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Abstract

In this paper we extend results on reconstruction of probabilistic supports of independent
and identically distributed random variables to supports of dependent stationary R

d-
valued random variables. All supports are assumed to be compact of positive reach in
Euclidean space. Our main results involve the study of the convergence in the Hausdorff
sense of a cloud of stationary dependent random vectors to their common support. A
novel topological reconstruction result is stated, and a number of illustrative examples
are presented. The example of the Möbius Markov chain on the circle is treated at the
end with simulations.
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chains; compact support; concentration; positive reach; topological inference
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1. Introduction

Given a sequence of stationary random variables of unknown common law and unknown
compact support IM (Section 3), it can be very useful in practice to identify topological
properties of IM based on observed data. Data analysis in high-dimensional spaces from a
probabilistic point of view was initiated in [33], where data was assumed to be drawn from
sampling an independent and identically distributed (i.i.d.) probability distribution on (or near)
a submanifold IM of Euclidean space. Topological properties of IM (homotopy type and homol-
ogy) were deduced based on the random samples and the geometrical properties of IM. Several
papers on probability and topological inference ensued, some taking a persistence homol-
ogy approach by providing a confidence set for persistence diagrams corresponding to the
Hausdorff distance of a sample from a distribution supported on IM [16].

Topology intervenes in probability through reconstruction results (see [3, 7, 8, 16, 29, 33]
and references therein). This research direction is now recognized as part of ‘manifold learn-
ing’. Given an n-point cloud Xn lying in a support IM, which is generally assumed to be a
compact subspace of Rd for some d > 0, and given a certain probability distribution of these n
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1340 S. KALLEL AND S. LOUHICHI

points on IM, one can formulate from this data practical conditions to reconstruct, up to homo-
topy or up to homology, the support IM. Reconstruction up to homotopy means recovering
the homotopy type of IM. Reconstruction up to homology means determining, up to a certain
degree, the homology groups of IM. Recovering the geometry of IM, including curvature and
volume, is a much more delicate task (see [1, 13, 18, 33, 39]).

The goal of our work is to extend work of Nigoyi, Smale and Weinberger [33] from data
drawn from sampling an i.i.d. probability distribution that has support on a smooth submanifold
IM of Euclidean space to data drawn from stationary dependent random variables concentrated
inside a compact space of positive reach (or PR set). It is fitting here to define this notion: the
reach of a closed set S in a metric space is the supremum τ ≥ 0 such that any point within
distance less than τ of S has a unique nearest point in S. Spaces of positive reach τ were
introduced in [17]; they form a natural family of spaces that are more general than convex
sets (τ = ∞) or smooth submanifolds, but share many of their common integro-geometric
properties, such as ‘curvature measures’ [38] (see Section 2).

The interest in going beyond independence lies in the fact that many observations in every-
day life are dependent, and independence is not sufficient to describe these phenomena. The
study of the data support topologically and geometrically in this case can be instrumental in
directional statistics, for example, where the observations are often correlated. This can provide
information on animal migration paths or wind directions, for instance. Modeling by a Markov
chain on an unknown compact manifold, with or without boundary, makes it possible to study
such examples. Other illustrative examples can be found in more applied fields, for instance in
cosmology [9], medicine [20], imaging [37], biology [2], and environmental science [22].

To get information on an unknown support from stationary dependent data, we need to study
the convergence in the Hausdorff distance dH of the data, seen as a (finite) point cloud, to its
support, similarly to what was done in the i.i.d. case [7, 10, 11, 16]. The main feature of interest
in the metric dH is the following property: if S ⊂ M is this point cloud in M, then dH(S, M) ≤ ε

is equivalent to S being ε-dense in M (see Section 2). We can expand this relationship to the
random case as follows.

Definition 1.1. We say that a point cloud Xn of n stationary dependent Rd-valued random
variables is (ε, α)-dense in IM ⊂R

d, for given ε > 0 and α ∈ ]0, 1[, if

IP(dH(Xn, IM) ≤ ε) ≥ 1 − α.

If X := (Xi)i∈TT, with TT being Z, IN, or IN \ {0}, is a stationary sequence of IRd-valued random
variables, we say that X is asymptotically dense in IM ⊂R

d if, for all positive ε sufficiently
small and any 0 < α < 1, there exists a positive integer n0(ε, α) such that for every n ≥ n0(ε, α),
Xn = {X1, . . . , Xn} is (ε, α)-dense in IM.

The first undertaking of this paper is to identify sequences of dependent random vectors
which are asymptotically dense in a compact support. In Sections 4 and 5 we treat explicitly
a number of examples and show for all of these that the property of being asymptotically
dense in the compact support holds by means of a key technical result, Proposition 3.1, which
uses blocking techniques to give upper bounds for IP(dH(Xn, IM) > ε). Blocking techniques
are very useful in the theory of limit theorems for stationary dependent random variables, and
the underlying idea is to view and manipulate blocks as ‘independent’ clusters of dependent
variables.

We summarize our first set of results into one main theorem. Given X := (Xi)i∈TT a stationary
sequence of IRd-valued random variables, we denote by ρm(ε) the concentration quantity of the
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block (X1, . . . , Xm); that is, for ε > 0,

ρm(ε) := inf
x∈IMdm

IP(‖(X1, · · · , Xm)t − x‖ ≤ ε),

where IMdm denotes the support of the vector transpose (X1, · · · , Xm)t.

Theorem 1.1. The following stationary sequences of IRd-valued random variables are asymp-
totically dense in their common compact support:

1. Stationary m-dependent sequences such that for any ε > 0, there exists a strictly positive
constant κε such that ρm+1(ε) ≥ κε . (See Proposition 4.1.)

2. Stationary m-approximable random variables on a compact set. These are stationary
models that can be approximated by m-dependent stationary sequences (see Paragraph
4.0.2 and Proposition 4.2).

3. Stationary β-mixing sequences, with (βn)n coefficients (see (4.6) for their definition),
such that for some β > 1, and any ε > 0,

lim
m→∞ ρm(ε)

emβ

m1+β
= ∞, and lim

m→∞
e2mβ

m2
βm = 0.

(See Proposition 4.3.)

4. Stationary weakly dependent sequences, with (�(n))n dependent coefficients (as intro-
duced in (4.7)), such that for some β > 1 and any ε > 0,

lim
m→∞ ρm(ε)

emβ

m1+β
= ∞, and lim

m→∞
e2mβ

m2
�(m) = 0.

(See Proposition 4.4.)

5. Stationary Markov chains with an invariant measure μ and a suitable transition prob-
ability kernel (see Assumptions (A1) and (A2) of Section 5). (See Propositions 5.1 and
5.2.)

Furthermore, and for each sequence X of random variables listed in Theorem 1.1, we give
methods for finding a threshold n0(ε, α), sometimes with explicit formulae for it, such that Xn

is (ε, α)-dense in the common support for n ≥ n0(ε, α).
The next step is topological and consists in showing that when the Hausdorff distance

between Xn and the support is sufficiently small, it is possible to reconstruct the support up
to homotopy. We denote by B(x, r) the closed ball in the Euclidean metric centered at x with

radius r > 0, and we write Y

−→ X to mean that X deformation retracts onto Y with Y ⊂ X

(more precisely, this means that the identity map of X is homotopic to a retraction onto Y ,
leaving Y fixed during the homotopy).

Theorem 1.2. Let (Xi)i∈TT be a stationary sequence of IRd-valued random variables with com-
pact support IM having positive reach τ . Let ε ∈ (0, τ

2

)
, r ∈ (ε, τ

2

)
and suppose that Xn is

( ε
2 , α)-dense in IM. Then

IP

⎛⎝IM

−→

⋃
x∈Xn

B(x, r)

⎞⎠≥ 1 − α.
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The proof of this theorem is an immediate consequence of Definition 1.1 and a key recon-
struction result proven in Section 2 (Theorem 2.2) which gives the same minimal conditions
for recovering the homotopy type of the support IM from a sample of points Xn in IM.
Theorem 2.2 is ‘deterministic’ and should have wider application. The key geometric ideas
behind this result are in [33], and in its extension in [39], as applied to the approximation of
Riemannian submanifolds. To get Theorem 1.2, we weaken the regularity condition on the
submanifolds from smooth to C1,1, and in the hypersurface case we strengthen the bounds
on the reach. This is then applied to thickenings of a positive-reach set M (see Section 2). It
is important to contrast this result with earlier results in [29] (especially [29, Theorem 19]).
There, the radii of the balls can be different. However, our Theorem 1.2 is simpler to state and
easier to apply.

Having stated our main results, which are mainly of probabilistic and topological interest,
we can say a few words about the statistical implications. In practice, the point-cloud data are
realizations of random variables living in unknown support IM ⊂R

d. We then ask whether this
support is a circle, a sphere, a torus, or a more complicated object. If we take sufficiently many
points Xn, our results tell us that the homology of IM is the same as the homology of the union
of balls around the data

⋃
x∈Xn

B(x, r), and this can be computed in general. The uniform radius
r depends on IM only through its reach, which is then the only quantity we need to estimate or
to know a priori. Knowing the homology rules out many geometries for IM. Note that one may
want to find ways to distinguish between a support that is a circle and one that is an annulus.
However, conclusions of this sort are beyond the techniques of this paper.

