as Proposition 4.1. After a brief review of the work of
Gross and Hopkins on deformation spaces of formal modules in §4.1, in §4.2 we give the proof
of Proposition 4.1. First, we use that singular moduli are isolated in the ordinary reduction
locus [HMR20, Corollary B], to restrict to the case where j and jo are both in the supersingular
reduction locus. In the case where the conductors of D; and D, are both p-adic units, we use an
idea in the proof of [Chal8, Proposition 5.11]. To extend this estimate to the general case, we
use a formula in [HMR21] that shows how the canonical branch of the Hecke correspondence T,
relates CM points whose conductors differ by a power of p. In §4.3 we deduce Theorem C in the
general case from the special case of the j-invariant, using the results about modular functions
in §2.

In §5 we prove Theorems A and D. We follow Habegger’s original strategy in the case of the
j-invariant and S = () in [Hab15], to prove a more general result that we state as Theorem A’. In
particular, we use in a crucial way Colmez’s bound [Col98, Théoréme 1] in the form of [Habl5,
Lemma 3]. The main new ingredient to implement Habegger’s strategy is Theorem B. Theorem A’
implies Theorem D as a direct consequence. Another direct consequence of Theorem A’ is
that an affirmative solution to Conjecture 1.3 would yield a version of Theorem D for S-units
(Corollary 5.1) and a version of Theorem A for a general congruence or genus-zero group and
a general algebraic value (Corollary 5.2). We prove Theorem A’ in §5.1 and derive Theorem A
and Corollary 5.2 from Theorem A’ in §5.2.

2. Modular functions and their special values

In this section we prove general properties of modular functions, their singular moduli and their
cuspidal and omitted values. In §2.1 we establish some general properties of modular functions
(Proposition 2.1). In § 2.2 we study arithmetic properties of singular moduli of modular functions
defined over Q (Proposition 2.3). Finally, in § 2.3 we study cuspidal and omitted values of modular
functions.

2.1 Modular functions
The goal of this section is to prove the following proposition.

ProrosiTiON 2.1. Every modular function is algebraically dependent with the j-invariant
over C. Conversely, let K be a subfield of C and let f be a nonconstant meromorphic func-
tion defined on H that is algebraically dependent with the j-invariant over K. Then, f is a
modular function and there is a polynomial ®(X,Y") with coefficients in a finite extension of K
inside C that is irreducible over C and such that ®(j, f) vanishes identically. Furthermore,
®(X,Y) depends on both X and Y, and it satisfies the following properties.

(i) For every (z,w) in the zero set of ® in C x C, there is T in H satisfying
z=7j(r) and w= f(7).

(ii) Up to a constant factor, ® is the unique irreducible polynomial in C[X,Y’] such that ®(j, f)
vanishes identically.

3 See Remark 3.6 for a different strategy of proof.
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In the proof of this proposition, which is given below, and in the rest of the paper, we use
the following property: for every subfield K of C, a polynomial in K[X,Y] is irreducible over C
if and only if it is irreducible over an algebraic closure of K.

Definition 2.2. Let K be a subfield of C. A modular function f is defined over K, if there
is a polynomial ®(X,Y) in K[X,Y] that is irreducible over C and such that ®(j, f) vanishes
identically. In this case, ®(X,Y) is a modular polynomial of f.

In view of Proposition 2.1, in the case where K = Q this definition coincides with that
given in §1.1. Note that if K is a subfield of C, then every modular function having a modular
polynomial in K[X,Y] is defined over K. On the other hand, by Proposition 2.1 for every
modular function f there is a modular polynomial of j and f in C[X,Y] and if, in addition, f
is algebraically dependent with the j-invariant over K, then there is a modular polynomial of j
and f with coefficients in a finite extension of K. Furthermore, a modular polynomial in KX, Y]
of j and a modular function is unique up to a multiplicative constant in K*.

Proof of Proposition 2.1. Let f be a modular function. The case where f is constant being triv-
ial, assume f is nonconstant. Let I' be a subgroup of SL(2, R) that is commensurable to SL(2,Z)
and such that f is invariant under I". Replacing I" by I' N SL(2, Z) if necessary, assume that I" is a
finite index subgroup of SL(2,Z). Then, the j-invariant and f induce meromorphic functions jo
and fo defined on X (I"). Since the field of meromorphic functions defined on X (I') has transcen-
dence degree one over C, there is a nonzero polynomial ®(X,Y’) in C[X,Y] such that ®(jo, fo)
vanishes identically. It follows that the function ®(j, f) vanishes identically. This implies that the
j-invariant and f are algebraically dependent over C.

To prove the second assertion, let K be a subfield of C and let f be a nonconstant meromor-
phic function defined on H that is algebraically dependent with the j-invariant over K. Then,
there is a polynomial ®y(X,Y") in K[X,Y] such that ®o(j, f) vanishes identically. Suppose ®
is not irreducible over C. Then, we can find a finite extension K of K inside C and a finite
family (®;);er of polynomials in K[X, Y] that are irreducible over C and whose product is equal
to ®¢. It follows that at least one of the meromorphic functions in {®;(j, f): i € I} vanishes
identically. This proves that in all the cases there is a polynomial ® with coefficients in a finite
extension of K that is irreducible over C and such that ®(j, f) vanishes identically. Note also
that, since the j-invariant is nonconstant and f is nonconstant by assumption, the polynomial ®
depends on both variables.

To prove that f is a modular function, denote by . (H) the field of all meromorphic functions
defined on H. Note that the polynomial ®(j,Y") in .# (H)[Y] is nonconstant and denote by 2 its
finite number of zeros in .# (H). The set 2 contains f and is invariant under the action of SL(2, Z)
on ./ (H) given by (v, g) — g o ~y. Since Z is finite, it follows that the stabilizer I" of f in SL(2, R)
is a finite index subgroup of SL(2,Z). Thus, to prove that f is a modular function, it is sufficient
to prove that f is the lift of the restriction to I'\H of a meromorphic function defined on X (I").
To do this, it is sufficient to show that for every « in SL(2,Z) the function f o~y is meromorphic
at ico; see, e.g., [Shi7l, Proposition 1.30 and §1.4]. Note that the functions fo~y and joy=j
are algebraically dependent over C. Thus, replacing f o~y by f if necessary, it is sufficient to
prove that f is meromorphic at ico. To do this, denote by § the degree of ®(X,Y) in Y and
for each k in {0,...,6} denote by P.(X) the coefficient of Y* in ®(X,Y) and by dj, the degree
of Pg. Then, there are constants R > 0 and C' > 0, such that for every z in C satisfying |z| > R
we have |Ps(z)| > C~1z|%, and such that every k in {0,...,5 — 1} we have |P(z)| < C|z|%.
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Thus, if we put
d = —ds + max{dy,...,ds_1},
then for every 7 in H satisfying
Jj(T)| = R and |[f(7)] =1,

we have

[F(0)° = B ()| "< Ol F ()

Since the j-invariant has a pole at ico (see, e.g., [Lan87, Chapter 4, § 1]), we conclude that for
every 7 in H whose imaginary part is sufficiently large we have |f(7)| < C?5|5(7)|%. This implies
that f is meromorphic at icc and completes the proof that f is a modular function.

To prove item (i), let jo and fp be as above, note that the set of poles of jj is equal to the
complement of I'\H in X (I") and denote by P the set of poles of fy in X (I"). Moreover, denote
by ® the homogenization of ® in C[X,Y, Z], so that ®(X,Y,1) = ®(X,Y), and let Z(®) its zero
set in P2(C). Then,

T\H)~ P — Z(d)
r o u(z) = [jo(z): fo(x): 1]

has a unique continuous extension +: X(I') — Z(®) and this map is surjective; see, e.g., [Har77,
Chapter II, Proposition 6.8]. Thus, for every (z,w) in C x C in the zero set of ® there is x in
(IN\H) ~\ P such that i(z) = [z : w : 1]. This implies item (i).

To prove item (ii), let ®(X,Y) be an irreducible polynomial in C[X,Y] such that 3, f)
vanishes identically. Then, by item (i) the polynomial (I’ vanishes on the zero set of ® and,
therefore, P is a multiple of ®. Since, by assumption, P is irreducible, it follows that it is a
constant multiple of ®. This completes the proof of item (ii) and of the proposition. O

2.2 Singular moduli of modular functions

The goal of this section is to establish some arithmetic properties of singular moduli of modular
functions defined over Q. These are gathered in Proposition 2.3 below. To state it, we introduce
some terminology.

For a finite extension K of Q inside Q, consider the Galois group Gal(Q|K) and for each «
in C denote by O («) its orbit by Gal(Q|K). Note that, with the notation introduced in §1.2
we have O(a) = Og().

In this paper, a discriminant is the discriminant of an order in a quadratic imaginary
extension of Q. For every discriminant D denote by h(D) the class number of the order of
discriminant D in Q(v/D). For a singular modulus j, the discriminant of the endomorphism ring
of an elliptic curve over C whose j-invariant is equal to j only depends on j. Denote it by Dj. We
use that for every singular modulus j of the j-invariant, we have

Og(j) = {singular modulus j’ of the j-invariant with Dy = D;} (2.1)
and
# Oq () = h(Dy); (2.2)
see, e.g., [Lan87, Chapter 10, Theorem 5.

ProproSITION 2.3. Let K be a finite extension of Q inside C. Then, for every nonconstant
modular function f defined over K the following properties hold.
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(i) Every singular modulus fq of f is in Q and every element of O i (o) is also a singular modulus
of f.

(ii) There is a constant Cy > 0 such that for every quadratic imaginary number 1y in H that is
not a pole of f, the singular modulus f (1) of f satisfies

Cot - # 0q(i(m0)) < # Ok (f(10)) < #O0q(f(70)) < Co - # Og(j(70)).

(iii) For every € > 0 there is a constant Cy > 0 such that the following property holds. For every
quadratic imaginary number 7 in H that is not a pole of f, we have

Ot #Ox(f(1))*F < [Djin| < C1-# Ok (f(7))**.
(iv) For every € > 0 there is a constant Cy > 0, such that for every R > 0 we have
#{singular modulus f of f such that # O (f) < R} < CoR>**. (2.3)

Proof. Let ®(X,Y) be a modular polynomial of f in K[X,Y]. Denote by dx (respectively, dy)
the degree of ®(X,Y) in X (respectively, Y).

To prove items (i) and (ii), let fo be a singular modulus of f and let 7y be a quadratic
imaginary number in H such that fo = f(79). Then, jo := j(79) is a singular modulus of the
j-invariant and, therefore, it is in @. On the other hand, the polynomial ®(jg,Y) is nonzero
because @ is irreducible over C and j is nonconstant. Since fy is a root of ®(jo,Y), it is in an
extension of K (jo) of degree at most dy. In particular, fo is in Q. To complete the proof of
item (i), let o in Gal(Q|K) be given, and note that ®(c(jo),o(fo)) = 0. Since ® is irreducible
over C, by Proposition 2.1 there is 7 in H such that

a(jo) =j(r) and o(fo) = f(7).

