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Abstract

Let G be a finite group. We investigate the structure of finite groups whose irreducible character codegrees
are consecutive integers.
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1. Introduction

Throughout this paper, G always denotes a finite group. As usual, Irr(G) denotes the
set of complex irreducible characters of G and cd(G) = {χ(1) | χ ∈ Irr(G)} the set of
character degrees. A number of papers, such as [5–7], have studied the influence of the
set cd(G) on the structure of G. In particular, Huppert in [3, Theorem 32.1] considered
finite groups whose irreducible character degrees are consecutive integers and showed
that if cd(G) = {1, 2, . . . , k − 1, k}, then G is solvable if and only if k � 4, and that if
k > 4, then k = 6 and G = HZ(G), where H � SL(2, 5).

Inspired by these results, we consider the analogous problem related to the character
codegrees. The concept of character codegrees was first introduced by Qian et al. in [9]
as follows. For χ ∈ Irr(G), the codegree of χ is defined to be

cod χ =
|G : kerχ|
χ(1)

.

Recently many papers have studied character codegrees (see, for instance, [4, 8, 10]).
Let Cod(G) = {cod χ | χ ∈ Irr(G)} be the set of irreducible character codegrees of
G. The aim of this paper is to investigate finite groups whose irreducible character
codegrees are consecutive integers. We have the following result.
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THEOREM 1.1. Let G be a group with Cod(G) = {1, 2, . . . , n − 1, n}, where n is a
positive integer. Then n � 3 and one of the following holds:

(1) if n = 1, then G = 1;
(2) if n = 2, then G is an elementary abelian 2-group;
(3) if n = 3, then G = N � H is a Frobenius group with an elementary abelian

3-group as its kernel, N = G′ and H is cyclic of order 2.

2. Preliminaries

We begin with the following basic lemma concerning character codegrees, which
will be used frequently in our proofs.

LEMMA 2.1 [9, Lemma 2.1]. Let G be a group and χ ∈ Irr(G).

(1) If N is a normal subgroup of G, then Cod(G/N) ⊆ Cod(G).
(2) If N is subnormal in G and φ ∈ Irr(N) is a constituent of χN , then cod φ | cod χ.

Next we recall the concept of the codegree graph, which was first introduced in [9].
The codegree graph Γ(G) is a graph whose vertex set V(G) is the set of all primes
dividing cod χ for some χ ∈ Irr(G) and there is an edge between two distinct primes p
and q if pq divides cod χ for some χ ∈ Irr(G). We present the following facts on the
codegree graph Γ(G).

LEMMA 2.2 [9, Theorems A and E]. Let G be a group and π(G) be the set of prime
divisors of |G|.

(1) π(G) coincides with V(G), the vertex set of Γ(G).
(2) For any subset Δ ⊆ π(G) with |Δ| � 3, there are two distinct primes p, q ∈ Δ so

that there is an edge between p and q.
(3) Γ(G) is not connected if and only if G is a Frobenius group or a 2-Frobenius

group.

3. Proof of Theorem 1.1

We start by proving the following result concerning number theory, which plays a
very important role in determining the integer n when Cod(G) = {1, 2, . . . , n − 1, n}.

PROPOSITION 3.1. Let n be an integer and r, q, p be three consecutive primes so that
2 < r < q < p � n and p is the largest prime less than or equal to n. Then n < 2p and
n < rq.

PROOF. Assume that n � 2p. Then p < 2p � n. By Bertrand’s postulate, there exists
a prime, say s, so that p < s < 2p. This contradicts the hypothesis that p is the largest
prime less than or equal to n. Hence, n < 2p.

Now assume that n � rq. Applying Bertrand’s postulate again, we see that
q < p < 2q and so q < p < 2q < 3q � rq � n. By [1, Theorem 1.3], there is a prime
between 2q and 3q. This is a contradiction. Thus, n < rq. �

https://doi.org/10.1017/S0004972724000558 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000558


[3] Character codegrees 3

Proposition 3.1 enables us show that the integer n will not be too large.

PROPOSITION 3.2. Let G be a group with Cod(G) = {1, 2, . . . , n − 1, n}, where n is a
positive integer. Then n � 6 and n � 5.

