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Abstract 
Metabolism is at the core of all functions of living cells as it provides Gibbs free energy and building blocks for 
synthesis of macromolecules, which are necessary for structures, growth and proliferation. Metabolism is a 
complex network composed of thousands of reactions catalyzed by enzymes involving many co-factors and 
metabolites. Traditionally it has been difficult to study metabolism as a whole network and most traditional 
efforts were therefore focused on specific metabolic pathways, enzymes and metabolites. By using engineering 
principles of mathematical modeling to analyze and study metabolism, as well as engineer it, i.e. design and 
build, new metabolic features, it is possible to gain many new fundamental insights as well as applications in 
biotechnology. Here we present the history and basic principles of engineering metabolism, as well as the newest 
developments in the field. We are using examples of applications in: 1) production of protein pharmaceuticals 
and chemicals; 2) basic studies of metabolism; and 3) impacting health care. We will end by discussing how 
engineering metabolism can benefit from advances in artificial intelligence (AI)- based models.  
 
Introduction 
Metabolism is at the core of all cellular functions providing not only the energy equivalents for driving all chemical 
processes but also the building blocks for all cellular structures, growth and proliferation. The metabolism is a 
network of many interconnected chemical reactions that in a coordinated fashion ensure degradation and 
modification of nutrients, i.e. from carbon and nitrogen sources, into different chemicals that the cells can use 
for synthesis of building blocks like amino acids, fatty acids and nucleotides. These building blocks are 
subsequently assembled into macromolecules like proteins, lipids, DNA and RNA that make up the cell. Major 
breakthroughs in our understanding of metabolism were made in the beginning of the 20th century when Otto 
Meyerhof, Gustav Embden and Jakub Karol Parnas identified the individual chemical reactions involved in the 
conversion of glucose to pyruvate. This pathway is today known as the Embden-Meyerhof-Parnas (EMP) 
pathway, but also often referred to as glycolysis. In 1922 Otto Meyerhof received the Nobel Prize in Physiology 
or Medicine for his work on mapping the conversion of glucose to lactic acid in muscle cells deprived of oxygen, 
so-called fermentative metabolism. In 1933 Otto Warburg received the Nobel Prize in Physiology or Medicine for 
his discovery of respiratory metabolism, but his name is today more known for the “Warburg effect” and his 
discovery that cancer cells tend to bypass respiration, in presence of oxygen, as they convert glucose to lactate. 
This observation was also made by Herbert Crabtree in studies of cancer cells, but his name is today associated 
with the same phenomenon in yeast that produce ethanol at high glucose concentrations even in the presence 
of oxygen, the so-called “Crabtree effect” In 1953 Hans Krebs received the Nobel Prize for identifying the steps 
involved in the tricarboxylic acid (TCA) cycle, also often referred as Krebs cycle, where acetyl-CoA is degraded in 
a metabolic cycle to carbon dioxide resulting in production of “energy equivalents”. Fritz Lipmann shared the 
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Nobel Prize in 1953 with Hans Krebs for identifying acetyl-CoA as a crucial molecule in linking the EMP pathway 
with the TCA cycle, via the enzyme Pyruvate Dehydrogenase. In 1978 Peter Mitchell received the Nobel Prize in 
chemistry for proposing the chemiosmotic theory, that describes how electrons are transferred from the co-
factor NADH, generated in the TCA cycle, to oxygen reducing it to water. According to this theory protons are 
being pumped against a concentration gradient out of the mitochondrial matrix when electrons transfer through 
the so-called electron transport chain. Paul D. Boyer and John E. Walker, who received the Nobel Prize in 
Chemistry in 1997 for the identification of the mechanisms of ATP Synthase, that forms ATP when protons re-
enter the mitochondria, together with Jens C. Skou, who discovered the Na+-K+-ATP pump, and hereby all the 
mechanisms involved in both oxidative and fermentative metabolism of glucose had been mapped. Other Nobel 
Prizes in Chemistry were given for discovery of specific metabolic pathways, i.e. to Lord Todd in 1957 for his 
discovery of the biosynthesis of nucleotides, to Melvin Calvin in 1960 for his discovery of the mechanisms behind 
carbon dioxide fixation, and to Luis Leloir in 1970 for his discovery of the role of sugar nucleotides in sugar 
metabolism, e.g. for metabolism of galactose, now known as the Leloir pathway. Many other Nobel Prizes have 
been given for discoveries of vitamins and other bioactive chemicals such as molecules, enzymes and pathways 
of the so-called secondary metabolism e.g. terpenes, alkaloids, carotenoids, antibiotics etc.  

The more than 100 years of research on metabolism has resulted in extensive mapping of most core reactions 
engaged in energy generation and cell synthesis, but we don’t always know the identity and characteristics of 
the enzymes carrying out the reactions. There are also many dark spots in certain parts of metabolism, especially 
in plants as their cells have evolved the capability to perform advanced chemistry, but modern molecular biology 
techniques have enabled transfer and assembly of whole plant pathways into a host organism, e.g. Baker’s yeast, 
and this has enabled mapping of pathways leading to complex natural products. This type of heterologous 
expression assembles all the enzymes of many different biosynthetic pathways, even from different organisms, 
leading to creation of various complex natural products in so-called cell factories (Gelanie et al., 2015; Zhao et 
al., 2023). Information about metabolic reactions and their associated enzymes is available in several different 
databases, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a valuable resource that significantly 
advanced our ability to understand and thus engineer metabolism.  

Several studies, including the seminal work related to developing Metabolic Control Analysis (Kacser and Burns, 
1973; Kell et al., 1989), have shown a big difference between enzymes operating in isolation (test tube, in vitro) 
and how enzymes operate within a pathway (in cell, in vivo). Gaining insight into how sets of enzymes interact in 
a cell can therefore only be obtained through the introduction of mathematical models and in engineering 
disciplines, mathematical models play an important role in design and development of new or improved products 
and processes and for analyzing data. Biological systems are inherently hard to engineer and describe 
mathematically using different models, especially as we do not know most of the components of the system, 
their roles and functions, as well as inherent redundancies, inefficiencies and complexity. Even for the simplest 
cell we still have a challenge to know all the “parts”, their individual functions and how they interact, as well as 
the unique features of that system. However, as we progress towards a complete overview of metabolism it is 
possible to build comprehensive models with remarkably wide application for studying and designing cellular 
metabolism, with the objective of developing new cell factories, for biomarker discovery, for drug discovery, and 
for design of healthy diets for humans. 