By (2.1), the number o (jp) is a singular modulus of the j-invariant and, therefore, 7 is a quadratic
imaginary number. It follows that o(fg) is a singular modulus of f. This completes the proof of
item (i). To prove item (ii), note that by (2.2) and the fact that fo is in an extension of K (jo) of
degree at most dy we have

# Oq(fo) < dy[K (o) : Q] < oy [K : Q] - # Oqf(io)-

On the other hand, the polynomial ®(X, fy) is nonzero because @ is irreducible over C and f is
nonconstant. Since jg is a root of ®(X, fy), it is in an extension of K(fy) of degree at most dy,
and we have

# Oq(jo) < 6x[K(fo) : Q] = dx[K : Q] - # Ok (fo)-

This completes the proof of item (ii) with Cy = [K : Q] max{dx, dy}.
Item (iii) is a direct consequence of (2.1), (2.2), item (ii) and of the following estimate: for
every € > 0 there is C' > 0 such that for every discriminant D, we have

C_I‘D|1/2_E < h(D) < C|D|1/2+E.

In the case where D is fundamental this is Siegel’s estimate [Sie35, (1)]. To deduce the general
case from the fundamental case; see, e.g., [Lan87, Chapter 8, § 1, Theorem 7] or [HMR21, (5.12)
and Lemma 5.12].

To prove item (iv), let Cp and C; be the constants given by items (ii) and (iii), respectively.
Moreover, for each singular modulus f of f choose a quadratic imaginary number 7 in H such
that f(7) =f, and put j(f) := j(7). For every singular modulus j of the j-invariant there are at
most dy singular moduli f of f such that j(f) = j. Thus, by items (ii) and (iii) the left-hand side
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of (2.3) is bounded from above by
Sy - #{singular modulus j of the j-invariant such that # Og(j) < CoR and |Dj| < C;R*™¢}
< 5Yc0C'1R3+E.

This proves item (iv), and completes the proof of the proposition. ]

2.3 Cuspidal and omitted values of modular functions
Let f be a nonconstant modular function. A complex number « is a value of f if there is 7 in H
such that f(7) = «, and it is an omitted value of f if it is not a value of f.

For a modular function f, the following proposition gives a characterization of the cuspidal
and omitted values of f. It shows, in particular, that every omitted value is cuspidal; see also
Remark 2.6. Moreover, in Proposition 2.7 below we show that in the case where f is defined
over Q, every cuspidal value of f is well approximated in C by the singular moduli of f and that
for every prime number p, every omitted value of f is badly approximable in C, by the singular
moduli of f.

PROPOSITION 2.4. Let f be a nonconstant modular function and let ®(X,Y) be a modular
polynomial of f. Then, for every complex number « the polynomial ®(X, «) is nonzero and the
following properties hold.

(i) The number « is an omitted value of f if and only if the polynomial ®(X, «) is constant.
(ii) The number « is a cuspidal value of f if and only if the degree of the polynomial ®(X, «) is
strictly smaller than the degree of ®(X,Y) in X.

In particular, every omitted value is cuspidal. Furthermore, if f is defined over a subfield K of C,
then every cuspidal value of f is in the algebraic closure of K inside C.

The following corollary is an immediate consequence of this proposition. Note that a modular
function f is holomorphic if and only if 0 is an omitted value of 1/f, and f is a modular unit if
and only if 0 is an omitted value of f and of 1/f.

COROLLARY 2.5. Let f and ® be as in Proposition 2.4. If we consider ®(X,Y") as a polynomial
in Y with coefficients in C[X], then the following properties hold.

(i) The modular function f is holomorphic if and only if the leading coefficient of ®(X,Y") does
not depend on X. In particular, for every holomorphic modular function f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-integer.

(ii) The modular function f is a modular unit if and only if neither the constant nor the leading
coefficients of ®(X,Y) depend on X. In particular, for every modular unit f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-unit.

Proof of Proposition 2.4. If the polynomial ®(X, a)) were zero, then ®(X,Y’) would be divisible
by Y — «. This is impossible since ®(X,Y) is irreducible in C[X,Y] and it depends on both
variables (Proposition 2.1). This proves that ®(X, «) is nonzero.

To prove item (i), let @ be a complex number such that ®(X,«) is nonconstant and let 3
be a root of this polynomial. Then, by Proposition 2.1(i) there is 7 in H such that j(7) = 5 and
f(7) = a. In particular, « is a value of f and, therefore, it is not an omitted value of f. To prove
the reverse implication, let 7 in H be such that f(7) is finite. Then, the number j(7) is a zero of
the polynomial ®(X, f(7)). Since ®(X, f(7)) is nonzero, it follows that it is nonconstant. This
completes the proof of item (i).

742

https://doi.org/10.1112/S0010437X23007704 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007704

THERE ARE AT MOST FINITELY MANY SINGULAR MODULI THAT ARE S-UNITS

To prove item (ii), denote by d the degree of ®(X,Y) in X and let P(Y) be the coefficient
of X% in ®(X,Y), seen as a polynomial in X with coefficients in C[Y]. Furthermore, put

A(X,Y)=PY)X? - d(X,Y) (2.4)

and note that the degree in X of this polynomial is strictly less than d. Let I' be the stabilizer
of f in SL(2,R) and denote by fy the meromorphic function defined on X (I') induced by f.
Suppose that a is a cuspidal value of f. That is, a is a value that fy takes at a point in
I\P'(Q). Since SL(2,Z) acts transitively on P*(Q), there is v in SL(2,Z) such that f o y(7) — «
as (1) — oo; see, e.g., [Shi7l, Proposition 1.30]. Combined with (2.4), this implies

Pla)l = _lm_[P((forn)(r)] = tim 2UDUONEL_g

()00 S(r)—o0 FICOIR

This proves P(a) = 0 and, therefore, that the degree of ®(X, ) is strictly less than d. To prove
the reverse implication, suppose that « is a non-cuspidal value of f and let A be a finite subset
of H such that f;'(a)=T\(T-A). Let 7 > 0 be sufficiently small so that there is a compact
neighborhood N of A in H such that

f5'(Doo(a, 7)) =T\(I'- N).
Reducing 7 if necessary, suppose that for every o in B(a,r)\ {a} we have P(a/) #0 and
let (a;)2; be a sequence in B(a,r)\ {a} converging to «. Then, for every i the polyno-
mial ®(X, ;) is of degree d and, therefore, by Proposition 2.1(i) there are 7'(1), . ,7'4(d) in N

7 7

such that
d
®(X, a1) = Plag) [J(X — i(r")). (2.5)
/=1
Taking a subsequence if necessary, suppose that for every ¢ in {1,...,d} the sequence (Ti(g))fil
converges to an element 7; of N. Letting ¢ — oo in (2.5), we obtain
d
®(X,a) = P(a) [T(X —5(z)).
/=1

Since ®(X, ) is nonzero, it follows that P(«) is nonzero and, therefore, that the degree of ®(X, «)
is d. This completes the proof of item (ii).

To prove the remaining assertions, note that by combining items (i) and (ii) we obtain that
every omitted value is cuspidal. On the other hand, by item (ii) the cuspidal values of f are
precisely the zeros of P(Y). In particular, there are at most finitely many cuspidal values of f.
If f is defined over a subfield K of C, then we can assume that the polynomial ®(X,Y") is
in K[X,Y]. This implies that P(Y') is in K[Y] and, therefore, that all of the cuspidal values of f
are in the algebraic closure of K inside C. O

Remark 2.6. The modular function

-

j* -1

provides an example of a cuspidal value that is not omitted. In fact, this function is invariant
under SL(2,7Z) and the meromorphic function gy on X (SL(2,Z)) induced by g vanishes at the
cusp ioco. But 0 is not an omitted value of g, because g((1 4+ v/3i)/2) = 0.

9=

PROPOSITION 2.7. For every nonconstant modular function f defined over Q, the following

properties hold.
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(i) Every cuspidal value of f is well approximated in C by the singular moduli of f. In particular,
every omitted value of f is well approximated in C by the singular moduli of f.

(ii) Let p be a prime number and let o be an omitted value of f. Then, there is r > 0 such
that Dy(a,r) contains no singular modulus of f. In particular, « is badly approximable
in C, by the singular moduli of f.

The proof of this proposition is after the following lemma.

LEMMA 2.8. Let v be in Mg and let ®(X,Y) be an irreducible polynomial in C,[X, Y] depending
on both variables. Then, for every a in C, there are constants

C3>1, 6>0, >0 and 7' >0

such that for every z in C, and every w in C, \ {a} sufficiently close to o and such that
®(z,w) = 0, exactly one of the following properties holds.

(i) The polynomial ®(X,«) is nonconstant and, denoting by Z its finite set of zeros in C,, we
have
min{|z — zoly: 20 € Z} < C3lw — al’. (2.6)
(ii) The degree of ®(X, ) is strictly smaller than that of ®(X,Y’) in X and we have
C3tw — ol < |2y < Calw — a3 . (2.7)

Proof. Put Qo(X) := ®(X,a) and note that our hypotheses that ®(X,Y) is irreducible
in C,[X,Y] and that it depends on both variables, implies that Qo(X) is nonzero. Denote by ¢
the degree of Qo(X) and let Ry > 1 and My in 0, 1[ be constants so that for every z in C,
satisfying |z|, > Ro, we have

Molz|y < 1Qo(2)]w < Myt |2[2- (2.8)
Reducing M) if necessary, suppose that in the case where Q(X) is constant we have
|Qo(0)|v = Mo, (2.9)
and that in the case where Qo(X) is nonconstant for every z in C, we have
1Qo(2)]s > Momin{|z — z|y: 20 € Z}*. (2.10)

Note that Y — « divides ®(X,Y) — Qo(X). Let mgy in Z~o be the largest integer such
that (Y — )™ divides ®(X,Y) — Qo(X), and let ¥(X,Y) be the polynomial in C,[X, Y] such
that

O(X,Y)—Qo(X)=(Y —a)™¥(X,Y). (2.11)
Denote by d the degree of ¥(X,Y) in X. Regarding U(X,Y') as a polynomial in X with coeffi-
cients in C,[Y], for each i in {0, ...,8} let P;(Y) be the coefficient of X* in ¥(X,Y'). Furthermore,

denote by m; the order of Ps(Y) at o. Then, there is a constant M; > 1 such that for every w
in C, \ {a} that is sufficiently close to «, we have

|Ps(w)|y > M w — o™, (2.12)

and such that for every ¢ in {0,...,0} we have |P;(w)|, < M;. Thus, for every z in C, such that
®(z,w) =0, we have

(2, )], < (6 4+ 1)M; max{1, |z|,}° (2.13)
and
|U(z,w) — Ps(w)z°|, < 6M; max{1,|z|,}° L. (2.14)
744
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To prove the desired assertion, put

My

My = ——0
2T 6+ )M,

and let w in C, \ {a} be sufficiently close to « so that (2.12), (2.13) and (2.14) hold and so that

lw — | < MyRy®. (2.15)

Furthermore, let z in C, be such that ®(z,w) = 0.
Case 1. |z|, < Ry. If Qo(X) were constant, then by (2.9), (2.11) and (2.13) we would have

Qo(2)
U(z,w)

> MyRy?,

-l = |
v

which contradicts (2.15) and proves that Qo(X) is nonconstant. Denoting by Z the nonempty
set of zeros of Qu(X) in C,, by (2.10), (2.11) and (2.13) we have

Qo(2)
U(z,w)

> MgRa‘smin{]z — 20]v: 20 € Z}P.

v

-l = |

This proves (2.6) with Cs = M, (/ EO)RS/ © and 6 =mo/lp and completes the proof that
property (i) holds.

