
JFP 34, e16, 119 pages, 2025. c© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796824000133

From high to low: Simulating nondeterminism
and state with state

W E N H A O T A N G
The University of Edinburgh, Edinburgh, UK

(e-mail: wenhao.tang@ed.ac.uk)

T O M S C H R I J V E R S
Department of Computer Science, KU Leuven, Leuven, Belgium

(e-mail: tom.schrijvers@kuleuven.be)

Abstract

Some effects are considered to be higher level than others. High-level effects provide expressive
and succinct abstraction of programming concepts, while low-level effects allow more fine-grained
control over program execution and resources. Yet, often it is desirable to write programs using
the convenient abstraction offered by high-level effects, and meanwhile still benefit from the opti-
mizations enabled by low-level effects. One solution is to translate high-level effects to low-level
ones.

This paper studies how algebraic effects and handlers allow us to simulate high-level effects
in terms of low-level effects. In particular, we focus on the interaction between state and nonde-
terminism known as the local state, as provided by Prolog. We map this high-level semantics in
successive steps onto a low-level composite state effect, similar to that managed by Prolog’s Warren
Abstract Machine. We first give a translation from the high-level local-state semantics to the low-
level global-state semantics, by explicitly restoring state updates on backtracking. Next, we eliminate
nondeterminism altogether in favour of a lower-level state containing a choicepoint stack. Then we
avoid copying the state by restricting ourselves to incremental, reversible state updates. We show
how these updates can be stored on a trail stack with another state effect. We prove the correctness
of all our steps using program calculation where the fusion laws of effect handlers play a central role.

1 Introduction

The trade-off between “high-level” and “low-level” styles of programming is almost as old
as the field of computer science itself. In a high-level style of programming, we lean on
abstractions to make our programs easier to read and write and less error prone. We pay
for this comfort by giving up precise control over the underlying machinery; we forego
optimization opportunities or have to trust a (usually opaque) compiler to perform low-
level optimizations for us. For performance-sensitive applications, compiler optimizations
are not reliable enough; instead we often resort to lower-level programming techniques
ourselves. Although these lower-level programming techniques allow a fine-grained con-
trol over program execution and the implementation of optimization techniques, they tend

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000133
mailto:wenhao.tang@ed.ac.uk
mailto:tom.schrijvers@kuleuven.be
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796824000133&domain=pdf
https://doi.org/10.1017/S0956796824000133

2 W. Tang and T. Schrijvers

to be harder to write and not compose very well. This is an important trade-off to take
into account when choosing an appropriate programming language for implementing an
application.

Maybe surprisingly, as they are rarely described in this way, there is a similar pattern
for side effects within programming languages: some effects can be described as “lower-
level” than others. Informally, we say that an effect is lower-level than another effect when
the lower-level effect can simulate the higher-level effect. In other words, it is possible to
write a program using lower-level effects that has identical semantics to the same program
with higher-level effects. Yet, due to the lack of abstraction of low-level effects, writing a
faithful simulation requires careful discipline and is quite error prone.

This article investigates how we can construct programs that are most naturally
expressed with a high-level effect, but where we still want access to the optimization
opportunities of a lower-level effect. In particular, inspired by Prolog and Constraint
Programming systems, we investigate programs that rely on high-level interaction between
the nondeterminism and state effects which we call local state. Following low-level
implementation techniques for these systems, like the Warren Abstract Machine (WAM)
(Warren, 1983; Aït-Kaci, 1991), we show how these high-level effects can be simulated
in terms of the low-level global state interaction of state and nondeterminism, and finally
by state alone. This allows us to incorporate typical optimizations like exploiting mutable
state for efficient backtracking based on trailing as opposed to copying or recomputing the
state from scratch (Schulte, 1999).