1.1. Contents

We now give some more details about the content of the paper and how it is organized. We
start by establishing, in Section 2, our result on homotopy reconstruction of a support from
a point cloud in the deterministic case. Everything afterward is of probabilistic nature, with
point clouds drawn from stationary random variables. In Sections 3 and 4 we state sufficient
conditions for obtaining the asymptotically dense property, that is, conditions on concentra-
tions and dependence coefficients under which dH(Xn, IM) ≤ ε with large probability and for n
large enough. More precisely, in Section 3 we give general upper bounds for dH(Xn, IM) using
blocking techniques, i.e. by grouping the point cloud Xn into kn blocks, each block with rn

points being considered as a single point in the appropriate Euclidean space of higher dimen-
sion. This is stated in Proposition 3.1, which is the key result of this paper, where the control
of dH(Xn, IM) is reduced to the behavior of lower bounds of the concentration quantity of one
block,

ρrn (ε) = inf
x∈IMdrn

IP(‖(X1, · · · , Xrn )t − x‖ ≤ ε), (1.1)

and of
inf

x∈IMdrn

IP( min
1≤i≤kn

‖(X(i−1)rn+1, · · · , Xirn )t − x‖ ≤ ε), (1.2)

where, as before, IMdrn is the support of the block (X1, · · · , Xrn )t. Clearly, for independent
random variables, a lower bound for (1.1) is directly connected to a lower bound for (1.2),
but this is not the case for dependent random variables, and we need to control (1.1) and (1.2)
separately. Section 4 gives our main examples of stationary sequences of Rd-valued random
variables having good convergence properties, under the Hausdorff metric, to the support. For
each example we check that conditions needed for the control of (1.1) and (1.2) can be reduced

https://doi.org/10.1017/apr.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.4


Supports of stationary dependent random variables 1343

to conditions on the concentration quantity ρm(ε) associated to the vector (X1, · · · , Xm)t, for
some fixed number of components m ∈ IN \ {0}. In particular, for mixing sequences, the control
of dH(Xn, IM) is based on assumptions on the behavior of some lower bounds for this concen-
tration quantity ρm(ε) in connection with the decay of the mixing dependence coefficients, as
illustrated in Theorem 1.1. These lower bounds can be obtained by means of a condition simi-
lar to the so-called (a, b)-standard assumption (see for instance [7, 10, 11]) used in the case of
i.i.d. sequences (i.e. when kn = n and rn = 1). However, our results in Section 4 generalize the
i.i.d. case without assuming the (a, b)-standard assumption (Subsection 4.1).

Section 5 gives explicit illustrations of our main results and techniques in the case of sta-
tionary Markov chains. For this model, the quantities in (1.1) and (1.2) can be controlled from
the behavior of a positive measure ν defining the transition probability kernel of this Markov
chain, in particular from the lower bounds of the concentration quantity ν(B(x, ε) ∩ IM), for
small ε and for x ∈ IM. The threshold n0(ε, α) can also be determined explicitly. As a key illus-
tration, in Subsection 5.2 we study the Möbius Markov chain on the circle, where IM is the unit
circle and ν is the arc length measure on the unit circle. The conditions leading to a suitable
control of (1.1) and (1.2) are checked with no further assumptions and the threshold n0(ε, α)
is computed.

Section 6 gives an explicit simulation of a Möbius Markov chain studied in [26]. The intent
here is to illustrate both the topological and probabilistic parts in an explicit situation. The sim-
ulation outcomes (Figures 4 and 5) are in agreement with the theoretical results thus obtained.
Finally, all deferred proofs appear in Section 7.

2. A reconstruction result

Given a point cloud Sn = {x1, . . . , xn} on a metric space M, a standard problem is to recon-
struct this space from the given distribution of points as n gets large (see the introduction).
Various reconstruction processes in the literature are based on the nerve theorem. This basic but
foundational result can be found in introductory books on algebraic topology ([23], chapter 4)
and in most papers on manifold learning. This section takes a different route.

Below, let us write B(x, r) (resp. B̊(x, r)) for the closed (resp. open) ball of radius r, centered
at x. Starting with a point cloud Sn = {x1, . . . , xn} ⊂ M, with M a compact subset of Rd with its
Euclidean metric ‖ · ‖, we seek conditions on the radius r and on the distribution of the points
of Sn ensuring that the union of balls

⋃n
i=1 B(xi, r) deformation retracts onto M. The r-offset

(or r-thickening, r-dilation, or r-parallel set, depending on the literature) of a closed set M is
defined to be

M⊕r := {p ∈R
d | d(p, M) := inf

x∈M
||x − p|| ≤ r} =

⋃
x∈M

B(x, r).

Many of the existing theorems in homotopic and homological inference are about offsets. In
terms of those, the Hausdorff distance dH between two closed sets A and B is defined to be

dH(A, B) = inf
r>0

{A ⊂ B⊕r, B ⊂ A⊕r} = max

(
sup
x∈A

inf
y∈B

‖x − y‖, sup
x∈B

inf
y∈A

‖x − y‖
)

(2.1)

(replacing inf and sup with min and max for compact sets). This is a ‘coarse’ metric in the
sense that two closed spaces A and B can be very different topologically and yet be arbitrarily
close in Hausdorff distance.
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We say that a subset S ⊂ M is ε-dense (resp. strictly ε-dense) in M, for some ε > 0, if
B(p, ε) ∩ S 
= ∅ (resp. B̊(p, ε) ∩ S 
= ∅) for each p ∈ M. We have the following characterization.

Lemma 2.1. Let S ⊂ M be a closed subset. Then

S is ε-dense in M ⇐⇒ M ⊂ S⊕ε ⇐⇒ dH(S, M) ≤ ε.

Proof. When S ⊂ M, dH(S, M) = inf{r > 0 |M ⊂ S⊕r}. If S is ε-dense, any p in M is within
ε of an x ∈ S, and so M ⊂ S⊕ε , which implies that dH(S, M) ≤ ε. The converse is immediate.

From now on, S will always mean a point cloud in M, that is, a finite collection of points.
The following is a foundational result in the theory and is our starting point. �
Theorem 2.1. ([Proposition 3.1].) Let M be a compact Riemannian submanifold of Rd with

positive reach τ , and S ⊂ M a strictly ε
2 -dense finite subset for ε <

√
3
5τ . Then for any r ∈

[ε,
√

3
5τ [, M


−→⋃
x∈S B̊(x, r).

Remark 2.1 Theorem 2.1 is a topological ‘reconstruction’ result which recovers the homotopy
type of M from a finite sample. There are many reconstruction methods in the literature, which
are too diverse to review here (see [3, 13, 29] and references therein). Reconstructions can be
topological, meaning they recover the homotopy type or homology of the underlying manifold
M, or they can be geometrical. We address only the topological aspect in this paper. In that
regard, [29, Corollary 10] is attractive for its simplicity, as it proves a general reconstruction
result for compact sets with positive reach by applying the nerve theorem to a cover by ‘sub-
space balls’ UM = {B(xi, r) ∩ M}. For Riemannian manifolds M, there is an alternative intrinsic
geometric method for homotopy reconstruction based on ‘geodesic balls’. Let ρc > 0 be a con-
vexity radius for M. Such a radius has the property that around each p ∈ M, there is a ‘geodesic
ball’ Bg(p, ρc) which is convex, meaning that any two points in this neighborhood are joined
by a unique geodesic in that neighborhood. These geodesic balls, and their non-empty inter-
sections, are contractible. If Sn = {x1, . . . , xn} is a point cloud such that {Bg(xi, ρc)} is a cover
of M, then the associated Čech complex is homotopy equivalent to M by the nerve theorem.

2.1. Positive reach

The notion of positive reach is foundational in convex geometry. As indicated in the
introduction, the reach of a subset M is defined to be

τ (M) := sup{r ≥ 0 | ∀y ∈ M⊕r ∃! x ∈ M nearest to y}. (2.2)

A PR set is any set M with τ (M) > 0. Compact submanifolds are PR. Figure 1 gives an
example of a PR set that is not a submanifold. The quintessential property of PR sets is the
existence, for 0 < r < τ , of the ‘unique closest point’ projection

πM : M⊕r −→ M, ‖|y − πM(y)|| = dH(y, M), (2.3)

with πM(y) the unique nearest point to y in M. PR sets are necessarily closed, and thus compact
if bounded.

As already indicated, we use the notation Y

−→ X, if Y ⊂ X, to denote the fact that X

deformation retracts onto Y . ‘Thin-enough’ offsets of PR sets deformation retract onto M.

Lemma 2.2. Let M be a PR set with τ = τ (M) > 0. Then M

−→ M⊕r whenever r < τ .
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A
*

FIGURE 1. This space has positive reach τ in R
2, but a neighborhood of point A indicates it is not a

submanifold (with boundary).

Proof. This is immediate once we see that if p ∈ M and x ∈ π−1
M (p) ⊂ M⊕r, then the entire

segment [x, p] of Rd must be in π−1
M (p), so we can use the homotopy F : M⊕r × [0, 1] → M⊕r,

F(x, t) = (1 − t)x + tπM(x), t ∈ [0, 1], to get a (linear) deformation retraction, with M being
fixed during the homotopy. �

The original interest in sets of positive reach lies in the fact that they have suitable small
parallel neighborhoods with no self-intersections which allow one to compute their volume.
This leads to a Steiner-type formula and a definition of curvature measures for these sets (see
[38]). If M is a compact Riemannian submanifold in R

d, as considered in [33], then τ (M) is
positive and is the largest number having the property that the open normal bundle about M
of radius r is smoothly embedded in R

d for every r < τ . It is enough, however, for M to be
C2 to ensure that τ (M) > 0 (see [38, Proposition 14]), and it is even enough for it to be C1,1

in the case that M is a closed hypersurface (see [36, Theorem 1.3], which is an if-and-only-if
statement). We recall the definition of C1,1 (see [24, Definition 2.4.2]).

Definition 2.1. A closed manifold M ⊂R
d is said to have C1,1 boundary ∂M if for every x0 ∈

∂M one can find a local open chart U of x0 ∈ ∂M, and coordinates with the origin at x0, such
that U ∩ M = {x ∈ M | x1 ≥ f (x′)}, where x′ = (x2, . . . , xd), f is C1, and grad(f ) is Lipschitz
continuous.

Crucial to us in this section are the next two results. For general discussion, we refer to
[17, 19] for Proposition 2.1, and [4, 36] for Proposition 2.2. Throughout, a manifold is assumed
to be compact, and without boundary unless we specify the contrary. For x ∈R

d, let dM(x) =
d(x, M) = inf{d(x, y), y ∈ M} be the distance function to M. This function is 1-Lipschitz, and
it is continuously differentiable when restricted to the interior of M⊕r \ M if r < τ (see [17,
Theorem 4.8]). Elementary point-set topology shows that the interior of the r-offset of M is
int(M⊕r) =⋃

x∈M B̊(x, r) = d−1
M [0, r), and the topological boundary is d−1

M (r).

Proposition 2.1. ([17].) Let M ⊂R
d be compact of positive reach τ . For 0 < r < τ , M⊕r is a

compact manifold with C1,1 boundary.