Case 2. |z|, > Ry. By (2.8), (2.11) and (2.13), in this case we have
Molzi? - Jw — af,™ < |Qo(2)] - [w — al,™ = [0 (z,w)|y < (6 + 1)Mlz[;. (2.16)

If we had ¢y > §, then we would obtain |w — a|]' > M. This contradicts (2.15) and proves that
the degree £y of Qo(X) is strictly less than the degree § of ®(X,Y) in X. Together with (2.16),

this implies the first inequality in (2.7) with C5 = le /=) and n =mo/(6 — o). To prove the
second inequality in (2.7), suppose

2|y > 20 ME|w — al, ™.
Then, by (2.12) and (2.14) we have
|Ps(w)2°], > 20 M2 |w — ao|;™ | Ps(w) 221, > 20M |27 > 2|0 (2, w) — Ps(w)2’|,.
Together with the triangle inequality, (2.8), (2.11) and (2.12), this implies
My 2l - [w = al;™ > [Qo(2)| - [w — al;™ = [¥(z,w)|y > 5|Ps(w)2’lug My [w — af ™ [2];.

Rearranging, we obtain the second inequality in (2.7) with

Oy = max{20M2, (2M; ' My)/6=0)} and 1 = max {ml, mo +my }

0 — 4o

This completes the proof that property (ii) holds.

Finally, note that for w in C, \ {a} that is sufficiently close to «, the inequality (2.6) and
the first inequality in (2.7) cannot hold at the same time. This proves that properties (i) and (ii)
cannot hold simultaneously and completes the proof of the lemma. ]
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Proof of Proposition 2.7. Let ®(X,Y) be a modular polynomial of f in Q[X,Y] and note that
for every v in Mg the polynomial ®(X,Y") is irreducible in C,[X,Y].

To prove item (i), let a be a cuspidal value of f and let C5 and 1’ be the constants given by
Lemma 2.8 with v = co. That is, if we denote by T" the stabilizer of f in SL(2,R), then « is a
value that f takes at a point in T'\P(Q). Since SL(2,Z) acts transitively on P!(Q), there is
in SL(2,Z) such that f ov(7) — « as (1) — oo; see, e.g., [Shi7l, Proposition 1.30]. Let C' > 0
be a constant such that for every 7 in H such that &(7) is sufficiently large, we have

1 (7)| > C exp(2nS(7)); (2.17)
see, e.g., [Lan87, Chapter 4, § 1]. Given a prime number p’ satisfying p’ = 1 mod 4, put
mo=iVp, i) =j(ry) and f(p') = fory(ry),
and note that j(p’) is a singular modulus of the j-invariant satisfying Dj(, = —4p’ and that f(p')
is a singular modulus of f. If p is sufficiently large, then by (2.17) with 7 = 7,y property (i) in

Lemma 2.8 cannot be satisfied with z = j(p’) and w = f(p’). Thus, property (ii) holds and we
have
10 o
o
In view of Proposition 2.3(iii), this implies that « is well approximated in C by the singular
moduli of f. The second assertion of item (i) follows from the first and from the fact that every
omitted value is cuspidal (Proposition 2.4).

To prove item (ii), let C3 and n be the constants given by Lemma 2.8 with v = p and put

1 . 1 T
—log [f(p)) — a| > ﬁlog li(p")| - Wlogcs > [ Djpr)| —

7= C’;l/n. By Proposition 2.4(ii), our hypothesis that « is an omitted value of f implies that
the polynomial ®(X, «) is constant. Thus, if there were a quadratic imaginary number 7 in H
such that f(7) is sufficiently close to o in C,, then f(7) would be in D, (e, ) and by Lemma 2.8
the singular modulus j(7) of the j-invariant would satisfy

Ol > CAf () —aly? > 1.

This is absurd, since j(7) is an algebraic integer. This completes the proof of item (ii) and of the
proposition. ]

3. p-Adic limits of CM points

The goal of this section is to prove Theorem B. The main ingredient is Theorem 3.1 below.
Together with [HMR21, Theorems A and B], which are summarized in Theorem 3.7 in §3.2,
Theorem 3.1 implies Theorem B in the case of the j-invariant as a direct consequence. The
general case is deduced from this special case in § 3.3.

Throughout this section, fix a prime number p and let (C,, |- |,) be as in the introduction.
Denote by Y (C,) the coarse moduli space of elliptic curves over C,. We consider Y (C,) as a
subspace of the Berkovich affine line A}gerk over C,, using the j-invariant to identify Y (C,) with
the subspace C,, of All?>erk‘ We endow the space of Borel measures on Allserk with the weak topology
with respect to the space of bounded and continuous real functions. Denote by x¢., the ‘Gauss’
or ‘canonical’ point of A]IBerk' For x in Allserk denote by ¢, the Dirac measure at z. An atom of a
Borel measure v on Aj_, is a point  in A}, such that v({z}) > 0. A measure is nonatomic if
it has no atoms.

The endomorphism ring of an elliptic curve over C, only depends on the corresponding
class £ in Y (C,) of the elliptic curve. It is isomorphic to Z or to an order in a quadratic imaginary

746

https://doi.org/10.1112/S0010437X23007704 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007704

THERE ARE AT MOST FINITELY MANY SINGULAR MODULI THAT ARE S-UNITS

extension of Q. In the latter case E is a CM point and its discriminant is the discriminant of its
endomorphism ring. For every discriminant D, the set

Ap ={E € Y(C,): CM point of discriminant D}

is finite and nonempty. Denote by gp,p the Borel probability measure on Y (C,), defined by

P R

EEAD

In contrast to the complex case, as the discriminant D tends to —oo the measure 3D7p does not

converge in the weak topology. In fact, there are infinitely many different accumulation measures
[HMR21, Corollary 1.1].

THEOREM 3.1. Let p be a prime number. Then every accumulation measure of
{6pp: D discriminant} (3.1)

in the weak topology that is different from d,.,, is nonatomic. In particular, no accumulation
measure of (3.1) in the weak topology has an atom in Y (Cp).

One of the main ingredients in the proof of this result is the description of all accumulation
measures of (3.1) given in the companion papers [HMR20, HMR21]. We also use an analogous
description for Hecke orbits given in [HMR20, HMR21]. We first establish a result analogous to
Theorem 3.1 for Hecke orbits (Theorem 3.2) in §3.1, and in §3.2 we deduce Theorem 3.1 from
this result.

Denote by @p the algebraic closure of Q, inside C,, and by O, and (’)@p the ring of integers

of C, and @p, respectively. For E in Y (C,) represented by a Weierstrass equation with coefficients
in O having smooth reduction, denote by Fg the formal group of E and by End(Fg) the
ring 011% endomorphisms of Fp that are defined over the ring of integers of a finite extension
of Qp. Then End(FE) is either isomorphic to Zp, or to a p-adic quadratic order; see, e.g., [Fr668,
Chapter IV, § 1, Theorem 1(iii)]. In the latter case, E is said to have formal complex multiplication
or to be a formal CM point.

An elliptic curve class E in Y(C,) has supersingular reduction, if there is a representative
elliptic curve over O, whose reduction is smooth and supersingular. Denote by Ysups(C,) the set
of all elliptic curve classes in Y (C,) with supersingular reduction.

3.1 On the limit measures of Hecke orbits
The goal of this section is to prove Theorem 3.2 below, which is the main ingredient in the proof
of Theorem 3.1. To state it, we introduce some notation.

A divisor on Y (C,) is an element of the free abelian group

Div(Y @ 7E.

EcY (Cp)

For a divisor D =} pey (¢, nef in Div(Y(C,)), the degree and support of D are defined by

deg(D) Z ng and supp(D) :={E € Y(C,): ng # 0},
EcY (Cp)
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respectively. If, in addition, deg(D) > 1 and for every E in Y (C,) we have ng > 0, then

- 1
(5@7 = nE5E
P deg(D) EEYZ(CP)

is a Borel probability measure on Y (Cp).
For n in Z~q, the nth Hecke correspondence is the linear map
T, : Div(Y(C,)) — Div(Y(C,))
defined for E in Y(C,) by
T, (E) = > E/C
C<E of order n
where the sum runs over all subgroups C' of E of order n. For background on Hecke

correspondences, see [Shi71, §§7.2 and 7.3] for the general theory, or the survey [DI95, Part II].

THEOREM 3.2. For each E in Y (C,), every accumulation measure of (01, (g),)oe; in the weak
topology that is different from 6, , is nonatomic. In particular, no accumulation measure
of (07, (E)p)ne1 in the weak topology has an atom in Y (Cp).

To prove Theorem 3.2, we first recall some results in [HMR21]. For E in Y5u,5(Cp), define a
subgroup Nrg of Z;; as follows. If E is not a formal CM point, then Nrg := (Z;)Q. In the case
where F is a formal CM point, denote by Aut(Fg) the group of isomorphisms of Fp defined
over (’)@p, and by nr the norm map of the field of fractions of End(Fg) to Q. Then,

Nrg = {nr(¢): ¢ € Aut(Fg)}.

In all the cases Nrg is a multiplicative subgroup of Z containing (Z,; )2. In particular, the index
of Nrg in Z;; is at most two if p is odd, and at most four if p = 2.
For a coset M in @; /Nrg contained in Z,, the partial Hecke orbit of E along N is

Orbyn(E) == | )  supp(Tu(E)).
neNNZ=o

In the following theorem we use the action of Hecke correspondences on compactly supported
measures; see, e.g., [HMR21, §2.8]. For n in Z~q, put

o1(n) = Z d.
d>1,d|n

THEOREM 3.3 [HMR21, Theorem C and Corollary 6.1]. For every E in Yg,ps(Cp) and all cosets N
and N in Q) /Nrg contained in Zj, the following properties hold.

(i) The closure Orby(E) of Orby(E) in Ygups(Cp) is compact. Moreover, there is a Borel prob-
ability measure pb; on Y (C,) whose support is equal to Orby(E), and such that for every
sequence (nj);-";l in M N Zsg tending to co, we have the weak convergence of measures

or, J(B)p jyy  as j — oo.

n.

(ii) For every E' in Orbny, (E) and every n in N Zsq, we have

1 /
Immwm#ﬂmww>wda@mw@=ﬁw

The following corollary is an immediate consequence of Theorems 3.2 and 3.3 and [HMR20,
Theorem C].
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COROLLARY 3.4. For every E in Y(Cp), a in Cp, and € > 0, there exists r > 0 such that the
following set is finite:

{n € Z>o: deg(Tn(E)|p,(ar)) = €01(n)}.

Previously, Charles showed that the set above with Z~( replaced by Z~q ~\ pZ~¢ has zero
density [Chal8, Proposition 3.2].
The proof of Theorem 3.2 is given after the following lemma.

LEMMA 3.5. Let Ey be in Y(C,). If for distinct prime numbers q and q' we put
I := supp(T,(Eo)) Nsupp(Ty (Ep)),
then we have deg(T,(Ep)|r) < 24.