History of Engineering Metabolism 
In 1973 Herbert W. Boyer and Stanley N. Cohen invented genetic engineering, that laid the foundation for a 
multibillion dollars industry, underling everything we do today in modern molecular biology, both in academia 
and industry. Through expression of a heterologous gene in a host cell like the bacterium Escherichia coli or 
Baker’s yeast Saccharomyces cerevisiae their invention enabled scalable production of human proteins like 
insulin and growth hormone (Nielsen, 2013). Following success with expressing a single gene encoding a protein 
of commercial interest, genetic engineering was also exploited for expressing heterologous enzymes with the 
objective of reconstructing heterologous biosynthetic pathways in various hosts. In 1991 this led to the coining 
of the term Metabolic Engineering by James E. Bailey and Gregory N. Stephanopoulos (Bailey, 1991; 
Stephanopoulos and Vallino, 1991), and over the last 30 years Metabolic Engineering has been established as an 
active research field with a dedicated textbook (Stephanopoulos et al., 1998), dedicated journals and several 
conference series. 

Despite many successes in using Metabolic Engineering to develop new cell factories (see below), it has often 
been difficult to meet the techno-economic requirements for establishing commercial processes (Konzock and 
Nielsen, 2024). A major reason for this has been that it is often difficult to engineer the host metabolism in a way 
that ensures conversion of most of the carbon atoms from substrate towards production of the chemical/ 
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compound of interest. The main reason for this is the trade-off between growth and product formation where 
most microorganisms have evolved to maximize growth. Re-directing flux towards the product of interest is 
therefore difficult for two main reasons: 1) metabolism is not organized into linear pathways but is a web 
(hairball) of interactions between metabolites and enzymes (Fig. 1A), and the conversion of substrate to the 
product therefore often engages a very large number of reactions not directly involved in this conversion; and 2) 
there is extensive regulation of flux through the different enzymes (Fig. 1B), at several levels, from genome, 
transcriptome, proteome and fluxome, and this often results in diversion of flux from the path from substrate to 
the product. An approach of engineering specific enzymes at a time is therefore often failing, and even though 
automation has in recent years enabled rapid evaluation of many different engineering targets, it has become 
clear that a more holistic design approach needs to be applied, using mathematical models. 

In 1979 Aiba and Matsuoka presented a simple model of citric acid production by the yeast Candida lipolytica 
(today renamed as Yarrowia lipolytica) and they were the first to use simple mass balancing around intracellular 
metabolites to calculate fluxes through metabolic pathways (Aiba and Matsuoka, 1979) (Fig. 1C). In the 1980s 
and 90s, more mass balance models of the central metabolism of various bacteria and fungi were made. Pioneers 
of developing bacterial models were Bernhard Palsson (Varma and Palsson, 1994) and Gregory N. 
Stephanopoulos (Vallino and Stephanopoulos, 1993), whereas Jens Nielsen pioneered the development of 
models for eukaryal organisms, i.e. S. cerevisiae (Nissen et al., 1997) and Penicillium chrysogenum (Jørgensen et 
al., 1995). With the availability of genome sequences, it became possible to identify most of the enzymatic 
capabilities of a cell and hereby develop comprehensive mathematical models for metabolism. This led to 
development of so-called genome scale metabolic models (GEMs) for different bacteria by the Palsson group 
(Edwards and Palsson, 1999; Edwards and Palsson, 2000; Schilling et al., 2002) and the first eukaryal cell (the 
yeast S. cerevisiae) by the Nielsen group (Förster et al., 2003). S. cerevisiae is a widely used model organism in 
molecular and cell biology, as well as in industry where it is the most widely used cell factory for production of 
food, beverages, chemicals, fuels and pharmaceuticals (Nielsen, 2019). Its wide use as a model organism is well 
illustrated by the fact that several Nobel Prizes in Physiology or Medicine have been given to researchers that 
used yeast in their fundamental studies (Hohmann, 2016), e.g. to Leland Hartwell, Paul Nurse and Tim Hunt in 
2001 for their discoveries of key regulators of the cell cycle, to James Rothman, Randy Scheckman and Thomas 
Südhof in 2013 for their discovery of the protein secretory pathway in eukaryal cells, and to Yoshinori Ohsumi in 
2016  for elucidating the mechanisms for autophagy. 

Following these initial models the Nielsen group reconstructed GEMs for many other important microorganisms, 
such as Streptomyces coelicolor used for antibiotics production (Borodina et al., 2005), Aspergillus niger used for 
production of citric acid and many industrial enzymes (Andersen et al., 2008), A. oryzae used for production of 
many fermented food products and industrial enzymes (Vongsangnak et al., 2008), and P. chrysogenum used for 
production of penicillin and other antibiotics (Aagren et al., 2013). Since this early reconstruction of metabolic 
networks there have been developed GEMs for many other organisms (Gu et al., 2019). Many models have been 
updated regularly as new biochemical information become available. For example, our yeast GEMs have had 
many different updates of the original model, with the most comprehensive model Yeast8 comprising almost 
4,000 metabolic reactions linked to more than 1,100 enzymes and genes (Lu et al., 2019). Yeast8 also represented 
a breakthrough in terms of engaging the scientific community as the model was made available open source via 
GitHub. Hereby researchers from around the world could contribute with annotation, curation and propose 
model updates and this has resulted in a recent update of the model (Yeast9), that contains information of 30 
additional genes, 203 new reactions and 140 new metabolites (Zhang et al., 2024). These comprehensive models 
do not only represent an extensive database of cellular metabolism, but also find application in metabolic 
engineering, basic science, and in biomedical research as we will discuss below. Despite the scale of these models 
they still only cover the core of metabolism as demonstrated in our discussion on the use of artificial intelligence 
for gaining new insight into metabolism. 

