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108.32 Point masses and polygons

Introduction
The mid-points of the four sides of a quadrilateral form the vertices of a

parallelogram. This was first proved by the French academician Pierre
Varignon (1654–1722), and published posthumously in 1731, and details of
his proof, his work and his life, can be found in [1]. However, to place
Varignon's result in the context of this discussion, we shall view the
midpoint of a segment as the centre of gravity of two equal point masses,
one at each end of the segment.

In his Article [2], Nick Lord begins with the following result taken from
[3]:

“Take any hexagon, and find the centres of gravity of each set of
three consecutive vertices. These immediately form a hexagon
whose opposite sides are equal and parallel in pairs.”

He then follows this with the observation, and proof, that Varignon's result
, and this result ( ), are the first two in a chain of similar

results in which his general result is, for 
(n = 2) n = 3

n = 2,  3,  4, … :
“Take any -sided polygon, and find the centres of gravity of
each set of n consecutive vertices. These form a -sided polygon
whose opposite sides are equal and parallel in pairs.”

2n
2n

Here we shall show that this in itself is a special case of a larger collection
of similar results which we describe below.

Point masses at the vertices of a polygon
We begin with a -sided polygon, and we label its vertices

in this order around the polygon. We are going to distribute a unit mass over
the set  of vertices, and to motivate this, we return to Nick
Lord's result [2]. He begins with a mass of  at each point ;
then he considers a mass of  placed at each point ; then
at each point , and so on. We can describe this in terms of a
cyclic permutation if we start with the initial mass distribution of a mass

 at each point , and then create the second, third, ... , mass
distributions by cyclically moving the masses to the ‘next’ set of  vertices.
For example, the second mass distribution (that is,  at each point

) is created by moving the masses  from  to the
points , respectively. This process is then repeated until we
return to the initial distribution.

2n a1, … , a2n

{a1, … , a2n}
1 / n a1, … , an

1 / n a2, a3, … , an + 1
a3… , an + 2

1 / n a1, … , an
n

1 / n
a2, … , an + 1 1 / n a1, … , an

a2, … , an + 1

To obtain a more general result we start with a unit mass which is
distributed (not necessarily uniformly) over  by placing a mass
at the point  for , where  and . We then define
as the centre of gravity of this mass distribution; thus .
Next,  is the centre of gravity of the mass distribution obtained by cyclically
permuting the masses, then  and so on; thus

{a1, … , a2n} mi
ai i = 1,  … ,  2n mi ≥ 0 ∑i mi = 1 b1

b1 = m1a1 +  … +m2na2n
b2

b3

b2 = m1a2 +  …  + m2n − 1a2n + m2na1,
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b3 = m1a3 +  …  + m2n − 1a1 + m2na2,

      …

b2n = m1a2n +  …  + m2n − 1a2n − 2 + m2na2n − 1.
Throughout we shall use the notation , and , where  is taken modulo
(so , and , and so on). Thus, for each integer ,

ak mk k 2n
a2n + 1 = a1 m2n + 1 = m1 p

bk = ∑
2n

j = 1

mjaj + (k − 1) = ∑
2n

j = 1

mj + paj + p + k − 1. (1)

Not every initial mass distribution yields the conclusion in [2] so we
shall seek a condition on the initial mass distribution which does. We shall
say that the initial distribution (of a mass  at the point ) is balanced if
the sum of the masses at each pair of opposite vertices is ; explicitly, if

mi ai
1 / n

m1 + mn + 1 = m2 + mn + 2 =  …  = mn + m2n = 1
n. (2)

Since the initial mass distribution in [2] is defined by
and , it is indeed a balanced distribution. Our more
general result now follows.

m1 =  …  = mn = 1
n

mn + 1 =  … = m2n = 0

Theorem 1: Let  be the vertices of a -sided polygon, and place
a mass  at the vertex , where  and , in such a way that
this is a balanced distribution (that is, so that (2) holds). Then the points

, defined by  are the consecutive
vertices of a -sided polygon whose opposite sides are parallel and of equal
length.