Proof. Given an elliptic curve E over C,, denote by End(E) and Aut(E) the set of all endo-
morphisms and the set of all automorphisms of E respectively. Furthermore, for every elliptic
curve B’ over C, and every m in Z~g, denote by Homm(E E ) the set of all isogenies from E
to £’ of degree m.

Choose an elliptic curve Eo representing Fy and for each F in I choose an elliptic curve E
representing £ and an isogeny ¢ in Hom (E, Eo). Let ¢ be in Homq(Eg, E) and set ¢ = ¢ o @.
The isogeny v determines both E in I and ¢. Indeed, suppose that there are E’ in I and ¢’
in Homq(ﬁo,E’ ) with ¢ o ¢’ =1. The group Ker(¢)) has ¢¢’ elements, so it has a unique
subgroup of order ¢. Since Ker(¢) and Ker(¢') are two such subgroups, we have Ker(¢) = Ker(¢').
Then E = E’ by [Sil09, Chapter III, Proposition 4.12], and from the equality ¢p o ¢ = ¢p o ¢/
we deduce ¢ = ¢'. We thus have

deg(Ty(Eo)lr) = > # Homgy(Ey, E) /4 Aut(E)

Eel
<> #Hom,(Ey, E)
FEel
<> #{¢poo: ¢ € Homy(Ey, E)}
Eel
< #{¢ € End(Ep): deg(¢) = q¢'}. (3.2)

If Ey is not a CM point, then this last number is equal to zero and the lemma follows in this
case. Suppose Ey is a CM point, so the field of fractions K of End(Eo) is a quadratic imaginary
extension of Q. Denote by O the ring of integers of K. Since each of the ideals ¢Ok and ¢'Og
is either prime or a product of two conjugate prime ideals, there are at most four ideals of Ok
of norm qq’. We thus have

#{v € End(Eo): deg(v) = qq'} < #{z € Ok : 27 = q¢'} < 4#0}; < 24.
Together with (3.2) this completes the proof of the lemma. O

Proof of Theorem 3.2. By [HMR20, Theorem C], it is sufficient to assume that E is in Ygups(Cp).
Moreover, using Theorem 3.3(i) and [HMR20, Theorem C] again, it is sufficient to prove that
for every coset M in Q) /Nrg contained in Z, the measure M% has no atom in Orby(E).

Fix Fy in Orby(FE) and let N > 1 be a given integer. Choose a set P of 2N prime numbers
that are contained in (Z§)2 and that are larger than 100N. Note that every ¢ in P is a p-adic
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square and that by Theorem 3.3(ii) we have

1
— (T */J,E :uE.
Ul(Q)( q) n n

Moreover, for all distinct ¢ and ¢’ in P denote by I(g,q’) the set I in Lemma 3.5 and put
Sy == supp(T,(Ep)) ~ U I(q,q).

q'eP.q'#q
Then by the inequality ¢ > 100N and Lemma 3.5, we have
deg(T,(Eo)|s,) > deg(T Z deg(T4(E0)|1(g,4))
q'e€Pq#q
>q+1—24(#P —1)
1
> % (3.3)

On the other hand, note that the signed measure b — u%({Eo})dg, is nonnegative, thus the
same holds for (T,).(ul — p&({Eo})dE, ). Combined with Theorem 3.3(ii), this implies that for
every E' in Y (C,) we have

B = (5 () (B

> BB ) ) )
E
= Mg;(iEf}) deg(T,(Eo)l(zy)-
Together with (3.3) this implies
E
1= WO (E) = 3 (5 = 3 U ey, )l > N (o)
qeP qeP

Since N is arbitrary, this implies that Ey is not an atom of M{% and completes the proof of the
theorem. 0

Remark 3.6. A different strategy to prove Theorem 3.2 is to use that for every E in Ygups(Cp)
and every coset 91 in Q) /Nrg contained in Z,, the measure ,ug is the projection of a certain
homogeneous measure under an analytic map of finite degree. Theorem 3.2 then follows from
the fact that the partial Hecke orbit Orby(E) is infinite.

3.2 On the limit measures of CM points

The goal of this section is to prove Theorem 3.1. The proof is based on Theorem 3.2 and on
the description of all accumulation measures of (3.1) given in the companion papers [HMR20,
HMR21]. We start recalling some results in the latter.

Recall from § 2.2 that a discriminant is the discriminant of an order in a quadratic imaginary
extension of Q. A fundamental discriminant is the discriminant of the ring of integers of a
quadratic imaginary extension of Q. For each discriminant D, there is a unique fundamental
discriminant d and a unique integer f > 1 such that D = df?. In this case, d and f are the
fundamental discriminant and conductor of D, respectively. A discriminant is prime, if it is
fundamental and divisible by only one prime number. If d is a prime discriminant divisible
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by p, then
p=—1mod4dandd=—p, orp=2and d= —4 or d = —8.

A p-adic quadratic order is a Zy-order in a quadratic extension of Q,, and a p-adic discriminant
is a set formed by the discriminants of all Zj,-bases of a p-adic quadratic order. Every p-adic
discriminant is thus a coset in Q) /(Z))?* contained in Z,.

The p-adic discriminant of a formal CM point F, is the p-adic discriminant of the p-adic
quadratic order End(Fg). Given a p-adic discriminant D, put

Ap ={F € Y(C,): formal CM point of p-adic discriminant ©}.

THEOREM 3.7 [HMR21, Theorems A and B]. For every p-adic discriminant ®, the following
properties hold.

(i) The set Agp is a compact subset of Y (C,), and there is a Borel probability measure vg
on Y (C,) whose support is equal to Ag and such that the following equidistribution property
holds. Let (Dy,)22, be a sequence of discriminants in ® tending to —oo, such that for every n,
the fundamental discriminant of D,, is either not divisible by p, or not a prime discriminant.
Then we have the weak convergence of measures

d0p,p — VD asn — o0.

(ii) Suppose that there is a prime discriminant d divisible by p and an integer m > 0 such that
D := dp®™ is in ®. Then there are Borel probability measures 1/5 and vg on Y (Cp) such
that the following equidistribution property holds. For every sequence ( fy,)72 in Z~¢ tending
to oo such that for every n we have (d/f,) = 1 (respectively, (d/ f,) = —1), we have the weak

convergence of measures
5 + . < —
OD(fa)2p — Va (Tespectively, dp(s,y2, — Vg) asn — oo.

The proof of Theorem 3.1 is given after the following proposition, in which we gather further
properties of the limit measures in Theorem 3.7. To state it, we introduce some notation.

A p-adic discriminant is fundamental, if it is the p-adic discriminant of the ring of integers
of a quadratic extension of @,. Let d be a fundamental p-adic discriminant. For A in 0, the
field Q,(v/A) depends only on 9, but not on A. Denote it by Q,(1/d). Choose a formal CM
point E, such that End(Fg) is isomorphic to the ring of integers of Q,(v/?), as follows. If ?
does not contain a prime discriminant that is divisible by p, then choose an arbitrary formal CM
point Ej in Ap. In the case where 0 contains a prime discriminant d that is divisible by p, then d
is the unique fundamental discriminant in 0 with this property and we choose E; in Ay. Note
that if Q,(1/2) is unramified over Q,, then Nrg, = Z, , and that if Qp(v/2) is ramified over Q,,
then Nrg, is a subgroup of Z; of index two; see, e.g., [HMR21, Lemma 2.3].

Denote by v, Katz’s valuation on Y,ps(Cp), as defined in [HMR20, §4.1] and put

p
N, =< E € Yaups(Cp): vp(E) < —— 5.
P { sups(Cp) : vp(E) p+1}
For E in N,, denote by H(FE) the canonical subgroup of E (see [Kat73, Theorem 3.10.7]).
The canonical branch of the Hecke correspondence T), is the map t: N, — Yps(C,) defined by

t(E) = E/H(E). The map t is analytic in the sense that it is given by a finite sum of Laurent
series, each of which converges on all of Np; see, e.g., [HMR20, Theorem B.1].
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Given a fundamental p-adic discriminant ? and an integer m > 0, define the affinoid

1
v;l <2 .pm> if Q,(v/0) is ramified over Qp;

Apprm = vgl([l, o)) if Q,(v/0) is unramified over Q, and m = 0;

v;l (il 'p_m> if Q,(v/0) is unramified over Q, and m > 1.
p

In the following proposition we summarize some of the results from [HMR21, Proposition 7.1,
(7.13) and §§ 7.2 and 7.3].

ProOPOSITION 3.8. For every fundamental p-adic discriminant 0 we have

MZ% if Q,(v/0) is unramified over Qy; 5
Vy = 34
%(ul%‘ra + ,MZ% \Nra) if Q,(v/0) is ramified over Q,,

and for every integer m > 1 we have

1 . . .
) (tm|Aap2m)*Va if Q,(v/0) is unramified over Qp;
p—m(tm|Aop2m)*ua if Q,(v/0) is ramified over Q.

If, in addition, 0 contains a prime discriminant, then we also have

vl :,uﬁ"rD and vy :,LLZ% (3.6)

~Nr;’
and (3.5) holds for 1/;;) am (respectively, Vap2m ), with vy replaced by I/;_ (respectively, vy ).

Proof of Theorem 3.1. Let (Dy,)22; be a sequence of discriminants tending to —oo such that the
sequence of measures (8p,, ) ; converges weakly to a measure different from d,,,,. By [HMR20,
Theorem A], there is a constant ¢ > 0 such that for every n we have |D,|, > ¢ and Ap, C
Ysups(Cp). This implies that (D)5 is contained in a finite union of p-adic discriminants; see,
e.g., [HMR21, Lemmas 2.1 and A.1]. Taking a subsequence if necessary, assume that (D,,)5 ; is
contained in a p-adic discriminant ®. Let ? be the fundamental p-adic discriminant and m > 0
the integer such that ® = 0p?™; see, e.g., [HMR21, Lemma A.1(i)].
Passing to a subsequence if necessary, there are two cases.

Case 1. For every n the fundamental discriminant of D,, is either not divisible by p, or not a prime
discriminant. In this case the sequence (6p, )32, converges to vgp by Theorem 3.7(i). Then (3.4)
in Proposition 3.8 and Theorem 3.2 imply that v, is nonatomic. This is the desired assertion
in the case where m = 0. If m > 1, then the fact that vg is nonatomic follows from (3.5) in
Proposition 3.8, together with the fact that 14 is nonatomic and the analyticity of the canonical
branch t of T},.

Case 2. There is a prime discriminant d that is divisible by p and a sequence (fy,)22; in Zs¢ such
that for every n we have D, = df? and (d/f,) = 1 (respectively, (d/f,) = —1). In this case the
sequence (0p, )52 converges weakly to 1) (respectively, vg) by Theorem 3.7(ii). Then (3.6) in
Proposition 3.8 and Theorem 3.2 imply that 1/0+ and v, are both nonatomic. This is the desired
assertion in the case where m = 0. If m > 1, then that V% and vg are both nonatomic follows
from the fact that 1/3+ and v, are both nonatomic, from the last assertion of Proposition 3.8 and
from the fact that the canonical branch t of T}, is analytic. 0
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3.3 Proof of Theorem B
In the case where f is the j-invariant, the desired estimate is a direct consequence of (2.2) and
[CUO04, Théoréme 2.4] if v = oo and of Theorem 3.1 and [HMR21, Theorems A and B], which
are summarized in Theorem 3.7 in § 3.2, if v is a prime number.

