
The Review of Symbolic Logic, Page 1 of 37

PROOF MINING AND THE CONVEX FEASIBILITY
PROBLEM: THE CURIOUS CASE OF DYKSTRA’S

ALGORITHM

PEDRO PINTO

Department of Mathematics, Technische Universität Darmstadt

Abstract. In a recent proof mining application, the proof-theoretical analysis of Dykstra’s
cyclic projections algorithm resulted in quantitative information expressed via primitive
recursive functionals in the sense of Gödel. This was surprising as the proof relies on several
compactness principles and its quantitative analysis would require the functional interpretation
of arithmetical comprehension. Therefore, a priori one would expect the need of Spector’s bar-
recursive functionals. In this paper, we explain how the use of bounded collection principles
allows for a modified intermediate proof justifying the finitary results obtained, and discuss
the approach in the context of previous eliminations of weak compactness arguments in proof
mining.

§1. Introduction. Famously, Georg Kreisel asked ‘what more [do] we know about
a formally derived theorem F than if we merely know that F is true?’, [38, p. 110].
This question prompted the development of what is nowadays known as the proof
mining research program: the analysis of mathematical proofs using proof-theoretical
techniques as a way to obtain a deeper understanding of the proof, stripping it to its
essential arguments and subsequentially obtaining new effective information. In the
last twenty-five years, through the work of Ulrich Kohlenbach and his collaborators,
this line of research has since been greatly developed (see [28] for a book treatment and
[31] for a recent survey). In practice, the ‘proof miner’ begins by selecting a prima facie
noneffective proof of a mathematical result for which one expects finitary information
to be of interest. Applying some variant of Kurt Gödel’s Dialectica (most frequently
Kohlenbach’s monotone function interpretation [25]; in some selected cases, Fernando
Ferreira and Paulo Oliva’s bounded functional interpretation [13, 16]), one is not only
guided into the correct quantitative restatement of the theorem but is also able to
reformulate the central arguments of the proof into a new proof which validates the
correctness of the extracted information. The quality of these results seems to rest on
two distinct aspects: first, the chosen result must be of interest to the community with
its finitary information wanted; second, the extracted information must be of a simple
nature if not new. So called logical metatheorems guarantee that, in certain general

Received: July 2, 2024.
2020 Mathematics Subject Classification: Primary 03F10, 03F35, Secondary 47J25, 41A65, 41A29,

90C25, 47H10.
Key words and phrases: proof mining functional interpretations, bounded collection, compactness.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic
Logic. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1 doi:10.1017/S1755020325100695

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020325100695
Downloaded from https://www.cambridge.org/core. IP address: 10.3.35.236, on 12 Sep 2025 at 05:03:01, subject to the Cambridge Core terms of use,

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/S1755020325100695
https://crossmark.crossref.org/dialog?doi=10.1017/S1755020325100695&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100695
https://www.cambridge.org/core


2 PEDRO PINTO

situations, we can be sure that the quantitative analysis will yield effective information
(e.g., [17, 26], the recent [43], and also [12]).

With many applications in nonlinear analysis and convergence statements, such
quantitative information is frequently in the form of rates of convergence or in the
form of rates for (what in 2008 Terence Tao [47] dubbed) the metastability property,
long known to logicians as Kreisel’s no-counterexample interpretation of the Cauchy
property. The complexity of the extracted information is a reflection of the arguments
employed in proving the mathematical result. In light of the logical metatheorems,
one expects that the use of arithmetical comprehension (lurking in common place
mathematical arguments, as for example whenever one uses compactness principles
or considers the infima of positive real sequences, like in projection arguments) would
require the use of Spector’s bar-recursive functionals [46]. However, that is not an
appealing solution, as it goes against the goal of “simple information” and would
not be appreciated by the general mathematician. It so happens that in most cases
the use of such comprehension principles can actually be avoided. It may happen via
an ‘arithmetization’ of the argument, ε-weakening, or by other simplifications to the
proof. This feature is relevant, not only for the quality of the extracted information, but
furthermore because simpler proofs make generalizations to completely new theorems
a stronger possibility. It is natural to then wonder if such phenomenon of proof-
theoretical tameness is due to a selective choice of examples or to an unconscious
restriction from mathematicians. The existence of a broad variety of case studies
tackling many set-theoretically complicated notions, makes a strong heuristic case
for the latter. Be that as it may, it rests on the logician’s shoulders to argue for the
existence of an elementary proof. When it is exists, a simpler proof would entail that
the corresponding extracted information would be immediately expressed by primitive
recursive functionals in the sense of Gödel (first defined in [18], but see also [22]).

As a follow up to the quantitative studies of Browder’s and Wittmann’s fixed point
theorems due to Kohlenbach [30], Ferreira, Leuştean and the author developed in [15]
a general approach for the elimination of sequential weak compactness via certain
bounded collection principles when in the context of proof mining results. In the
same paper, the argument was employed to three simple case studies (an overview
of Browder and Wittmann’s analysis in [30] as well as Bauschke’s generalization of
Wittmann’s theorem, which was itself contained as a particular case of a previous
quantitative study of the Hybrid Steepest Descent Method due to Körnlein [36, 37]),
and has since been applied to many other cases (e.g., [6, 7, 40]). As already mentioned,
the existence of an elementary proof may facilitate the generalization of the original
result: an interesting example is [8], where the elimination of weak compactness allowed
for the generalization from Hilbert spaces to the nonlinear setting of CAT(0) spaces.
However, so far all the applications of the removal technique have a very similar feeling:
the algorithm is some variation of Halpern’s iteration [21] and the proof structure is
reminiscent of a prevalent argument due to Wittmann in [49].

The main goal of this paper is to discuss a novel elimination of compactness
arguments crucial in the convergence proof of a different kind of iteration: Dykstra’s
cyclic projection method. A central problem in convex optimization, known as the
convex feasibility problem, is that of finding a point in the intersection of a finite number
of convex closed subsets of a Hilbert space. A very useful algorithm to approximate
a solution is the method of alternating projections due to von Neumann [48] and
Halperin [20]. This algorithm is well understood and provides the ‘optimal solution’
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 3

(i.e., the closest one to the initial guess) when in the context of vector subspaces (or
more generally, translates of vector spaces with a nonempty intersection). However, if
one just assumes the sets to be closed convex subsets, then by the work of Bregman [3]
and Hundal [24], the method of alternating projections, in general, will only converge
in the weak topology. In finite dimensional Hilbert spaces, this is not an issue since in
that case the weak (inner product) and the strong (norm) topology coincide. However,
already in simple examples, the limit would not necessarily be the optimal solution
but just some point in the intersection. It is here that Dykstra’s algorithm comes
successfully into play. ConsiderC1, ... , Cm to bem ≥ 2 convex subsets of a Hilbert space
with nonempty intersection. For each n ≥ 1, take Cn := Cjn , where jn := [n – 1] + 1
with [r] := r mod m, i.e., we enumerate the sets cyclically. Let Pn denote the metric
projection onto the nonempty convex set Cn. Dykstra’s iteration is given by:{

x0 ∈ X
q–(m–1) = ··· = q0 = 0

, ∀n ≥ 1

{
xn := Pn(xn–1 + qn–m)
qn := xn–1 + qn–m – xn.

(D)

It begins by following the alternating projection method, but then starts to incorporate
correction terms which are updated after every m steps. Boyle and Dykstra proved the
following result.

Theorem 1.1 [2]. Let C1, ... , Cm bem ≥ 2 closed convex subsets of a Hilbert space such
that

⋂m
j=1 Cj �= ∅. For x0 ∈ X , let (xn) be the iteration generated by (D). Then, (xn)

converges strongly to the point in
⋂m
j=1 Cj closest to x0.

Moreover, Dykstra’s method reduces to von Neumann-Halperin’s alternating
projection method when the Cj ’s are vector subspaces. Thus, Dykstra’s algorithm
is a proper generalization of the method of alternating projections. The convex
feasibility problem is of central relevance for the mathematical community due to
its relation to a broad variety of problems, from statistics to differential equations.
Despite its usefulness and contrary to the alternating method, not much was known
regarding the quantitative behavior of Dykstra’s algorithm. Hence, this was a prime
candidate for a proof mining study. The convergence proof makes a crucial use of
certain arguments (sequential weak compactness, Bolzano–Weirstrass compactness,
and infinite pigeonhole principle) which a priori hinder a simple proof-theoretical
analysis. We shall discuss how it was possible in [41] to obtain a finitary version
of this result where the quantitative data does not require the use of bar-recursive
functionals. Furthermore we will discuss that, contrary to previous eliminations of
compactness arguments, here there is no connection with Halpern-type iterations
and the convergence proof is significantly different. Nevertheless, we show how the
quantitative argument fits in the context of the macro developed in [15].

§2. A false ideal world. We begin by recalling the result allowing the elimination of
certain weak compactness arguments in proof-theoretical studies, essentially following
[15]. After a short discussion on the motivational issue, we introduce the bounded
functional interpretation in a formal setting suitable for the extraction of primitive
recursive (in the sense of Gödel) information from classical proofs in the context of
inner product spaces. Finally, we introduce both the general principle from [15] as well
as its corresponding finitary counterpart, in the particular form that we shall need for
the remaining of the paper.
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4 PEDRO PINTO

2.1. Wittmann’s convergence theorem. Consider (X, 〈·, ·〉) a (real) Hilbert space
with inner product 〈·, ·〉 and the induced norm ‖x‖ :=

√
〈x, x〉. Let C be a nonempty

closed subset which is assumed to be convex (i.e., closed for taking line segments).
In [30], the quantitative analysis of the proof of Wittmann’s theorem1 resulted in
a simple rate of metastability that is—for (xn) the relevant iteration—a functional
Φ : N× NN → N such that

∀k ∈ N ∀f : N → N ∃n ≤ Φ(k,f) ∀i, j ∈ [n; n + f(n)]
(
‖xi – xj‖ ≤ 1

k + 1

)
,

which was primitive recursive in the sense of Gödel (actually primitive recursive in the
sense of Kleene on the counterfunction f ). This was surprising as the analysed proof
relies crucially on two troublesome arguments: a projection onto the set of fixed points
of a map T : C → C , denoted by Fix(T ) := {x ∈ C : T (x) = x}; together with a
sequential weak compactness argument. These arguments are logically justified by the
presence of arithmetical comprehension, and therefore one would expect the need for
functionals defined by bar-recursion. Let us give an overview of the proof-theoretical
study in [30]. Regarding the projection (of a certain point u) onto Fix(T ),

∃x ∈ Fix(T ) ∀y ∈ Fix(T ) ∀k ∈ N

(
‖u – x‖ ≤ ‖u – y‖ +

1
k + 1

)
,

Kohlenbach showed that the weaker version where x is allowed to depend on k

∀k ∈ N ∃x ∈ Fix(T ) ∀y ∈ Fix(T )
(
‖u – x‖ ≤ ‖u – y‖ +

1
k + 1

)
is already sufficient to derive the Cauchy property of the iteration—an instance of what
he called ε-weakening. This insight can be understood by the fact that the Cauchy
statement follows from proving that for each ε (i.e., 1

k+1 ) there exists some point x for
which the terms of the sequence are all eventually ε/2-close. For this, an 1

k+1 -almost
projection point would suffice. Note that this says that the arguments in the proof
can be relaxed to their ‘imperfect’ versions allowing for error terms—an instance of
both ‘ideal’ elements and infinitary arguments removal in the general sense of Hilbert’s
program. The relevance for the discussion is the fact that this weaker version can
be proven simply by induction and so its contribution to the extracted information
would be in the form of a functional recursively defined. On the other hand, the
absence of contribution to the final rate from the weak compactness principle had a
more unsatisfying ad hoc explanation. The proof mining analysis revealed that the use
of weak compactness was actually very mild. Essentially, the role of the weak limit
could be replaced by that of a point of the iteration. Overall, the proof-theoretical
approach uncovered an elementary proof where arithmetical comprehension was not
needed, and so the corresponding quantitative information was naturally described by
primitive recursive functionals in the sense of Gödel.

