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Abstract

Let G be a finite group. We investigate the structure of finite groups whose irreducible character codegrees
are consecutive integers.
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1. Introduction

Throughout this paper, G always denotes a finite group. As usual, Irr(G) denotes the
set of complex irreducible characters of G and cd(G) = {x(1) | x € Irr(G)} the set of
character degrees. A number of papers, such as [5-7], have studied the influence of the
set cd(G) on the structure of G. In particular, Huppert in [3, Theorem 32.1] considered
finite groups whose irreducible character degrees are consecutive integers and showed
that if cd(G) ={1,2,...,k — 1,k}, then G is solvable if and only if k < 4, and that if
k> 4,then k = 6 and G = HZ(G), where H = SL(2, 5).

Inspired by these results, we consider the analogous problem related to the character
codegrees. The concept of character codegrees was first introduced by Qian et al. in [9]
as follows. For y € Irr(G), the codegree of y is defined to be

|G ker x|

cod
T

Recently many papers have studied character codegrees (see, for instance, [4, 8, 10]).
Let Cod(G) = {cody | x € Irr(G)} be the set of irreducible character codegrees of
G. The aim of this paper is to investigate finite groups whose irreducible character
codegrees are consecutive integers. We have the following result.
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THEOREM 1.1. Let G be a group with Cod(G) ={1,2,...,n— 1,n}, where n is a
positive integer. Then n < 3 and one of the following holds:

(1) ifn=1,thenG=1;

(2) ifn =2, then G is an elementary abelian 2-group;

(3) if n=3, then G=N = H is a Frobenius group with an elementary abelian
3-group as its kernel, N = G’ and H is cyclic of order 2.

2. Preliminaries

We begin with the following basic lemma concerning character codegrees, which
will be used frequently in our proofs.

LEMMA 2.1 [9, Lemma 2.1]. Let G be a group and y € Irr(G).

(1) If Nis a normal subgroup of G, then Cod(G/N) C Cod(G).
(2) If N is subnormal in G and ¢ € Irr(N) is a constituent of xn, then cod ¢ | cod y.

Next we recall the concept of the codegree graph, which was first introduced in [9].
The codegree graph I'(G) is a graph whose vertex set V(G) is the set of all primes
dividing cod y for some y € Irr(G) and there is an edge between two distinct primes p
and ¢ if pq divides cod y for some y € Irr(G). We present the following facts on the
codegree graph I'(G).

LEMMA 2.2 [9, Theorems A and E]. Let G be a group and n(G) be the set of prime
divisors of |G|.

(1) 7(G) coincides with V(G), the vertex set of T'(G).

(2) For any subset A C n(G) with |A| > 3, there are two distinct primes p,q € A so
that there is an edge between p and q.

(3) T(G) is not connected if and only if G is a Frobenius group or a 2-Frobenius

group.

3. Proof of Theorem 1.1

We start by proving the following result concerning number theory, which plays a
very important role in determining the integer n when Cod(G) = {1,2,...,n — 1, n}.

PROPOSITION 3.1. Let n be an integer and r, q, p be three consecutive primes so that
2 <r<gq<p<nandp is the largest prime less than or equal to n. Then n < 2p and
n<rq.

PROOF. Assume that n > 2p. Then p < 2p < n. By Bertrand’s postulate, there exists
a prime, say s, so that p < s < 2p. This contradicts the hypothesis that p is the largest
prime less than or equal to n. Hence, n < 2p.

Now assume that n > rq. Applying Bertrand’s postulate again, we see that
q<p<2qandsoq<p<2q<3q<rg<n.By][l, Theorem 1.3], there is a prime
between 2¢q and 3¢. This is a contradiction. Thus, n < rg. |
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Proposition 3.1 enables us show that the integer n will not be too large.

PROPOSITION 3.2. Let G be a group with Cod(G) = {1,2,...,n— 1,n}, where n is a
positive integer. Thenn < 6 and n # 5.