We next describe tubular neighborhoods of a C1,1-submanifold.

Proposition 2.2. A closed submanifold N in R
d, d ≥ 2, has a tubular neighborhood ‘foliated

by orthogonal disks’ if and only if it is C1,1.

Proof. This is a consequence of [36, Theorem 1.3], which proves that N is C1,1 if and only
if it has positive reach τ . A tubular neighborhood T (i.e. an embedding of the normal bundle
extending the embedding of M) consists of all points at a distance strictly less than τ from N.
This neighborhood has a unique nearest point projection πM : T → M. The orthogonal disks
are the preimages of points in M under πM . �
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Remark 2.2. A very informative discussion about the above is on MathOverflow [31], and the
point is this. In the C1 case, the choice of the (unit, outer) normal vector at every point of N is
a continuous function (this is by definition the Gauss map). In fact if N is Ck, then the choice
of a normal N →R

n is Ck−1 (see [4, Lemma 4.6.18]). If we have C1-regularity but not C1,1,
it could happen that the normals intersect arbitrarily close to the hypersurface, in which case
the reach is indeed 0. A good example to keep in mind, which we owe to S. Scholtes (private
communication), is the graph of the real-valued function which is 0 for x ≤ 0 and x3/2 for x ≥ 0.
This function is C1,1/2, not C1,1, and one observes that near 0, the normals intersect arbitrarily
close to the curve.

If M is a compact PR set, its offset M⊕r is also compact and PR for r < τ , with reach τ − r,
where τ is the reach of M. This assertion is not entirely obvious, since, in general, the reach
is not always well-behaved for nested compact sets. By this we mean that if (K2, K1) is a pair
of nested compact sets in R

d, K1 ⊂ K2, then both cases τ1 < τ2 or τ2 < τ1 can occur, where
τi is the reach of Ki. As an example of the former case, take K1 to be the circle and K2 to
be the closed disk; for the latter case, take K1 to be a point in a finite-reach K2. The case of
(K2, K1) = (M⊕r, M) is therefore special.

Lemma 2.3. Let M ⊂R
d be a compact PR set with reach τ , and 0 ≤ r < τ ; then M⊕r has

positive reach with τ (M⊕r) = τ − r > 0.

Proof. Essentially, the point is that any ray from y 
∈ M⊕r to M must cut the boundary
∂M⊕r at a point lying at a distance of r to M. Suppose r > 0, so that M⊕r is a codimension-0
manifold with boundary ∂M⊕r in R

d. Write τr for its reach. We will first prove that if y in the
complement of M⊕r has a unique projection onto M, then necessarily it has a unique projection
onto M⊕r (this will prove that τr > 0 and that τ − r ≤ τr). Reciprocally, we will argue that if y
has a unique projection onto M, then it also has a unique projection onto M⊕r.

To prove the first claim, write y1 = [y, πM(y)] ∩ ∂M⊕r. We claim that y1 is the unique closest
point to y in M⊕r. Indeed, if there is z1 on that boundary that is closer to y, then

d(y, πM(z1)) ≤ d(y, z1) + d(z1, πM(z1)) = d(y, z1) + r ≤ d(y, y1) + d(y1, M) = d(y, πM(y)),

and so d(y, πM(z1)) = d(y, πM(y)) (since d(y, πM(y)) is smallest distance from y to M),
and by uniqueness, πM(z1) = πM(y). This implies that d(y, z1) + d(z1, M) = d(y, M), and so
y, z1, πM(y) are aligned. This can only happen if y1 = z1.

Suppose now that y has a unique projection onto M⊕r, which we label y’. We can check
that it also has a unique projection onto M. Let z be that projection. By a similar argument as
previously, z must be πM(y′) (so unique) and y, y’,z are aligned. This shows reciprocally that
τr + r ≤ τ .

The above arguments show that τ = τr + r, and in fact they can be used to show in this case

that M⊕r′ = (M⊕r)⊕(r′−r) for all r ≤ r′ < τ . �

2.2. Manifolds with boundary

In order to apply our ideas to PR sets, we need to extend Theorem 2.1 from closed
Riemannian submanifolds to submanifolds with boundary. Note that the reach of ∂M (man-
ifold boundary) and M are not comparable in general. Indeed, take M to be the y = sin (x)
curve on [0, π ], with boundary the endpoints. Then τ (M) < τ (∂M). Take now a closed disk M
in R

2. Then τ (∂M) < τ (M) = ∞. If M is of codimension 0, then τ (∂M) ≤ τ (M) always.
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In [39], the authors managed to extend Theorem 2.1 to smooth submanifolds with boundary

and showed that in this case the bound
√

3
5τ in Theorem 2.1 can be replaced by δ

2 , where δ =
min (τ (M), τ (∂M)). We revisit this result in the codimension-0 case and establish the following
‘twice the density, half the reach’ criterion.

Proposition 2.3. Let M be a compact codimension-0 submanifold of Rd with C1,1 boundary
and having positive reach τ = τ (M) > 0, and let S ⊂ M be an ε

2 -dense finite subset with ε < τ
2 .

Then for any r such that ε ≤ r < τ
2 , M


−→⋃
x∈S B(x, r).

Notice that M need not be connected. Notice also that we have weakened the regularity on
∂M from smooth to C1,1. According to [36, Theorem 1.3] (see also [17, Remark 4.20]), this
condition is enough to ensure that τ (∂M) > 0. Finally, notice that we use closed balls in our
statement, and that they may have radius larger than ε, but not exceeding τ

2 .

Proof. The proof is an adaptation of Lemma 4.1 of [33] and Lemma 4.3 of [39] for smooth
submanifolds. For completeness, we will reconstruct the part of the argument that we need.

Firstly, since the reach of a disjoint finite union of PR sets is the least of their reaches and
their pairwise distances, we can assume without loss of generality that M is connected from the
start. Let M be connected of codimension 0. Then its boundary is a connected codimension-1
closed submanifold (i.e. a closed hypersurface). It divides Euclidean space into two regions:
M and its complement. We let τ− denote the reach of a component of ∂M in M (the interior
region), and τ+ its reach within the open (exterior) region. Clearly τ := τ (M) = τ+.

Now ∂M is C1,1 by hypothesis, and being a closed hypersurface, it is necessarily orientable.
It has a continuous normal vector field into the exterior region, defining a (trivial) R+-bundle
T(∂M)+ of T(∂M). We write T⊥,+

p (∂M) for the fiber at p ∈ ∂M, which is a half-line extending
into the exterior region, perpendicular to Tp(∂M). Linear deformation retraction along this

direction as in Lemma 2.2, keeping M fixed, shows that M

−→ M⊕r as long as r < τ+ = τ

(where normal directions never intersect). We have that

M⊕r =
⋃
x∈M

B(x, r) 
 M, r < τ .

We want to show that this retraction of M⊕r onto M (along fibers of T+(∂M)) restricts to a
deformation retraction onto M of the middle space S⊕r in the sequence of inclusions below:

M ⊂ S⊕r =
⋃
x∈S

B(x, r) ⊂ M⊕r, ε ≤ r <
τ

2
.

That is, we only take the union of balls centered at points of S. This covers M since r ≥ ε
2

and any point of M is within distance ε/2 of S. Let us see how the deformation retraction of
the bigger space M⊕r onto M may fail to restrict to a retraction on S⊕r: let v ∈ T⊥,+

p (∂M),
and suppose v ∈ B(q, r), with q ∈ S but q 
∈ B(p, r). So the line segment [v, p] is not in the ball
B(q, r), and the linear retraction will leave that ball eventually. This, however, will not cause
a problem as long as the segment falls in another ball and does not leave the entire union⋃

x∈S B(x, r). This happens if both v and p are in some other ball B(x, r), x ∈ S (because balls
are convex). By the density condition, we can also demand that x be at a distance of at most ε

2
from p. To recapitulate, for every such p, v, by picking an x ∈ S within a distance of ε

2 from p
and a distance of r from v, we guarantee that the deformation retraction of M⊕r restricts to S⊕r

(see Figure 2).
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v

q

ε/2

x

p

r

FIGURE 2. M ⊂R
d is represented by the shaded area, p, q ∈ ∂M, and x, q ∈ S. The points q, p are on a

circle tangent to Tp(M), having radius τ and center on the vertical dashed line representing the normal

direction T⊥,+
p (M), pointing into the exterior region, while x is anywhere in M ∩ S at a distance of at most

ε
2 from p. An extreme disposition of such points (meaning when v is as far as possible from x) happens
when v, p, x are aligned. This figure is the analog of Figure 2 of [33] and Figure 1 of [39].

With the above target in mind, consider the following configuration of points: p ∈ ∂M, v ∈
T⊥,+

p (∂M) ∩ B(p, τ ), q ∈ S, and v ∈ B(q, r) but p 
∈ B(q, r). How far can v be from p, among
all choices of such points q? The answer can be extracted from the key Lemma 4.1 of [33].
The worst-case scenario, corresponding to when v would be farthest from p, is when q and
p lie on the circle of radius τ , with center in T⊥,+

p as in Figure 2, and p,q,v make up an
isosceles triangle with |p − q| = |q − v| = r. Lemma 4.1 of [33] applied to this situation gives

that d(v, p) <
r2

τ+ = r2

τ
< τ .

Next, we look for an x ∈ B(p, ε
2 ) ∩ S 
= ∅ which is within distance r of v. By the triangle

inequality, d(x, v) ≤ d(x, p) + d(p, v) ≤ ε

2
+ r2

τ
, and so in order for v ∈ B(x, r), it is enough to

require that
ε

2
+ r2τ < r ⇐⇒ r2 − rτ + ετ

2
< 0. (2.4)

Any value of r between the roots of the polynomial on the right-hand side does the job, and it
is immediate that r ∈ [ε, τ

2

[
satisfies this condition. The proof is complete.

Note that in the case of Theorem 2.1 in [33], that is, when one is considering M that is
closed (i.e. with no boundary), the point x to be chosen cannot simply be ‘anywhere’ around
p ∈ M, as in Figure 2, but must lie on M (which would be the boundary in that figure), and thus
the authors get a different bound on r. �

We finally come to the proof of the main reconstruction result of this section, which yields
Theorem 1.2 as a consequence. We thank the referee for suggesting this statement, which is
simpler than the one we originally gave.