Our approach is based on algebraic effects and handlers (Plotkin and Power, 2003;
Plotkin and Pretnar, 2009, 2013) to cleanly separate the syntax and semantics of effects.
For programs written with high-level effects and interpreted by their handlers, we can
define a general translation handler to transform these high-level effects to low-level
effects and then interpret the translated programs with the handlers of low-level effects.
Though we do not give a formal definition of a simulation from high-level effects to low-
level effects, we expect it to be a handler that interprets the operations of the high-level
effects in terms of the operations of the low-level effects. This handler is essentially a
monomorphism from the syntax tree of high-level effects to that of low-level effects, sim-
ilar to Felleisen (1991)’s notion of macro expansion but at the continuation-passing level
(as the syntax trees of free monads provide access to continuations).

Of particular interest is the way we reason about the correctness of our approach. There
has been much debate in the literature on different equational reasoning approaches for
effectful computations. Hutton and Fulger (2008) break the abstraction boundaries and
use the actual implementation in their equational reasoning approach. Gibbons and Hinze
(2011) promote an alternative, law-based approach to preserve abstraction boundaries and
combine axiomatic with equational reasoning. In an earlier version of this work (Pauwels
et al., 2019), we have followed the latter, law-based approach for reasoning about the cor-
rectness of simulating local state with global state. However, we have found that approach
to be unsatisfactory because it incorporates elements that are usually found in the syntactic
approach for reasoning about programming languages (Wright and Felleisen, 1994), lead-
ing to more boilerplate and complication in the proofs: notions of contextual equivalence
and explicit manipulation of program contexts. Hence, for that reason we return to the
implementation-based reasoning approach, which we believe works well with algebraic

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 3

Table 1: Overview of translations from high-level effects to low-level effects in the paper

Translations Descriptions Correctness

local2global Local state to global state (Section 4.3) Theorem 1
nondet2state Nondeterminism to state (Section 5.2) Theorem 3
states2state Multiple states to a single state (Section 6.1) Theorem 4
local2globalM Local state to global state with reversible updates (Section 7.3) Theorem 6
local2trail Local state to global state with trail stacks (Section 8.1) Theorem 7

effects and handlers. Indeed, we prove all of our simulations correct using equational
reasoning techniques, exploiting in particular the fusion property of handlers (Wu and
Schrijvers, 2015; Gibbons, 2000).

After introducing the reader to the appropriate background material and motivating the
problem (Sections 2 and 3), this paper makes the following contributions:

• We distinguish between local-state and global-state semantics and simulate the
former in terms of the latter (Section 4).
• We simulate nondeterminism using a state that consists of a choicepoint stack

(Section 5).
• We combine the previous two simulations and merge the two states into a single

state effect (Section 6).
• By only allowing incremental, reversible updates to the state we can avoid holding

on to multiple copies of the state (Section 7).
• By storing the incremental updates in a trail stack state, we can restore them in batch

when backtracking (Section 8).
• We prove all simulations correct using equational reasoning techniques and the

fusion law for handlers in particular (Appendices 2, 3, 4, 5, 6, and 7).

Finally, we discuss related work (Section 9) and conclude (Section 10). Table 1 gives an
overview of the simulations of high-level effects with low-level effects, we implemented
and proved in the paper. Throughout the paper, we use Haskell as a means to illustrate
our findings with code. In particular, we restrict ourselves to a well-behaved and well-
founded fragment of Haskell that avoids non-termination and other forms of bottom and
readily admits equational reasoning with structural induction. Moreover, we focus on for-
malising and proving the correctness of the simulations rather than empirical evidence
of performance improvements, as those have already been demonstrated by real-world
systems like Prolog. In fact, the Haskell implementations themselves do not exhibit per-
formance improvements due to aspects like laziness, immutable state, and the overhead of
algebraic effects and handlers.