Following a suggestion of Kohlenbach, in [15] Ferreira, Leuştean and the author
looked again at the proof of Wittmann’s convergence theorem with the goal of

1 Actually, the work in [30] also analysed an important convergence result due to Browder.
The proof itself follows similar lines to those of Wittmann, and even predates it. We choose
to focus on Wittmann’s theorem as it regards the convergence of the Halpern iteration which
connects with several other results in our discussion.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 5

providing a more uniform theoretical understanding of why such uses of arithmetical
comprehension don’t contribute towards the expected complexity of the data obtained.
It turned out that this kind of argument could be bypassed by the use of certain bounded
collection principles which don’t contribute to the final bounding information. In [15],
this was explained through the use of the bounded functional interpretation which
incorporates a bounded collection principle directly into the interpretation. The same
result can be obtained via Kohlenbach’s monotone functional interpretation together
with the generalized uniform boundedness principle ∃-UBX [19, 27]. We shall base
our arguments in the framework of the bounded functional interpretation which, by
infusing the bounded collection principles directly into the interpretation, appears
specifically tailored to tackle this kind of issues.

2.2. A formal system for inner product spaces. Our underlying framework is that
of Peano arithmetic in all finite types which is extended to a typed system with a new
base type and to include an intensional (i.e., rule-governed) majorizability primitive
notion. We are interested in a suitable formal system for abstract inner product spaces,
PA��[X, 〈·, ·〉]. Following, in essence, [28, sec. 17.3], we treat these spaces via their
characterization as the normed spaces for which the parallelogram law holds.

Definition 2.1. Let TX be the set of all finite types with an new base type X, recursively
defined by

(i) 0, X ∈ TX (the base types);
(ii) if �, � ∈ TX , then � → � ∈ TX .

Here X will stand for an abstract inner product space. The idea of considering new
abstract types, first done in [26] for bounded metric spaces, was of great importance to
the proof mining program—undoubtedly a catalyst to all current applications. Indeed,
one was no longer restricted to “computable” or “representable” spaces, and it gave
sense to the extraction of computable bounds in many arbitrary spaces. Furthermore,
simple and natural statements can be formulated if one is unburdened by the need of
working with representatives of mathematical objects and can work directly with the
actual objects.

We distinguish the subset of TX of the types where X is absent, writing T. For any
� ∈ TX , denote by �̂ ∈ T the finite type obtained from � by replacing every instance
of X with 0. One frequently denotes the type 0 → 0 simply by 1.

We consider L�,X� a typed language in all finite types of TX . For each type � ∈ TX ,
we have a countable number of variables x�, y�, z�, ... . We also have the arithmetical
constants 00 (zero), S1 (successor) and simultaneous recursors R� (extended to

encompass the new types), together with the constants associated with functional
completeness (i.e., the combinators extended to all the types in TX , which ensure
general �-abstraction). Terms of L�,X� are build up from the constants and variables
via suitable term application: if t is a term of type � → � and u is a term of type �,
then t(u) is also a term, in this case of type �. It should be clear that by writing t� we
are stating that the term t is of type �.

The languageL�,X� includes predicate symbols �� for each � ∈ TX as well as equality
at type 0, denoted by =0. The atomic formulae are either of the form t =0 q for terms
t, q of type 0, or of the form t �� q for t a term of type � and q a term of type �̂. The
general formulae are build up from the atomic ones using the usual propositional logic
symbols ¬,∧,∨,→, by (unbounded) quantifications ∀x�, ∃x�, and also by bounded
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6 PEDRO PINTO

quantifications ∀x �� t, ∃x �� t, where x is a variable of type � and t is a term of type
�̂ where x does not occur. A formula without unbounded quantifications is called a
bounded formula. Whenever t �� t, where the type � of t is necessarily in T, we say that
the term t is monotone. A monotone universal quantification, which we abbreviate by
∀̃x A(x), is a quantification of the form ∀x

(
x �� x → A(x)), where A is any formula

of L�,X� and � ∈ T. Analogous for monotone existential quantifiers.
In order to discuss inner product spaces in a formal system suitable for bound

extraction we include further normed space constants

• 0X of type X, standing for the zero vector;
• +X of type X → (X → X ), standing for vector addition;
• –X of type X → X , standing for the symmetric of a vector;
• ·X of type X → (1 → X ), standing for scalar multiplication.

We shall write simply x –X y for x +X (–X y). The language also contains a constant
‖ · ‖, standing for the norm function, with type X → 1. As usual, real numbers
are represented in this system by type 1 terms. There are several ways to achieve a
representation of the real numbers through functions f : N → N. For example, in [28]
Kohlenbach uses fast converging Cauchy sequences of rational numbers (themselves
coded by natural numbers); in [11], Engrácia used the signed-digit representation.
In any case, the relevant point to note is that the relations =R and ≤R between
(representations of) real numbers are defined by Π0

1-formulae, and the strict relation<R

by a Σ0
1-formula. Furthermore, there is a primitive recursive operation f �→ f̃ which

converts any functionf : N → N into function f̃ : N → N encoding a real number and
such that f̃ remains f whenever it is already representation of a real number. This can
be carried out in our system and ensures that one can discuss statements about the real
numbers without requiring an additional type (see [14] for that alternative approach).
We assume that for every xX , the term ‖x‖ always represents a real number, which can
be stated by a universal formula.

Let us introduce the theory PA��[X, 〈·, ·〉] with the languageL�,X� in a classical setting.
Equality at the type 0, =0, is still the unique primitive equality, and is subject to the
usual axioms of equality for terms of type 0. Equality between terms of type X is a
defined relation given by a universal formula, namely

x =X y :≡ ‖x –X y‖ =R 0R,

where 0R is the canonical representation of the real number zero by a type 1
term. Equalities at higher types are defined in a pointwise manner. We do not
include the extensionality axiom, which is known to be problematic in functional
interpretations, nor do we incorporate a weak rule of extensionality. Instead, we adopt
a minimal treatment of equality, as is common in the bounded functional interpretation
setting (see e.g., [16]). The axioms pertaining to the arithmetical constants and the
combinators are the usual ones (extended to TX ). The system includes induction for
every formula. We also consider the real vector space (universal) axioms formulated
using the equality =X , namely stating: +X is associative and commutative, 0X is
the neutral element for +X , –X gives the +X -inverse, the scalar multiplication ·X is
compatible with respect to the multiplication of (representations of) real numbers, 1R
is the identity for scalar multiplication, and the two distributivity laws between scalar
multiplication and the addition +R and +X . We have suitable axioms for the norm
(following [26]):
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 7

(R) ∀xX ∀k0
(
‖x‖(k) =0 ‖̃x‖(k)

)
2

(N1) ∀xX (‖x –X x‖ =R 0R)
(N2) ∀xX ∀yy (‖x –X y‖ =R ‖y –X x‖)
(N3) ∀xX ∀yX ∀zX (‖x –X z‖ ≤R ‖x –X y‖ +R ‖y –X z‖)
(N4) ∀α1 ∀xX ∀yX (‖α ·X x –X α ·X y‖ =R |α̃|R ·R ‖x –X y‖)
(N5) ∀α1 ∀�1 ∀xX

(
‖α ·X x –X � ·X x‖ =R |α̃ –R �̃ |R ·R ‖x‖

)
(N6) ∀xX ∀yX ∀uX ∀vX

(
‖(x +X y) –X (u +X v)‖ ≤ ‖x –X u‖ +R ‖y –X v‖)

(N7) ∀xX ∀yX
(
‖(–X x) –X (–X y)‖ =R ‖x –X y‖)

(N8) ∀xX ∀yX (‖x‖ –R ‖y‖ ≤R ‖x –X y‖).

Easily one is able to show that =X is reflexive, symmetric and transitive. Moreover,
this unfamiliar set of axioms actually ensures that +X , –X , ·X and ‖ · ‖ are extensional
with respect to =X , i.e.,

x =X x′ ∧ y =X y′ → x +X y =X x′ +X y′

x =X x′ →–X x =X –X x′

α =R α
′ ∧ x =X x′ → α · x =X α′ ·X x′

x =X x′ → ‖x‖ =R ‖x′‖,
but note that, since the representation of a real numbers is not unique, x =X x′ does
not entail ‖x‖ =1 ‖x′‖, i.e., it does not imply ∀k0

(
‖x‖(k) =0 ‖x′‖(k)). Overall, these

axioms succeed in proving that (X,+X , –X , 0X ) is a real vector space with a pseudo-
norm ‖ · ‖ (and becomes a real norm space in the equivalence classes generated by =X ).

We shall denote this theory by PA��[X, ‖ · ‖] and the theory for inner product spaces
PA��[X, 〈·, ·〉] is obtained with the addition of the axiom for the parallelogram law,

(PL) ∀xX ∀yX
(
‖x +X y‖2 +R ‖x –X y‖ =R 2R ·R

(
‖x‖2 +R ‖y‖2

))
,

where (·)2 stands for a functional of type 1 → 1 representing the squaring function on
(the representations of) the real numbers. The inner product functional 〈·, ·〉 of type
X → (X → 1) is defined by the polarization identity

〈x, y〉 :=
(

1
4

)
R

·R (‖x +X y‖ –R ‖x –X y‖) .

With the above axioms for normed vector spaces, one can see that the inner product has
the usual properties. For the proofs discussed here, we do not require a formal approach
to the completeness of the space. Nevertheless, we point out that it is possible to
consider complete inner product spaces, i.e., Hilbert spaces, by introducing a functional
C of type (0 → X ) → X which essentially assigns to each Cauchy sequence (xn) in the
pre-Hilbert space a corresponding limit point. Further details on this functional, in
particular on how it can be described by a universal formula, can be found in [28, sec.
17.5]. We, moreover, direct the reader to Theorem 2.9, where it is shown that, in the
presence of the characteristic principles of the interpretation (i.e., principles under
which the original formula and its interpretation become equivalent), one can prove a
weak form of Cauchy completeness in X.

2 That is to say: ‖x‖ is always a representation of a real number.
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8 PEDRO PINTO

We also have axioms characterizing bounded quantifications:

(B∀) ∀x �� t A↔ ∀x (x �� t → A)
(B∃) ∃x �� t A↔ ∃x (x �� t ∧ A)

The majorizability relations are an intensional version of Bezem’s strong majorizability
notion from [1]

(M1) ∀x0 ∀y0 (x �0 y ↔ x ≤0 y)3

(M2) ∀xX ∀y0
(
x �X y → ‖x‖ ≤R (y)R)

(M3) ∀x�→� ∀y�̂→�(x ��→� y → ∀u� ∀v�̂ (u �� v → xu �� yv) ∧ ∀v�̂ ∀v′�̂(
v ��̂ v′ → yv ��̂ yv′

)
)

and the reverse implication to (M2) and (M3) are governed by rules of majorizability

(RL1)
Abd → ‖p‖ ≤R (n)R
Abd → p �X n

,

(RL2)
Abd ∧ u �� v → tu �� qv Abd ∧ v ��̂ v′ → qv ��̂ qv′

Abd → t ��→� q
,

where Abd is a bounded formula, p is a term of type X, n is a term of type 0, t is a
term of type � → �, q is a term of type �̂ → �, u is of type �, v, v′ are of type �̂. The
variables u, v, v′ don’t appear free in the conclusion of (RL2). In a similar way to the
axiom of full extensionality, it is essential that we work with the rules RL1 and RL2 as
the reverse implications to (M2) and (M3) don’t have a functional interpretation.

The next lemma follows by induction on the structural complexity of the type.

Lemma 2.2. For every type � ∈ TX , the theory PA��[X, ‖ · ‖] proves:

(i) x �� y → y ��̂ y,
(ii) x �� y ∧ y ��̂ z → x �� z.