a1, … , a2n 2n
mi ai mi ≥ 0 ∑j mj = 1

b1, … , b2n bk = m1ak +  … +m2nak + 2n − 1
2n

Proof: We wish to show that  or, equivalently,
, so it is enough to show that  is

independent of . Now (1) and (2) show that

bk + 1 − bk = −(bk + 1 +n − bk + n)
bk + bk + n = bk + 1 + bk + 1 +n bn +k + bk

k

bn + k + bk = ∑
r

mran + k + r − 1 + ∑
r

mrak + r − 1

= ∑
r

mran + k + r − 1 + ∑
r

mr + nan + k + r − 1

= ∑
r

(mr + mr + n) an + k + r − 1

=
1
n ∑

r
an + k + r − 1

=
1
n ∑

r
ar,

which is independent of  as required. We mention, in passing, that this
shows that , so that the centroid of unit masses placed at the
points  is the same as that of the unit masses placed at the .

k
∑k bk = ∑r ar

ai bk
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Some examples
The process described above starts with a polygon , whose vertices are

the , and a unit mass distribution  which, for brevity, we denote by , on
, and uses these to create a new polygon  whose vertices

are the . Let us consider the case of a quadrilateral. First, consider the
balanced, uniform, mass distribution . In this case rotating the
point masses has no effect, and each  is ; thus the
parallelogram  is just the single point , and all
sides of  have zero length.

P
ai mi μ

{a1, … , a2n} P (μ)
bj

(1
4, 1

4, 1
4, 1

4)
bk

1
4 (a1 + a2 + a3 + a4)

P (μ) 1
4 (a1 + a2 + a3 + a4)

P (μ)
Next, Varignon's result corresponds to the initial, balanced, mass

distribution . This gives the initial distribution as a mass of  at
and , so . Next,  is the centre of gravity of a mass of
placed at each of  and , and so on. For -gons, Nick Lord's
development begins with the initial mass distribution .
As another example, if we consider the balanced mass distribution
we obtain the parallelogram illustrated in Figure 1.

(1
2, 1

2, 0, 0) 1
2 a1

a2 b1 = 1
2 (a1 + a2) b2

1
2

a2 a3 2n
(1

n, … , 1
n, 0, … , 0)

(3
8, 4

8, 1
8,0)

a1

a4

a3

a2

FIGURE 1: The mass distribution (3
8, 4

8, 1
8, 0)

Finally, if we start with an arbitrary quadrilateral with vertices  and
then apply Varignon's theorem, we obtain a parallelogram with vertices .
Another application to this second parallelogram yields a parallelogram with
vertices , and so on: see Figure 2. We leave the reader to calculate the
vectors  in terms of the  and hence the mass distribution on the  which
produces the vectors  directly.

ai
bj

ck
ck ai ai

ck
a3 = (9,15)

b3

c2

a4 = (2,10)
c3 b2

b4

c4

b1

a2 = (17,3)

c1

= (0 0, )a1

FIGURE 2: The initial mass distribution   gives the (1
4, 1

2, 1
4, 0) cj
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108.33 Some inequalities for a triangle

In a recent Article [1] an upper bound was derived for , the sum
of the (lengths of the) altitudes of a triangle. In this Note we find a different upper
bound in terms of , the radius of the circumcircle. We also derive several other
inequalities for a triangle which we have been unable to find in the literature,
despite the fact that they follow quickly from known results.

ha + hb + hc

R

Our notation is standard – for a triangle ,  and  are the side-
lengths,  and  is the radius of the incircle.  is the radius
of the circumcircle and ,  and  are the radii of the excircles, while ,
and  are the altitudes. The shorthand [WEIFFTTIE]. will indicate the
phrase, “With equality if and only if the triangle is equilateral”, throughout.

ABC a, b c
2s = a + b + c r R

ra rb rc ha hb
hc

We need these known preliminary results, all easily proved and widely
available in [2] and [3], for example.

Lemma 1: We have . [WEIFFTTIE]. See
[3, p. 274].

ha + hb + hc ≤ 3
2 (a + b + c)

Lemma 2: We have ; ; . See [2,
p. 200].

a = 2R sin A b = 2R sin B c = 2R sin C

Lemma 3: We have . [WEIFFTTIE]. See [2,
p. 315}.

sin A + sin B + sin C ≤ 3
2 3

Lemma 4: We have . See [2, p. 207].ra + rb + rc − r = 4R

Lemma 5 (Euler 1767): We have . [WEIFFTTIE]. See [2, p. 216].R ≥ 2r
Euler's proof of this result was very beautiful. He showed that the

distance  between the incentre and the circumcentre is given by
 and since , we have .

d
d2 = R(R − 2r) d2 ≥ 0 R ≥ 2r
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