PROOF. Assume that n � 7. Then there are three consecutive primes r, q, p as defined
in Proposition 3.1. Thus, n < 2p and n < rq. Consider the subset Δ = {r, p, q} ⊆
V(G) = π(G). By Lemma 2.2(2), there exists χ ∈ Irr(G) so that pq | cod χ, rq | cod χ or
rp | cod χ. It follows from Proposition 3.1 that n � cod χ � min{pq, rq, rp} > n. This
is a contradiction. Thus, n � 6. Similarly, by Lemma 2.2(2), n � 5. �

With the above proposition, to prove Theorem 1.1, we only need to classify the
groups when 1 � n � 3 and show that n � 4, 6. Notice that if n � 6, the codegree graph
Γ(G) is not connected. Then by Lemma 2.2(3), G is a Frobenius group or a 2-Frobenius
group. So we need to understand the structure of Frobenius groups. In particular, we
give the following proposition.

PROPOSITION 3.3. Let G = N � H be a Frobenius group with kernel N. Suppose that
π(N) = {p1, p2, . . . , ps}. Then the following statements hold.

(1) If φ ∈ Irr(N), then cod φ | cod χ for some χ ∈ Irr(G). In particular,
∏s

i=1 pi | cod χ
for some χ ∈ Irr(G).

(2) Cod(G) = Cod(G/N)
⋃{cod(φG) | 1N � φ ∈ Irr(N)}. Furthermore, cod(φG) divides

|N | if 1N � φ ∈ Irr(N).

PROOF. (1) The first part follows from Lemma 2.1(2) immediately. Notice that N
is nilpotent. Then N = P1 × P2 × · · · × Ps, where Pi is a Sylow pi-subgroup of N.
Let 1Pi � λi ∈ Irr(Pi) and set φ = λ1 × λ2 × · · · × λs. Then φ ∈ Irr(N) and cod φ =
∏s

i=1 cod λi with pi | cod λi. Hence, by Lemma 2.1(2),
∏s

i=1 pi | cod χ for some
χ ∈ Irr(G), as required.

(2) It is well known that Irr(G) = Irr(G/N)
⋃{φG | 1N � φ ∈ Irr(N)}. Thus, the first

part is true. Notice that φG(1) = |G : N |φ(1). Then

cod(φG) =
|G : N ||N |

|G : N |φ(1)|ker φG|
=

|N |
φ(1)|ker φG|

divides |N |, as required. �

PROPOSITION 3.4. Let G be a group with |π(G)| = 3. Suppose that Cod(G) ⊆
{1, 2, 3, 4, 5, 6}. Then G is not a Frobenius group.

PROOF. We work by contradiction. Assume that G = N � H is a Frobenius group with
kernel N. By Lemma 2.2(1) and (2), π(G) = {2, 3, 5} and 6 ∈ Cod(G). First we consider
the case when |π(N)| = 2. Since N is nilpotent, it follows from Proposition 3.3(1)
that π(N) = {2, 3} and N is a direct product of an elementary abelian 2-group and
an elementary abelian 3-group. Notice that the complement H is a cyclic 5-group
and Cod(H) ⊆ Cod(G). Then H must be cyclic of order 5. Since there is φ ∈ Irr(N)
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so that cod(φG) = |N |/|ker φG| = 6, we have ker φG < N and so G/ker φG = N/kerφG
�

HkerφG/kerφG � C6 � C5 � C30. Hence, 30 ∈ Cod(G), a contradiction.
Assume now that |π(N)| = 1. By Proposition 3.3(2), π(N) = {5} and so N is

elementary abelian. Since there is φ ∈ Irr(N) so that cod(φG) = |N |/|ker φG| = 5, we
have ker φG < N. Let G = G/ker φG. Then G = N � H is a Frobenius group with kernel
N � C5 and H � H. Let Q be a Sylow 3-subgroup of H. Then Q is cyclic of order 3.
It follows that NQ is a Frobenius group of order 15. This is a contradiction since such
a group does not exist.

Both cases are impossible. The proof is completed. �

For convenience, here we introduce the notation of 2-Frobenius groups. If G is
a 2-Frobenius group, then there are normal subgroups N, M of G so that G/N is a
Frobenius group with kernel M/N, and M is a Frobenius group with kernel N. We
write G = Frob2(G, M, N) to denote such a 2-Frobenius group.

PROOF OF THEOREM 1.1. We first introduce two basic facts.