For each formula A of the language L�,X� , we associate the formula in which all the
intensional predicates � are replaced by their corresponding extensional version ≤∗,
defined by the equivalences

x0 ≤∗
0 y

0 ↔ x ≤0 y,

xX ≤∗
X y

0 ↔ ‖x‖ ≤R (y)R,

x�→� ≤∗
�→� y

�̂→� ↔ ∀u� ∀v�̂
(
u ≤∗

� v → xu ≤∗
� yv

)
∧ ∀v�̂ ∀v′�̂

(
v ≤∗

�̂ v
′ → yv ≤∗

�̂ yv
′
)

We denote such formula by A∗ and say, following [13], that A∗ is the flattening of A.
The flattening of PA��[X, ‖ · ‖] is the theory PA�≤∗ [X, ‖ · ‖] which is an extension (by
definition) of PA� together with the normed space constants and axioms. As any
formula proved with a rule can be proved with the corresponding implication via the
modus ponens rule, the following result is clear.

Proposition 2.3 (Flattening). Let A be an arbitrary formula of L�,X� . We have,

PA��[X, ‖ · ‖] (+PL) � A =⇒ PA�≤∗ [X, ‖ · ‖] (+PL) � A∗.

3 Here ‘x ≤0 y’ stands as usual for the predicate defined by ‘x .– y =0 0’, where .– is the primitive
recursive truncated subtraction, reflecting the usual inequality between natural numbers.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 9

The intended interpretation for PA�≤∗ [X, ‖ · ‖] is obtained by letting the variables
range over a set-theoretical type structure S�,X := 〈S�〉�∈TX :

S0 := N, SX := X, and S�→� := SS�� ,

where (X, ‖ · ‖) is some (real) normed space. Besides the natural interpretation for
the arithmetical constants, objects of type X are taken as vectors in the normed
space X. The constant 0X is interpreted as the null-vector. The constants +X and –X
are interpreted by the vector addition and vector inversion, respectively. The constant
·X is interpreted as the operation that given a function α : N → N and a vector x ∈ X ,
outputs the scalar multiplication of x by the (unique) real number represented by
the function α̃. The constant ‖ · ‖ is interpreted by a function that given any x ∈ X
selects some representation of the real number ‖x‖. The intended interpretation of
PA�≤∗ [X, 〈·, ·〉] is described similarly for X a inner product space.

We define a quantifier-free intensional notion of inequality between (representations
of) real numbers, which will be useful for the sequel. First recall that, as mentioned,
there exists a quantifier-free formula A qf(k0, x1, y1) such that

x ≤R y :≡ ∀k0Aqf(k, x, y),

where the specification of Aqf will depend on our choice of representation of the real
numbers via type 1 functions.

Definition 2.4. Consider the inequality �R defined by

x �R y :≡ p(x, y) �1 01,

where 01 := �k . 00 and

p(x, y)k :=

{
00 if Aqf(k, x, y)
10 otherwise

.

Note that the flattening of the intensional inequality x �R y is the usual x ≤R y.

Lemma 2.5 [11]. The theory PA��[X, ‖ · ‖] proves:

(i) x <R y → x �R y and x �R y → x ≤R y,
(ii) �R is transitive,
(iii) x �X y ↔ ‖x‖ �R (y)R.

The usefulness of �R resides in allowing us to explicitly describe the complexity
present in inequalities between real numbers in a natural manner by replacing them
with this intensional version in the appropriate way. Indeed, we have for all x1, y1:

x <R y ↔ ∃k0
(
x �R y –

1
k + 1

)
x ≤R y ↔ ∀k0

(
x �R y +

1
k + 1

)
x =R y ↔ ∀k0

(
|x – y| �R

1
k + 1

)
where we dropped most instances of the subscript R as it is clear by context. After
the interpretation of the statement formalized with �R, we can then without qualms
return to the usual inequalities ≤R using Proposition 2.3 or Lemma 2.5(i).
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10 PEDRO PINTO

2.3. The bounded functional interpretation. We now extend the bounded functional
interpretation [13] to our context. Since we are in a classical setting, we can restrict our
language to¬,∨, ∀ and universal bounded quantification ∀x � t. The remaining logical
symbols are defined in the usual way: A ∧ B :≡ ¬(¬A ∨ ¬B), A→ B :≡ ¬A ∨ B ,
∃xA :≡ ¬∀x¬A and ∃x � tA :≡ ¬∀x � t¬A.

Definition 2.6. To each formula A of the language L�,X� , we assign formulae AU and

AU such that AU is of the form ∀̃b ∃̃c AU (b, c) and AU is a bounded formula, according
to the following clauses:

1. AU and AU are simply A, for atomic formulae A.

Suppose that we have already interpretations for formulae A and B in L�,X� given,

respectively, by ∀̃b ∃̃c AU (b, c) and ∀̃d ∃̃e BU (d, e).

2. (A ∨ B)U :≡ ∀̃b, d ∃̃c, e
(
AU (b, c) ∨ BU (d, e)),

3. (¬A)U :≡ ∀̃f ∃̃b
(
∃̃b′ � b ¬AU (b′, f(b′))

)
,

4. (∀x � t A(x))U :≡ ∀̃b ∃̃c
(
∀x � t AU (x, b, c)),

5. (∀x A(x))U :≡ ∀̃x̃, b ∃̃c
(
∀x � x̃ AU (x, b, c)).

Above, the notationx � y abbreviatesx1 ��1 y1, ... , xn ��n yn forx = x1, ... , xn and
y = y1, ... , yn with appropriate types; the notation f(x) abbreviates the tuple of term
applications f1x, ... , fnx. Note that if Abd is a bounded formula, then (A bd)U and
(Abd)U are still Abd, i.e., bounded formulae are left invariant under the interpretation.
In the definition of the formula (¬A)U we have the apparently innocuous bounded
quantification “∃b′ � b”. However, this quantification crucially changes the definition
of (¬A)U ensuring the following monotonicity property on the matrix AU (b, c):

(c′ � c ∧ AU (b, c′)) → AU (b, c).

Thus, any bound on a witness for AU is itself a witness, which amounts to saying that
the interpretation operates directly with bounds.

The interpretation has the following characteristic principles:

• Monotone Bounded Choice, mACXbd:

(mACXbd) : ∀̃x ∃̃y A bd(x, y) → ∃̃f ∀̃x ∃̃y � f(x)A bd(x, y),

where Abd is a bounded formula of L�,X� .

The axiom of monotone choice expresses the existence of a monotone function that,
instead of acting as a choice function, gives a bound on a witnessing element. Notice
that all the quantifications are monotone ones.

• Bounded Collection Principle, BCXbd:

(BCXbd) : ∀x � a ∃y Abd(x, y) → ∃̃b ∀x � a ∃y � b A bd(x, y),

where Abd is a bounded formula of L�,X� .

The bounded collection principle above stands out as a characteristic principle. It states
that if for each x there are elements satisfying a bounded property and x is bounded,
then we can already ‘collect’ all those witnesses below a certain bound b. Moreover,
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 11

its contrapositive allows for the conclusion of an element x (below some a) such that
∀yAbd(x, y), from the weaker statement that such x’s (below a) only exist ‘locally’. We
may regard such x as an ideal element that works uniformly for each b. In [13], where
this Shoenfield-like version of the bounded functional interpretation was originally
introduced, strong emphasis is placed on the injection of this uniformity aspect into
Peano arithmetic and that is the reason in the use of the letter U for the interpretation.
Further note that by having (BCXbd) stated with tuples entails that (BCXΣ ) also holds, i.e.,
the bounded collection principle holds for Σ-formulae (even with a bounded matrix).

• Majorizability Axioms, MAJX :

(MAJX ) : ∀x� ∃y�̂
(
x �� y

)
,

for any � ∈ TX .

The majorizability axioms state that every element is intensionally majorizable. These
axiom schemas characterize the interpretation in the sense of the following result,
which is established by induction on the complexity of the formula.

Proposition 2.7 (Characterization). For any formula A of L�,X� ,

PA��[X, ‖ · ‖] + mACXbd + BCXbd + MAJX � A↔ AU

As pointed out already for Peano arithmetic in [13], the conjunction of our formal
system with the characteristic principles of the interpretation is not set-theoretically
sound, as for example it refutes the weakest form of extensionality proving the negation
of the sentence ∀ϕ1→0 ∀α1, �1

(
α =1 � → ϕ(α) =0 ϕ(�)). Nevertheless, we have the

following soundness theorem, akin to the usual metatheorems of proof mining.

Theorem 2.8 (Soundness). For an arbitrary formula A(z) of the language L�,X� with

free-variables z, let A(z)U be ∀̃b ∃̃c AU (z, b, c). If

PA��[X, ‖ · ‖] (+PL) + mACXbd + BCXbd + MAJX � A(z),

then there are closed monotone terms t of T such that

PA��[X, ‖ · ‖] (+PL) � ∀̃a, b ∀z � a AU (z, b, tab).

Moreover, the terms t can be extracted from a proof witnessing the assumption.

The full proof of this soundness result for the normed case was done in Engrácia’s
PhD thesis [11], and the inclusion of the universal axiom of the parallelogram law
impacts no significant change. Since the complete proof is long, we shall only give
a brief explanation. As it is usual in these results, the proof is by induction on the
length of a derivation for the assumption. In a suitable derivation calculus for classical
logic, one discuss the soundness of all the axioms and rules. In these extended systems
of arithmetic, one must in particular verify the interpretation of the new axioms
and rules. To this, note that all the new axioms are given by universal statements,
and thus are trivially interpreted by themselves. Moreover, an essential feature in the
proof of soundness for arithmetic in all finite types is that the underlying system is
a majorizability theory, i.e., Howard’s theorem [23] still holds: any closed term is
majorizable. In our case, we require the version with the intensional predicates �: for
arithmetic, first it is a simple observation that Howard’s result extends to the stronger
notion of majorizability due to Bezem [1]; second, it is easy to see that the result
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12 PEDRO PINTO

can be established without the reverse implication in (M2) and using the rule instead.
Therefore, the soundness for extended systems requires the verification that all the
added new constants are still majorizable. This is true in our case, as shown in [11],
and so the soundness theorem holds.

Proofs of soundness theorems are frequently long and their complete discussion is
usually allocated to theses or to a book treatment. For this reason, they are sometimes
considered ‘black-boxes’ in proof mining practice. This issue is worsened by the fact
that the extraction of quantitative data (the closed terms t guaranteed by soundness)
is frequently carried out only in a semi-formal way. Nevertheless, just the statement
of the soundness theorem (as is done here) is an incomplete description of the proof-
theoretical technique employed in a proof mining study. The full machinery of the
proof interpretation used is actually contained in the effective way the construction
of the terms t is done in the verification of the soundness theorem. In particular,
the construction highlights that the complexity of the information one obtains is a
reflection of the principles required in deriving the (formalized) mathematical theorem
being studied.

As mentioned already, we don’t include any sort of Cauchy completeness operator
in our system. We finish this section with an interesting simple result stating that, in
the presence of BCXbd, the formal system is nevertheless strong enough to prove a weak
version of Cauchy completeness. For n0 and a tuplem of type 0 variables, the notation
∀m ≥0 n A abbreviates the following formula ∀m

(
(n ≤0 m1 ∧ ··· ∧ n ≤0 mr) → A),

and in a dual way for the existential quantifier.

Theorem 2.9. PA��[X, ‖ · ‖] + BCXbd proves the convergence of any Cauchy sequence in
X with a Cauchy modulus, namely it proves that for any x0→X

(·) and function f1, if

∀k0 ∀i, j ≥0 f(k)
(
‖xi – xj‖ <R

1
k + 1

)
,

then

∃xX ∀k0 ∀m ≥0 f(k)
(
‖xm – x‖ ≤R

1
k + 1

)
.

Proof. From the assumption and Lemma 2.5(i), we have

∀k0 ∀i0, j0
(

(f(k) ≤0 i ∧ f(k) ≤0 j) → ‖xi – xj‖ �R

1
k + 1

)
.

Let r0 be arbitrary Then,

∀k ≤0 r ∀m ≤0 r

(
f(k) ≤0 m → ‖xm – xfmax(r)‖ �R

1
k + 1

)
,

since f(k) ≤ fmax(r), for fmax(r) := max0{f(s) : s ≤0 r}.4 Consider N 0 to be such
that 1 + ‖xf(0)‖ <R (N )R. Then, as f(0) ≤0 f

max(r), we have

‖xfmax(r)‖ ≤R ‖xfmax(r) – xf(0)‖ + ‖xf(0)‖ ≤R 1 + ‖xf(0)‖ <R N.