To prove Theorem B in the general case, let K be a finite extension of Q inside Q, let f be
a nonconstant modular function defined over K and let ®(X,Y’) be a modular polynomial of f
in K[X,Y]. Note that ®(X,Y) is irreducible in C,[X, Y]. Let C3, 8 and 1 be given by Lemma 2.8
and denote by dx (respectively, dy) the degree of ®(X,Y") in X (respectively, V). Furthermore,
note that ®(X, «) is nonzero (Proposition 2.4) and denote by Z the (possibly empty) finite set
of zeros of this polynomial in C,.

Let 7 be a quadratic imaginary number in H that is not a pole of f, and put

j==7j(r) and f§:= f(7).
Then, j is a singular modulus of the j-invariant and f is a singular modulus of f. Noting that for

every o in Gal(Q|K) we have ®(o(j),o(f)) = 0, by Lemma 2.8 there is rop > 0 independent of 7
such that for every r in ]0, 79[ we have

£(0x() N Dy(a,r) < 8y #45' € Ok()s Iy > G5}
+0y > #(0k () NDy(z0, C3r?)). (3.7)
20€Z

In the case where v is a prime number, we have
{i" € Ok(i): li'lo > 1} =10,

so the desired estimate for f follows from that for the j-invariant, together with (3.7) and
Proposition 2.3(ii). To prove the theorem in the case where v = oo, we use the fact that the limit
measure fio in [CU04, Théoréme 2.4], seen as a measure on P!(C), is nonatomic. Thus, there is
R > 1 such that

€
too({z € Cy: |2y > R}) < —,
20y

and, if ®(X, «) is nonconstant, such that for every zp in Z we have

€
D, (20, R 1)) < :
IU‘OO( ’U(ZO7 )) — 25X6Y
Then, the desired estimate for f and v = oo follows from that for the j-invariant, together
with (3.7) and Proposition 2.3(ii).

4. p-Adic approximation by singular moduli

The goal of this section is to prove the following proposition, from which we derive Theorem C.
Throughout this section, fix a prime number p.

PROPOSITION 4.1. Let jg be a singular modulus of the j-invariant. Then, there exists a constant
A > 0 such that for every singular modulus j of the j-invariant that is different from jo we have

—log|j —jolp < Alog|Dj|.

The archimedean counterpart of this estimate was shown by Habegger [Hab1l5, Lemmas 5
and 8 and formula (11)]. See also Conjecture 1.3 in §1.3.

After some preliminaries in §4.1, the proofs of Proposition 4.1 and Theorem C are given in
§§4.2 and 4.3, respectively. To prove Proposition 4.1, we use that CM points outside Ysups(Cp)
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are isolated [HMR20, Corollary B] to restrict to the case where the CM points corresponding
to j and jo are both in Yg,ps(C,). In the case where the conductors of Dj and Dj, are both p-adic
units, we use an idea in the proof of [Chal8, Proposition 5.11]. To deduce the general case from
this particular case, we use a formula in [HMR21] showing how the canonical branch of T}, relates
CM points whose conductors differ by a power of p (Theorem 4.5).

Denote by Yaups(Fp) the (finite) set of isomorphism classes of supersingular elliptic curves
over F,,. For e in Yqups(Fp), denote by D, the set of all E in Y(C,) having good reduction, and
such that the reduced class is e. The set D, is a residue disc in Y(C,).

4.1 Formal Zj-modules and elliptic curves
In this section, we briefly recall the work of Gross and Hopkins in [HG94], on deformation spaces
of formal modules. See also [HMR21, §§2.4 to 2.7] for a more detailed account of the results
needed here. For every e in Ygups(Fp), we describe an action of (End(e) ® Z,)*
ramified covering of D.. In the proof of Proposition 4.1 we use a relation between the metric
on D, and the natural metric of the covering, which is stated as Theorem 4.2 below.

Fix e in Ysups(Fp) and a representative elliptic curve defined over F,2 that we also denote
by e. Denote by F. the formal group of e endowed with its natural structure of formal Z,-module

and set

on a certain

B, — Ende (F.)®Qp, R = Ende (Fe) and Gg = AutFp(]:e).

Then, B, is a division quaternion algebra over @, and the sets R. and G, embed in B, as
the maximal order and its group of units, respectively. Denote by g — g the involution of B,
and for g in B, denote by nr(g) := gg in Q, its reduced norm. On the other hand, the function
ordg, : Be = Z U {00} defined for g in B, by ordg, (g) := ord,(nr(g)), is the unique valuation
extending the valuation 2ord, on Q,. Identifying R. and G, with their images in B, we have

R.={g€B.: ordg.(9) >0} and G.={g € B.: ordg,(g9) =0}.

The function distg, : B, x B, — R defined for g and ¢’ in B, by

distp, (g, 9) = p~ (/D erdBe (979",

defines an ultrametric distance on B, that makes B, into a topological algebra over Q,.

Identify the residue field of C, with an algebraic closure F, of F,, and denote by 7: O, — F,
the reduction map. Moreover, denote by Q2 the unique unramified quadratic extension of Q,
inside Cp, and by Z,2 its ring of integers.

Let Ry be a complete, local, Noetherian Z,-algebra with maximal ideal Mg and residue field
isomorphic to a subfield ko of IF,, that contains [F,2. Fix a reduction map Ry — ko. We are mainly
interested in the special case where Ry the ring of integers of a finite extension of @@, contained
in C, together with the restriction of 7, or a quotient of such ring of integers together with the
morphism induced by the restriction of m. We stick to the general case for convenience.

A deformation of F. over Ry is a pair (F,c«), where F is a formal Z,-module over Ry
and a: F — Fe is an isomorphism of formal Z,-modules defined over kq. Here, F is the formal
group over kg obtained as the base change of F under the reduction map Ry — ko. Two such
deformations (F, «) and (F', /) are isomorphic, if there exists an isomorphism ¢ in Isog, (F, F)
with reduction @ such that o/ o g = a. Denote by X.(Rp) the set of isomorphism classes of
deformations of F, over Ry.

For the rest of this section, we further assume that our choice of the representative ellip-
tic curve e is such that F. is isomorphic over F,. to the specialization of a universal formal
Zp-module of height two; see [HMR21, Lemma 2.5]. Then, a consequence of the work of Gross
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and Hopkins is that there exists a bijection
Moy — X (Ro) (4.1)

that is functorial in Ry; see [HG94, §12] and [HMR21, §2.5] for details. Moreover, we have the
action
Aut]ko (fe) X Xe(Ro) — Xe(Ro)
8, (F,a)) — (- (F,a):=(F,Boa).

Let K be a finite extension of Q2 inside C,, with ring of integers Ok and residue field k. Consider
the reduction map Ox — k obtained as the restriction of 7 to Ox. Denote by Y (e, Ox) the
space of isomorphism classes of pairs (E, a) formed by an elliptic curve E given by a Weierstrass
equation with coefficients in Ox and having smooth reduction, and an isomorphism «: E—e
defined over k. Here, two pairs (£, ) and (E', o) are isomorphic if there exists an isomorphism
Y: E — E' defined over k such that o/ o ¢ = a. Consider the natural map

Y (e, Ox) — Xe(Ok) (4.2)

mapping a class in Y (e, Ox) represented by a pair (E, ), to the class in X.(Ox) represented
by the deformation (Fg,a). Here, a: Fp — Fe is the isomorphism induced by a. This map is
known to be a bijection; see [LST64, § 6] or [MC10, Theorem 4.1]. We obtain a map

He,IC: Xe(OIC) - Ysups(@p) N D, (43)

by composing the inverse of (4.2) with the natural map from Y (e, Ox) t0 Ysups(@,) N De.

Consider

K = {finite extensions of Q2 inside C,}

as a directed set with respect to the inclusion. For each I in J#, consider the parametriza-
tion (4 1) with Ry = Ox. Taking a direct limit over # and then a completion, we obtain
a set D that is parametrized by the maximal ideal of O,. The action of G, on the sys-
tem {X.(Ok): K € £} extends to a continuous map G X D. — D, that is analytic in the
second variable; see [HMR21, §2.6] for details.

In the following theorem, d. := # Aut(e)/2. Note that . = 1 if j(e) # 0,1728 and that in all
the cases we have 1 < 6. < 12; see, e.g., [Sil09, Appendix A, Proposition 1.2(c)].

THEOREM 4.2 [HMR21, Theorem 2.7]. Fix € in Yaups(Fp). Then, the system {Il.xc: K € £}
given by (4.3) defines a ramified covering map

Il : f)e — D,
such that for every x in ]56 and every F in D, we have
min{|z — 2'|,: ' € He_l(E)}‘Se < |j(Ie(x)) — 4(E)|p
< min{|z — 2'|,: 2/ € T, 1(E)}.
4.2 Proof of Proposition 4.1

The proof of Proposition 4.1 is at the end of this section.
Let e be in Ygups(Fp). The set

L(e) =={¢ € Z+ 2End(e): tr(¢) = 0},
is a Z-lattice of dimension three inside End(e). Define for each integer m > 1,

Vin(e) = {¢ € L(e): nr(¢) = m}.
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For each fundamental p-adic discriminant @ and every discriminant D in 9, the image of the

set V|p|(e) by the natural map End(e) — Endg (Fe), denoted by ¢ +— ¢, is contained in
Leo={p €Z,+2R.: tr(p) =0,—nr(p) € 0};

see [HMR21, Lemma 2.1]. Let Ue5: Lo — Ge be the function defined by

2 2
SDT—HD if @T—W belongs to Ge;
Ueo(p) =

2
N 4

2

otherwise,

and for each ¢ in L., define
Fixc(¢) = {z € D.: Ueolp) -z =z}

Given a fundamental p-adic discriminant 0, denote by (@p2(ﬁ) the compositum of Q2
and Q, (V).
PROPOSITION 4.3 [HMR21, Lemmas 4.5(iv) and 4.15, and Proposition 5.6(i)]. Fix e in Yaups(Fp)
and a fundamental p-adic discriminant 0.
(i) For ¢ and ¢’ in L.y the sets Fix.(¢") and Fix.(y) coincide if ¢’ belongs to Q,(y) and they

are disjoint if ¢’ is not in Qp(y).
(i) We have II;1(Ay N D,) C Xe(Og ,(v3)): and for every A in 2 we have

P
I, 1 (Ao N D,) = Fixe({p € Leop: nr(p) = —A}).

For a fundamental p-adic discriminant 0, put €5 := % if @p(ﬁ) is ramified over Q, and &5 := 1

if Q,(v/0) is unramified over Q,.