Engineering metabolism for industrial production 
Building a new (biotech) industry 
The invention of genetic engineering resulted in the establishment of an industry for production of recombinant 
proteins used as therapeutics exceeding USD100B (Nielsen, 2013). Human insulin was launched as the first 
product by Ely Lilly in 1982, with the second being human growth hormone launched by Genentech in 1985. 
Today, there are more than 300 different recombinant proteins approved as therapeutics with many more in 
clinical trials, and among the top 10 selling pharmaceuticals 9 are biopharmaceuticals, which is a significant 
change from 20 years ago where most top-selling pharmaceuticals were small molecules. 
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Many different cell factories are being used for production of recombinant proteins. The bacterium E. coli is used 
for small proteins such as interleukins and insulin, but even though this organism enables high expression levels 
a disadvantage is that the recombinant protein accumulates intracellularly in so-called inclusion bodies, which 
makes the purification process more cumbersome and costly. S. cerevisiae is characterized by having a fully 
functional protein secretion pathway, and it can therefore secrete recombinant proteins to the extracellular 
medium, which facilitates purification. This yeast is therefore widely used for recombinant protein production, 
e.g. for insulin, human serum albumin, and glucagon-like peptide 1 receptor agonists (GLP1) (Huang et al., 2014). 
The latter group of molecules mimic the action of the endogenous incretin hormone GLP1 that is released after 
eating, stimulating satiety. These molecules have therefore formed the basis for the active ingredient in the 
recently launched type-2 diabetes and obesity drugs Ozempic and Wegowy by Novo Nordisk.  

The methylotrophic yeast Komagataella phaffii (formerly known as Pichia pastoris), is also a relevant cell factory 
as it ensures very high productivity due to a very efficient methanol induced expression system and the ability 
for the yeast to grow to very high cell densities. We developed a GEM for K. phaffii (Caspeta et al., 2012) and 
expanded this model to describe how metabolism could be engineered to enable humanized glycosylation of 
recombinant proteins (Irani et al., 2015). This enabled identification of metabolic engineering targets for 
improved production of a range of different recombinant proteins having industrial relevance. For production of 
more complex proteins such as antibodies, erythropoietin, and blood coagulation factors, e.g. Factor VII and 
Factor VIII, that require proper glycosylation it is necessary to apply a more advanced cell factory that can ensure 
that the protein is produced with the proper human glycosylation pattern. The Chinese Hamster Ovary (CHO) 
cells are often used but the originally productivity of the CHO cells was relatively low and there were issues with 
strain stability. However, there has been significant advancement in developing detailed mathematical models 
for CHO cells and our focus was to model the secretory pathway as this is crucial for ensuring efficient protein 
secretion by this cell factory (Gutierrez et al., 2020). At the same time, through advancement in abilities to 
engineer CHO cells it has been possible to improve productivity significantly, and CHO cells has therefore become 
the cell factory of choice for proteins that require proper human glycosylation.  

As the secretory pathway is of such critical importance for many processes in engineering, we also focused on 
developing detailed mathematical models for the protein secretory pathway in S. cerevisiae. In one study the 
protein secretory pathway was completely mapped, with 162 proteins in this pathway engaged in processing 
1,190 proteins (Feizi et al., 2013). Very few of the endogenous proteins being processed by the pathway are 
eventually secreted, whereas the remainder are processed through this pathway to be directed to the cell 
membrane where they function as transporters or receptors. Production of a heterologous protein will therefore 
compete with capacity of this pathway, and if a heterologous protein is expressed at a very high level, it will 
therefore drain capacity for processing membrane proteins, which will impact overall cellular functions. To 
quantify the demand for resources in the complex protein secretory pathway a detailed enzyme constrained 
mathematical model was established (Li et al., 2022a), and using this model it was possible to quantify the impact 
of producing different recombinant proteins. It was further possible to use the model for design how the protein 
secretory pathway could be improved for production of a specific protein, and many of these designs could be 
experimentally validated (Li et al., 2022). Furthermore, the design strategies proposed by the model matched 
many earlier targets that had been identified through sequencing of different mutant strains with natural varying 
secretion capacities (Huang et al., 2015; Huang et al., 2017; Huang et al., 2018). 

Transforming the old (chemical) industry 
With the current wide use of microbial fermentation for production of recombinant proteins used as advanced 
medicines, it is interesting to note that the use of microbial fermentation for production of chemicals dates to 
the mid-19th century, where ethanol produced through yeast fermentation was used as a lighting fuel. In 1908 
the demand for ethanol increased as it was used to fuel Henry Ford’s Model T. With the oil boom gasoline took 
the lead, but in the 1920s and 1930s ethanol was used as an octane booster, and it was in high demand during 
World War II (WWII) due to fuel shortages. In the 1970s with the rise in oil prices, ethanol was gaining renewed 
interest as a blend-in fuel, and this resulted in the establishment of the current very large ethanol industry; e.g. 
in 2023 more than 110 billion of liters of ethanol was produced through yeast fermentation. In 1908 there was 
another landmark in microbial production of chemicals, namely the development of the acetone-butanol 
production by Chaim Weismann, a lecturer at Manchester University and later the first president of Israel, who 
developed a process based on fermentation with the bacterium Clostridium acetobutylicum. During World War 
I there was a large demand for acetone to be used in gunpowder. Acetone had earlier been produced from 
calcium acetate imported from Germany, and the Weismann process therefore became an important new route 
to obtain acetone for the United Kingdom. Production of ethanol and the Weismann process are both anaerobic 
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processes, i.e. there is no need for provision of oxygen to the cells. A key landmark was therefore the production 
of citric acid through fermentation with the filamentous fungus Aspergillus niger, that was introduced in 1919. 
This fungus is extremely tolerant to low pH, and the fermentation process can therefore be operated at pH 2-3, 
which reduces the demand for maintenance of aseptic conditions as very few other microorganisms can survive 
at these conditions. Following the discovery of penicillin by Alexander Flemming in 1928, there was extensive 
attempts to chemically synthesize this new bioactive to be used as an antibiotic, but during WWII it was decided 
to start fermentation-based production using the filamentous fungus Penicillium chrysogenum. This resulted in 
development of the first aerobic fermentation process that required supply of large amounts of aseptic air to the 
fermentation process, and establishment of this process therefore laid the basis for production of many different 
chemicals using microbial aerobic fermentation. Retrospectively it turned out to be a wise decision to choose 
the fermentation route for production of penicillin as it was first demonstrated possible to chemically synthesize 
penicillin in 1956, and the chemical synthesis route cannot compete with the fermentation route. Today most 
antibiotics in the world are being produced by microbial fermentation.  