4 The function �r.(max0{f(s) : s ≤0 r}) is recursively defined in our system.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 13

By Lemma 2.5(i) and (iii), we have xfmax(r) �X N for all r0. Thus,

∀r0 ∃xX �X N ∀k ≤0 r ∀m ≤0 r

(
f(k) ≤0 m → ‖xm – x‖ �R

1
k + 1

)
.

By (the contrapositive of) BCXbd and Lemma 2.5(i), we conclude

∃xX �X N ∀k0 ∀m0
(
f(k) ≤0 m → ‖xm – x‖ ≤R

1
k + 1

)
.

2.4. A general principle. The elimination of sequential weak compactness relies on
the following result (see [15] for the discussion in metric spaces).

Theorem 2.10. PA��[X, ‖ · ‖] + BCXbd proves that for any TX→X , u0→X
(·) and N 0 such

that ∀n0 (un �X N ) and lim ‖un – T (un)‖ = 0, i.e.,

∀k0 ∃n0 ∀m ≥0 n

(
‖um – T (um)‖ <R

1
k + 1

)
,

and for all k0, �1 and 
X→1, if

∀yX �X N
(
T (y) =X y → ��R 
(y) +

1
k + 1

)
then

∃n0 ∀m ≥0 n

(
��R 
(um) +

1
k + 1

)
.

Proof. Let k0, �1 and 
X→1 be arbitrary. From the assumption, we have

∀y �X N
(
∀m0

(
‖y – T (y)‖ �R

1
m + 1

)
→ ��R 
(y) +

1
k + 1

)
and hence

∀y �X N ∃m0
(
‖y – T (y)‖ �R

1
m + 1

→ ��R 
(y) +
1
k + 1

)
.

By BCXbd, there isM 0 such that

∀y �X N ∃m ≤0 M

(
‖y – T (y)‖ �R

1
m + 1

→ ��R 
(y) +
1
k + 1

)
.

Since m ≤0 M entails 1
M+1 �R

1
m+1 and �R is transitive, we get

∀y �X N
(
‖y – T (y)‖ �R

1
M + 1

→ ��R 
(y) +
1
k + 1

)
.

From the assumption that lim ‖un – T (un)‖ = 0, there is n0 such that for m ≥0 n

‖um – T (um)‖ �R

1
M + 1

∧ um �X N.

We thus conclude, ∃n0 ∀m0
(
n ≤0 m → ��R 
(um) + 1

k+1

)
, as desired.
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14 PEDRO PINTO

The result above can be made more general. Indeed, one may consider a finite,
or even infinite, number of maps. Actually, in a more abstract way, the predicate
T (y) =X y can be replaced by a predicate of the form ∀nΩ(y, n) in the sense of §3,
provided that the premise ‘lim ‖un – T (un)‖ = 0’ is also replaced with ‘∀k0 ∃n0 ∀m ≥0

nΩ(um, k)’. Further, note that, besides BCXbd, the argument is of a very simple logical
(modus ponens-like) form. In particular, if we weaken the premise to a ‘lim inf’,
i.e., ∀k0 ∀n0 ∃m ≥0 nΩ(um, k), then we obtain the weaker conclusion ∀n0 ∃m ≥0

n
(
��R 
(um) + 1

k+1

)
.

Theorem 2.10 is usually employed in a more specialized form.

Theorem 2.11. PA��[X, ‖ · ‖] + BCXbd proves that for any TX→X , u0→X
(·) , and N 0 such

that ∀n0 (un �X N ) and lim ‖un – T (un)‖ = 0, and for all ϕX→(X→1), if

∀k0 ∃x �X N
(
T (x) =X x ∧ ∀y �X N

(
T (y) =X y → ϕ(x, x) <R ϕ(x, y) +

1
k + 1

))
,

then

∀k0 ∃x �X N
(
T (x) =X x ∧ ∃n0 ∀m ≥0 n

(
ϕ(x, x) ≤R ϕ(x, um) +

1
k + 1

))
.

Proof. Given arbitrary k0, consider xX �X N such that T (x) =X x and

∀y �X N
(
T (y) =X y → ϕ(x, x) <R ϕ(x, y) +

1
k + 1

)
.

Apply Theorem 2.10 with � := ϕ(x, x) and 
(y) := ϕ(x, y).

We give a quantitative version of Theorem 2.11. In the following, we use the notation
BN (0) for the closed ball in X of radius N centred at 0, and [n;m] for the interval of
natural numbers [n,m] ∩ N.

Theorem 2.12. Let (X, ‖ · ‖) be a normed space and considerN ∈ N, a mapT : X → X ,
a sequence (un) ⊆ BN (0), and a function ϕ : X × X → R. Assume that there exist
monotone functionals α, � : N× NN → N satisfying

(i) ∀k ∈ N ∀̃f : N → N ∃n ≤ α(k,f) ∀m ∈ [n;f(n)]
(
‖um – T (um)‖ ≤ 1

k+1

)
(ii) ∀k ∈ N ∀̃f : N → N ∃n ≤ �(k,f) ∃x ∈ BN (0)

(
‖x – T (x)‖ ≤ 1

f(n)+1

∧∀y ∈ BN (0)
(
‖y – T (y)‖ ≤ 1

n+1 → ϕ(x, x) ≤ ϕ(x, y) + 1
k+1

))
.

Then,

∀k ∈ N ∀̃f : N → N ∃n ≤ �(k,f) ∃x ∈ BN (0)(
‖x – T (x)‖ ≤ 1

f(n) + 1
∧ ∀m ∈ [n;f(n)]

(
ϕ(x, x) ≤ ϕ(x, um) +

1
k + 1

))
,

where �(k,f) := α
(
�(k,fα), f), where fα(r) := f(α(r, f)).

Proof. The argument is essentially as in [15, proposition 4.3]. Let k ∈ N and
monotone f : N → N be given. By (ii), applied to k and the function fα (which
is monotone as α is monotone), there is x ∈ BN (0) and n0 ≤ �(k,fα) such that
‖x – T (x)‖ ≤ 1

fα(n0)+1 and

∀y ∈ BN (0)
(
‖y – T (y)‖ ≤ 1

n0 + 1
→ ϕ(x, x) ≤ ϕ(x, y) +

1
k + 1

)
.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 15

Applying (i), we obtain n1 ≤ α(n0, f) such that

∀m ∈ [n1;f(n1)]
(
‖um – T (um)‖ ≤ 1

n0 + 1

)
.

Since α is monotone, we have n1 ≤ α(n0, f) ≤ α(�(k,fα), f) =: �(k,f). By the
monotonicity of f, we have ‖x – T (x)‖ ≤ 1

f(n1)+1 . Since (un) ⊆ BN (0), the result
follows.

In several proof mining studies, this argument has underlined the bypass of
weak compactness arguments which would otherwise require the interpretation of
arithmetical comprehension and thus the use of bar-recursive functionals BR0,1. On
each instance, one relies on a specific function ϕ tailored for the combinatorial
argument at hand.

Lastly, we go on a small tangent to discuss some quantitative results regarding
switching from lim-statements to the corresponding weaker lim inf-statement. Note
that a rate of metastability α for lim ‖un – T (un)‖ = 0 (as in Theorem 2.12(i)), entails
a so-called lim inf-rate, i.e., a functional Φ : N× N → N satisfying

∀k, n ∈ N ∃m ∈ [n; Φ(k, n)]
(
‖um – T (um)‖ ≤ 1

k + 1

)
,

given by Φ(k, n) := max {α (k, �r.max {r, n}) , n}. In a similar but slightly more
convoluted way, we also have the following result.

Lemma 2.13. Let � : N× NN → N be a monotone functional such that

∀k ∈ N ∀̃f : N → N ∃n ≤ �(k,f) ∃x ∈ BN (0)(
‖x – T (x)‖ ≤ 1

f(n) + 1
∧ ∀m ∈ [n;f(n)]

(
ϕ(x, x) ≤ ϕ(x, um) +

1
k + 1

))
,

then

∀k ∈ N ∀̃G : NN → N ∃̃h ≤1 �(k,G) ∃x ∈ BN (0)(
‖x – T (x)‖ ≤ 1

G(h) + 1
∧ ∀n ≤ G(h) ∃m ∈ [n; h(n)]

(
ϕ(x, x) ≤ ϕ(x, um) +

1
k + 1

))
with �(k,G) := �r.max{r, �(k,fG)} where fG := �n.max{G(�r.max{r, n}), n}.

Proof. Letk ∈ N and a monotoneG be given. AsfG is monotone, by the assumption,
there exist n0 ≤ �(k,fG) and x̃ ∈ BN (0) such that

(◦) ‖x̃ – T (x̃)‖ ≤ 1
fG(n0) + 1

∧ ∀m ∈ [n0;fG(n0)]
(
ϕ(x̃, x̃) ≤ ϕ(x̃, um) +

1
k + 1

)
.

Define h := �r.max{r, n0} which is ≤1 �(k,G). Then, fG(n0) ≥ G(�r.max{r, n0}) =
G(h), and so

‖x̃ – T (x̃)‖ ≤ 1
G(h) + 1

.

Consider now n ≤ G(h), and take m = max{n, n0} = h(n). Then, on the one hand,
m ∈ [n; h(n)], and on the other m ∈ [n0, fG(n0)], since

m = max{n, n0} ≤ max{G(h), n0} = fG(n0).

The result follows from the second conjunct of (◦).
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16 PEDRO PINTO

The next result gives a quantitative version of Theorem 2.11 when lim ‖un –
T (un)‖ = 0 is replaced with lim inf ‖un – T (un)‖ = 0.

Theorem 2.14. Assume that there exist monotone functionals Φ : N× N → N and � :
N× NN → N satisfying

(i) ∀k, n ∈ N ∃m ∈ [n; Φ(k, n)]
(
‖um – T (um)‖ ≤ 1

k+1

)
;

(ii) ∀k ∈ N ∀̃f : N → N ∃n ≤ �(k,f) ∃x ∈ BN (0)
(
‖x – T (x)‖ ≤ 1

f(n)+1

∧∀y ∈ BN (0)
(
‖y – T (y)‖ ≤ 1

n+1 → ϕ(x, x) ≤ ϕ(x, y) + 1
k+1

))
.

Then,

∀k ∈ N ∀̃G : NN → N ∃̃h ≤1 �(k,G) ∃x ∈ BN (0)(
‖x – T (x)‖ ≤ 1

G(h) + 1
∧ ∀n ∈ N ∃m ∈ [n; h(n)]

(
ϕ(x, x) ≤ ϕ(x, um) +

1
k + 1

))
,

where �(k,f) := �r.Φ(�(k,fΦ), r), where fΦ := �n.G(�r.Φ(n, r)).

Proof. Let k ∈ N and a monotone functional G be given. Since fΦ is monotone, by
(ii) there exist n0 ≤ �(k,fΦ) and x̃ ∈ BN (0) such that

(1) ‖x̃ – T (x̃)‖ ≤ 1
fΦ(n0) + 1

=
1

G(�r.Φ(n0, r)) + 1
,

and

(2) ∀y ∈ BN (0)
(
‖y – T (y)‖ ≤ 1

n0 + 1
→ ϕ(x̃, x̃) ≤ ϕ(x̃, y) +

1
k + 1

)
.

By (i) with k = n0, we have ∀n ∈ N ∃m ∈ [n; Φ(n0, n)]
(
‖um – T (um)‖ ≤ 1

n0+1

)
. Since

(un) ⊆ BN (0), by (2) we get

∀n ∈ N ∃m ∈ [n; Φ(n0, n)]
(
ϕ(x̃, x̃) ≤ ϕ(x̃, um) +

1
k + 1

)
.

Therefore, the result holds with h := �r.Φ(n0, r), for which we have

h = �r.Φ(n0, r) ≤1 �r.Φ(�(k,fΦ), r) = �(k,G).