LEMMA 4.4. For every prime number p, every e in Ygu,s(Fp) and every fundamental p-adic
discriminant 0, the following property holds. For all ¢ and ¢ in L.y and all z in Fix.(¢) and &
in Fix. (), we have

|z — Z|p > p~ dists, (93, §¢)-

Proof. Let wy and w be uniformizers of OQp( Vo) and Og, (), respectively, and note that

®)

ord,(wo) = €5 = 5 ordg, (w). (4.4)
If z = Z, then ¢ is in Q,(¢) by Proposition 4.3(i) and, therefore, ¢ = @p. Thus, the desired
property holds in this case. Assume z # ¥. By Proposition 4.3(ii), x and ¥ are both in IT_ } (A, N
D.) and, therefore, in XE(OQPQ( /5))- In particular, there is an integer N > 1 such that [z — Z|, =
|w0|fov. Let (F,«) and (F, &) represent x and I, respectively, and denote by Fy and Fy the
base change of F and F under the projection map OQpQ( Vo) Ry = OQp2( NG / wév Osz (V3)"

Since (4.1) is a bijection, there is an isomorphism : Fy — Fn defined over Ry such that & =
a o . This implies that the maps

Endg,(Fn) — Re and  Endg,(Fv) — Re,

given by

1 1

¢»—>ao$oof and ¢r—>éo$ob}7,

respectively, have the same image. Thus, by [Gro86, Proposition 3.3] we have

Og,(p) + @ "Re = Og, ) + @ 'Re.
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It follows that @ — Py is in @ ~'R,. Together with (4.4), this implies
distp, (3, §¢) < |woly " = p |z — . O
In the following theorem we use the canonical branch t of 7}, recalled in § 3.2.

THEOREM 4.5 [HMR21, Theorem 4.6]. Let d be a fundamental discriminant such that
Ag € Yaups(Cp). Then for every integer r > 1 and every integer f > 1 that is not divisible by p,
we have

1
t~ 1 (Agp2) Nyt <2p> if r = 1 and p ramifies in Q(v/d);
Aa(ppryz = tl_T(Ad(fp)z) if r > 2 and p ramifies in Q(v/d);
t 7" (Agp2) ifr > 1 and p is inert in Q(v/d).

The following lemma is [HMR20, Lemma 4.9]; see also [CM06, Lemma 4.8] and [Gro86,
Proposition 5.3].

LEMMA 4.6. Denote Katz’s valuation by vy, as in § 3.2. Let D be a discriminant such that Ap C
Ysups(Cp) and let m > 0 be the largest integer such that p™ divides the conductor of D. Then
for every E in supp(Ap) we have

1 Sp™ if p ramifies in @(\/5);
min {vp(E)a p} =42 P
p+1 1 -p~™ if p is inert in Q(\/E)
p

Proof of Proposition 4.1. Let Ey be the CM point such that j(Ey) = jg. Since CM points out-
side Ysups(Cp) are isolated [HMR20, Corollary B], we can assume that Ej is in Ygups(Cp). Let e
be the element of Yaups(F,) such that Ep is in D..

Let 0 be the fundamental p-adic discriminant and m > 0 the integer such that Fp is in Agpem.
Let j be a singular modulus different from jy and let E be the CM point satisfying j(E) =j.
Without loss of generality, assume that Dj # D;; and that E is in D.. In view of Lemma 4.6,
we can also assume that there is a fundamental p-adic discriminant d such that Dj is in P2’
see also [HMR21, Lemma 2.1]. Since Ayy2m and Ay 2m are both compact by Theorem 3.7(i) and
they are disjoint if 9’ # 0, we can also assume that o’ = 0. On the other hand, by Theorem 4.5
and the fact that the canonical branch t of T}, is analytic, it is sufficient to prove the lemma in
the case where m = 0, so Ey and E are both in Ay N De..

Using . < 12 and Theorem 4.2, we can find xo in II;}(Ep) and z in II;1(E) such that

i = jolp = |z — o7 (4.5)
On the other hand, by Proposition 4.3(ii) there is ¢o in End(e) such that o satisfies the equation
X% — Dy, =0, is in L, 5 and is such that z is in Fix.(¢o). Similarly, we can find ¢ in End(e) such

that qAﬁ satisfies the equation X2 — Dj =0, is in L¢p and is such that z is in Fixe(gg). Note that
Proposition 4.3(i) and our assumption Dj # Dj,, imply that ¢g¢ — ¢¢o is nonzero. Combined

Jo»

with the fact that deg is a positive-definite quadratic form on End(e) and [Sil09, Chapter V,
Lemma 1.2], this implies

ordp, (¢od — ¢do) = ord,(nr(¢od — b)) = ord,(deg(dod — do))
< log, (deg(po® — ¢¢o)) < log, (4 deg(¢po) deg(s))

= log,, (4 deg(¢0)| Dj)-
Together Lemma 4.4, (4.5) and the inequality |Dj| > 2, this implies the desired estimate. O
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4.3 Proof of Theorem C

In the case where v = oo, Theorem C is a direct consequence of the following proposition, and
in the case where v is a prime number, Theorem C is a direct consequence of Proposition 4.1,
the following proposition and Lemma 4.8 below.

PROPOSITION 4.7. Let f be a nonconstant modular function defined over Q, let ®(X,Y) be a
modular polynomial of f in Q[X,Y] and let v be in Mg. Furthermore, let o in Q be a non-
cuspidal value of f if v = oo, or such that every root of ®(X,«) is badly approximable in C,
by the singular moduli of the j-invariant if v is a prime number. Then, « is badly approximable

in C, by the singular moduli of f.

In the case where v = 0o, the hypothesis that « is a non-cuspidal value of f is neces-
sary by Proposition 2.7(i). In the case where v is a prime number and « is an omitted value
of f, the hypothesis on « is automatically satisfied because the polynomial ®(X, «) is constant
(Proposition 2.4(i)).

Proof of Proposition 4.7. Note that ®(X,Y) is irreducible in C,[X,Y] and that ®(X,«) is
nonzero by Proposition 2.4. Denote by Z the (possibly empty) finite set of zeros of ®(X,«)
in C,. Furthermore, let C'3, 6 and n be given by Lemma 2.8.

Suppose v = oo. By [Habl5, Lemmas 5 and 8 and formula (11)] there are constants A > 0
and B such that for every zp in Z and every singular modulus j of the j-invariant different
from zy, we have

—loglj — zolv < Alog|Dj| + B. (4.6)

On the other hand, Proposition 2.4(ii), Lemma 2.8 and our hypothesis that « is a non-cuspidal
value of f imply that Z is nonempty and that for every quadratic imaginary number 7 in H such
that f(7) is sufficiently close to a, we have

min{|5(7) — z0|v: 20 € Z} < C3|f(7) — ’. (4.7)

Together with (4.6) and Proposition 2.3(iii), this implies that « is badly approximable in C by
the singular moduli of f.

It remains to consider the case where v is a prime number p. Recall that C'3 and 7 are given
by Lemma 2.8 and put r := C’;l/n. In the case where « is an omitted value of f, the desired
assertion is given by Proposition 2.7(ii). Suppose that « is a value of f, so ®(X, ) is nonconstant
by Proposition 2.4(i). In particular, Z is nonempty. Proposition 2.3(iii) with f replaced by j and
our hypotheses imply that there are constants A > 0 and B such that for every zg in Z and
every singular modulus j of the j-invariant different from zy we have (4.6). On the other hand,
reducing r if necessary Lemma 2.8 implies that for every quadratic imaginary number 7 in H
such that f(7) is in Dp(«,r) the singular modulus j(7) satisfies either (4.7) or

i) > C3 ' f(r) —al,” > 1.

This last chain of inequalities is impossible since j(7) is an algebraic integer. We thus have (4.7).
Together with (4.6) and Proposition 2.3(iii), this implies that « is badly approximable in C, by
the singular moduli of f. O

LEMMA 4.8. Let h be a Hauptmodul defined over Q and let ®(X,Y) be a modular polynomial
of h in Q[X,Y]. Then, for every singular modulus by of h, every root of ®(X, o) is a singular
modulus of the j-invariant.

The proof of this lemma is given after the following one.
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LEMMA 4.9. Let v be an element of SL(2,R) that is contained in a subgroup of SL(2,R) com-
mensurable to SL(2,7). Then, there are integers a, b, ¢ and d such that ad — bec > 0 and such that
for every T in H we have y(7) = (a7 4+ b)/(cT + d). In particular, the image by v of a quadratic
imaginary number in H is also quadratic imaginary.

Proof. Let T' be a subgroup of SL(2,R) commensurable to SL(2,Z) containing «. Then, the set
of cusps of I is equal to that of SL(2,Z), which is equal to P}(Q) (see [Shi71, Proposition 1.30]).
It follows that v(P}(Q)) = P1(Q) and, in particular, that v(co) is in P}(Q). In the case where
v(00) # 00, let 4 be an element of SL(2,R) such that for every 7 in H we have

1
Y(1) —7(00)
Otherwise, put 4 := ~. In all of the cases, we have 7(Q) = Q and, therefore, there is A in Q such

that A > 0 and such that for every 7 in H we have 7(7) = A7 +7(0). Since 4(0) is in Q, this
implies the desired assertion for 5 and, therefore, for ~. ]

() =

Proof Lemma 4.8. Let 19 be a quadratic imaginary number in H such that h(m) = ho. Note
that ®(X,Y) is irreducible over C, so by Proposition 2.1 for each root j of ®(X, o) there is 7
in H such that

j=3(r) and bo = h(r).

Since h is a Hauptmodul, there is « in the stabilizer of h in SL(2,R) such that v(7p) = 7. By
Lemma 4.9, 7 is also a quadratic imaginary number and, therefore, j is a singular modulus of
the j-invariant. O

5. Proof of Theorems A and D

In this section we prove the following theorem and we deduce from it Theorems A and D.

THEOREM A’. Let f be a nonconstant modular function defined over Q and ®(X,Y) a modular
polynomial of f in Q[X,Y]. Moreover, let o in Q be a non-cuspidal value of f and let S be a
finite set of prime numbers p such that every root of ®(X,«) is badly approximable in C, by
the singular moduli of the j-invariant. Then, there are at most finitely many singular moduli f
of f such that f — « is an S-unit.

Theorem D is a direct consequence of Theorem A’ with S = () and o = 0 applied to f and
to 1/f. Another direct consequence of Theorem A’ is the following version of Theorem D for
S-units, under the hypothesis that there is an affirmative solution to Conjecture 1.3.

COROLLARY 5.1. Let S be a finite set of prime numbers p such that every algebraic number
is badly approximable in C, by the singular moduli of the j-invariant. Moreover, let f be a
nonconstant modular function defined over Q that is not a weak modular unit. Then, there are
at most a finite number of singular moduli of f that are S-units.

The proof of Theorem A’ is given in §5.1. In §5.2 we prove Theorem A and the following
corollary of Theorem A’. To state it, recall that a subgroup of SL(2,R) is a congruence group, if
for some N in Z-~q it contains

{<Z Z) € SL(2,Z): a,d =1 mod N and b,c = 0 mod N}
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as a finite index subgroup. The following corollary shows that an affirmative solution to
Conjecture 1.3 would yield a version of Theorem A for a general congruence or genus zero
group and a general algebraic value.

COROLLARY 5.2. Let f be a nonconstant modular function defined over Q for a congruence or
a genus-zero group and let o in Q be a value of f. Suppose that for every prime number p, every
algebraic number is badly approximable in C,, by the singular moduli of the j-invariant. Then,
there are at most a finite number of singular moduli § of f such that | — « is an S-unit.

Corollary 5.2 applied to f and to 1/f with o =0, shows that an affirmative solution to
Conjecture 1.3 would yield a version Theorem D that holds under the weaker hypothesis that f
is not a modular unit, but that is restricted to congruence or to genus-zero groups.