Theorem 2.2. Let M be a compact space in R
d with positive reach τ , let ε ∈ (0, τ

2

)
, and let

r ∈ (ε, τ
2

)
. If S ⊂ M is ε

2 -dense, then M

−→
⋃
x∈S

B(x, r).

Proof. Notice that by Proposition 2.3, the result is true if M is a codimension-0 submanifold
whose boundary is C1,1 of reach τ > 0 (let us refer to this submanifold as a ‘good object’). The
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idea now is very simple and relies on the fact that, if M itself is not such a good object but is
of positive reach, then any slight thickening of it will be a good object.

Assume that S is ε/2-dense in M, with ε < τ
2 . We first collect the following facts:

1. For 0 < δ < τ , M⊕δ deformation retracts onto M (Lemma 2.2).

2. For 0 < δ < τ , S is
(

ε
2 + δ

)
-dense in M⊕δ ⊃ M.

3. The offset M⊕δ is a codimension-0 submanifold of R
d, with C1,1 boundary

(Proposition 2.1). Its reach is τ ′ = τ − δ (Lemma 2.3).

Assume that δ <
τ − 2ε

5
. This is equivalent to ε + 2δ < τ−δ

2 ; that is, twice the density of

S in M⊕δ is less than half the reach of M⊕δ . By Proposition 2.3, for all r that we can insert
between these two numbers, we get a homotopy reconstruction of M⊕δ; more precisely,

ε + 2δ ≤ r <
τ − δ

2
=⇒

⋃
x∈S

B(x, r) 
 M⊕δ . (2.5)

Returning to the hypotheses of Theorem 2.2, choose any r such that ε < r < τ
2 . Pick δ such

that 0 < δ < min

{
r − ε

2
, τ − 2r

}
. For this δ, ε + 2δ ≤ r and r < τ−δ

2 , and thus by (2.5),⋃
x∈S B(x, r) deformation retracts onto M⊕δ . Since the latter deformation retracts onto M, the

composition of both retractions shows that M

−→⋃

x∈S B(x, r). The proof is complete. �

3. Blocking techniques and upper bounds for the Hausdorff distance

In this section we state and prove the main technical result of this paper. This is given by
Proposition 3.1 below, which is general and of independent interest. It is based on blocking
techniques as well as a useful geometrical result, proven in [33], relating the minimal covering
number of a compact set by closed balls to the maximal length of a chain of points whose
pairwise distances are bounded below.

Let (Xi)i∈TT (where TT is either Z, IN, or IN \ {0}) be a stationary sequence of IRd-valued
random variables. Let P be the distribution of X1. Suppose that P is supported on a compact
set IM of IRd, i.e. IM := supp(Xj) is the smallest closed set carrying the mass of P:

IM =
⋂

C⊂IRd, P(C)=1

C, (3.1)

where C means the closure of the set C in Euclidean space. Recall that Xn = {X1, · · · , Xn}
and this is viewed as a subset of IRd. Throughout, we will be working with the Hausdorff dis-
tance dH (2.1). Note that dH({x}, {y}) = ||x − y|| (in the Euclidean distance) if x, y are points.
Note that the distance of a point y to a closed set A is d(y, A) = infx∈A ||x − y||, while its
Hausdorff distance to A is dH(y, A) = supx∈A ||x − y||. This explains in part why this metric
is very sensitive to outliers (see [32]) and to noisy phenomena.

We wish to give upper bounds for IP(dH(Xn, IM) > ε) via a blocking technique. Let k and r
be two positive integers such that kr ≤ n. For 1 ≤ i ≤ k, define the random vector Yi,r in IRdr by
Yi,r = (X(i−1)r+1, · · · , Xir)t. Let

Yk = {Y1,r, · · · , Yk,r}

https://doi.org/10.1017/apr.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.4


1350 S. KALLEL AND S. LOUHICHI

be a subset in IRdr of k stationary random vectors which are not necessarily independent. The
support IMdr of the vector Y1,r is included in IM × · · · × IM (r times), and since, by definition,
IMdr is a closed set, it is necessarily compact in IRdr. As we now show, it is possible to reduce
the behavior of dH(Xn, IM) to that of the sequence of vectors (Yi,r)1≤i≤k for any k and r for
which kr ≤ n and under only the assumption of stationarity of (Xi)i∈TT.

Proposition 3.1. With ε > 0, and with k and r any positive integers such that kr ≤ n, it holds
that

IP(dH(Xn, IM) > ε) ≤ IP(dH(Yk, IMdr) > ε) ≤ supx∈IMdr
IP
(
min1≤i≤k ‖Yi,r − x‖ > ε/2

)
1 − supx∈IMdr

IP
(‖Y1,r − x‖ > ε/4

) .

Proof. Since IP(Yk ⊂ IMdr) = 1, we have almost surely (a.s.)

dH(Yk, IMdr) = sup
x∈IMdr

min
1≤j≤k

‖Yj,r − x‖. (3.2)

Since IMdr is compact, there exists a finite set CN = {c1, · · · , cN} ⊂ IMdr ⊂ IRdr of centers of
balls forming a minimal ε-covering set for IMdr, so that, for a fixed x ∈ IMdr, there exists ci ∈
CN ⊂ IMdr such that

‖x − ci‖ ≤ ε.

Hence,

‖Yj,r − x‖ ≤ ‖Yj,r − ci‖ + ‖ci − x‖ ≤ ‖Yj,r − ci‖ + ε.

Consequently, for any x ∈ IMdr,

min
1≤j≤k

‖Yj,r − x‖ ≤ min
1≤j≤k

‖Yj,r − ci‖ + ε ≤ max
1≤i≤N

min
1≤j≤k

‖Yj,r − ci‖ + ε

and

sup
x∈IMdr

min
1≤j≤k

‖Yj,r − x‖ ≤ max
1≤i≤N

min
1≤j≤k

‖Yj,r − ci‖ + ε.

Hence,

IP

(
sup

x∈IMdr

min
1≤j≤k

‖Yj,r − x‖ ≥ 2ε

)
≤ IP

(
max

1≤i≤N
min

1≤j≤k
‖Yj,r − ci‖ ≥ ε

)

≤ N max
1≤i≤N

IP

(
min

1≤j≤k
‖Yj,r − ci‖ ≥ ε

)
≤ N sup

x∈IMdr

IP

(
min

1≤j≤k
‖Yj,r − x‖ ≥ ε

)
. (3.3)

We now have to bound N. For this we use [33, Lemma 5.2] (as was done in [16]), to get

N ≤
(

inf
x∈IMrd

IP(‖Y1,r − x‖ ≤ ε/2)

)−1

=
(

1 − sup
x∈IMrd

IP(‖Y1,r − x‖ > ε/2)

)−1

. (3.4)

Hence, by (3.2) together with (3.3) and (3.4),

IP(dH(Yk, IMdr) > 2ε) (3.5)

≤
(

1 − sup
x∈IMrd

IP(‖Y1,r − x‖ > ε/2)

)−1

sup
x∈IMrd

IP

(
min

1≤j≤k
‖Yj,r − x‖ ≥ ε

)
.
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Thanks to (3.5), the proof of this proposition is complete if we prove that

IP(dH(Xn, IM) > ε) ≤ IP(dH(Yk, IMdr) > ε) . (3.6)

Recall that IP(Xn ⊂ IM) = 1, so that dH(Xn, IM) = supx∈IM min1≤j≤n ‖Xj − x‖, and, since
kr ≤ n,

dH(Xn, IM) = sup
x∈IM

min
1≤j≤n

‖Xj − x‖ ≤ sup
x∈IM

min
1≤j≤kr

‖Xj − x‖ = dH(Xkr, IM).

From this we deduce that

IP(dH(Xn, IM) > ε) ≤ IP(dH(Xkr, IM) > ε) . (3.7)

It finally remains to prove that

IP(dH(Xkr, IM) > ε) ≤ IP(dH(Yk, IMdr) > ε) . (3.8)

For this, let Xj ∈Xkr and x ∈ IM. Then there exist l and i such that Xj is the lth component of
the vector Yi,r. We claim also that there exists x̃ ∈ IMdr such that x is the lth component of
the vector x̃. In fact, let πl : IRdr → IRd be the projection onto the lth factor. It follows from an
elementary property of the support, by the continuity of πl and the closure of IMdr, that

IM = supp(Xj) = πl(supp(Yi,r)) = πl(IMdr) = πl(IMdr),

where A denotes, as before, the closure of the set A. So, in particular, any x ∈ IM is x = πl(x̃)
for some x̃ ∈ IMdr. From this, we deduce that, for any Xj ∈Xkr and x ∈ IM, there exist 1 ≤ i ≤ k
and x̃ ∈ IMdr such that, a.s.,

‖Xj − x‖ ≤ ‖Yi,r − x̃‖.

Hence,

inf
Xj∈Xkr

‖Xj − x‖ ≤ inf
Yi,r∈Yk

‖Yi,r − x̃‖ ≤ dH(Yk, IMdr).

Consequently, since IP(Xkr ⊂ IM) = 1,

dH(Xkr, IM) = sup
x∈IM

inf
Xj∈Xkr

‖Xj − x‖ ≤ dH(Yk, IMdr).

From this we get (3.8). Now (3.8) together with (3.7) proves (3.6). The proof of the proposition
is complete. �

4. Asymptotically dense sequences of random variables

As indicated in the introduction, our main goal is to find conditions under which a sequence
X is asymptotically dense in the common support (see Definition 1.1). In this section, we give
conditions and several examples of dependent random variables for which this is the case. This
property is established every time by means of Proposition 3.1 applied with suitable choices of
subsequences k and r of n, and for all these examples, it holds that for any ε > 0,

lim
n→∞ IP(dH(Yk, IMdr) > ε) = lim

n→∞ IP(dH(Xn, IM) > ε) = 0.

All proofs of the propositions listed in this section appear in Section 7.
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4.0.1. Stationary m-dependent sequence on a compact set. Recall that the sequence (Xi)i∈TT
is m-dependent for some m ≥ 0 if the two σ -fields σ (Xi, i ≤ k) and σ (Xi, i ≥ k + m + 1) are
independent for every k. In particular, 0-dependent is the same as independent.