As a consequence of a rule-type treatment regarding assumption (i), observe that
the conclusion of Theorem 2.14 above is stronger, than if we were to merely apply
Lemma 2.13 to the conclusion of Theorem 2.12—see the ‘∀n ∈ N’ in the former and
only the ‘∀n ≤ G(h)’ in the latter.

§3. Interpretation of the ε-weak metric projection. The first proof mining studies on
the metric projection are due to Kohlenbach in [29] and [30]. The simple formulation
that we discuss here first appeared in [15] and resulted from the study on the application
of the bounded functional interpretation to proof mining in the context of the author’s
doctoral studies [39]. Since then, this formulation has appeared in several proof mining
studies by the author, e.g., [6, 7, 9]. Recently, it was also used in [45] in the context of
a study extending the quantitative analysis in [32] (see also [7]).
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 17

3.1. Interpretation. Let S be a nonempty subset of a normed space (X, ‖ · ‖). We
assume that S is described via a sequence of subsets (Sn) by

S =
⋂
n∈N

Sn.

Without loss of generality, we moreover assume that (Sn) is nonincreasing, i.e., Sn+1 ⊆
Sn for all n ∈ N, otherwise we can redefine S ′

n :=
⋂
n′≤n Sn′ . The idea is that the sets Sn

approximate S, and that the membership relation x ∈ Sn is deemed computationally
simple. We are interest in studying the projection argument of an arbitrary point u ∈ X
onto the set S. Formally, we describe the approximation sets Sn via some bounded
formula Ω(xX , n0) from L�,X� , possible with additional parameters, which similarly,
without loss of generality, we can assume to be monotone in the sense that

∀xX ∀n0 (
Ω(x, n) → ∀n′ ≤0 nΩ(x, n′)) ,

replacing Ω(x, n) with ∀n′ ≤0 nΩ(x, n′), if that is not the case. We will also use the
informal notation ‘x ∈ Sn’ for the predicate Ω(x, n). In this sense, ‘x ∈ S’ corresponds
to the predicate ∀n0Ω(x, n). Note that one indeed have a description of a nonempty
subset of X whenever in our formal system,

(1) ∀xX , yX (x =X y ∧ x ∈ S → y ∈ S) (extensionality),
(2) ∃xX (x ∈ S) (nonempty).

For any uX , the projection of uX onto S is stated by

(–) ∃xX
(
x ∈ S ∧ ∀yX (y ∈ S → ‖x – u‖ ≤R ‖y – u‖)

)
.

Moreover, one may discuss the projection of u onto S by assuming that there is someN 0

such that x ∈ S → x �X N . Indeed, we can expand on the argument in [40]. Consider
p0 ∈ S and let N 0 be such that ‖p0 – u‖ + ‖u‖ <R (N )R, then (–) is equivalent to

(+) ∃x �X N (x ∈ S ∧ ∀y �X N (y ∈ S → ‖x – u‖ ≤R ‖y – u‖)) .

Clearly, to see that (–) entails (+) it suffices to verify that we have x �X N , for xX

witnessing (–). We have,

‖x‖ ≤R ‖x – u‖ + ‖u‖ ≤R ‖p0 – u‖ + ‖u‖ <R (N )R,

which entails x �X N by Lemma 2.5(i) and (iii). For the reverse implication, we just
need to argue the second conjunct still holds for any yX not satisfying y �X N . By
Lemma 2.5, it follows that ‖p0 – u‖ + ‖u‖ <R ‖y‖ and, as clearly p0 �X N , we have

‖x – u‖ ≤R ‖p0 – u‖ =R ‖p0 – u‖ + ‖u‖ – ‖u‖ <R ‖y‖ – ‖u‖ ≤R ‖y – u‖.

Hence, we can replace x ∈ S by its conjunction with x �X N . The proof of this
projection argument requires countable choice, and therefore escapes the strength of
the systems discussed here. From the observation by Kohlenbach in [30], we know that
the weaker statement

∀k0 ∃xX
(
x ∈ S ∧ ∀yX

(
y ∈ S → ‖x – u‖ <R ‖y – u‖ +

1
k + 1

))
,

stating only the existence of 1
k+1 -almost projection points of u onto S, which can be

proved inductively in our formal system, already suffices for most situations.
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18 PEDRO PINTO

Let us discuss the interpretation of

(++) ∀k0 ∃x �X N
(
∀m0 Ω(x,m) ∧ ∀y �X N

(
∀n0 Ω(y, n) → Θ(x, y, k)

))
,

where Θ(x, y, k) denotes some bounded formula—for the case at hand, we will
consider Θ(x, y, k) ≡ ‖x – u‖2 �R ‖y – u‖2 + 1

k+1 , using the squared norms for an
easier connection with the inner product latter on. By classical logic, (++) is equivalent
to

∀k0 ∃x �X N
(
∀m0 Ω(x,m) ∧ ∀y �X N ∃n0 (

Ω(y, n) → Θ(x, y, k))
)

and so, using (the contrapositive of) BCXbd, is also equivalent to

∀k0 ∃x �X N
(
∀m0 Ω(x,m) ∧ ∃n0 ∀y �X N ∃n′ ≤0 n

(
Ω(y, n′) → Θ(x, y, k))

)
.

By the monotonicity assumption on Ω, the statement is equivalent to

∀k0 ∃x �X N
(
∀m0 Ω(x,m) ∧ ∃n0 ∀y �X N

(
Ω(y, n) → Θ(x, y, k))

)
.

Hence, we equivalently have

∀k0 ∃n0 ∃x �X N ∀m0 (
Ω(x,m) ∧ ∀y �X N

(
Ω(y, n) → Θ(x, y, k))

)
,

which, by (the contrapositive of) BCXbd and the monotonicity of Ω, is equivalent to

∀k0 ∃n0 ∀m0 ∃x �X N
(
Ω(x,m) ∧ ∀y �X N

(
Ω(y, n) → Θ(x, y, k))

)
.

Now by mACXbd, we have equivalently

∀k0 ∀̃f1 ∃n0 ∀m ≤0 f(n) ∃x �X N
(
Ω(x,m) ∧ ∀y �X N

(
Ω(y, n) → Θ(x, y, k))

)
,

which by the monotonicity of Ω is equivalent to the formula

∀k0 ∀̃f1 ∃n0 ∃x �X N
(
Ω(x,f(n)) ∧ ∀y �X N

(
Ω(y, n) → Θ(x, y, k))

)
.

The steps above naturally also hold with tuples. The soundness theorem therefore
ensures that we can compute a primitive recursive bound on n. The next result is a
quantitative version of the (ε-weak) projection argument.

Proposition 3.1. Consider u ∈ X and N ≥ ‖p0 – u‖ + ‖u‖ for some p0 ∈ S. Then,
for all k ∈ N and monotone function f : N → N,

∃n ≤ f(r–1)(0) ∃x ∈ BN (0)(
x ∈ Sf(n) ∧ ∀y ∈ BN (0)

(
y ∈ Sn → ‖x – u‖2 ≤ ‖y – u‖2 +

1
k + 1

))
,

where r := N 2(k + 1).

Proof. Assuming that the result does not hold, we can define {x0, ... , xr} with
x0 = p0 and for all i < r, xi ∈ Sf(r–i)(0) ∩ BN (0) and

‖xi+1 – u‖2 < ‖xi – u‖2 –
1
k + 1

.

We then obtain the contradiction

‖xr – u‖2 < ‖x0 – u‖2 –
r

k + 1
≤ N 2 –

N 2(k + 1)
k + 1

= 0.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 19

3.2. Variational inequality characterization. In Hilbert spaces (or more generally
in CAT(0) spaces), the metric projection of u onto a nonempty set S, say PS(u), has a
useful characterization via a variational inequality,

∀y ∈ S
(
〈PS(u) – u,PS(u) – y〉 ≤ 0) .

The characterization above relies essentially on two facts:

(1) the set S is convex,

(2) ∀x, y ∈ S
(
∀t ∈ [0, 1]

(
‖x – u‖ ≤ ‖wt(x, y) – u‖) → 〈x – u, x – y〉 ≤ 0

)
,

wherewt(x, y) stands for (1 – t)x + ty. Let us discuss the interpretation of (1) and (2).
The convexity property of a set S ⊆ X corresponds to the following statement

(†) ∀xX ∀yX
(
x, y ∈ S → ∀t ∈ [0, 1]

(
wt(x, y) ∈ S)

)
,

which (viewing ‘∀t ∈ [0, 1]’ as a bounded quantification) in the presence of MAJX and
BCXbd is equivalent to

(‡) ∀n0 ∀N 0 ∃m0 ∀x �X N ∀y �X N
(
x, y ∈ Sm → ∀t ∈ [0, 1]

(
wt(x, y) ∈ Sn)

)
.

When a proof of the convexity of S formalizes in (some suitable extension of) the
system described for normed spaces, the soundness theorem will entail the existence
of a bound for m given by a monotone closed term on inputs n and N and hence, by
the monotonicity assumption on the formula Ω (i.e., on the sets Sm), a precise witness.
Naturally, the existence of such proof amenable for bound extraction is centered on
the specifics of the set S.

If we want to discuss a mathematical proof in which a set S (universally described
via some formula Ω as above) is assumed to be convex, then we can’t simply add
the statement (†) to our system, since its interpretation (‡) asks for computational
information that we a priori do not have. We can however study such a proof modulo
the missing information regarding the convexity of the set. Namely, we can assume
that the set S satisfies

(
) ∀n ∈ N ∀N ∈ N ∃m ∈ N ∀x, y ∈ BN (0)
(
x, y ∈ Sm → ∀t ∈ [0, 1]

(
wt(x, y) ∈ Sn

))
,

and provide the underlying formal system with a monotone constant �0→(0→0), i.e.,

∀n0
1 , n

0
2 ∀N 0

1 , N
0
2

(
(n1 ≤0 n2 ∧N1 ≤0 N2) → �N1(n1) ≤0 �N2(n2)

)
,

governed by the axiom

∀n0 ∀N 0 ∀x �X N ∀y �X N
(
x, y ∈ S�N (n) → ∀t ∈ [0, 1]wt(x, y) ∈ Sn

)
.

The condition (
) is an uniformization of the convexity property and, in general, more
restrictive than just asking for the set to be convex—note however that the two notions
coincide in the finite dimensional case. This is a consequence of the uniformity injected
by the use of the BCXbd principle (see [13]).

In frequent applications, S is the fixed point set of some map T, or more generally
the set of common fixed points of a (even countably in)finite number of maps, and
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20 PEDRO PINTO

in that case a function � is indeed available. The next result, essentially due to [30],
corresponds to a quantitative version of fact (1), in the case where

S :=
⋂
n∈N

{
x ∈ X : ‖x – T (x)‖ ≤ 1

n + 1

}
is the set of fixed points of a nonexpansive map T, which will suffice for our discussion.

Lemma 3.2. For all n,N ∈ N and x, y ∈ BN (0), if

max {‖x – T (x)‖, ‖y – T (y)‖} ≤ 1
12(2N + 1)(n + 1)2

, 5

then ∀t ∈ [0, 1]
(
‖wt(x, y) – T (wt(x, y))‖ ≤ 1

n + 1

)
.

We can discuss the proof of fact (2) in the setting of PA��[X, 〈·, ·〉] as it only depends
on simple properties of the norm and the inner-product. We have the following finitary
version.

Lemma 3.3. For all k,N ∈ N, u ∈ X and x, y ∈ BN (0), if

∀t ∈ [0, 1]
(
‖x – u‖2 ≤ ‖wt(x, y) – u‖2 +

1
4N 2(k + 1)2

)
,

then 〈x – u, x – y〉 ≤ 1
k + 1

.

Proof. Considering the assumption, we have for all t ∈ [0, 1],

‖wt(x, y) – u‖2 = 〈wt(x, y) – u,wt(x, y) – u〉
= ‖x – u‖2 – 2t〈x – u, x – y〉 + t2‖x – y‖2

≤ ‖wt(x, y) – u‖2 +
1

4N 2(k + 1)2
– 2t〈x – u, x – y〉 + 4N 2t2.