Today microbial fermentation represents an industry exceeding USD100 billion, and many different chemicals 
are being produced through this route. Many new processes have been developed and the application of 
Metabolic Engineering basically falls into four different applications: 1) Engineering central metabolism to 
improve titers, rates and yields (TRYs); 2) Extension of substrate range of the cell factory; 3) Improving tolerance 
of the cell factory; 4) Expression of heterologous pathways for production of valuable chemicals. 

Improvement of titers, rates and yields is essential for the establishment of an industrially viable process 
(Konzock and Nielsen, 2024). Even though it may be possible to extend endogenous pathways with a few 
enzymatic steps leading to the product of interest, the yield of product from the feedstock, typically glucose, and 
the rate of production, may often be low and it is therefore necessary to engineer the central carbon metabolism 
of the cell factory to ensure that carbon is directed from glucose to the product at a high rate. This is well 
illustrated in work on engineering Escherichia coli for production of 1,3 propanediol (Nakamura and Whited 
2003) and 1,4 butanediol (Yim et al., 2011). In both cases the bacterium was heavily engineered with more than 
10 different genetic modifications that ensured a high rate and yield. Today these two chemicals are being 
produced commercially and used in the production of various plastics. Lactic acid has been commercially 
produced through fermentation with lactic acid bacteria since the early 20th century for use in the food industry, 
but with development of technology for polymerization of lactic acid to polylactate (PLA), that is a polymer with 
valuable properties such as biodegradability, good layer adhesion, and high strength, there was a need for large 
volumes of pure lactic acid, and not the lactate salt. Lactic acid bacteria require supplementation of complex 
feedstocks, and this makes it expensive and difficult to obtain pure lactic acid from these fermentation. The 
company Cargill therefore developed a new process based on an engineered yeast that can tolerate low pH for 
production of lactic acid, and this process resulted in a significant expansion of lactic acid production. More 
recently the company Corbion developed a process for purification of lactic acid from a traditional lactic acid 
bacterial fermentation process, and hereby enabled supply to production of PLA. Engineering of the central 
metabolism has also been shown to enable improvement of ethanol production and reduction of production of 
the by-product glycerol. Production of ethanol from glucose is completely balanced in terms of redox potential 
as there is also formed one molecule of carbon dioxide per molecule of ethanol formed, but as part of the glucose 
is used for production of more yeast cells that are more reduced than glucose, there is a need for an electron 
sink, and converting part of the glucose to glycerol represents such an electron sink (glycerol is more reduced 
than glucose). Cells are using different co-factors to balance electron flows within metabolism, and based on 
metabolic modeling it was identified that by engineering pathways for ammonia assimilation it should be possible 
to reduce the requirement for glycerol production and hereby increase ethanol production by 5-8%, which was 
experimentally validated (Nissen et al., 2000). Also, mathematical modeling of the central carbon metabolism 
guided how changing the co-factor usage in glycolysis could give a similar effect (Bro et al., 2006). GEMs have 
also played an important role in identification of targets for engineering yeast for over-production and secretion 
of free fatty acids by engineering both the central carbon metabolism and the fatty acid metabolism (Zhou et al., 
2016). Through pursuing additional model guided targets it was further possible to engineer the central carbon 
metabolism such that yeast could be transformed from alcoholic fermentation leading to ethanol production to 
efficient conversion of glucose to free fatty acids (Yu et al., 2018). As the conversion of glucose to free fatty acids 
is redox im-balanced the yield was, however, found to be relatively low, but through reconstruction of a 
completely synthetic glycolysis identified through modeling it was possible to overcome this challenge and 
hereby an even better producing strain was obtained (Qin et al., 2023). 
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Many cell factories have a limited range of carbon sources they can use efficiently. Thus, yeast, the most widely 
used cell factory, is not very efficient in using galactose and it cannot use xylose and arabinose as carbon and 
energy sources. This is important in the context of using lignocellulosic materials as feedstock for production of 
fuels and chemicals, as galactose, xylose and arabinose are abundant sugars in these feedstocks. Galactose is 
metabolized via the Leloir pathway, and even though this pathway only involves a few additional steps compared 
with the metabolism of glucose, the pathway is quite inefficient, and the growth rate of yeast on galactose is less 
than 50% compared with on glucose (Ostergaard et al., 2000). The Leloir pathway is tightly regulated, but through 
engineering the regulatory machinery rather than simply over-expressing the enzymes it was possible to 
significantly increase the growth rate of yeast on galactose (Ostergaard et al., 2000). Using mathematical 
modeling we later found that this was due to a requirement for balanced expression of the individual enzymes 
in the pathway as the pathway intermediates can inhibit enzymes in the pathway (de Jongh et al., 2008). This led 
to the identification of a downstream enzyme, phosphoglucomutase (Pgm2) that converts glucose-1-phosphate 
to glucose-6-phosphate and has traditionally not been considered part of the Leloir pathway, as a flux controlling 
enzyme, and by over-expressing this single enzyme it was also found possible to significantly increase the specific 
growth rate (Bro et al., 2005). In a later study where we used adaptive laboratory evolution, we found that 
combined over-expression of Pgm2 and engineering of a pathway engaged in glucose regulation it was possible 
to further enhance the growth rate on galactose as this ensured balancing of flux through all the individual 
reactions and therefore no accumulation of intermediates (Hong et al., 2011). Engineering yeast to efficiently 
use xylose and arabinose has been attempted since the 1980s, but the discovery of a fungal xylose isomerase 
that converts xylose to xylulose, that yeast can metabolize, in a single step represented a breakthrough (Kuyper 
et al., 2005). This also opened for engineering yeast to use arabinose (Wisselink et al., 2007). However, yeast has 
not evolved to use xylose efficiently and the central carbon metabolism is therefore not well balanced to handle 
this carbon source. Using mathematical modeling to guide extensive engineering of the central carbon 
metabolism, it was possible to pinpoint key targets among more than 100 different genetic modifications, and 
hereby engineer yeast metabolism to efficiently grow on xylose as the sole carbon source (Li et al., 2021). 