Example 4.1. (An m-dependent sequence.) Let (Ti)i∈IN be a sequence of i.i.d. random variables
with values in IRd. Let h be a real-valued function defined on IRdm. The stationary sequence
(Xn)n∈IN defined by Xn = h(Tn, Tn+1, · · · , Tn+m) is a stationary sequence of m-dependent
random variables.

For m ∈ IN \ {0}, ε > 0, and Y1,m = (X1, · · · , Xm)t, as in the introduction, define the
concentration coefficient of the vector Y1,m by

ρm(ε) = inf
x∈IMdm

IP
(‖Y1,m − x‖ ≤ ε

)
. (4.1)

The following proposition gives conditions on ρm(ε) under which the asymptotically dense
property evoked in Definition 1.1 is satisfied.

Proposition 4.1. Let (Xi)i∈TT be a stationary sequence of m-dependent IRd-valued random vec-
tors. Suppose that X1 has compact support IM. Let ε0 > 0 be fixed. Suppose that for any
0 < ε < ε0, there exists a strictly positive constant κε such that

ρm+1(ε) ≥ κε .

Then it holds for any 0 < ε < ε0 and any n ≥ m + 1 that

IP(dH(Xn, IM) > ε) ≤ (1 − κ ε
2
)[ 1

2 [ n
m+1 ]]

κ ε
4

,

where [ · ] denotes the integer part. Consequently, for any α ∈ ]0, 1[ and any n ≥ n0(ε, α),
where

n0(ε, α) = 2(m + 1)

κ ε
2

(
log

(
1

α

)
+ log

(
1

κ ε
4

))
+ 3(m + 1),

we have dH(Xn, IM) ≤ ε with probability at least 1 − α.

The requirements of Proposition 4.1 prove that the sequence (Xn)n∈TT is asymptotically
dense in IM with threshold n0(ε, α) as above.

4.0.2. Stationary m-approximable random variables on a compact set. In this section we dis-
cuss, in the spirit of [25], some examples of stationary compactly supported random variables
(Xn)n∈Z that can be approximated by m-dependent stationary sequences. More precisely, the
article [25] introduced the notion of an Lp-m-approximable sequence. This notion is related
to m-dependence (see [25, Definition 2.1]) and is different from mixing (see Paragraph 4.0.3
below for a definition of mixing). The idea is to construct, for m ∈ IN, a stationary sequence
(X(m)

n )n∈Z that is m-dependent and compactly supported, for which the Hausdorff distance
between the two sets Xn and X

(m)
n := {X(m)

1 , · · · , X(m)
n } is suitably controlled. In our case,

it is not necessary that X1 and X(m)
1 have the same distribution; rather, what we need is that X1

and Xm
1 have the same compact support. This will give us more choices for the construction of

the sequence (X(m)
n )n∈Z, which can be obtained by the method of coupling or by a truncation

argument (see [25] for more details). For our purpose, we shall use a truncation.
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More precisely, we will consider the sequence

Xn = f (εn, εn−1, · · · ), (4.2)

where (εi)i∈Z is an i.i.d. sequence with values in some measurable space S and f is a
real bounded function defined on S∞. The sequence (X(m)

n )n∈Z constructed from (Xn)n∈Z by
truncation is

X(m)
n = f (εn, · · · , εn−m, 0, · · · ). (4.3)

Clearly (X(m)
n )n∈Z is a stationary, m-dependent sequence and has the same compact support

as (Xn)n∈Z as soon as f is bounded. We will thus assume that f is bounded; that is, ‖f ‖∞ =
supx∈S∞ |f (x)| < ∞. As before, IM will be the common support of these two sequences.

Now we need an additional assumption on f in order to ensure good control of the Hausdorff
distance between the two sets Xn and X

(m)
n . We suppose that f is a real-valued bounded function

and that it satisfies the following Lipschitz-type assumption (stated in [25]): there exists a
decreasing sequence (cm)m∈IN, tending to 0 as m tends to infinity, such that

|f (am+1, · · · , a1, x0, · · · ) − f (am+1, · · · , a1, y0, · · · )| ≤ cm|f (x0, x−1, · · · ) − f (y0, y−1, · · · )|,
(4.4)

for any numbers al, xi, yi ∈ S, l ∈ {1, m + 1}, and i ≤ 0. This assumption is satisfied, for
instance, by some autoregressive models.

The next lemma proves that the truncated sequence (X(m)
n )n∈Z is a Hausdorff approximation

of the original sequence (Xn)n∈Z.

Lemma 4.1. Let ε > 0 be fixed, let (εi)i∈Z be an i.i.d. sequence, let f be a bounded function
satisfying (4.4), and let (Xn)n∈Z and (X(m)

n )n∈Z be the associated sequences as in (4.2) and
(4.3), respectively. Let m ∈ IN be such that

2cm‖f ‖∞ < ε,

where ‖f ‖∞ is the supremum of f. Then dH(X(m)
n ,Xn) < ε, a.s.

In view of Lemma 4.1, the condition limm→∞ cm = 0 is enough to approximate, in the
Hausdorff sense, the sequence (Xn)n∈Z by the truncated sequence (X(m)

n )n∈Z.

Proof. We recall that

dH(X(m)
n ,Xn) = max

(
max

1≤i≤n
min

1≤j≤n
|Xi − X(m)

j |, max
1≤i≤n

min
1≤j≤n

|Xj − X(m)
i |

)
.

Hence,

IP(dH(X(m)
n ,Xn) ≥ ε)

≤ IP( max
1≤i≤n

min
1≤j≤n

|Xi − X(m)
j | ≥ ε) + IP( max

1≤i≤n
min

1≤j≤n
|Xj − X(m)

i | ≥ ε)

≤ 2n max
1≤i≤n

IP(|Xi − X(m)
i | ≥ ε).

Now,

|Xi − X(m)
i | ≤ cm|f (εn−m−1, εn−m−2, · · · ) − f (0, 0, · · · )| ≤ 2cm‖f ‖∞.
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Consequently, the event (|Xi − X(m)
i | ≥ ε) implies that ε ≤ 2cm‖f ‖∞, and then the probability

IP(|Xi − X(m)
i | ≥ ε) vanishes whenever m satisfies 2cm‖f ‖∞ < ε. We conclude that, for such m,

IP(dH(X(m)
n ,Xn) ≥ ε) = 0. �

We can now apply Proposition 4.1 to the m-dependent sequence (X(m)
n )n∈Z, combined with

Lemma 4.1, to establish asymptotic (ε, α)-density for (Xn)n∈Z. Doing this, we obtain the
result below under a suitable control of the following concentration coefficient, related to the
truncated sequence (X(m)

n )n∈Z (as defined in (4.3)):

ρ
(m)
m+1(ε) = inf

x∈IRm+1
IP(‖Y (m)

1,m+1 − x‖ ≤ ε), (4.5)

with Y (m)
1,m+1 = (X(m)

1 , · · · , X(m)
m+1)t.

Proposition 4.2. Let (Xn)n∈Z and f be as in the statement of Lemma 4.1. Let ε0 > 0, ε ∈ ]0, ε0[
be fixed, and let m ∈ IN be such that 2cm‖f ‖∞ < ε. Suppose that the concentration coefficient
ρ

(m)
m+1(ε) related to the truncated sequence (X(m)

n )n∈Z, and defined in (4.5), satisfies

ρ
(m)
m+1(ε) ≥ κε,

for some κε > 0. Then for any n ≥ m + 1,

IP(dH(Xn, IM) ≥ 2ε) ≤ (1 − κ ε
2
)[ 1

2 [ n
m+1 ]]

κ ε
4

,

and a conclusion similar to that of Proposition 4.1 is true for such m.

Proof. This follows from Lemma 4.1 together with Proposition 4.1 and the fact that

IP(dH(Xn, IM) ≥ 2ε) ≤ IP(dH(Xn,X
(m)
n ) + dH(X(m)

n , IM) ≥ 2ε)

≤ IP(dH(Xn,X
(m)
n ) ≥ ε) + IP(dH(X(m)

n , IM) ≥ ε).

�
4.0.3. Stationary β-mixing sequence on a compact set. Recall that the stationary sequence
(Xn)n∈IN is β-mixing if βn tends to 0 when n tends to infinity, where the coefficients (βn)n>0
are defined as follows (see [5, 40] for the expression for βn):

βn = sup
l≥1

IE {sup |IP(B|σ (X1, · · · , Xl)) − IP(B)| , B ∈ σ (Xi, i ≥ l + n)} . (4.6)

The following corollary gives conditions on the behavior of the two sequences (ρn(ε))n>0 and
(βn)n>0 under which the asymptotically dense property of Definition 1.1 is satisfied.

Proposition 4.3. Let (Xn)n≥0 be a stationary β-mixing sequence. Suppose that X1 is supported
on a compact set IM. Then it holds, for any ε > 0 and any sequences kn and rn such that
knrn ≤ n,

IP(dH(Xn, IM) > ε) ≤
k2

nβrn + kn exp
(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
.
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Suppose moreover that for some β > 1, and any ε > 0 small enough,

lim
m→∞ ρm(ε)

emβ

m1+β
= ∞, and lim

m→∞
e2mβ

m2
βm = 0.

Then (Xn)n≥0 is asymptotically dense in IM.

In the proof of Proposition 4.3 given in Section 7, we construct two sequences (kn)n and
(rn)n for which

lim
n→∞

k2
nβrn + kn exp

(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
= 0.

The threshold n0(ε, α) is not explicitly calculated, but it is that integer for which

k2
nβrn + kn exp

(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
≤ α,

for all n ≥ n0(ε, α).

4.0.4. Stationary weakly dependent sequence on a compact set. We suppose here that (Xi)i∈TT
is a stationary sequence such that X1 takes values in a compact support IM. We suppose also
that this sequence is weakly dependent in the sense of [14]. More precisely, we suppose that it
satisfies the following definition.