Hence, for all t ∈ (0, 1]

〈x – u, x – y〉 ≤ 1
8N 2(k + 1)2t

+ 2N 2t,

and, in particular, for t = 1
4N2(k+1)

we conclude

〈x – u, x – y〉 ≤ 4N 2(k + 1)
8N 2(k + 1)2

+
2N 2

4N 2(k + 1)
=

1
k + 1

.

By combining Lemma 3.3 and Proposition 3.1, in the case where S is convex in
the strong sense of (
), and we have a monotone function � : N2 → N providing

5 That is, �N (n) := 12(2N + 1)(n + 1)2 – 1, for all n,N ∈ N. The same function holds also
for when S is the set of common fixed points of a finite or an infinite number of nonexpansive
maps.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 21

computational information on its convexity, we obtain the following result corre-
sponding to the quantitative analysis of the ε-weak version of the variational inequality
characterization.

Proposition 3.4. Let u ∈ X and consider a sequence (Sn) such that Sn+1 ⊆ Sn, for all
n ∈ N. Assume that S :=

⋂
n∈N Sn �= ∅ is convex and there exists a monotone function

� : N2 → N satisfying

∀n,N ∈ N ∀x, y ∈ BN (0)
(
x, y ∈ S�N (n) → ∀t ∈ [0, 1]

(
wt(x, y) ∈ Sn)

)
.

Consider N ∈ N such that N ≥ ‖p0 – u‖ + ‖u‖, for some p0 ∈ S. Then, for all k ∈ N

and monotone function f : N → N,

∃n ≤ �N
(
h(R–1)
�,f (0)

)
∃x ∈ BN (0)(

x ∈ Sf(n) ∧ ∀y ∈ BN (0)
(
y ∈ Sn → 〈x – u, x – y〉 ≤ 1

k + 1

))
,

where R := 4N 4(k + 1)2 and h�,f(m) := max{f(�(m)), �(m)}.

Proof. Apply Proposition 3.1 with the natural number 4N 2(k + 1)2 – 1, and the
monotone function h�,f , to conclude the existence of n0 ≤ h(R–1)

�,f (0) and x ∈ BN (0)

such that x ∈ Sh�,f (n0) and for all y ∈ BN (0),

y ∈ Sn0 → ‖x – u‖2 ≤ ‖y – u‖ +
1

4N 2(k + 1)2
.

Take n := �N (n0)—which is bounded by �N
(
h(R–1)
�,f (0)

)
, since � is monotone. Since

h�,f(n0) ≥ f(n) and by the monotonicity assumption on (Sn), we have x ∈ Sf(n), as
desired. For the second conjunct, take y ∈ BN (0) such that y ∈ Sn, i.e., y ∈ S�N (n0).
Note that, since h�,f(n0) ≥ n and using again the monotonicity of (Sn), we also have
x ∈ S�N (n0). Hence, the assumption on the function � entails

∀t ∈ [0, 1]
(
wt(x, y) ∈ Sn0

)
.

Since wt(x, y) ∈ BN (0), we conclude

∀t ∈ [0, 1]
(
‖x – u‖2 ≤ ‖wt(x, y) – u‖2 +

1
4N 2(k + 1)2

)
.

The result now follows from Lemma 3.3.

We can now instantiate the function � with the output from Lemma 3.2 to
immediately obtain the following two results. In a Hilbert space X, consider (Tn)n∈N a
countable family of nonexpansive maps and let S :=

⋂
Fix(Tn) be the set of common

fixed points which we assume to be nonempty. Then,

S :=
⋂
n∈N

Sn, where Sn :=
{
x ∈ X : ∀n′ ≤ n

(
‖x – Tn′(x)‖ ≤ 1

n + 1

)}
.
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22 PEDRO PINTO

Corollary 3.5. Let u ∈ X and consider N ∈ N such that N ≥ ‖p0 – u‖ + ‖u‖, for
some p0 ∈ S. Then, for all k ∈ N and monotone function f : N → N,

∃n ≤ 12(2N + 1)
(
h(R–1)
f (0) + 1

)2
∃x ∈ BN (0)(

∀n′ ≤ f(n)
(
‖x – Tn′(x)‖ ≤ 1

f(n) + 1

)
∧∀y ∈ BN (0)

(
∀n′ ≤ n

(
‖y – Tn′(y)‖ ≤ 1

n + 1

)
→ 〈x – u, x – y〉 ≤ 1

k + 1

))
,

where R := 4N 4(k + 1)2 and hf(m) := max{f(12(2N + 1)(m + 1)2), 12(2N + 1)
(m + 1)2}.

The argument also holds for a finite number of nonexpansive maps, T1, ... , Tm,
which is the version needed in the sequel, cf. [41, proposition 2.5],6 by considering
instead

Sn :=

⎧⎨⎩x ∈ X :
m∧
j=1

(
‖x – Tj(x)‖ ≤ 1

n + 1

)⎫⎬⎭ .
Corollary 3.6. Let u ∈ X and consider N ∈ N such that N ≥ ‖p0 – u‖ + ‖u‖, for

some p0 ∈
⋂m
j=1 Fix(Tj). Then, for all k ∈ N and monotone function f : N → N,

∃n ≤ 12(2N + 1)
(
h(R–1)
f (0) + 1

)2
∃x ∈ BN (0)⎛⎝ m∧

j=1

(
‖x – Tj(x)‖ ≤ 1

f(n) + 1

)

∧∀y ∈ BN (0)

⎛⎝ m∧
j=1

(
‖y – Tj(y)‖ ≤ 1

n + 1

)
→ 〈x – u, x – y〉 ≤ 1

k + 1

⎞⎠⎞⎠ ,
where R and hf are as before.

§4. Previous applications. To make it clear why we identify Dykstra’s algorithm as
‘curious’, we recall here how the sequential weak compactness argument was eliminated
in the case of Wittmann’s convergence proof as an application of the main result from
[15], enabling an easier comparison with the study of Dykstra’s algorithm discussed in
§5.

4.1. The proof of Wittmann’s theorem. In 1967, Halpern [21] introduced the
following iterative procedure to approximate fixed points of a given nonexpansive
map T : C → C , with C a nonempty, bounded, closed and convex subset of a Hilbert
space

x0 ∈ C, xn+1 := (1 – αn)T (xn) + αnu, (H)

6 Besides the ε-� formulation, [41, proposition 2.5] also includes some small optimizations
related to the majorizability of the initial data irrelevant for our discussion.
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THE CURIOUS CASE OF DYKSTRA’S ALGORITHM 23

where u is some point in the set C, anchoring the construction of the iteration
via a convex combination using the parameter sequence (αn) ⊆ [0, 1]. Under some
conditions on the sequence (αn), [21] shows the strong convergence of (H) to a fixed
point of T. However, Halpern’s conditions prevented the canonical choice αn = 1

n+1 ,
which was overcome in 1992 by Wittmann in a celebrated result (considered an
important nonlinear generalization of von Neumann Mean Ergodic theorem).

Theorem 4.1 (Wittmann [49]). If (αn) ⊆ [0, 1] satisfies

(i) limαn = 0, (ii)
∑
αn = ∞, (iii)

∑
|αn+1 – αn| <∞

then (H) converges strongly to a fixed point of T, the closest to the anchor point u.

Wittmann’s argument has the following structure:

(1) (xn) is bounded;
(2) (xn) is asymptotically regular, i.e., lim ‖xn – xn+1‖ = 0;
(3) (xn) is T-asymptotically regular, i.e., lim ‖xn – T (xn)‖ = 0;
(4) Since Fix(T ) is a convex nonempty subset, let P be the projection of u onto

Fix(T ), that is P := PFix(T )(u);
(5) We have the following inequality,

∀n ∈ N
(
‖xn+1 – P‖2 ≤ (1 – αn)‖xn – P‖2 + αnBn

)
,

where Bn := 2(1 – αn)〈u – P,T (xn) – P〉 + αnb for some real number b ∈ R;
(6) By sequential weak compactness, there is some Q ∈ C and a subsequence

(x�n ) such that x�n ⇀ Q;
(7) If necessary passing to a further subsequence, we have w.l.o.g.

x�n ⇀ Q and simultaneously lim supBn = limB�n ;

(8) By the demiclosedness principle (see [4]), we have Q ∈ Fix(T );
(9) From the variational inequality characterization of the metric projection, we

have,

lim supBn = lim 2〈u – P, T (x�n ) – P〉 = 2〈u – P, T (Q) – P〉 = 2〈u – P,Q – P〉 ≤ 0;

(10) Using a combinatorial argument, later distilled into the following technical
lemma about sequences of real numbers by Xu [50].

Lemma 4.2. Let (αn) ⊆ [0, 1] and (rn) ⊆ R be real sequences such that∑
αn = ∞ and lim sup rn ≤ 0.

If (sn) is a sequence of non-negative real numbers satisfying

∀n ∈ N
(
sn+1 ≤ (1 – αn)sn + αnrn) ,

then lim sn = 0.

it follows that lim ‖xn – P‖2 = 0.

Hence, (xn) converges in norm to PFix(T )(u).
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As discussed in §2.1, from a proof-theoretical point of view, the only troublesome
arguments are in the use of the projection in step (4), and in the use of a sequential
weak compactness argument in step (6), which require arithmetical comprehension.
The finitary study in [30] showed that one can bypass (4) by using instead the simpler
ε-weakening of the projection argument. Regarding step (6), it uncovered that the
role of the weak limit Q could already be replaced by some term of the iteration
and thus the quantitative version did not require the interpretation of the full weak
compactness argument. This entails in particular that no bar-recursive functionals
were needed in the construction of the metastability rate. We remark that the resulting
simpler proof was not an automatic output of the proof interpretation: while employing
the functional interpretation highlighted the potential for simplification, it ultimately
relied on a discernment to recognize the opportunity for a more straightforward
argument.

In [15], this was understood under the perspective that Wittmann’s argument could
be modified into a proof formalized in a system (an extension of PA��[X, 〈·, ·〉] with
some ad hoc constants tailored to the discussion of Wittmann’s result) with bound
extraction and where the use of weak compactness was sidestepped by an application
of BCXbd. Concretely, weak compactness is replaced by Theorem 2.11 with the function
ϕ(x, y) := 〈x – u, T (y)〉, as explained in [15, sec. 5.2]. It is this modified proof that
can be analysed knowing a priori that no bar-recursive functionals will feature in the
extracted quantitative information.

4.2. Further proofs with false principles. In [15] the removal of sequential weak
compactness was applied to three case studies: Browder’s fixed point theorem,
Wittmann’s convergence theorem as well as to its generalization due to Bauschke.
Since then the usefulness of this approach has been substantiated with several further
applications in the literature, e.g., [5–7, 9, 40]. Recently [8], in the general nonlinear
setting of CAT(0) spaces, this quantitative perspective allowed for a convergence
proof of a new iterative method: the alternating Halpern–Mann iteration, (HM).
As explained, in Hilbert spaces, we can recursively approximate fixed points of
nonexpansive maps via Halpern’s procedure. Extensions to a nonlinear setting usually
reduce the convergence proof to that of a Browder-like iteration and require the
use of Banach limits—see the discussion by Kohlenbach and Leuştean in [33, 34]
regarding a possible tame proof-theoretical treatment of the latter. The method
introduced in [8] is more general than (H) and strongly approximates a common fixed
point of two nonexpansive maps. The convergence proof crucially relies on a finitary
formulation, and does not reduce to a Browder-like iteration nor it requires the use
of Banach limits. Instead it follows from the observation that the argument bypassing
sequential compactness, using the set-theoretically false principle BCXbd, further holds
in a geodesic setting (while it is not even clear how a sequential weak compactness
argument would go through in a nonlinear setting) and thus it was possible to
establish the metastable property of the iteration. A posteriori one derives the full
infinitary convergence result of this general method in the broad geodesic setting of
Hadamard spaces. This example further strengthens the usefulness of the metastability
formulation and of proof-theoretical base arguments in applications to standard
mathematics.
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(HM) is a Cauchy sequence
via seq. weak compactness

(HM) is a Cauchy sequence
via bounded collection

(HM) is strongly convergent
via seq. weak compactness

(HM) is strongly convergent
via elementary arguments

(HM) is a metastable sequence
via elementary arguments

(HM) is a Cauchy sequence
via bounded collection
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nonlinear generalization

Yet, a concern lingers in the applicability of this approach to the removal of weak
compactness arguments: all applications share a common theme, namely that the
recursive method is some variant of the Halpern iteration and that the proof is always
structurally similar to Wittmann’s argument. The study of Dykstra’s algorithm breaks
away from such paradigm.