Tolerance towards environmental stress is an important feature of cell factories, and it is therefore interesting 
to find strategies to improve tolerance of cell factories towards chemicals present in the medium, chemicals 
produced by the cell factory, low/high pH, and low/high temperature. Often a cell factory is chosen for its 
tolerance towards specific environmental conditions, e.g. A. niger is a well-suited cell factory for production of 
citric acid as it can tolerate low pH and S. cerevisiae is a well-suited cell factory for production of ethanol as it is 
very tolerant towards this chemical. However, in the current ethanol industry it is desirable to operate at a higher 
temperature than the optimum temperature for S. cerevisiae, but the biology associated with ensuring 
temperature tolerance is not known in detail. Here the concept of adaptive laboratory evolution was shown to 
be efficient as it enabled, through sequential selection of yeast clones, to identify clones that could grow faster 
at elevated temperatures, i.e. 40oC versus the optimum for the yeast of 35oC (Caspeta et al., 2014). Through 
genome sequencing combined with metabolic modeling of isolated clones, it was then possible to identify causal 
mutations, and in particular one mutation was identified to cause a loss of function of an enzyme involved in 
biosynthesis of the membrane component ergosterol. The loss of function of this enzyme caused production of 
another sterol, namely fecosterol, and this resulted in a slightly stiffer membrane property that could enable the 
cells to better function at higher temperatures (Caspeta et al., 2014). A similar approach has been applied to 
make yeast more tolerant to lactic acid at low pH (Fletcher et al., 2016) and more tolerant to dicarboxylic acids 
(Pereira et al., 2019), but it has also been used to improve tolerance of E. coli to various toxic chemicals (Lenne 
et al., 2023). 

Finally, engineering metabolism has been used to recruit different cell factories such as yeast for expression of 
heterologous pathways, and hereby enabling production of complex natural products. Thus, yeast has been 
recruited to produce complex plant chemicals such as opioids (Gelanie et al., 2015), monoindole alkaloids that 
can be used as anti-cancer drugs (Zhang et al., 2022), celastrol that has anti-obesity properties (Zhao et al., 2023), 
berberine that has anti-diabetic properties (Jiao et al., 2024), polyamines and polyamine conjugates (Qin et al., 
2021), and iso-flavenoids such as puerarin and daidzin that have cardioprotective properties (Liu et al., 2021). 
Yeast is a well-suited cell factory for production of these complex plant natural products as biosynthesis of many 
of these molecules involves complex oxidation reactions catalyzed by so-called P450 enzymes. These enzymes 
contain a heme group in the catalytic core and both heme and iron can often become limited for function of 
these enzymes. However, through engineering of the heme biosynthetic pathway it was shown possible to 
enable elevated activity of P450 enzymes (Michener et al., 2012). By expanding an enzyme constrained yeast 
GEM to include incorporation of metals it was possible to predict the effect of iron supplementation on 
biosynthesis of coumaric acid, that involves a single P450 enzyme (Chen et al., 2021). Hereby it was shown how 
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GEMs can enable advancement of all the efforts on engineering yeast for production of natural products towards 
commercial production. 

The above examples show that even though there have been many successful examples of engineering 
metabolism without guidance of mathematical models, these models have today come to a stage where they 
can significantly impact cell factory design (Domenzain et al., 2024). The field is therefore aligning more with 
traditional engineering disciplines where mathematical models are actively used in design, and the design-build-
test-learn cycle is therefore becoming well integrated into biology research (Nielsen and Keasling, 2016). Here it 
is interesting to note that even though cell factory development is generally carried out with a clear objective, 
i.e. to develop a cell factory that has improved properties, analysis of newly engineered cell factories often results 
in new understanding of cellular metabolism, and the border between engineering and basic biological research 
is therefore disappearing. 

Systems Biology of Metabolism 
Systems biology is mathematical analysis and modeling of complex biological systems. It has two historical roots 
(Westerhoff and Palsson, 2004): 1) from theoretical biology, and 2) from genome-sequencing. The root from 
theoretical biology is often referred to as a bottom-up approach as it is based on detailed mathematical modeling 
of specific molecular processes whereas the root from genome-sequencing is often referred to as a top-down 
approach (Nielsen, 2017). Theoretical biology developed together with new understanding of molecular 
mechanisms in biology, as illustrated by the classical discovery of the mechanism on how expression of genes 
encoding for enzymes involved in metabolism of lactose in E. coli, present in the so-called Lac-operon. This 
genetic system was discovered by Francois Jacob and Jacques Monod, who received the Nobel prize in Physiology 
or Medicine in 1965. The molecular understanding of the Lac-operon has formed the basis for the development 
of detailed mathematical models (Lee and Bailey, 1984), and these pioneering studies led to an expansion of the 
field of mathematical models of biological systems. However, most of these models only describe a specific 
process within the cell and do not capture overall cellular metabolism. There have been attempts to develop 
whole cell models, e.g. a comprehensive model for E. coli (Karr et al., 2012), but these models are often relying 
on description of several processes through empirical expressions rather than detailed molecular, mechanistic 
models. GEMs are in principle a merger of bottom-up and top-down approaches as these models are capturing 
individual enzymatic reactions, but by doing it genome-scale the model is relying on genome information. The 
models do, however, deviate from many mechanistic bottom-up models as they do not rely on mechanistic 
models describing the kinetics of each enzymatic reaction, and the models therefore only have very few 
parameters that needs to be estimated based on fitting to experimental data. This feature makes them attractive 
for wide use as it is hereby relatively easy to build the models based only on the genome sequence and 
stoichiometry of reactions. 

Whereas the first GEMs were reconstructed in a bottom-up fashion, the availability of GEMs from many different 
organisms and extremely well curated models like Yeast8 (Lu et al., 2019), it has become possible to almost 
automatically generate GEMs for different organisms, i.e. more than 350 different yeast species were 
reconstructed by using Yeast8 as a template (Lu et al., 2021). These models were used to gain insight into many 
different aspects of fundamental knowledge of metabolism and evolution, i.e. how metabolism has evolved in 
different yeast species to adapt to various ecological niches. A similar approach was taken in using the well 
curated GEM for human metabolism, Human1, as a template model for generating GEMs for different model 
organisms like mouse, rat, zebrafish, fruit fly and nematode (Wang et al., 2021). The hereby generated GEMs 
were used for identification of differences and commonalities in terms of metabolism between these very diverse 
species that are all used as model organisms for studying biology of human cells, tissues and organs. Specifically 
our mouse GEM was used to analyze data from mouse to gain new insight into how the development of 
Alzheimer’s disease is associated with dramatic metabolic alterations in neuronal cells (Wang et al., 2021). 