(A) cod χ > χ(1) if 1G � χ ∈ Irr(G).
(B) If G is abelian, then cod χ is equal to the order of χ in the group Irr(G) � G.

There is nothing to prove when n = 1. Assume that n � 2. Applying fact (A),
together with 2 ∈ Cod(G), we see that there exists a linear character χ ∈ Irr(G) such
that cod χ = 2 and hence χ ∈ Irr(G/G′). Then it follows from fact (B) that 2 | |G : G′|.

If n = 2, then by facts (A) and (B), G is an elementary abelian 2-group and (2)
follows.

Assume that n = 3. Then by Lemma 2.2(1) and (3), π(G) = {2, 3} and G is a
Frobenius group or a 2-Frobenius group. First suppose that G = N � H is a Frobenius
group with kernel N. Since 2 | |G : G′|, it follows that H is a 2-group and N is
a 3-group. By Proposition 3.3, Cod(N) = {1, 3} and Cod(G/N) = Cod(H) = {1, 2}.
Therefore, N is an elementary abelian 3-group and H is an elementary abelian 2-group.
Notice that the complement H must be cyclic or a generalised quaternion group
(see [2, Theorem 9.2.10]). Hence, H is cyclic of order 2. Since 6 � Cod(G), we
have G′ = N. To complete the proof of (3), we only need to show that G is not a
2-Frobenius group. Assume that G = Frob2(G, M, N) is a 2-Frobenius group. It follows
from Proposition 3.3 that Cod(G/N) = Cod(M) = {1, 2, 3}. Similarly, G/N � Cs

3 � C2
and M � Ct

3 � C2 for some positive integers s and t. This is a contradiction. Hence, (3)
follows.

Now we show that n � 4. If n = 4, then π(G) = {2, 3} and G is a Frobenius group or
a 2-Frobenius group. First assume that G = N � H is a Frobenius group with kernel N.
Then by a proof similar to that above, N is an elementary abelian 3-group and H
is a 2-group with Cod(H) = {1, 2, 4}. Together with the fact that the complement H
must be cyclic or a generalised quaternion group, we have H � C4 or Q8. Notice
that there exists φ ∈ Irr(N) so that cod(φG) = |N |/|ker φG| = 3. It is obvious that
ker φG < N. Then G/ker φG = N/ker φG

� Hker φG/ker φG � C3 � C4 or C3 � Q8 is a
Frobenius group, which is a contradiction. Thus, G cannot be a Frobenius group.
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Assume that G = Frob2(G, M, N) is a 2-Frobenius group. Since G/N is Frobenius and
Cod(G/N) ⊆ Cod(G), we have Cod(G/N) = {1, 2, 3}. Similarly, Cod(M) = {1, 2, 3}.
This cannot happen by statement (2) of this theorem. Hence, n � 4.

By Proposition 3.2, it remains to show that n � 6. If n = 6, then π(G) = {2, 3, 5}
and G is a Frobenius group or a 2-Frobenius group. It follows by Proposition 3.4
that G is not a Frobenius group. We may assume that G = Frob2(G, M, N) is
a 2-Frobenius group. By Proposition 3.3(1) and (2), Cod(G/N) ⊆ Cod(G) and
Cod(M/N) ⊆ Cod(M) ⊆ Cod(G). Since both G/N and M are Frobenius groups, it
follows by Proposition 3.4 that |π(G/N)| = |π(M)| = 2. Write G = G/N and then
G = M � K, where K is the Frobenius complement. First consider the case when
π(K) � {2}. As K is cyclic and Cod(K) ⊆ Cod(G), we have G′ � M and K is cyclic
of order 3 or 5. Notice that 2 | |G : G′|. Then K � C3 and M is a 2-group. Since
M is Frobenius and M is isomorphic to its complement, it follows that M is cyclic
or a generalised quaternion group and hence M � C2, C4 or Q8. But G � M � C3
is Frobenius, which is impossible. Assume now that π(K) = {2}. It is obvious that
π(M) = {3, 5}. Let M = N � H be a Frobenius group with kernel N. By a similar
proof, there exists φ ∈ Irr(N) so that G/kerφG � N/kerφG

� H � C15. It follows that
15 ∈ Cod(G), a contradiction. Hence, n � 6. The proof is completed. �
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