5.1 Proof of Theorem A’

Recall that Mg, and for each v in Mg, the norm field (C,, |- |,), are defined in §1.2. Given a
finite extension K of Q inside Q, denote by M the set of all norms on K that for some v in Mg
coincide with |- |, on Q. For such w and v, write w | v, let (Cy, |- |») be a completion of an
algebraic closure of (K, w) and denote by K, the closure of K inside C,,. Note that (Cy,| - |»)
and (C,, |- |y) are isomorphic as normed fields and that (K, |- |,) is a completion of (K, w).
Moreover, identify the algebraic closure of K inside C,, with @, put

- [Kw : Qv]
(K : Q]
and for all « in C, and r > 0 put
Dy(a,r) ={2€Cy: |z —aly <T}.

Note that v, < 1; see, e.g., [BG06, Corollary 1.3.2].
Let

and || -l = [ - 55"

log": [0,00[— R and log™: [0,00[— RU{—o00}
be the functions defined by
log" (z) := logmax{l,2} and log™ (z):= logmin{l,zx}.

Denote by hy: Q — R the Weil or naive height, which for each finite extension K of Q inside Q
and every « in K is given by
> logt law-

weMp

In this formula, the right-hand side is independent of the finite extension K of Q inside Q
containing «. Note that by the triangle inequality, for all oy and « in Q we have

hw(o& — Ozo) > hw(a) - hw(ao) — log 2. (5.1)
The proof of Theorem A’ is given after a couple of lemmas.

LEMMA 5.3. Let o in Q be given and let K be a finite extension of Q inside Q that does not
necessarily contain o. Then, we have

o X X e e

wEMK o EOK( )

hw(a) =
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Proof. Let K be a finite extension of K inside Q containing O (), let
P(z) =24 +ag 1297 + -+ ap
be the minimal polynomial of « in K[z] and for every w in Mg put
| Pl == max{||a;||w: j €{0,...,d —1}}.

For every archimedean w in My (respectively, @ in Mz) put S :={z € Cy: |2[w =1}
(respectively, S3 = {z € Cy: |z|g = 1}) and denote by X, (respectively, A;) the Haar measure
of this group. Then, we have

> tog” o/l = [ log [P(:) ] dAa(2)

o’'€0k (o)
=S /logHP o dAa(2)

wWEM
w|w

= > > logho/|la (5.2)

WEMp; o/ €Ok ()
ww

see, e.g., [BGO6, Corollary 1.3.2 and Proposition 1.6.5]. Similarly, for every non-archimedean w
in My we have

3 logt /[l = log | Pl

o’€0k (o)
= > log|IPlls

@EMR
Ww

= > log"ldla
’lT)GMf( a’EOK(a)
Wlw

see, e.g., [BG06, Corollary 1.3.2 and Lemma 1.6.3]. Combined with (5.2) and with the Galois
invariance of the Weil height (see, e.g., [BG06, Proposition 1.5.17]), this implies

#O0k(@)hw(a)= > Y 10g+||a @

WEMp; o’ €Ok (a
= Z Z log+ &[] - (5.3)
weEMg o’ €Ok ()
On the other hand, by the product formula applied to the element [] /€05 (a) o of K we have
I I el =1
wEMEk o/ €Ok ()
see, e.g., [BG06, Proposition 1.4.4]. Together with (5.3), this implies the desired identity. O

The following lemma is an extension of [Habl5, Lemma 3] to the more general setting
considered here.

LEMMA 5.4. Let K be a finite extension of Q inside Q and let f be a nonconstant modular
function defined over K. Then, for every singular modulus fo of f there are constants Ag > 0
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and By such that for every singular modulus f of f we have
hyw (f — fo) > Ao log(# Ok (f)) + Bo.

Proof. Let ®(X,Y) be a modular polynomial of f in Q[X,Y] and denote by dx and Jy the
degree of ®(X,Y) in X and Y, respectively. For each k in {0,...,dx} let Px(Y) in K[Y] be the
coefficient of X* in ®(X,Y), and let M > 0 be such that for every o in Q we have

hy (P (@) < deg(By) hw (@) + My;

see, e.g., [Sil09, Chapter VIII, Theorem 5.6]. Thus, if we put

ox dx
A= Zdeg(Pk) and M = Z M,
k=0 k=0

then for every quadratic imaginary number 7 in H that is not a pole of f we have

dx

hw(j(7)) = 6xlog2 < > hw(Pi(f(7)) < Ahw(f(7)) + M;
k=0

see, e.g., [Sil09, Chapter VIII, Theorem 5.9]. Combined with (5.1), Proposition 2.3(iii) and
[Hab15, Lemma 3|, which is based on Colmez’s lower bound [Col98, Théoréme 1], we obtain
the desired estimate. ]

Proof of Theorem A’. Let K be a finite extension of Q containing « and the coefficients of ®
and denote by Sy the set of all w in My such that for some v in S U {oco} we have w | v. Let Ag
be the constant given by Lemma 5.4. By Propositions 2.3(ii) and 4.7, for every v in Mg there
are constants A, > 0 and B, such that for every singular modulus f of f we have

—log|f — al, < Ay log(# Ok (f)) + Bo. (5.4)

For every w in My such that w | v, put A, = A, and B,, = B,,.
Suppose that there is a sequence of pairwise distinct singular moduli (f,)5; of f such that
for every n the difference f, — « is an S-unit. By Proposition 2.3(iv), we have

#Ox(fn) — 0 asn — oc. (5.5)

Together with Theorem B applied to each v in S U {oo}, this implies that there is r in ]0, 1] such
that for every w in Sy and every sufficiently large n > 1, we have

Ao

#(Ox(fn) N Dules ) < 5omre gy

Thus, for every sufficiently large n we have

#(Ok (fn — @) N1 Dw(0,7)) _ #(Ok (o) N Duw(a,7)) _ Ag
# Ok (fn — @) # Ok (fn) T 24, (#So+ 1)

Combined with Lemma 5.3, (5.4), the fact that for every w in Mg we have v, <1 and our
assumption that f, — « is an S-unit, this implies that for some constant B independent of n
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we have
1
hw(fy—a) =~ L% ( S et Y logHﬂHw>
#OK(fn_a) weSy  PBEOK (fn—a) Be0K (fn—cv)
|Blw<r r<|Blw<1
(Og(fn — D, (0, 1
< 5 HOuh Z AP (4, tog( Onlfu)) + B + (50 + 1) 1o

wESH

< 20 log(# Oxc (1)) + B

In view of (5.5), letting n — oo we obtain a contradiction with Lemma 5.4 that completes the
proof of the theorem. O

5.2 Proof of Theorem A and Corollary 5.2
The proofs are given after a few lemmas.

LEMMA 5.5. Let V be a projective curve defined over Q and let go be a rational function defined
on V over C such that every zero and every pole of gg is in V(Q). If there exists zo in V(Q) such
that go(z0) = 1, then gg is defined over Q.

Proof. If gg is constant, then it is equal to 1 and the result follows. Assume gg is nonconstant.
Let o in Aut(C|Q) be given and denote by g§ the image of gy under the action of o on rational
functions. The hypothesis that every zero and every pole of go is in V(Q) implies that gy and g§
have the same zeros and poles, and that the corresponding multiplicities are the same. This
implies that go/g§ is constant. Evaluating at zp and using

96 (20) = o(go(20)) = (1) =1 = go(20)
we conclude that go = g§. Since o is arbitrary, we get that go is defined over Q. ]

LEMMA 5.6. Let f be a nonconstant modular function defined over Q for a genus-zero subgroup
of SL(2,R), such that 0 is a value of f. Then, there is a holomorphic Hauptmodul h defined
over Q and a nonconstant rational function R(X) in Q(X), such that 0 is a (non-cuspidal) value
of h and we have

R(0)=0 and R(h)=f.

Proof. Our hypotheses imply that the stabilizer I' of f in SL(2,R) is of genus zero.
Put T =INSL(2,Z) and note that [ has finite index in I and in SL(2,Z). Denote by
Im: X ( ) — X(I') the map induced by the identity on H and by 7 and f the meromorphic
functions defined on X (f) that are induced by j and f, respectively. Note that the meromorphic
function fyp defined on X (I") that is induced by f satisfies f=fyoll

First, we show that X (T’ (A) can be defined over Q in such a way that j and ]?correspond to
rational functions defined over Q. Let ®(X,Y) in Q[X,Y] be a modular polynomial for f and
denote by Z(®) the zero set of ® in C2. Denote by P the finite subset of X(I') formed by the
poles of j and those of f and let @ be the function defined by

p: XIOH)~NP — Z(®)
2 = (j(2),f(2)).

By the definition of T, for every ~ in SL(2,Z) outside T the meromorphic functions f and f o~
are different. Thus, the set E, of all points of X (I') at which these functions agree is finite. Let R
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be a set of representatives of the right cosets of T in SL(2,Z) that are different from T and put

E=ruJE,.
YER

Then, R and E are both finite and the restriction of ¢ to X (T) \ E is injective. Thus, 3 induces
a birational isomorphism between X ( ) and Z(®). By [Har77, Chapter I, Corollary 6.11], there
exist a smooth projective curve V defined over Q and birational isomorphisms

¢: X(T') -=> V(C) and 1: V(C) --» Z(®),

such that v is defined over Q and Yoo defines the same birational isomorphism as @. Note
that ¢ extends to an isomorphism X( ) — V(C); see, e.g., [Har77, Chapter I, Proposition 6.8].
Under this isomorphism, j and f correspond to the composition of ¢ with the projections on
the first and second coordinate on Z(®), respectively, both of Wthh are defined over Q. Thus, ¢
and V(C) induce an algebraic structure on X (T ) over Q for which j and 7 correspond to rational
functions defined over Q. In what follows, we fix this algebraic structure on X ().

Next, we show that X(I') can be defined over Q in such a way that II corresponds to a
rational function defined over Q. To do this, it is sufficient to show that there is a biholomorphic
map ho: X(I') — P(C) for which the composition hg o II is defined over Q. Choose pairwise dis-
tinct numbers o, a1 and a in Q and choose zg, 21 and zs in fy '), fy (1) and f5 ' (as),
respectively. Since X (I") is of genus zero, there is a biholomorphic map hg: X(T') — P(C) map-
ping zg, z1 and zs to 0, 1 and oo, respectively. Thus, z; and every zero and every pole of hg o II
is defined over Q and, therefore, hg o I is defined over Q by Lemma 5.5. We conclude that X (T)
and II are both defined over Q with respect to the algebraic structure induced by hg. In what
follows, we fix this algebraic structure on X (I'). Note that fj is also defined over Q, because f
is. Since the cuspidal values of fy are defined over Q (Proposition 2.4), it follows that each cusp
of X(T') is also defined over Q.