§5. The study of Dykstra’s algorithm.

5.1. The proof of Dykstra’s convergence. Here we discuss the proof of Theorem 1.1
regarding the strong convergence of Dykstra’s algorithm. We denote C :=

⋂m
j=1 Cj

and assume it to be nonempty, as entailed by the ‘feasibility’ requirement. As before,
the list of closed convex sets {C1, ... , Cm} is extended cyclically to a countable family
(Cn)n≥1 and, for each n ≥ 1, Pn denotes the projection ontoCn. For n ∈ N and z ∈ X ,
we write

s(n, z) := 2
n∑

k=n–m+1

〈xk – z, qk〉,

where x–(m–1), ... , x–1 are arbitrary elements of X.
The convergence proof of Dykstra’s algorithm has the following structure:

(1) Inductively, one proves that for all n ∈ N,
n∑

k=n–m+1

qk = x0 – xn.

(2) By the characterization of the projections via the variational inequality and
the definition of qk , we immediately see that

∀z ∈ X ∀n ∈ N
(
z ∈ C → s(n, z) ≥ 0) .
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(3) The main combinatorial part of the proof essentially establishes:

∀z ∈ X ∀n ∈ N ∀i ≥ n
(
‖xi – z‖2 ≤ ‖xn – z‖2 + s(n, z) – s(i, z)

)
.

(4) From (3), it follows that (xn) is bounded, and we take B ≥ 0 such that for all
n ∈ N, it holds ‖x0 – xn‖ ≤ B .

(5) At the same time, it is established that (xn) is asymptotically regular, i.e., that
lim ‖xn – xn+1‖ = 0.

(6) Underlying the remainder of the proof, one can infer the following implicit
lemma:

Lemma 5.1. For all k ∈ N, there exists r ∈ N such that

∀z ∈ C ∀n ∈ N

(
max{‖xn – z‖, s(n, xn)} ≤ 1

r + 1
→ ∀i ≥ n

(
‖xi – z‖ ≤ 1

k + 1

))
.

Proof. We have,

s(n, z) = 2
n∑

k=n–m+1

〈xk – xn, qk〉 + 2
n∑

k=n–m+1

〈xn – z, qk〉

≤ s(n, xn) + 2‖xn – z‖ · ‖x0 – xn‖

≤ 1 + 2B
r + 1

.

The result follows using (2) and (3).

Therefore, in order to conclude the proof, it suffices to find a pair (z, n) ∈ C × N

satisfying the premise of Lemma 5.1. Indeed, that would entail that (xn) is a Cauchy
sequence and hence, by completeness of the space, a convergent sequence. We moreover
remark at this point that the argument does not work if the point z is taken simply as
some xn0 for some large n0, and requires a more delicate approach. Let us continue.

(7) Making use of a technical lemma regarding square-summable sequences
(which goes back to the original work of Dykstra [10]), one establishes

lim inf
n∑

k=n–m+1

|〈xk – xn, qk〉| = 0.

(8) Consider a subsequence (x�n ) and z ∈ X such that
(i) lim

∑�n
k=�n–m+1 |〈xk – x�n , qk〉| = 0 (which entails that lim s(�n, x�n ) =

0),
(ii) x�n ⇀ z,
(iii) ∃j ∈ [1;m] ∀n ∈ N (j�n = j), entailing that (x�n ) ⊆ Cj ,
(iv) (‖x�n‖) converges.

(9) Since lim ‖xn – xn+1‖ = 0, and the sets Cj are weakly closed, we get that
z ∈ C .

(10) Lastly, one shows that ‖x�n‖ → ‖z‖ which, together with (8)(ii), entails that
x�n → z. Moreover, in this step it is also established that z = PC (x0).
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At this point, the proof is concluded since

x�n → z ∈ C and s(�n, x�n ) → 0,

provides us with a pair (z, n) is the required conditions, for each given k ∈ N. Note
that since, for each k, the point z considered is always PC (x0), one can further conclude
that the limit of the sequence is indeed the optimal solution to the convex feasibility
problem.

The steps (1)–(7) are proof-theoretically very simple, making use of combinatorial
and inductive arguments only. It is at step (8) that a priori a primitive recursive (in
the sense of Gödel) bound becomes out of reach, due to the use of sequential weak
compactness (ii), of the infinite pigeonhole principle (iii), and of Bolzano–Weirstrass
compactness (iv). In section 5.4, we show that via a modified proof, a pair (z, n) in
the required conditions can be obtained using the principle BCXbd and sidestepping the
compactness arguments in the final steps of the proof.

It is clear that the convergence proof described above is significantly different
than Wittmann’s general approach. On the one hand, it doesn’t require verifying the
asymptotic regularity of the sequence with regards to the nonexpansive maps involved
in the iteration, i.e., it does not prove Pj-asymptotic regularity for all j ∈ [1;m]. It
also does not employ Xu’s technical lemma (Lemma 4.2) central to all Wittmann-
like proofs. Moreover, the use of compactness arguments in step (8) goes beyond
sequential weak compactness and is much more convoluted. For these reasons, it was
not expected that bar-recursive functionals could be absent from a proof-theoretical
study of Dykstra’s convergence proof.

5.2. A tailored formal system. Here we will extend the system PA��[X, 〈·, ·〉] with
some ad hoc constants tailored to the treatment of the convergence proof of Dykstra’s
algorithm and later show that, leveraging on the presence of the BCXbd principle, we can
prove that the algorithm is a Cauchy sequence bypassing the use of the compactness
principles needed in the original proof. Naturally, one can shift all the indexes so as
to start from zero. Namely, we formally consider the translated sequences (C̃n), (P̃n),
(q̃n) and (x̃n) according to

C̃n := Cn+1, P̃n := Pn+1, q̃n := qn–(m–1)

x̃n := x̂n–(m–1), with x̂n :=

{
x0 if n ∈ [– (m – 1); 0]
xn otherwise

,

where in (x̂n) we just set all the terms x–(m–1), ... , x–1, originally taken arbitrarily from
X, equal to the initial point x0. In this way, we can rewrite Dykstra’s algorithm as{

x̃0 = ··· = x̃m–1 ∈ X
q̃0 = ··· = q̃m–1 = 0

and ∀n ∈ N

{
x̃n+m = P̃n (x̃n+m–1 + q̃n)
q̃n+m = x̃n+m–1 + q̃n – x̃n+m

.

It is with this observation that we discuss the formal aspects of the convergence proof,
while at the same time we dispense with writing the tildes.

To the language L�,X� we add the following constants

• m and b of type 0
• x0 and p of type X
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• x(·) and q(·) of type 0 → X 7

• �(·) of type 0 → (X → 0)
• P(·) of type 0 → (X → X ),

where m will stand for the number of convex sets, b will provide the necessary
information regarding the majorizability requirement of the novel constants, �(·) will
stand for characteristic functions for the convex sets, i.e., informally

�j(x) =0 1 � x ∈ C̃j = Cj+1,

and the P(·) for the projection maps necessary for the definition of the algorithm. We
extend the system PA��[X, 〈·, ·〉] to this language and add the following (computation-
ally complete) axioms

(D1) 2 ≤0 m
(D2) ‖x0‖, ‖p‖ �R (b)R8

(D3) ∀j0 ∀xX
(
�j(x) ≤0 1)

(D4) ∀j0 ∀xX ∀yX
(
(�j(x) =0 1 ∧ �j(y) =0 1) → ∀t ∈ [0, 1](�j(wt(x, y)) =0 1))

(D5) ∀j0 ∀xX
(
�j(x) =0 �j+m(x))

(D6) ∀j0
(
�j(p) =0 1)

(D7) ∀j0 ∀xX
(
�j(Pj(x)) =0 1)

(D8) ∀j0 ∀xX ∀yX
(
�j(y) =0 1 → ‖x – Pj(x)‖ �R ‖x – y‖)

and regarding Dykstra’s algorithm

(D9) ∀n0
(
n ≤0 m – 1 → (xn =X x0 ∧ qn =X 0X ))

(D10) ∀n0
(
xn+m =X Pn(xn+m–1 + qn))

(D11) ∀n0 (qn+m =X xn+m–1 + qn – xn+m) .

We denote the resulting system by D��. From (D4), (D7) and (D8), using the
arguments in Lemma 3.3, one shows that

D�� � ∀j0 ∀xX ∀yX
(
�j(y) =0 1 → 〈Pj(x) – x, Pj(x) – y〉 ≤R 0R) ,

which, moreover, entails that the term Pj(x) is provably the unique zX satisfying

�j(z) =0 1 ∧ ∀yX
(
�j(y) =0 1 → ‖x – z‖ ≤R ‖x – y‖) .

This also implies that

D�� � ∀j0 ∀xX
(
�j(x) =0 1 → Pj(x) =X x)

and in particular, by (D6), ∀j0
(
Pj(p) =X p). Furthermore, we have that for all j0

and xX , yX

‖Pj(x) – Pj(y)‖2 =R 〈Pj(x) – Pj(y), Pj(x) – Pj(y)〉
=R 〈Pj(x) – x, Pj(x) – Pj(y)〉 + 〈x – y, Pj(x) – Pj(y)〉

+ 〈y – Pj(y), Pj(x) – Pj(y)〉
≤R 〈x – y, Pj(x) – Pj(y)〉

7 Note the innocuous double use of the notation x0.
8 One may change the reference point used in the majorizability notion from 0X to x0 (or p)

allowing to work simply with a numerical bound on ‖x0 – p‖, cf. [41]. We do not care to do
this here.
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which entails that ‖Pj(x) – Pj(y)‖ ≤R ‖x – y‖, i.e., Pj is provably nonexpansive in
D��. This, in turn, implies the extensionality of Pj .

Adapting the Theorem 2.8 to this setting, we have the following result stating that
the formal system D�� is suitable for bound extractions.

Theorem 5.2 (Extraction in D��). For an arbitrary formulaA(z) of the language L(D��)

with free-variables z, let A(z)U be ∀̃b ∃̃c AU (z, b, c). If

D�� + mACXbd + BCXbd + MAJX � A(z),

then there are closed monotone terms t of L(D��) such that

D�� � ∀̃a, b ∀z � a AU (z, b, tab).

Moreover, the terms t can be extracted from a proof witnessing the assumption.

Proof. We just need to verify the interpretation of the new axioms, and that we still
have a majorizability theory, i.e., that all the introduced constants are majorizable.
For the first part, note that the axioms (D1)–(D11) are given by universal sentences
(possibly with bounded matrices) or even quantifier-free formulas. Therefore, they
are trivially interpreted by themselves. The second requirement is equally easy. It is
clear for m and b as they are of type 0 and so self-majorizable. The majorizability of
x0 and p follows from (D2) using Lemma 2.5(iii). By the axiom (D3), the constant
�(·) is majorizable by the constant �j, n. (10). From (D9)–(D11), the majorizability
of x(·) and q(·) follows from the majorizability of x0, 0X and P(·) (as well as from
the majorizability of +X and –X ). Hence, we just need to see that P(·) is majorizable.
Indeed, since for any j0 and xX , we have

‖Pj(x)‖ ≤R ‖Pj(x) – p‖ + ‖p‖
=R ‖Pj(x) – Pj(p)‖ + ‖p‖
≤R ‖x – p‖ + ‖p‖
≤R ‖x‖ + ‖p‖ + ‖p‖

it follows from Lemma 2.5 thatP(·) is majorized by the constant �j, n. (n + 2b + 1).