Definition 4.1. We say that the sequence (Xn)n∈TT is (IL∞, �)-weakly dependent if there exists
a non-increasing function � such that limr→∞ �(r) = 0, and such that for any measurable
functions f and g bounded (respectively by ‖f ‖∞ and ‖g‖∞) and for any i1 ≤ · · · ≤ ik < ik +
r ≤ ik+1 ≤ · · · ≤ in one has∣∣∣∣Cov

(
f (Xi1, · · · , Xik )

‖f ‖∞
,

g(Xik+1 , · · · , Xin )

‖g‖∞

)∣∣∣∣≤ �(r). (4.7)

See [12, Definition 2.2] for a more general setting.
The dependence condition in Definition 4.1 is weaker than the Rosenblatt strong mixing

dependence [35]. Let us briefly explain this. The α-mixing coefficient between the two sigma-
fields A and B is defined as

α(A,B) = sup
A∈A,B∈B

|IP(A ∩ B) − IP(A)IP(B)|.

The sequence (Xn)n∈TT is strongly mixing if its coefficient αn defined, for n ≥ 1, by

αn = sup
k∈TT

α(Pk,Fk+n),

tends to 0 as n tends to infinity, with Pk = σ (Xi, i ≤ k) and Fk+n = σ (Xi, i ≥ k + n). An
equivalent formula for αn, using the covariance between some functions, is stated in [6,
Theorem 4.4]:

αn = 1

4
sup

{
Cov(f , g)

‖f ‖∞‖g‖∞
, f ∈ L∞(Pk), g ∈ L∞(Fk+n)

}
,
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where L∞(A) denotes the set of bounded A-measurable functions for some σ -fields A. It
follows from this formula that strongly mixing sequences are (IL∞, �)-weakly dependent, as
stated in Definition 4.1 (with �(r) = αr for r > 0). The converse, however, is not necessarily
true (see [12]).

We can now state our result for stationary weakly dependent sequences.

Proposition 4.4. Let (Xn)n∈TT be a stationary, (IL∞, �)-weakly dependent sequence in the
sense of Definition 4.1. Suppose that X1 is supported on a compact set IM. Then it holds,
for any ε > 0 and any sequences kn and rn such that knrn ≤ n, that

IP(dH(Xn, IM) > ε) ≤
k2

n�(rn) + kn exp
(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
.

Suppose moreover that, for some β > 1, and any positive ε small enough,

lim
m→∞ ρm(ε)

emβ

m1+β
= ∞, and that lim

m→∞
e2mβ

m2
�(m) = 0.

Then this sequence (Xn)n∈TT is asymptotically dense in IM.

Here again the threshold n0(ε, α) is not explicitly calculated but can be given by an
inequality, as in the case of β-mixing.

4.1. Comparison with the i.i.d. case

We can compare the bounds of Proposition 4.1 (Propositions 4.3 and 4.4 respectively) with
what has already been obtained in the i.i.d. case (see [7, 10, 11]). That is, we restrict to the case
when m = 0 (respectively, kn = n and rn = 1, βn = �(n) = 0 for n ≥ 1). Suppose that we are in
this situation and that, moreover, ρ1(ε) has a strictly positive lower bound, say κε . Then all the
conclusions of the three propositions above give the same upper bound for IP(dH(Xn, IM) > ε),
which is

exp(− [ n
2 ]κ ε

2
)

κ ε
4

. (4.8)

Now we suppose, as already done in the i.i.d. case, that the (a, b)-standard assumption is
satisfied, i.e, κε = aεb, for some a > 0, b > 0, and for positive ε small enough. Recall that the
(a, b)-standard assumption was used, in the i.i.d. context, for set estimation problems under
Hausdorff distance ([10, 11]) and also for a statistical analysis of persistence diagrams ([7,
16]). Then, clearly, an upper bound for (4.8) is

C
exp(− cnεb)

εb
,

for some positive constants C and c (independent of n and of ε), as has already been found
in the i.i.d. case (see for instance the upper bound (3.2) in [10]). Finally, we have to check
that the requirements of Propositions 4.1, 4.3, and 4.4 are satisfied under the (a, b)-standard
assumption (i.e. when ρ1(ε) ≥ aεb). Since we are in the case when m = 0 in Proposition 4.1,
and when βn = 0, �n = 0, n ≥ 1 in Propositions 4.3 and 4.4, we have only to check that the

(a, b)-standard assumption ensures, for i.i.d. random variables, that limm→∞ ρm(ε) emβ

m1+β = ∞.
We deduce from the inequality

‖(X1, · · · , Xm)t − (x1, · · · , xm)t‖2 ≤ m max
1≤i≤m

‖Xi − xi‖2
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that

IP

(
m max

1≤i≤m
‖Xi − xi‖2 ≤ ε2

)
≤ IP

(
‖(X1, · · · , Xm)t − (x1, · · · , xm)t‖2 ≤ ε2

)
.

Now,

IP

(
m max

1≤i≤m
‖Xi − xi‖2 ≤ ε2

)
= (

IP
(‖X1 − x1‖ ≤ ε/

√
m
))m

.

Hence, ρm(ε) ≥ ρm
1 (ε/

√
m). Combining this bound with the (a, b)-standard assumption,

we get

am εbm

mbm/2

emβ

m1+β
≤ ρm(ε)

emβ

m1+β
.

The left term tends to infinity as n goes to infinity (since β > 1); hence lim
m→∞ ρm(ε)

emβ

m1+β
= ∞.

As an important conclusion, the previous three propositions generalize the i.i.d. case well,
even without the (a, b)-standard assumption.

5. Application to stationary Markov chains on a compact state space

This section gives conditions on stationary Markov chains on a compact state space
that guarantee that they are asymptotically dense in this state space. Those conditions
can be checked by studying the β-mixing properties of the Markov chains and applying
Proposition 4.3 above. However, in this section we choose to be even more precise, adopting
specific models and carrying out explicit calculations.

Let (Xn)n≥0 be a homogeneous Markov chain satisfying the following two assumptions:

(A1) The Markov chain has an invariant measure μ with compact support IM (and then the
chain is stationary).

(A2) The transition probability kernel K, defined for x ∈ IM by

K(x, ·) = IP(X1 ∈ ·|X0 = x),

is absolutely continuous with respect to some measure ν on IM; that is, there exist
a positive measure ν and a positive function k such that for any x ∈ IM, K(x, dy) =
k(x, y)ν(dy). Moreover, for some b > 0 and ε0 > 0,

Vd := inf
x∈IM

inf
0<ε<ε0

(
1

εb

∫
B(x,ε)∩IM

ν(dx1)

)
> 0

and there exists a positive constant κ such that inf
x∈IM, y∈IM

k(x, y) ≥ κ > 0.

Proposition 5.1. Suppose that Assumptions (A1) and (A2) are satisfied for some Markov chain
(Xn)n≥0. Then, for any n ≥ 1 and any positive ε small enough,

IPμ (dH(Xn, IM) > ε) ≤ 4b(1 − κεbVd/2b)n

κεbVd
.
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Consequently this Markov chain is asymptotically dense in IM, with a threshold n0(ε, α)
given by

n0(ε, α) = 2b

κεbVd

(
ln

(
4b

κεbVd

)
+ ln

(
1

α

))
,

and Vd is as introduced in Assumption (A2).

The proof and some key lemmas are deferred to Section 7.4.
We next give examples of Markov chains satisfying the requirements of Proposition 5.1.

These examples concern stationary Markov chains on balls and stationary Markov chains on
circles.

5.1. Stationary Markov chains on a ball of IRd

5.1.1. Random difference equations. Let (Xn)n≥0 be a Markov chain defined, for n ≥ 0, by

Xn+1 = An+1Xn + Bn+1, (5.1)

where An+1 is a (d × d)-matrix, Xn ∈ IRd, Bn ∈ IRd, and (An, Bn)n≥1 is an i.i.d. sequence
independent of X0. Recall that for a matrix M, ‖M‖ is the operator norm, defined by
‖M‖ = supx∈IRd, ‖x‖=1 ‖Mx‖. It is well known that for any n ≥ 1, Xn is distributed as∑n

k=1 A1 · · · Ak−1Bk + A1 · · · AnX0; see for instance [27]. It is also well known that the
conditions (see [21, 28])

IE( ln+ ‖A1‖) < ∞, IE( ln+ ‖B1‖) < ∞, lim
n→∞

1

n
ln ‖A1 · · · An‖ < 0 a.s. (5.2)

ensure the existence of a stationary solution to (5.1), and that ‖A1 · · · An‖ approaches
0 exponentially fast. If in addition IE‖B1‖β < ∞ for some β > 0, then the series R :=∑∞

i=1 A1 · · · Ai−1Bi converges a.s. and the distribution of Xn converges to that of R, indepen-
dently of X0. The distribution of R is then that of the stationary measure of the chain.

Compact state space. If ‖B1‖ ≤ c < ∞ for some fixed c, then this stationary Markov chain
is IM-compactly supported. In particular, if ‖A1‖ ≤ ρ < 1 for some fixed ρ, then IM is included
in the ball Bd(0, c

1−ρ
) of IRd.

Transition kernel. Suppose that, for any x ∈ IM, the random vector A1x + B1 has a density
fA1x+B1 with respect to the Lebesgue measure (here ν is the Lebesgue measure) satisfying
infx, y∈IM fA1x+B1 (y) ≥ κ; then k(x, y) = fA1x+B1 (y) ≥ κ > 0.

We collect all of the above results in the following corollary.

Corollary 5.1. Suppose that in the model (5.1), the conditions (5.2) are satisfied, and moreover
‖B1‖ ≤ c < ∞. If the density of A1x + B1, denoted by fA1x+B1 , satisfies infx, y∈IM fA1x+B1 (y) ≥
κ > 0 for some positive κ , then Assumptions (A1) and (A2) are satisfied with b = d and ν the
Lebesgue measure on IRd.

Example: the AR(1) process in IR. We consider a particular case of the Markov chain as defined
in (5.1) with d = 1, where, for each n, An = ρ with |ρ| < 1. We obtain the standard first-order
linear autoregressive process, i.e.,

Xn+1 = ρXn + Bn+1.
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We suppose that

• B1 has a density function fB supported on [− c, c] for some c > 0 with κ :=
infx∈[−c,c] fB(x) > 0, and

• X0 ∈ [ −c
1−|ρ| ,

c
1−|ρ| ].