PROOF. Assume that n > 7. Then there are three consecutive primes r, g, p as defined
in Proposition 3.1. Thus, n <2p and n < rq. Consider the subset A = {r, p,q} C
V(G) = n(G). By Lemma 2.2(2), there exists y € Irr(G) so that pg | cod y, rq | cod y or
rp | cod y. It follows from Proposition 3.1 that n > cod y > min{pq, rq, rp} > n. This
is a contradiction. Thus, n < 6. Similarly, by Lemma 2.2(2), n # 5. O

With the above proposition, to prove Theorem 1.1, we only need to classify the
groups when 1 < n < 3 and show that n # 4, 6. Notice that if n < 6, the codegree graph
I'(G) is not connected. Then by Lemma 2.2(3), G is a Frobenius group or a 2-Frobenius
group. So we need to understand the structure of Frobenius groups. In particular, we
give the following proposition.

PROPOSITION 3.3. Let G = N < H be a Frobenius group with kernel N. Suppose that
a(N) ={p1, p2, ..., ps}- Then the following statements hold.

(1) If¢ € Irr(N), then cod ¢ | cod x for some x € Irt(G). In particular, [T;_, p;i | cod ¥
for some y € Irr(G).

(2) Cod(G) = Cod(G/N) U{cod(¢®) | 1y # ¢ € Irr(N)}. Furthermore, cod(¢©) divides
IN|if 1y # ¢ € Irr(N).

PROOF. (1) The first part follows from Lemma 2.1(2) immediately. Notice that N
is nilpotent. Then N = P; X P, X --- X P;, where P; is a Sylow p;-subgroup of N.
Let 1p, # A4; € Irr(P;) and set ¢ = A; X Ay X --- X A;. Then ¢ € Irr(N) and cod¢ =
[T, cod A; with p;|codA;. Hence, by Lemma 2.1(2), [}, pi|cody for some
x € Irr(G), as required.

(2) It is well known that Irr(G) = Irr(G/N) U{¢® | 1y # ¢ € Irr(N)}. Thus, the first
part is true. Notice that ¢%(1) = |G : N|¢(1). Then

G:NIN_ _ N
G Nig(Dlker 61~ ¢(Dlker ¢

cod(¢”) =

divides |N|, as required. O

PROPOSITION 3.4. Let G be a group with |n(G)| =3. Suppose that Cod(G) C
{1,2,3,4,5,6}. Then G is not a Frobenius group.

PROOF. We work by contradiction. Assume that G = N > H is a Frobenius group with
kernel N. By Lemma 2.2(1) and (2), 7(G) = {2, 3,5} and 6 € Cod(G). First we consider
the case when |7(N)| = 2. Since N is nilpotent, it follows from Proposition 3.3(1)
that 7(N) = {2,3} and N is a direct product of an elementary abelian 2-group and
an elementary abelian 3-group. Notice that the complement H is a cyclic 5-group
and Cod(H) € Cod(G). Then H must be cyclic of order 5. Since there is ¢ € Irr(N)
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so that cod(¢®) = |N|/|ker ¢°| = 6, we have ker $° < N and so G/ker ¢© = N/ker¢® >
Hker¢® [ker¢® = C¢ = Cs = Cx. Hence, 30 € Cod(G), a contradiction.

Assume now that |[7(N)| = 1. By Proposition 3.3(2), n(N) ={5} and so N is
elementary abelian. Since there is ¢ € Irr(N) so that cod(¢®) = |N|/|ker ¢%| = 5, we
have ker ¢ < N. Let G = G/ker ¢°. Then G = N > H is a Frobenius group with kernel
N = Cs and H = H. Let Q be a Sylow 3-subgroup of H. Then Q is cyclic of order 3.
It follows that NQ is a Frobenius group of order 15. This is a contradiction since such
a group does not exist.

Both cases are impossible. The proof is completed. m]

For convenience, here we introduce the notation of 2-Frobenius groups. If G is
a 2-Frobenius group, then there are normal subgroups N, M of G so that G/N is a
Frobenius group with kernel M/N, and M is a Frobenius group with kernel N. We
write G = Frob,(G, M, N) to denote such a 2-Frobenius group.

PROOF OF THEOREM 1.1. We first introduce two basic facts.