5.3. On the intensional perspective. One may wonder that, if the set Cj are

apparently given by the universal property ∀k0
(
‖x – Pj(x)‖ �R

(
1
k+1

)
R

)
, then why

is it that we can formalize the projection principle

Pj(x) ∈ Cj ∧ ∀yX
(
y ∈ Cj → ‖x – Pj(x)‖ ≤R ‖x – y‖) ,

without any concern for the issues discussed in §3. It turns out that �j(x) =0 1 is an
imperfect description of the set Cj , and subsequently this projection is formally also
weaker. We have shown that �j(x) =0 1 → Pj(x) =X x is provable in D��. However,
our system crucially does not encompass the reverse direction. This is a required feature.
In fact, we even have that

D�� + mACXbd + BCXbd + MAJX �� Pj(x) =X x → �j(x) =0 1.
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Otherwise, by Theorem 5.2, in any suitable structure for the (flattened version of) our
system there would exist k ∈ N such that

‖Pj(x) – x‖ ≤ 1
k + 1

→ x ∈ Cj,

which is in general false unless the Cj are taken to be the full space X. This distinction
between the universal predicate Pj(x) =X x and the quantifier-free �j(x) =0 1, is
actual connected with the absence of a prominent feature in the constant �j : its
extensionality,

(E�) ∀j0 ∀xX ∀yX
(
(x =X y ∧ �j(x) =0 1) → �j(y) =0 1) .

Indeed, using (D7), we trivially have

D�� � (E�) → ∀j0 ∀xX
(
Pj(x) =X→ �j(x) =0 1) .

For the reverse direction, observe that since Pj is provably extensional one derives the
implication (x =X y ∧ �j(x) =0 1) → Pj(y) =X y. We conclude that

D�� � ∀j0 ∀xX
(
Pj(x) =X→ �j(x) =0 1) → (E�).

This kind of intensional perspective have been used in proof mining before, but its
tremendous usefulness was only recently shown through the work of Nicholas Pischke
(see [43, 44]).

5.4. A modified proof of Dykstra’s convergence. We now discuss how one can prove
that Dykstra’s algorithm is a Cauchy sequence in our formal system D�� avoiding the

compactness arguments central to the original proof by using instead BCXbd. We first
remark that the steps (1)–(6) immediately formalize in our system. From the proof
that (xn) is bounded, we have ∀n0 (xn �X 3b). Moreover, the system proves that

∀n0 ∀zX
⎛⎝m–1∧
j=0

z =X Pj(z) → s(n, z) ≥R 0

⎞⎠ ,
where s(n, z) is as before (but now with shifted indexes):

s(n, z) := 2
n+m–1∑
k=n

〈xk – z, qk〉.

Consider the ε-weak projection associated with the universal formula ∀n0Ω(x, n),
where

Ω(x, n) ≡
m–1∧
j=0

‖x – Pj(x)‖ �R

1
n + 1

.

With arguments as in Lemmas 3.2 and 3.3, one can prove an ε-weak version of the
variational inequality characterization, and so for any k0 there exists a point zX such
that

∧m–1
j=0 z =X Pj(z) and

∀y �X 3b

⎛⎝m–1∧
j=0

y =X Pj(y) → 〈z – x0, z – y〉 �R

1
k + 1

⎞⎠ ,
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i.e.,

∀y �X 3b

⎛⎝∀r0
m–1∧
j=0

‖y – Pj(y)‖ �R

1
r + 1

→ 〈z – x0, z – y〉 �R

1
k + 1

⎞⎠ .
Using BCXbd, it follows that there exists R0 such that

∀y �X 3b

⎛⎝m–1∧
j=0

‖y – Pj(y)‖ �R

1
R + 1

→ 〈z – x0, z – y〉 �R

1
k + 1

⎞⎠ .
While the original proof only needed to prove that the sequence (xn) was asymptotically
regular, in our modified proof we further need to argue that it is Pj-asymptotically
regular for all j ≤ m – 1, i.e., ∀j ≤0 m – 1

(
lim ‖xn – Pj(xn)‖ = 0), which means that

∀R0 ∃N 0 ∀n ≥0 N

⎛⎝m–1∧
j=0

‖xn – Pj(xn)‖ �R

1
R + 1

⎞⎠ .
This property can be derived from the usual asymptotic regularity by leveraging
the properties of Pj and using some simple combinatorial arguments (cf. [41,
proposition 3.7]). Therefore, the Pj-asymptotic regularity of (xn) is provable in D��.
We overall have shown that

(
) ∀k0 ∃zX ∃N 0

⎛⎝m–1∧
j=0

z =X Pj(z) ∧ ∀n ≥0 N

(
〈z – x0, z – xn〉 �R

1
k + 1

)⎞⎠ .
Remark 5.3. We take this moment to point out that this result can be view

as an instance of Theorem 2.11 with ϕ(x, y) = 〈x – x0, y〉 and the functional T
defined for each xX by T (x) := Pi0(x), where i0 := min{j ≤ m – 1 : ∀j′ ≤0 m – 1(
‖x – Pj′(x)‖ ≤R ‖x – Pj(x)‖

)
}. Alternatively, look at the similar result but imme-

diately stated for a finite number of maps in [15, proposition 6.1].

We return to our modified proof, now arguing that (
) is sufficient for the main
combinatorial argument to go through, concluding the proof. Corresponding to the
technical lemma in step (7), we have that provably in D��,

lim inf
n+m–1∑
k=n

|〈xk – xn–m+1, qk〉| =R 0R,

and from (
), we derive

(

) ∀k0∃zX ∃n0

⎛⎝m–1∧
j=0

z =X Pj(z) ∧ 〈z – x0, z – xn〉 �R
1
k + 1

∧ s(n, xn–m+1) �R
1
k + 1

⎞⎠.
We can consider the arguments used in Lemma 5.1 from step (6) in the original proof,
and obtain
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∀k0 ∃r0 ∀zX ∀n0

(
m–1∧
j=0

z =X Pj(z) ∧ ‖xn+m–1 – z‖, s(n, xn+m–1) �R

1
r + 1

→ ∀i ≥ n
(
‖xi+m–1 – z‖ �R

1
k + 1

))
.

The proof concludes using the following result.

Lemma 5.4. The following statement holds in D��
∀r0 ∃�0 ∀zX ∀n0⎛⎝m–1∧

j=0

z =X Pj(z) ∧ 〈x0 – z, xn+m–1 – z〉, s(n, xn+m–1) ≤R

1
� + 1

⎞⎠
→ ‖xn+m–1 – z‖ ≤ 1

r + 1
.

Proof. We have,

‖xn+m–1 – z‖2 =R 〈x0 – z, xn+m–1 – z〉 + 〈xn+m–1 – x0, xn+m–1 – z〉

≤R 〈x0 – z, xn+m–1 – z〉 +
n+m–1∑
k=n

〈z – xn+m–1, qk〉

=R 〈x0 – z, xn+m–1 – z〉 +
1
2

(
s(n, xn+m–1) – s(n, z))

≤R 〈x0 – z, xn+m–1 – z〉 +
1
2
s(n, xn+m–1),

which entails the result.

We have therefore obtained overall

∀k0 ∃zX ∃n0 ∀i ≥0 n

(
‖xi+m–1 – z‖ ≤R

1
k + 1

)
,

and so, by triangle inequality, we conclude that (xn) is a Cauchy sequence.
It is this modified proof in the system D�� that was analysed in [41] and resulted

in quantitative data in the form of a primitive recursive functional Δ providing an
uniform rates of metastability for Dykstra’s algorithm.

Theorem 5.5 [41, Theorem 3.11]. Let C1, ... , Cm be m ≥ 2 convex subsets of a Hilbert
space X such that

⋂m
j=1 Cj �= ∅. Let x0 ∈ X and b ∈ N \ {0} be given such that b ≥

‖x0 – p‖, for some p ∈
⋂m
j=1 Cj . Then, the sequence (xn) generated by (D) is metastable

and

∀ε ∈ (0, 1] ∀f : N → N ∃n ≤ Δ(m, b, ε, f) ∀i, j ∈ [n; n + f(n)] (‖xi – xj‖ ≤ ε) .

Finally, note that a pair (z, n) for the premise of Lemma 5.1 can also be obtained
under a metric regularity result, i.e., under the assumption that

(�) ∀ε > 0 ∀R ∈ N ∃� > 0 ∀x ∈ BR(0)

⎛⎝ m∧
j=1

‖x – Pj(x)‖ ≤ � → ∃z ∈ C (‖x – z‖ ≤ ε)

⎞⎠ ,
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together with the fact that (xn) isPj-asymptotically regular for each j ∈ [1;m]. Indeed,

let k ∈ N be given and consider r ∈ N as in Lemma 5.1. For ε =
1
r + 1

and with R a

bound on the Dykstra’s iteration, take � > 0 as guaranteed to exist in the assumption
of metric regularity. By the Pj-asymptotic regularity, we have N ∈ N such that xn
satisfies the premise of (�), for any n ≥ N . By step (7), we can find n0 ≥ N such

that s(n0, xn0) ≤ 1
r + 1

. Now, by the assumption on �, we have some z ∈ C such that

‖xn0 – z‖ ≤ 1
r + 1

. By Lemma 5.1, we conclude that

∀i ≥ n0

(
‖xi – z‖ ≤ 1

k + 1

)
.

It is known that the assumption of metric regularity is very strong and, in the case of
Fejér monotone sequences, it will entail the existence of uniform rates of convergence.
However, Dykstra’s algorithm is not Fejér monotone and still rates of convergence
were possible via the argument above. Motivated by this result (see [41, sec. 4]), a
localized and relativized generalization of the usual concept of Fejér monotonicity was
introduced and studied in the recent [35]. In particular, [35] provides a much simpler
convergence proof of Dykstra’s algorithm in the finite dimensional case. Moreover,
note that despite the final output of a rate of convergence for the iteration, the study
of asymptotic regularity for the sequence up to that point was only in the form of
a rate for the metastable formulation. Naturally, a posteriori, the metastable rates
for asymptotic regularity get upgraded into full rates of convergence, but this too
strengthens the usefulness of metastablity. In fact, one should not avoid it in preference
of rates of convergence at the risk of missing out on subtle hidden quantitative
information.

§6. Epilogue. This paper provides a proof-theoretical justification to the recent
proof mining study in [41]. There, the asymptotic behaviour of Dykstra’s algorithm
was analysed and metastability rates were obtained which are primitive recursive
in the sense of Gödel. However, a naive interpretation of the original convergence
proof would require quantitative data given by Spector’s bar-recursive functionals and
their absence was unexpected. We discuss the proof-theoretical arguments underlying
the analysis in [41] by explaining that, in the presence of tame bounded collection
principles, one can sidestep the compactness arguments crucial in the original
proof which would otherwise require the functional interpretation of arithmetical
comprehension.

There were previous proof mining case studies in which simplifications allow to
avoid the use of certain compactness arguments (e.g., [30]), and recent applications
which featured such phenomenon were supported by the theoretical justification given
in [15]. However, all previous such examples were of a similar nature: they always
regard an iterative method akin to the Halpern schema and the arguments are always
similar to the Wittmann’s proof strategy. One could therefore question the generality
in practice of the approach from [15]. This paper also answers this issue. On one
hand, we discuss how the convergence proof for the case of Dykstra’s algorithm is
significantly different than Wittmann’s argument. On the other, we are still able to
bypass the troublesome arguments relying on the technique from [15]. Naturally, this
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does not settle the issue and further study is needed to fully understand the reach of
this approach using bounded collection principles.

The ability to provide a simplified convergence proof reliant on a metastable
formulation gives a strong argument for the usefulness of metastability and of
proof-theoretical methods in mathematics. Like in the example discussed in §4.2,
mathematical proofs that are not reliant on strong analytical principles but instead
mostly consist on combinatorial arguments are easier to generalize. For the case
at hand, the availability of a simpler proof allowed to establish in [42] the strong
convergence of Dykstra’s algorithm with Bregman projection maps in the context of
general reflexive Banach spaces.
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