Even though GEMs have a remarkable predictive strength, it is required to impose key constraints to the model 
for predicting a relevant phenotype. For example to predict the growth rate of a cell it is necessary to constrain 
the nutrient uptake rate or vice versa (Fig. 2A). Furthermore, GEMs can predict very large fluxes through 
pathways that in practice may have very little capacity, either due to low concentrations of the enzymes or due 
to low catalytic efficiency of the enzymes, i.e. low enzyme turnover numbers. To overcome this problem we 
developed the concept of enzyme constrained GEMs (ecGEMs) using the modeling framework we call GECKO 
(Sanchez et al., 2017). In ecGEMs the flux through each individual enzyme is constrained by the turnover number 
and the enzyme concentration (Fig. 2B). This enables significant improvement in the predictive strength of these 
models, both in terms of flux distribution, growth on different carbon sources and prediction of overflow 
metabolism, i.e. the Crabtree effect (Sanchez et al., 2017). A trade-off with these models is, however, that they 
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require information about the turnover numbers for all the enzymes, i.e. kcat’s, and information about the 
enzyme levels. For well-studied organisms like S. cerevisiae and E. coli there are extensive databases, e.g. 
BRENDA, of kcat values, and if there are no value available for some enzymes kcat values determined for similar 
enzymes in other organisms can be used as a default. For many well studied enzymes there are even several 
different kcat values reported, and in some cases these values even vary by an order of magnitude. In these cases, 
GECKO selects the largest values in order not to over-constrain flux through the reaction (Sanchez et al., 2017). 
The GECKO framework has been further developed to automatically sample kcat values from databases, and this 
has enabled faster reconstruction of ecGEMs for different microorganisms (Domenzain et al., 2022). There is less 
information about the enzyme concentrations, and even though quantitative proteomics has advanced 
significantly, in particular for S. cerevisiae (Lahtvee et al., 2017; Yu et al.,  2020; Di Bartolomeo et al., 2020), it is 
still laborious to obtain high-quality proteome data, but in these cases there can be used a constraint about a 
total proteome allocation to metabolic enzymes (Fig. 2B), and it turns out that this allocation is remarkable 
constant across strains and different environmental conditions (Sanchez et al., 2017). 

ecGEMs have been shown to have strong predictive strength, most likely as they are rooted in a biological 
constraint that is deeply rooted in evolution, namely a constraint on protein synthesis rate by the ribosomes. For 
many organisms there is a linear correlation between ribosomal RNA content and specific growth rate, and 
quantitative proteomics has confirmed this for ribosomal protein content (Xia et al., 2022). If the cell can reduce 
proteome required for certain part of metabolism, e.g. for biosynthesis of amino acids if these are supplied to 
the medium, this proteome mass can be allocated to ribosomes, and hereby the cell can grow faster (Björkeroth 
et al., 2020). This clearly shows that proteome allocation within the cell is important and therefore also imposes 
overall constraints on metabolism. ecGEMs can therefore describe a phenomenon that has been a conundrum 
for many years, why do fast growing cells use metabolic pathways that provide less energy per unit glucose, i.e. 
overflow to ethanol in yeast cells (the Crabtree effect), to acetate in E. coli cells and to lactic acid in human cells, 
instead of using complete respiration that results in extraction of far more energy. In fact, ecGEMs can very well 
describe this overflow metabolism (Sanchez et al., 2017) and using quantitative proteomics data it has been 
shown that the underlying reason is that overflow metabolism is more efficient in terms of energy not per glucose 
but per proteome mass of the energy generating pathway (Chen et al., 2019). Thus, in nutrient excess, at fast 
growth, the cells have evolved to prioritize proteome allocation towards ribosomes rather than efficient energy 
generation, where fully respiratory metabolism is “proteome-expensive”. 

GEMs are an excellent platform for integrative analysis of so-called -omics data, i.e. transcriptome, proteome 
and metabolome data. As these models are comprehensive in terms of covering all enzymes in the metabolic 
network of a cell and as there is a direct link to the encoding genes it is possible to directly overlay different -
omics data onto the metabolic networks. More importantly it is even possible to combine this with statistical 
methods for identification of what we defined as so-called reporter metabolites (Fig. 3A) (Patil and Nielsen, 2005; 
Oliveira et al., 2008). These are metabolites in the metabolic network for which there are significant alterations 
in expression of the enzymes that engage in chemical reactions with the metabolite, either using the metabolite 
as a substrate or producing the metabolite. Altered expression can be quantified from measuring gene 
expression, e.g. through mRNA sequencing, or through quantitative proteomics, and reporter metabolites 
therefore identifies spots within the metabolic network where there are altered enzyme levels either to maintain 
homeostasis of metabolism or to drive a metabolic change. With presence of high-quality metabolomics data it 
is also possible to identify reporter enzymes, that points to key enzymes involved in handling altered metabolite 
levels within the metabolic network (Cakir et al., 2006). The concept of reporter metabolites has gained much 
traction and led to the development of PIANO, our platform that enables easy analysis of different types of I data 
(Väremo et al., 2013). 

Understanding metabolism for human health 
GEMs have also been developed for human cells (Duarte et al., 2007; Ma et al., 2007; Mardinoglu et al., 2013) 
and the consensus model Human1 was established using the same concept as we used for building the consensus 
Yeast8 (Robinson et al., 2020). These models have been used extensively for mapping metabolic changes 
associated with disease development, e.g. for analyzing the metabolic changes in adipocytes in response to 
obesity (Mardinoglu et al., 2013) and how liver metabolism becomes serine deficient in response to development 
of non-alcoholic fatty liver disease (NAFLD) (Mardinoglu et al., 2014). GEMs have also been used to analyze 
metabolism during high-intensity exercise (Nilsson et al., 2019). Besides enabling new understanding how 
metabolism responds to disease development, human GEMs find wide application for biomarkers identification 
and drug discovery. 
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Identification of reporter metabolites has shown to be very useful for biomarker identification. In a study of how 
metabolism is changing in 10 different cancers, we found that metabolism in the different cancers is more similar 
to the tissue of origin than among the different cancers (Gatto et al.¸2014). The metabolism in one cancer type, 
namely clear cell renal cellular carcinoma (ccRCC), was found to be quite distinct, and through further analysis a 
larger number of reporter metabolites were identified to be associated with glycosaminoglycan metabolism 
(Gatto et al., 2014). Through measurements of 19 glycosaminoglycans in blood and urine in patients with 
metastatic ccRCC and healthy controls, a systems biomarker derived using machine learning from concentrations 
of the 19 metabolites could be identified (Gatto et al., 2016). Further analysis showed that the systems biomarker 
could be used to detect early-stage solid tumors of ccRCC (Gatto et al., 2018). These findings are now taken 
forward in clinical trials to validate a biomarker approved for detection of recurrence in ccRCC patients from both 
urine and blood (clinical study AURORAX-0087A; NCT04006405. We also found that the systems biomarker has 
been shown to have much wider applicability as it has been found possible to enable early detection of more 
than 14 different cancer types from a blood sample (Bratulic et al., 2022). Cancer detection using liquid 
biomarkers has become attractive with a potential future market exceeding USD10B, much thanks to 
demonstration of early cancer detection through deep sequencing of DNA in blood samples (Jamshidi et al., 
2022). However, the systems biomarker based on measurements of glycosaminoglycans is attractive due to its 
lower cost and its combination of high selectivity and sensitivity (Bratulic et al., 2022). 