2 Background and motivation

This section summarizes the main prerequisites for equational reasoning with effects and
motivates our translations from high-level effects to low-level effects. We discuss the two
central effects of this paper: state and nondeterminism.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

4 W. Tang and T. Schrijvers

2.1 Functors and monads

Functors. In Haskell, a functor f :: ∗→∗ instantiates the functor type class, which has a
single functor mapping operation.

class Functor f where
fmap :: (a→ b)→ f a→ f b

Furthermore, a functor should satisfy the following two functor laws:

identity : fmap id = id, (2.1)

composition : fmap (f ◦ g)= fmap f ◦ fmap g. (2.2)

We sometimes use the operator 〈$〉 as an alias for fmap.

(〈$〉) :: Functor f ⇒ (a→ b)→ f a→ f b
(〈$〉)= fmap

Monads. Monadic side effects (Moggi, 1991), the main focus of this paper, are those that
can dynamically determine what happens next. A monad m :: ∗→∗ is a functor which
instantiates the monad type class, which has two operations return (η) and bind (>>=).

class Functor m⇒Monad m where
η :: a→m a
(>>=) :: m a→ (a→m b)→m b

Furthermore, a monad should satisfy the following three monad laws:

return-bind : η x >>= f = f x, (2.3)

bind-return : m >>= η=m, (2.4)

associativity : (m >>= f) >>= g=m >>= (λx→ f x >>= g). (2.5)

Haskell supports do blocks as syntactic sugar for monadic computations. For example,
do x←m; f x is translated to m >>= f . Two convenient derived operators are >> and 〈∗〉.1

(>>) :: Monad m⇒m a→m b→m b
m1 >> m2 =m1 >>= λ →m2

(〈∗〉) :: Monad m⇒m (a→ b)→m a→m b
mf 〈∗〉mx=mf >>= λf →mx >>= λx→ η (f x)

2.2 Nondeterminism and state

Following both the approaches of Hutton and Fulger (2008) and of Gibbons and Hinze
(2011), we introduce effects as subclasses of the Monad type class.

Nondeterminism. The first monadic effect we introduce is nondeterminism. We define a
subclass MNondet of Monad to capture the nondeterministic interfaces as follows:

1 We deviate from the type class hierarchy of Functor, Applicative, and Monad that can be found in Haskell’s
standard library because its additional complexity is not needed in this article.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 5

class Monad m⇒MNondet m where
∅ :: m a
(�) :: m a→m a→m a

Here, ∅ denotes failures and (�) denotes nondeterministic choices. Instances of the
MNondet interface should satisfy the following four laws: 2

identity : ∅ � m = m = m �∅, (2.6)

associativity : (m � n) � k = m � (n � k), (2.7)

right-distributivity : (m1 � m2) >>= f = (m1 >>= f) � (m2 >>= f), (2.8)

left-identity : ∅>>= f = ∅. (2.9)

The first two laws state that (�) and ∅ should form a monoid, i.e., (�) should be associative
with ∅ as its neutral element. The last two laws show that (>>=) is right-distributive over
(�) and that ∅ cancels bind on the left.

The approach of Gibbons and Hinze (2011) is to reason about effectful programs using
an axiomatic characterization given by these laws. It does not rely on the specific imple-
mentation of any particular instance of MNondet. In contrast, Hutton and Fulger (2008)
reason directly in terms of a particular instance. In the case of MNondet, the quintessential
instance is the list monad, which extends the conventional Monad instance for lists.

instance MNondet [] where
∅ = []
(�)= (++)

instance Monad [] where
η x= [x]
xs >>= f = concatMap f xs

State. The signature for the state effect has two operations: a get operation that reads and
returns the state and a put operation that modifies the state, overwriting it with the given
value, and returns nothing. Again, we define a subclass MState of Monad to capture its
interfaces.

class Monad m⇒MState s m |m→ s where
get :: m s
put :: s→m ()

These operations are regulated by the following four laws:

put-put : put s >> put s′ = put s′, (2.10)

put-get : put s >> get= put s >> η s, (2.11)

get-put : get >>= put= η (), (2.12)

get-get : get >>= (λs→ get >>= k s)= get >>= (λs→ k s s). (2.13)