To complete the proof of the lemma, note that our hypothesis that 0 is a value of f implies
that there is 79 in H such that f(79) = 0. The point z¢ of X (I') defined by 79 is not a cusp of X (I")
and is defined over Q. It follows that there is a biholomorphic map X (I') — P!(C) defined over Q
mapping zp to 0 and the cusp of X (I') defined by ico to co. The lift & to H of this function is a
holomorphic Hauptmodul for T’ that is defined over Q and satisfies h(79) = 0. From the results
proved in the previous paragraphs, it follows that there is R(X) in Q(X) such that R(h) = f.
Evaluating at 79, we conclude that R(0) = 0. Finally, note that since h is a Hauptmodul and 0
is a value of h, we have that 0 is a non-cuspidal value of h. O

LEMMA 5.7. Let h be a holomorphic Hauptmodul defined over Q, let R(X) in Q(X) be non-
constant and such that R(0) = 0 and put f := R(h). Suppose that for every finite set of prime
numbers S, there are at most a finite number of singular moduli of h that are S-units. Then, f
is a nonconstant modular function defined over Q and for every finite set of prime numbers S
there are at most a finite number of singular moduli of f that are S-units.

Proof. That f is a nonconstant modular function follows from the fact that h has the same
property and that R(X) is nonconstant. To show that f is defined over @, note that h is
algebraically dependent with the j-invariant over Q because h is defined over Q. It follows that f
is also algebraically dependent with the j-invariant over Q and, therefore, that it is defined
over Q.

Let S be a finite set of prime numbers. By Corollary 2.5(i) there is a finite set of
prime numbers Sy such that every singular modulus of h is an Sp-integer. Our hypotheses
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that R(X) is nonconstant and R(0) = 0 imply that there are £ in Z~g, a in Q ~ {0} and monic
polynomials P(X) and Q(X) in Q[X], such that
(X)
Q(X)
Let S7 be a finite set of prime numbers containing S and Sy and such that each of the coefficients
of P(X) and of Q(X) is an S;-integer and each of the numbers a, P(0) and Q(0) is an S;-unit.
By hypothesis, the set U of all those singular moduli of A that are Si-units is finite. Let f be
a singular modulus of f outside the finite set R(U), let 7 be a quadratic imaginary number such
that f(7) =f and put b := h(7). Then, f = R(h) and b is a singular modulus of h outside U.
It follows that b is an Si-integer that is not an Si-unit. That is, there is a prime number p
outside S and o in Gal(Q|Q) such that |o(h)|, < 1. Denote by P°(X) and Q°(X) the image
of P(X) and Q(X) by the induced action of o on Q[X], respectively. In view of our choice of Sy,
we have

P(0)#0, Q(0)#0 and R(X)=aX" (5.6)

lo(a)l, = [P?(a(h))|p = |Q7(a(h))|p = 1.
Together with (5.6), this implies

P7(o(h)) ¢
lo(P)lp = |o(a)a () =lo(b)l, < 1.
P Q7(o(h)) |, P
This proves that f is not an Si-unit and, therefore, that it is not an S-unit. O

Proof of Theorem A. Put fy:= f — fo and note that 0 is a value of fy. Let h and R be given
by Lemma 5.6 with f replaced by fo. Combining Proposition 4.1, Lemma 4.8 and Theorem A’
with f replaced by h and with a = 0, we obtain that for every finite set of prime numbers .S, there
are at most a finite number of singular moduli of i that are S-units. Together with Lemma 5.7,
this implies that fy has the same property. It follows that for every finite set of prime numbers S,
there are at most a finite number of singular moduli f of f that § — fo is an S-unit. 0

The proof of Corollary 5.2 is given after the following lemma.

LEMMA 5.8. Let f be a nonconstant modular function defined over Q for a congruence group I'
contained in SL(2,Z). Then, for every cusp ¢ of X (T") there exists m in Z~o and a modular unit g
defined over Q for T' such that the following property holds. No cusp of X (I') different from c is
a zero or a pole of the meromorphic function defined on X (I') induced by f™g.

Proof. Let jo and fy be the meromorphic functions defined on X (I') induced by the j-invariant
and by f, respectively. Moreover, let Z be the finite set of cusps of X (I') and for each z in Z
denote by n, the order of fy at z. If for every z in Z \ {c¢} we have n, =0, then the desired
assertion holds with m = 1 and with g equal to the constant function equal to 1. Suppose this
is not the case, so the divisor D on X (I') defined by

D::( Z nz)C_ Z N, 2,

z€Z~{c} z€Z~{c}
is nonzero. Note that the degree of D is zero. Applying the Manin—Drinfel’d theorem repeatedly
[Dri73, Theorem 1|, we obtain that there exists m in Zso and a nonconstant meromorphic
function go defined on X (I") such that the divisor of zeros and poles of gy equals mD. It follows
that the modular function g induced by go is a modular unit for I' such that fj*go has no zeros or
poles in Z \ {c}. To complete the proof of the lemma, it remains to show that there is a nonzero
complex number s such that sg is defined over Q. To do this, note that the Riemann surface X (T')
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has a structure of projective variety defined over Q for which jy is given by a rational function
defined over Q; see, e.g., [Shi71, Chapter 6.7]. In particular, each element of Z is defined over Q
with respect to this algebraic structure. Choose a point zg in X (I') \ Z defined over Q, note
that go(z0) is a nonzero complex number and put s := go(20)~!. By Lemma 5.5 with go replaced
by sgo, the function sgy corresponds to a rational function on X (T') defined over Q. Since this
is also the case for jo, we have that jo and sgy are algebraically dependent over Q. This implies
that sg is defined over Q and completes the proof of the lemma. O

Proof of Corollary 5.2. In the case where « is a non-cuspidal value of f, the desired assertion
follows from Theorem A’. Suppose « is a cuspidal value of f and let I" be the stabilizer of f
in SL(2,R).

Suppose first that I' is a congruence group, put F=In SL(2,Z) and let ¢ be a cusp of X(f)
at which the meromorphic function fy defined on X (T" (A) induced by f takes the value a. Let m
and g be given by Lemma 5.8 with f replaced by f—«a and with I' replaced by T and put
f = (f — «)™g. Then, 0 is a non-cuspidal value of f or of 1/ f and Theorem A’ with a replaced
by 0 implies that there are at most a finite number of singular moduli of f that are S-units.
On the other hand, by Corollary 2.5 there is a finite set of prime numbers Sy such that every
singular modulus of g is an Sp-unit. Putting S; := S U Sy, we conclude that there are at most a
finite number of singular moduli § of f such that f — a is an S;-unit. Since S contains S, this
implies the desired assertion.

It remains to consider the case where I is of genus zero. Let h be the Hauptmodul given by
Lemma 5.6 with f replaced by f — a. Theorem A’ with f replaced by h and with « replaced
by 0, implies that for every finite set of prime numbers S there are at most a finite number of
singular moduli of A that are S-units. Together with Lemma 5.7, this implies that f — a has the
same property. ]
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Appendix A. Fourier series expansion of modular functions

The goal of this section is to give conditions on a modular function to be defined over a given
subfield of C.

A meromorphic function f defined on H is periodic, if there is h in Zq such that for every 7
in H we have f(7 4+ h) = f(7). The period of f is the least h satisfying this property. In this
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case, f admits a Fourier series expansion at oo of the form

F= 3 anesp (27;5”7).

n=—oo

The function f is meromorphic (respectively, holomorphic) at ioco, if for every sufficiently large
integer n (respectively, every n in Z¢) we have a_,, = 0.

Note that every modular function is periodic and therefore it admits a Fourier series
expansion at i00. The goal of this appendix is to prove the following proposition.

ProrosiTION A.1. Let f be a modular function whose Fourier series expansion at ico has
coefficients in a subfield K of C. Then f is defined over K.

The proof of this proposition is given after the following lemma.

LEMMA A.2. Let K be a subfield of C and let A be a finite subset of C that is not contained
in K. Then, there is a field homomorphism K(A) — C that is the identity on K and that is
different from the inclusion.

Proof. Denote by K the algebraic closure of K inside C.

Suppose first that A is contained in K. By the primitive element theorem, there is « in K
such that K(A) = K(a). Our assumption that A is not contained in K implies that the minimal
polynomial of « over K is of degree at least two. Thus, this polynomial has a root ' different
from «. It follows that there is a field homomorphism K («) — C that is the identity on K and
that maps o« to . It is thus different from the inclusion.

It remains to consider the case where A is not contained in K. In this case, there is a
nonempty subset A of A that is algebraically independent over K. Increasing Ay if necessary,
assume it is maximal with this property. Then, K (.A) is a finite extension of K (Ap). Since K (Ay)
is isomorphic to the field of rational functions with coefficients in K in #.A4g variables, there is a
field isomorphism o: K (Ag) — K (Ap) that is the identity on K and such that for some ag in Ag
we have o(ag) = 2ag. Since K (A) is a finite extension of K(Ag) and C is algebraically closed, o
extends to a field homomorphism K (A) — C. O

Proof of Proposition A.1. We use that 1/j is holomorphic at ioo; see, e.g., [Lan87, Chapter 4,
§1]. Replacing f by 1/f if necessary, assume that f is also holomorphic at ico. Let ®(X,Y") be
a modular polynomial of f in C[X,Y] (Proposition 2.1). Replacing ® by a constant multiple if
necessary, assume that one of the coefficients of ® is equal to 1. Denote by 0 the degree of X
in ®(X,Y), and note that the polynomial

U(X,Y) = X°B(1/X,Y)
in C[X, Y] is also irreducible.
For each pair of nonnegative integers (k, £), denote by Ay, ¢ the coefficient of X kFytin U(X,Y).

Moreover, denote by I the set of all (k,¢) such that Ay, # 0. By our normalization of ®, there
is (ko, £o) such that Ay, ¢, = 1. Suppose that U(X,Y) is not in K[X, Y], so the set

A= {Ak7g: (k:,f) S I}

is not contained in K. By Lemma A.2, there is a field homomorphism o: K(A) — C that is the
identity on K and that is different from the inclusion. It follows that for some (k’,¢') in A we
have U(Ak,/,g/) 75 Ak/7gl.

For each integer n > 0, denote by a®’ the coefficient of exp((2min/ h)7) in the Fourier series
expansion of (1/7)*f*. Since 1/j is holomorphic at ico and its Fourier series expansion has
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coefficients in Q (see, e.g., [Lan87, Chapter 4, §1]), our hypothesis implies that a®*isin K. On
the other hand, the fact that the function W(1/j, f) vanishes identically implies that for every
integer n > 0 we have

Z Ak,gaﬁ’e =0 and Z O'(Ak!)alfl’z = 0.
(k,0)el (k,0)el

It follows that the polynomial

Uo(X,Y) = Y (0(Ape) — Ap)X*Y*
(k0)El

in C[X,Y], is such that the function ¥y(1/4, f) vanishes identically. Note also that ¥ is nonzero,
because the coefficient of X*¥Y* in Wy(X,Y) is nonzero by our choice of o. Moreover, the
coefficient of X*0Y* in Wy(X,Y) is zero, so ¥y is not a scalar multiple of .

Consider the polynomial

Bo(X,Y) = XOUy(1/X,Y)

in C[X,Y]. The functions ®(j, f) and ®¢(j, f) vanish identically. By Proposition 2.1(i), this
implies that the polynomial & vanishes on the zero set of ®. Since ® is irreducible over C,
we conclude that @ divides ®q. Since the degree of &y in X and in Y is less than or equal to
the corresponding degree of ®, we conclude @y is a scalar multiple of ®. However, this would
imply that ¥ is a scalar multiple of W, which is false. This contradiction proves that ®(X,Y)
is in K[X,Y], and completes the proof of the proposition. O
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