(A) cody > x(1)if 15 # x € Irr(G).
(B) If Gis abelian, then cod y is equal to the order of y in the group Irr(G) = G.

There is nothing to prove when n = 1. Assume that n > 2. Applying fact (A),
together with 2 € Cod(G), we see that there exists a linear character y € Irr(G) such
that cod y = 2 and hence y € Irr(G/G’). Then it follows from fact (B) that 2 | |G : G’|.

If n =2, then by facts (A) and (B), G is an elementary abelian 2-group and (2)
follows.

Assume that n = 3. Then by Lemma 2.2(1) and (3), 7(G) ={2,3} and G is a
Frobenius group or a 2-Frobenius group. First suppose that G = N < H is a Frobenius
group with kernel N. Since 2| |G : G’|, it follows that H is a 2-group and N is
a 3-group. By Proposition 3.3, Cod(N) = {1,3} and Cod(G/N) = Cod(H) = {1, 2}.
Therefore, N is an elementary abelian 3-group and H is an elementary abelian 2-group.
Notice that the complement H must be cyclic or a generalised quaternion group
(see [2, Theorem 9.2.10]). Hence, H is cyclic of order 2. Since 6 ¢ Cod(G), we
have G’ = N. To complete the proof of (3), we only need to show that G is not a
2-Frobenius group. Assume that G = Frob,(G, M, N) is a 2-Frobenius group. It follows
from Proposition 3.3 that Cod(G/N) = Cod(M) = {1,2,3}. Similarly, G/N = C} = C;
and M = C’; = C, for some positive integers s and 7. This is a contradiction. Hence, (3)
follows.

Now we show that n # 4. If n = 4, then n7(G) = {2, 3} and G is a Frobenius group or
a 2-Frobenius group. First assume that G = N > H is a Frobenius group with kernel N.
Then by a proof similar to that above, N is an elementary abelian 3-group and H
is a 2-group with Cod(H) = {1, 2, 4}. Together with the fact that the complement H
must be cyclic or a generalised quaternion group, we have H = C, or Qg. Notice
that there exists ¢ € Irr(N) so that cod(¢”) = |N|/|ker ¢¢| = 3. It is obvious that
ker ¢ < N. Then G/ker ¢© = N/ker ¢ > Hker ¢© [ker ¢© = C3 = C4 or C3 = Qg is a
Frobenius group, which is a contradiction. Thus, G cannot be a Frobenius group.
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Assume that G = Frob,(G, M, N) is a 2-Frobenius group. Since G/N is Frobenius and
Cod(G/N) € Cod(G), we have Cod(G/N) = {1,2,3}. Similarly, Cod(M) = {1,2,3}.
This cannot happen by statement (2) of this theorem. Hence, n # 4.

By Proposition 3.2, it remains to show that n # 6. If n = 6, then n(G) = {2, 3,5}
and G is a Frobenius group or a 2-Frobenius group. It follows by Proposition 3.4
that G is not a Frobenius group. We may assume that G = Frob,(G,M,N) is
a 2-Frobenius group. By Proposition 3.3(1) and (2), Cod(G/N) € Cod(G) and
Cod(M/N) € Cod(M) € Cod(G). Since both G/N and M are Frobenius groups, it
follows by Proposition 3.4 that |n(G/N)| = |n(M)| = 2. Write G = G/N and then
G =M =K, where K is the Frobenius complement. First consider the case when
n(K) # {2). As K is cyclic and Cod(K) € Cod(G), we have G’ < M and K is cyclic
of order 3 or 5. Notice that 2| |G : G’|. Then K = C; and M is a 2-group. Since
M is Frobenius and M is isomorphic to its complement, it follows that M is cyclic
or a generalised quaternion group and hence M = C,,C4 or Qg. But G = M = C3
is Frobenius, which is impossible. Assume now that R(E) = {2}. It is obvious that
n(M) ={3,5}. Let M = N < H be a Frobenius group with kernel N. By a similar
proof, there exists ¢ € Irr(N) so that G/ker¢® = N/ker¢® =< H = C;s. It follows that
15 € Cod(G), a contradiction. Hence, n # 6. The proof is completed. O
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