2 One might expect additional laws such as idempotence or commutativity. As argued by Kiselyov (2015), these
laws differ depending on how the monad is used and how it should interact with other effects. The standard
MonadPlus type class has no laws associated. We introduce a different type class, MNondet, to impose the
minimal set of laws for nondeterminism from Rivas et al. (2018). We choose these laws because they are
consistent with both the list monad and with the behaviour of Prolog.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

6 W. Tang and T. Schrijvers

The standard instance of MState is the state monad State s.

newtype State s a=
State {runState :: s→ (a, s)}

instance MState s (State s) where
get = State (λs→ (s, s))
put s= State (λ → ((), s))

instance Monad (State s) where
η x= State (λs→ (x, s))
m >>= f = State (λs→ let (x, s′)= runState m s

in runState (f x) s′)

2.3 The N-queens puzzle

The n-queens problem used here is an adapted and simplified version from that of Gibbons
and Hinze (2011). The aim of the puzzle is to place n queens on a n× n chess board such
that no two queens can attack each other. This means that no two queens should be placed
on the same row, the same column or the same diagonal of the chess board.

Given n, we number the rows and columns by [1 . . n]. Since all queens should be placed
on distinct rows and distinct columns, a potential solution can be represented by a permu-
tation xs of the list [1 . . n], such that xs !! i= j denotes that the queen on the ith column is
placed on the jth row. Using this representation, queens cannot be put on the same row or
column.

A naive algorithm. We have the following naive nondeterministic algorithm for
n-queens.

queensnaive :: MNondet m⇒ Int→m [Int]
queensnaive n= choose (permutations [1 . . n]) >>= filtr valid

The program queensnaive 4 :: [[Int]] gives as result [[2, 4, 1, 3], [3, 1, 4, 2]]. The program
uses a generate-and-test strategy: it generates all permutations of queens as candidate
solutions, and then tests which ones are valid.

The function permutations :: [a]→ [[a]] from Data.List computes all the permutations
of its input. The function choose implemented as follows nondeterministically picks an
element from a list.

choose :: MNondet m⇒ [a]→m a
choose= foldr ((�) ◦ η) ∅

The function filtr p x returns x if p x holds and fails otherwise.

filtr :: MNondet m⇒ (a→ Bool)→ a→m a
filtr p x= if p x then η x else ∅

The pure function valid :: [Int]→ Bool determines whether the input is a valid solution.

valid :: [Int]→ Bool
valid [] = True
valid (q : qs)= valid qs∧ safe q 1 qs

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 7

A solution is valid when each queen is safe with respect to the subsequent queens:

safe :: Int→ Int→ [Int]→ Bool
safe [] = True
safe q n (q1 : qs)= and [q �≡ q1, q �≡ q1 + n, q �≡ q1 − n, safe q (n+ 1) qs]

The call safe q n qs checks whether the current queen q is on a different ascending and
descending diagonal than the other queens qs, where n is the number of columns that q is
apart from the first queen q1 in qs.

Although this generate-and-test approach works and is quite intuitive, it is not very
efficient. For example, all solutions of the form (1 : 2 : qs) are invalid because the first two
queens are on the same diagonal. However, the algorithm still needs to generate and test
all (n− 2)! candidate solutions of this form.

A backtracking algorithm. We can fuse the two phases of the naive algorithm to obtain
a more efficient algorithm, where both generating candidates and checking for validity
happens in a single pass. The idea is to move to a state-based backtracking implementation
that allows early pruning of branches that are invalid. In particular, when placing the new
queen in the next column, we make sure that it is only placed in positions that are valid
with respect to the previously placed queens.