GEMs can also be used for drug discovery as was illustrated for both cancer and for disrupted metabolism 
associated with ageing (Folger et al., 2011; Yizhak et al., 2013). In one study we found that fatty acid oxidation in 
mitochondria plays a central role in hepatocellular carcinoma (HCC), the most dominant form of liver cancer, and 
by blocking transport of fatty acids to the mitochondria cancer cell growth could be blocked (Aagren et al., 2014). 
Another example is the identification of serine deficiency in patients with NAFLD leading to use of our GEMs for 
drug discovery: serine deficiency, together with other metabolic alterations, led to proposing a cocktail of 
metabolites, i.e. serine, L-carnitine, nicotinamide riboside and N-acetyl-L-cysteine, that was found in clinical trials 
to aid the treatment of NAFLD (Zeybel et al., 2021) and of mild-to-moderate COVID-19 (Altay et al., 2021). The 
cocktail has also passed phase 2 in clinical trials for improving cognitive function in patients with Alzheimer 
Disease (Yulug et al., 2023). In the cocktail serine and N-acetyl-L-cysteine serves as precursors for biosynthesis 
of the important anti-oxidant glutathione, L-carnitine ensures efficient transport of fatty acids to the 
mitochondria for -oxidation and nicotinamide riboside serves as a precursor for the co-factor nicotinamide 
adenine dinucleotide (NAD+).  

Besides our own human cell, tissues and organs, we also have a very important metabolic organ composed of 
the human gut microbiome, which is a complex biological system comprising more than 1,000 different 
microorganisms, who communicate and exchange metabolites among each other and with our human cells. We 
have about as many microbial cells as human cells in our bodies, so it is no surprise that the quality and 
composition of this microbiome has been shown to impact human health in different ways (Karlsson et al., 2013; 
Ji and Nielsen, 2015; Schmidt et al., 2018). Most studies in this field are associative, but an increasing number of 
studies have now identified causality between the human gut microbiome composition and disease 
development, e.g. how the gut microbiome composition alters intestinal inflammation in colitis (Zhu et al., 2018) 
and in the field of cancer treatment with immune therapies where we have shown that the presence of specific 
bacteria increases the response to treatment with check point inhibitors (Limeta et al., 2020). The gut 
microbiome composition evolves based on dietary intake, but due to extensive metabolic interactions between 
the many different microorganisms it is difficult to predict how the composition exactly changes in response to 
diet. GEMs represent an excellent platform for analysis of metabolic interactions between the many different 
bacteria and the host (Karlsson et al., 2011), and through reconstructing GEMs for three dominant gut bacteria, 
we showed that it is possible to simulate bacterial interactions, and how growth of the three bacterial species 
depends on the nutrients provided (Shoaie et al., 2013). This concept further enabled simulation of how bacteria 
in the human gut microbiome contribute to amino acid biosynthesis in the human body, and hereby how the 
levels of amino acids change in the blood when human subjects undergo dietary interventions (Shoai et al., 2015). 
In this study a group of overweight individuals were provided with a low-calorie diet for 6-weeks, and it was 
found that the response to the dietary change was dependent on the gut microbiome composition. Modeling 
showed that subjects with a less diverse microbiome responded better to dietary intervention, i.e. their health 
status measured by several blood markers, including amino acid levels, than subjects with a very diverse 
microbiome (Shoai et al., 2015). The findings were later confirmed in a controlled mice study (Mardinoglu et al., 
2015). With the objective of enabling prediction of how diet impacts the human gut microbiome composition, 
modeling of the microbiome was combined with a detailed mathematical model of the entire human gastro-
intestinal system, and this enabled for the first time simulation of how the gut microbiome evolves in infants 
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when they change their diet from breast milk to solid food (Geng et al., 2021). These modeling efforts of the 
human gut microbiome will enable better design of dietary interventions with the objective of modulating the 
human gut microbiome, but it will also enable identification of new probiotics that can be used to ensure 
maintenance of healthy gut microbiome composition, and hereby contribute to improved human health. 
Currently the world market for probiotics exceeds USD50B and this is likely going to increase significantly in the 
future when it will be possible to design better products that have clinically validated health claims. 

AI for metabolism 
Use of computational tools for analysis and engineering of biological complex systems, such as metabolism is at 
a breaking point as standard mathematical modeling and GEMs have not fully solved the three major challenges 
in current biotechnology: 1) recombinant proteins used as pharmaceuticals (with an increasing market share of 
the total pharmaceutical market, which in itself is growing), are relatively expensive and it will be necessary to 
reduce production costs in order to make the drugs more widely available at fair price; 2) engineered microbes 
for production of chemicals and new products need not only new cell factories but also improved design 
processes in order to reduce the development costs (Nielsen et al., 2022); and 3) finding biomarkers and drug 
targets for improving human health needs faster validation, and as new experimental platforms like human 
organoids are increasingly more useful there is a need for holistic understanding of metabolism in the whole 
human body. For all these challenges we have been using modeling and GEMs, but the outcomes will significantly 
improve when we combine them with use of artificial intelligence (AI).  