This Markov chain evolves in a compact state space which is a subset of [ −c
1−|ρ| ,

c
1−|ρ| ].

Thanks to Corollary 5.1, (Xn)n admits a stationary measure μ. We have, moreover,

k(x, y) = fB1 (y − ρx) ≥ κ, ∀ x ∈ IM, ∀ y ∈ IM.

Assumptions (A1) and (A2) are then satisfied with b = 1 and ν the Lebesgue measure on IR.

Example: the AR(k) process in IR. The AR(k) process is defined by

Yn = α1Yn−1 + α2Yn−2 + · · · + αkYn−k + εn,

where α1, · · · , αk ∈ IR. Since this model can be written in the form of (5.1) with d = 1,

Xn = (Yn, Yn−1, · · · , Yn−k+1)t, Bn = (εn, 0, · · · , 0)t, An =
⎛⎝ α1 · · · αk

Ik−1 0

⎞⎠ ,

all of the above results for random difference equations apply under the corresponding
assumptions. In particular, the process AR(2) is stationary as soon as |α2| < 1 and
α2 + |α1| < 1.

5.2. The Möbius Markov chain on the circle

Our aim is to give an example of a Markov chain on the unit circle, known as the Möbius
Markov chain, which satisfies the requirements of Proposition 5.1. This Markov chain (Xn)n∈IN
is introduced in [26] and is defined as follows:

• X0 is a random variable which takes values on the unit circle.

• For n ≥ 1,

Xn = Xn−1 + β

βXn−1 + 1
εn,

where β ∈ ] − 1, 1[ and (εn)n≥1 is a sequence of i.i.d. random variables which are inde-
pendent of X0 and distributed as the wrapped Cauchy distribution with a common density
with respect to the arc length measure ν on the unit circle ∂B(0, 1),

fϕ(z) = 1

2π

1 − ϕ2

|z − ϕ|2 , ϕ ∈ [0, 1[ fixed, z ∈ ∂B(0, 1).

The following proposition holds.

Proposition 5.2. Let (Xn)n≥0 be the Möbius Markov chain on the unit circle as defined above.
Then this Markov chain admits a unique invariant distribution, denoted by μ. If X0 is dis-
tributed as μ, then the set Xn = {X1, · · · , Xn} converges in probability, as n tends to infinity,
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in the Hausdorff distance to the unit circle ∂B(0, 1); more precisely, for any α ∈ ]0, 1[, any

positive ε sufficiently small, and any n ≥ 2
κvε

(
ln ( 1

α
) + ln ( 4

εκv )
)

, we have

dH(Xn, ∂B(0, 1)) ≤ ε

with probability at least 1 − α. Here v is a finite positive constant and κ = 1
2π

1−ϕ
1+ϕ

.

The Möbius Markov chain of Proposition 5.2 is then asymptotically dense in the unit circle
with a threshold n0(ε, α) given by

n0(ε, α) = 2

κvε

(
ln

(
1

α

)
+ ln

(
4

εκv

))
,

κ being as in the statement of the proposition, while the positive constant v is defined by (5.5)
below.

Proof. We have to prove that all the requirements of Proposition 5.1 are satisfied. Our main
reference for this proof is [26], where it is shown that this Markov chain has a unique invariant
measure μ on the unit circle. This measure μ has full support on ∂B(0, 1) (so that Assumption
(A1) is satisfied with IM = ∂B(0, 1)). The task now is to check Assumption (A2). We have also,
for x ∈ ∂B(0, 1),

K(x, dz) = IP(X1 ∈ dz)|X0 = x) = k(x, z)ν(dz), (5.3)

where ν is the arc length measure on the unit circle, and for x, z ∈ ∂B(0, 1),

k(x, z) = 1

2π

1 − |φ1(x)|2
|z − φ1(x)|2 ,

with

φ1(x) = ϕx + βϕ

βx + 1
.

Since x+β
βx+1 ∈ ∂B(0, 1) whenever x ∈ ∂B(0, 1), we obtain |φ1(x)|2 = ϕ2. Now, for x, z ∈

∂B(0, 1),

|z − φ1(x)| ≤ |z| + |φ1(x)| ≤ 1 + ϕ.

Hence,

k(x, z) ≥ 1

2π

1 − ϕ2

(1 + ϕ)2
= 1

2π

1 − ϕ

1 + ϕ
> 0. (5.4)

We now have to check that, for some ε0 > 0,

v := inf
u∈∂B(0,1)

inf
0<ε<ε0

(
ε−1

∫
∂B(0,1)∩B(u,ε)

ν(dx1)

)
> 0. (5.5)

For this let u ∈ ∂B(0, 1), and define
�

AB =
∫

∂B(0,1)∩B(u,ε)
ν(dx1).
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Ο

A

B

ε

1

α

u
*

FIGURE 3. The ball B(u, ε) intersects the unit circle at two points A and B.

We have ‖u − A‖ = ‖u − B‖ = ε (see Figure 3). Let α = ÂOB; then on the one hand
�

AB = α.
On the other hand, since the triangle OAu is isosceles, with an angle of α/2 in O, we have
ε = 2 sin (α/4). We thus obtain

lim
ε→0

1

ε

�

AB = lim
ε→0

α

ε
= lim

α→0

α

2 sin (α/4)
= 2.

From this, (5.5) is satisfied.
Assumption (A2) is satisfied thanks to (5.3), (5.4), and (5.5). The proof of Proposition 5.2

is then complete by Proposition 5.1. �

6. Simulations

The purpose of this section is to simulate a Möbius Markov process on the unit circle (as
defined in Section 5.2) and to illustrate the results of Proposition 5.2 and Theorem 2.2. More
precisely, we simulate the following:

• a random variable, X0, distributed as the uniform law on the unit circle ∂B(0, 1); that is,
X0 has the density

f (z) = 1

2π
, ∀ z ∈ ∂B(0, 1);

• for n ≥ 1, Xn = Xn−1εn,, where (εn)n≥1 is a sequence of i.i.d. random variables which
are independent of X0 and distributed as the wrapped Cauchy distribution with a com-
mon density, with respect to the arc length measure ν on the unit circle ∂B(0, 1),
given by

fϕ(z) = 1

2π

1 − ϕ2

|z − ϕ|2 , ϕ ∈ [0, 1[, z ∈ ∂B(0, 1).

In this case, it is proved in [26] that this Markov chain is stationary and its stationary
measure is the uniform law on the unit circle.
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FIGURE 4. Illustrations of the set {x1, · · · , xn} which is a realization of the stationary random variables
Xn = {X1, . . . , Xn} for different values of n and with ϕ = 0.

FIGURE 5. In the above images, the points of Xn are in red. Each of these points is the center of a circle

with radius r = 0.1. This is an illustration of the reconstruction result M

−→⋃

x∈Xn
B(x, r), with different

values of n and with r = 0.1. In the above, there is reconstruction when n = 140 and r = 0.1. The density
ε
2 is at least 2π

280 = 0.0224, and so ε is at least 0.0448. For this value of ε = 0.0448, ε < r = 0.1 and this
reconstruction is consistent with Theorem 2.2.
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7. Deferred proofs

7.1. Proof of Proposition 4.1

Let ε0 > 0 and ε ∈ ]0, ε0[ be fixed. In this proof we set m′ = m + 1, r = m′, and k = kn =
[n/m′]. Proposition 3.1, applied with these values of r and k, gives

IP(dH(Xn, IM) > ε) ≤ IP
(

dH({Y1,m′ , · · · , Ykn,m
′ }, IMdm′ ) > ε

)

≤
supx∈IM

dm
′ IP
(

min1≤i≤kn ‖Yi,m′ − x‖ > ε/2
)

1 − supx∈IM
dm

′ IP
(
‖Y1,m′ − x‖ > ε/4

) , (7.1)

where Yi,m′ = (X(i−1)m′+1, · · · , Xim′ )t. The sequence (Xn)n∈TT is stationary and assumed
to be m-dependent. Consequently, the two families {Y1,m′ , Y3,m′ , Y5,m′ , · · · } and
{Y2,m′ , Y4,m′ , Y6,m′ , · · · } each consist of i.i.d. random vectors. Since we are assuming
that ρm′ (ε) ≥ κε , we have

sup
x∈IM

dm
′
IP

(
min

1≤i≤kn
‖Yi,m′ − x‖ >

ε

2

)
≤ sup

x∈IM
dm

′
IP

(
min

1≤2i≤kn
‖Y2i,m′ − x‖ >

ε

2

)

≤ sup
x∈IM

dm
′

(
IP
(
‖Y1,m′ − x‖ >

ε

2

))[kn/2] ≤
(

1 − ρm′ (
ε

2
)
)[kn/2] ≤

(
1 − κ ε

2

)[kn/2]
(7.2)

and

1 − sup
x∈IMdr

IP
(
‖Y1,m′ − x‖ >

ε

4

)
≥ κ ε

4
. (7.3)

Collecting the bounds (7.1), (7.2), and (7.3), we find that for any ε > 0,

IP(dH(Xn, IM) > ε) ≤
(

1 − κ ε
2

)[kn/2]

κ ε
4

≤
exp

(
−κ ε

2
[kn/2]

)
κ ε

4

.

Let α ∈ ]0, 1[ be such that
exp

(
−κ ε

2
[kn/2]

)
κ ε

4

≤ α, which is equivalent to

[kn/2] ≥ 1

κ ε
2

log

(
1

ακ ε
4

)
.