GEMs developed for protein secretion by yeast (Li et al., 2022a), CHO cells (Gutierrez et al., 2020), and human 
cells (Feizi et al., 2017; Robinson et al., 2019) are already now used for design of cell factories that can more 
efficiently and cheaper produce a wide range of different recombinant proteins. However, even though we have 
considerable knowledge of the protein secretory pathway in these organisms, there are significant gaps in our 
understanding: the combinatorial space for engineering many target proteins involved in this pathway makes it 
difficult to find optimal design strategies but we predict that AI can improve the effectiveness in target 
identification. With the development of ecGEMs we have already demonstrated optimal cell factories design 
that can be used for production of a range of different chemicals. However, ecGEMs rely on kinetic parameters, 
i.e. turnover number, that in many cases are unknown. Additionally, many enzymes are catalytically promiscuous 
or reversible, resulting in reactions that lead to undesirable by-products or degradation of the product of interest. 
To address this challenge, we have built an AI model that helped us obtain kcat values for all enzymes present in 
more than 350 yeast species (Li et al., 2022b). These parameters could be then used to populate functional 
ecGEMs for all these microbial species. We have democratized this approach by establishing an open access 
database, GotEnzymes, that holds estimates of kcat values for more than 25 million enzyme-compound pairs 
across 8,099 organisms (Li et al., 2023). We also created an AI model to map the so-called under-ground 
metabolism, i.e. promiscuous functions of enzymes. The model trained on known enzyme-compound 
interactions, and we identified about 15,000 new reactions in yeast, that produce 15,873 new metabolites, of 
which the majority are engaged in lipid metabolism (Wu et al., 2025). This demonstrated that metabolism is 
much more diverse than captured by traditional GEMs. Using the model, it was possible to identify many 
metabolites that can be formed as by-products, and this can now be used to guide the design of less promiscuous 
enzymes in metabolism that will improve biotechnological based production. In the future AI could enable 
development of better ecGEMs, but also enable combination of model simulations with large experimental data 
obtained from large research programs using biofoundries, for even stronger prediction for optimized cell factory 
designs. 

In the area of human health AI will also play an important role in the future. So far most applications have been 
for image processing and more recently for protein structure predictions, provided by AlphaFold (Jumper et al., 
2021), for which Demis Hassabis and John Jumper received half of the 2024 Nobel Prize in Chemistry. Going 
further using AI for novel biologics design is, however, more challenging as we are dealing with an almost infinite 
number of combinations of amino acid sequences, with a desired targeted structure and properties. 
Breakthroughs are initially likely going to come through design of smaller peptides or through evaluation of small 
molecule-protein interactions, where AI is very well suited (Watson et al., 2023), and for which David Baker 
received the other half of the 2024 Nobel Prize in Chemistry. For analysis of human metabolism and identification 
of novel drugs that target metabolism, the combination of GEMs with AI may be useful as GEMs can be used to 
generate large datasets that can then be used to train new AI models. For this there is a need for whole body 
metabolic models that are built based on GEMs for different organs combined with a model describing blood 
circulation. With such models the use of GEMs will be integrated into any drug development strategy as it will 
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enable reduced experimental costs and reduced use of experimental animals, and such comprehensive models 
are very well suited to combine with AI for drug discovery. 

In conclusion, we foresee that the application of GEMs, both alone and in combination with AI, will enable 
provision of many new solutions that can improve both human and planetary health. 
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Fig. 1 Metabolic networks and how their fluxes can be regulated. A. Illustration of a typical hairball metabolic network. Green 
dots are enzymes and the dots with different colors are metabolites interacting with the enzymes. The metabolites are color 
coded according to their cellular compartment. Most metabolites are in the cytosol (yellow dots) and the mitochondria (red 
dots). B. Simple representation of the different layers of regulation of flux through a reaction that converts metabolite A to 
B. The reaction is catalyzed by the enzyme Ei and the flux is a function of the catalytic capacity (turnover number) of this 
enzyme, i.e. kcat,I, the concentration of the enzyme (Ei), and a function of the different metabolites in the network (f). In the 
simple model there is feedback inhibition of the enzyme by metabolite C, and the flux is therefore determined by the 
concentration of the three metabolites A, B and C. The enzyme concentration is determined by transcriptional regulation of 
the corresponding gene and by translational regulation of the corresponding mRNA. C. Simple illustration of the concept of 
flux balancing. In this simple network the three fluxes are constrained by a simple mass balance around the metabolite B. For 
most intracellular metabolites the turnover is so high that an assumption of steady state, resulting in the simple algebraic 
constraint equation, is reasonable. If the cells are experiencing a significant environmental change there will be a short period 
of time where the steady state assumption does not apply, but as the characteristic time constant for most metabolite 
concentrations, i.e. the concentration of the metabolite divided by the flux through the metabolite, is in the order of seconds 
(rarely minutes), a new steady state level of the metabolites will rapidly be obtained. Therefore, the simple balance equation 
is in practice always valid. 
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Fig. 2 Constraints of GEMs and how they impact flux estimation. A. In simple flux balance analysis where model 
simulation is based on the mass balances illustrated in Fig. 1C it is necessary to constrain either one input or one 
output flux combined with an objective function, here illustrated by maximizing the specific growth rate . This 
is often one of two options: 1) the substrate uptake rate is defined and there is optimized for growth rate, or 2) 
the growth rate is defined and there is minimized for substrate uptake rate. If rs is given and there is maximized 
for  then the model will obviously not predict any product formation, i.e. rp is zero. B. By constraining the flux 
through each of the reactions by the enzyme turnover number (kcat) and the enzyme concentration (Ei) it is not 
necessary to constrain any input or output flux and the model therefore has better predictive strength. Either 
the enzyme concentrations can be given as input, or the sum of all enzyme concentrations is capped at a constant 
value that is consistent with experimental measurements. 
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Fig. 3 Use of GEMs for integrative analysis of omics data. A. Using the graphical structure of GEMs it is possible 
to identify Reporter Metabolites, which are metabolites in the metabolic network around which there are 
significant changes in transcript level or protein level. The lines represent enzyme catalyzed reactions and the 
circles are metabolites. The thickness of the lines indicates the changes in enzyme levels, measured by transcripts 
or protein levels. Metabolites around which there are large changes in enzyme levels become reporter 
metabolites and the significance is marked by the greyness, with dark grey being very significant and light grey 
less significant.  B. The graphical structure of GEMs can enable identification of Reporter Networks, which are 
sub-networks where there are significant changes in the transcription level or protein level. Two sub-networks 
are marked with light grey circles. 
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