Then, for any n ≥ 2m′
κ ε

2

log

(
1

ακ ε
4

)
+ 3m′, we have

[kn/2] ≥ kn/2 − 1 ≥ n

2m′ − 3/2 ≥ 1

κ ε
2

log

(
1

ακ ε
4

)
,

and therefore IP(dH(Xn, IM) > ε) ≤ α. The proof of Proposition 4.1 is complete. �
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7.2. Proof of Proposition 4.3

We use the blocking method of [40] to transform the dependent β-mixing sequence (Xn)n∈IN
into a sequence of nearly independent blocks. Let Z2i,rn = (ξj, j ∈ {(2i − 1)rn + 1, · · · , 2irn})t

be a sequence of i.i.d. random vectors independent of the sequence (Xi)i∈IN such that, for any i,
Z2i,rn is distributed as Y2i,rn (which is distributed as Y1,rn ). Lemma 4.1 of [40] proves that the
two vectors (Z2i,rn )i and (Y2i,rn )i are related by the following relation:∣∣IE(h(Z2i,rn , 1 ≤ 2i ≤ kn)) − IE(h(Y2i,rn , 1 ≤ 2i ≤ kn))

∣∣≤ knβrn ,

which is true for any measurable function bounded by 1. We then have, using the last bound,

kn sup
x∈IMdrn

IP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Y2i,rn − x‖ > ε

)

≤ kn sup
x∈IMdrn

∣∣∣∣IP( min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
− IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)∣∣∣∣
+kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)

≤ k2
nβrn + kn sup

x∈IMdrn

IP

(
min

1≤2i≤kn
‖Z2i,rn − x‖ > ε

)

≤ k2
nβrn + kn sup

x∈IMdrn

(
IP
(‖Y1,rn − x‖ > ε

))[kn/2]

≤ k2
nβrn + kn

(
1 − ρrn (ε)

)[kn/2]

≤ k2
nβrn + kn exp

(
−[

kn

2
]ρrn (ε)

)
and

1 − sup
x∈IMdrn

IP
(‖Y1,rn − x‖ > ε/4

)= ρrn (ε/4).

Consequently, Proposition 3.1 gives

IP(dH(Xn, IM) > ε)≤ supx∈IMdrn
IP
(
min1≤i≤kn ‖Yi,rn − x‖ > ε/2

)
1 − supx∈IMdrn

IP
(‖Y1,rn − x‖ > ε/4

)
≤

k2
nβrn + kn exp

(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
. (7.4)

We now have to construct two sequences kn and rn such that knrn ≤ n and

lim
n→∞ k2

nβrn = 0, lim
n→∞ knρrn (ε) = ∞, lim

n→∞ kn exp

(
−kn

2
ρrn (ε)

)
= 0. (7.5)
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We have supposed that limm→∞ ρm(ε) emβ

m1+β = ∞ for some β > 1. Define γ = 1/β ∈ ]0, 1[ and

kn =
[

n

( ln n)γ

]
, rn = [( ln n)γ ].

Then, letting m = rn = [( ln n)γ ], we have lim
n→∞ kn

ρrn (ε)

ln n
= ∞, and then (since kn ≤ n),

lim
n→∞ kn

ρrn (ε)

ln (kn)
= ∞.

From the last limit we have that limn→∞ knρrn (ε) = ∞ and that, for n large enough and for

some C > 2, kn
ρrn (ε)

ln (kn)
≥ C, so that

kn exp

(
−kn

2
ρrn (ε)

)
≤ k1−C/2

n .

Consequently, lim
n→∞ kn exp

(
−kn

2
ρrn (ε)

)
= 0. Now we deduce from limm→∞ e2mβ

m2 βm = 0 that

(letting m = rn = [( ln n)γ ])

lim
n→∞ k2

nβrn = 0.

The two sequences kn and rn so constructed satisfy (7.5), and for these sequences it holds that

lim
n→∞

k2
nβrn + kn exp

(
− kn

2 ρrn (ε/2)
)

knρrn (ε/4)
= 0.

Hence for any α ∈ ]0, 1[ there exists an integer n0(ε, α) such that for any n ≥ n0(ε, α),

k2
nβrn + kn exp

(
− kn

2 ρrn (ε/2)
)

knρrn (ε/4)
≤ α.

Combining this last inequality with that of (7.4) finishes the proof of Proposition 4.3. �

7.3. Proof of Proposition 4.4

We have

knIP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ knIP

(
min

1≤2i≤kn
‖Y2i,rn − x‖ > ε

)

≤ kn

∣∣∣∣∣∣IP
(

min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
−

∏
i: 1≤2i≤kn

IP
(‖Y2i,rn − x‖ > ε

)∣∣∣∣∣∣
+kn

∏
i: 1≤2i≤kn

IP
(‖Y2i,rn − x‖ > ε

)
. (7.6)
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For s events A1, · · · , As (with the convention that,
∏0

j=1 IP(Aj) = 1), we have

IP(A1 ∩ · · · ∩ As) −
s∏

i=1

IP(Ai) =
s−1∑
i=1

IP(A1) · · · IP(Ai−1)Cov(1IAi , 1IAi+1∩···∩As ).

Hence, ∣∣∣∣∣IP(A1 ∩ · · · ∩ As) −
s∏

i=1

IP(Ai)

∣∣∣∣∣≤
s−1∑
i=1

∣∣Cov(1IAi , 1IAi+1∩···∩As )
∣∣ .

Applying the last bound with Ai =
(‖Y2i,rn − x‖ > ε

)
and using (4.7), we get∣∣Cov(1IAi , 1IAi+1∩···∩As )
∣∣≤ �(rn)

and ∣∣∣∣∣∣IP
(

min
1≤2i≤kn

‖Y2i,rn − x‖ > ε

)
−

∏
i: 1≤2i≤kn

IP
(‖Y2i,rn − x‖ > ε

)∣∣∣∣∣∣≤ kn�(rn). (7.7)

Combining (7.6) and (7.7), we deduce that

knIP

(
min

1≤i≤kn
‖Yi,rn − x‖ > ε

)
≤ k2

n�(rn) + kn

(
1 − ρrn (ε)

)[kn/2]

≤ k2
n�(rn) + kn exp

(
−[kn/2]ρrn (ε)

)
.

Consequently, as for (7.4), we get

IP(dH(Xn, IM) > ε) ≤
k2

n�(rn) + kn exp
(
−[ kn

2 ]ρrn (ε/2)
)

knρrn (ε/4)
.

We now have to construct two sequences rn and kn such that

lim
n→∞ kn exp(− knρrn (ε)/2) = 0, lim

n→∞ k2
n�(rn) = 0, lim

n→∞ knρrn (ε) = ∞.

This last construction is possible as argued at the end of the proof of Proposition 4.3. �

7.4. Lemmas for Section 5

To prove Proposition 5.1, we need the following two lemmas in order to check the condi-
tions of Proposition 3.1 (with r = 1). Recall that IPx (resp. IPμ) denotes the probability when
the initial condition X0 = x (resp. X0 is distributed as the stationary measure μ).

Lemma 7.1. Let (Xn)n≥0 be a Markov chain satisfying Assumptions (A1) and (A2). Then, for
any 0 < ε < ε0 and any x0 ∈ IM, it holds that

inf
x∈IM

IPx0 (‖X1 − x‖ ≤ ε) ≥ κεbVd, inf
x∈IM

IPμ (‖X1 − x‖ ≤ ε) ≥ κεbVd.
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Proof. Using Assumption (A2), we have

IPx0 (‖X1 − x‖ ≤ ε) = IPx0 (X1 ∈ B(x, ε) ∩ IM) =
∫

B(x,ε)∩IM
K(x0, dx1)

=
∫

B(x,ε)∩IM
k(x0, x1)ν(dx1)

≥ κ

∫
B(x,ε)∩IM

ν(dx1) ≥ κεb inf
0<ε<ε0

(
1

εb

∫
B(x,ε)∩IM

ν(dx1)

)
≥ κεbVd.

The proof of Lemma 7.1 is then complete since IPμ (‖X1 − x‖ ≤ ε) =∫
IPx0 (‖X1 − x‖ ≤ ε) dμ(x0).

Lemma 7.2. Let (Xn)n≥0 be a Markov chain satisfying Assumptions (A1) and (A2). Then, for
any 0 < ε < ε0 and k ∈ IN \ {0}, it holds that

sup
x∈IM

IPμ

(
min

1≤i≤k
‖Xi − x‖ > ε

)
≤
(

1 − κεbVd

)k
.

Proof. Set Fn = σ (X0, . . . , Xn). By the Markov property and Lemma 7.1,

IPμ

(
min

1≤i≤k
‖Xi − x‖ > ε

)
= IPμ(∀ 1 ≤ i ≤ k, Xi 
∈ B(x, ε))

= IEμ

(
k−1∏
i=1

1I{Xi 
∈B(x,ε)}IE(1I{Xk 
∈B(x,ε)}|Fk−1)

)

= IEμ

(
k−1∏
i=1

1I{Xi 
∈B(x,ε)}IEXk−1 (1I{Xk 
∈B(x,ε)})
)

≤ (1 − κεbVd)IEμ

(
k−1∏
i=1

1I{Xi 
∈B(x,ε)}

)

≤ (1 − κεbVd)IPμ(∀ 1 ≤ i ≤ k − 1, Xi 
∈ B(x, ε)).

Lemma 7.2 is proved using the last bound together with an argument by induction on k. �

7.5. Proof of Proposition 5.1

Proposition 3.1 , applied with r = rn = 1 and k = kn = n, gives

IPμ (dH(Xn, IM) > ε) ≤ supx∈IMd
IPμ

(
min1≤i≤n ‖Yi,1 − x‖ > ε/2

)
1 − supx∈IMd

IPμ

(‖Y1,1 − x‖ > ε/4
) ,

with Yi,r = (X(i−1)r+1, · · · , Xir) so that Yi,1 = Xi. Consequently, noting that IMd = IM, we have

IPμ (dH(Xn, IM) > ε) ≤ supx∈IM IPμ

(
min1≤i≤n ‖Xi − x‖ > ε/2

)
1 − supx∈IM IPμ (‖X1 − x‖ > ε/4)

.
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Now Lemmas 7.1 and 7.2 give

sup
x∈IM

IPμ

(
min

1≤i≤n
‖Xi − x‖ > ε

)
≤ (1 − κεbVd)n ≤ exp(− nκεbVd),

1 − sup
x∈IM

IPμ (‖X1 − x‖ > ε) ≥ κεbVd > 0.

Combining the three last bounds, we obtain

IPμ (dH(Xn, IM) > ε) ≤ 4b exp( − nκεbVd/2b)

κεbVd
.

The proof of the proposition is then complete since α ≥ 4b exp(− nκεbVd/2b)

κεbVd
is

equivalent to

n ≥ 2b

κεbVd
ln

(
4b

ακεbVd

)
.
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