We use a state (Int, [Int]) to contain the current column and the previously placed
queens. The backtracking algorithm of n-queens is implemented as follows.

queens :: (MState (Int, [Int]) m, MNondet m)⇒ Int→m [Int]
queens n= loop where

loop= do (c, sol)← get
if c � n then η sol
else do r← choose [1 . . n]

guard (safe r 1 sol)
s← get
put (s⊕ r)
loop

The function guard fails when the input is false.

guard :: MNondet m⇒ Bool→m ()
guard True= η ()
guard False=∅

The function s⊕ r updates the state with a new queen placed on row r in the next column.

(⊕) :: (Int, [Int])→ Int→ (Int, [Int])
(⊕) (c, sol) r= (c+ 1, r : sol)

The above monadic version of queens essentially assume that each searching branch
has its own state; we do not need to explicitly restore the state when backtracking.
Though it is a convenient high-level programming assumption for programmers, it causes
obstacles to low-level implementations and optimizations. In the following sections, we
investigate how low-level implementation and optimization techniques, such as those

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

8 W. Tang and T. Schrijvers

found in Prolog’s Warren Abstract Machine and Constraint Programming systems, can
be incorporated and proved correct.

3 Algebraic effects and handlers

This section introduces algebraic effects and handlers, the approach we use to define
syntax, semantics, and simulations for effects. Comparing to giving concrete monad imple-
mentations for effects, algebraic effects and handlers allow us to easily provide different
interpretations for the same effects due to the clear separation of syntax and semantics. As
a result, we can smoothly specify translations from high-level effects to low-level effects
as handlers of these high-level effects and then compose them with the handlers of low-
level effects to interpret high-level programs. Algebraic effects and handlers also provide
us with a modular way to combine our translations with other effects, and a useful tool, the
fusion property, to prove the correctness of translations.

3.1 Free monads and their folds

We implement algebraic effects and handlers as free monads and their folds.

Free monads. Free monads are gaining popularity for their use in algebraic effects
(Plotkin and Power, 2002, 2003) and handlers (Plotkin and Pretnar, 2009, 2013), which
elegantly separate syntax and semantics of effectful operations. A free monad, the syntax
of an effectful program, can be captured generically in Haskell.

data Free f a= Var a |Op (f (Free f a))

This data type is a form of abstract syntax tree (AST) consisting of leaves (Var a) and
internal nodes (Op (f (Free f a))), whose branching structure is determined by the functor
f . This functor is also known as the signature of operations.

A fold recursion scheme. Free monads come equipped with a fold recursion scheme.

fold :: Functor f ⇒ (a→ b)→ (f b→ b)→ Free f a→ b
fold gen alg (Var x) = gen x
fold gen alg (Op op)= alg (fmap (fold gen alg) op)

This fold interprets an AST structure of type Free f a into some semantic domain b. It does
so compositionally using a generator gen :: a→ b for the leaves and an algebra alg :: f b→
b for the internal nodes; together these are also known as a handler.

The monad instance of Free is straightforwardly implemented with fold.

instance Functor f ⇒Monad (Free f) where
η = Var
m >>= f = fold f Op m

Under certain conditions folds can be fused with functions that are composed with
them (Wu and Schrijvers, 2015; Gibbons, 2000). This gives rise to the following laws:

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 9

fusion-pre : fold (gen ◦ h) alg= fold gen alg ◦ fmap h, (3.1)

fusion-post : h ◦ fold gen alg= fold (h ◦ gen) alg′ with h ◦ alg= alg′ ◦ fmap h, (3.2)

fusion-post’ : h ◦ fold gen alg= fold (h ◦ gen) alg′ (3.3)

with h ◦ alg ◦ fmap f = alg′ ◦ fmap h ◦ fmap f and f = fold gen alg.

These three fusion laws turn out to be essential in the further proofs of this paper.

Nondeterminism. Instead of using a concrete monad like List, we use the free monad
Free NondetF over the signature NondetF following algebraic effects.

data NondetF a= Fail |Or a a

This signatures gives rise to a trivial MNondet instance:

instance MNondet (Free NondetF) where
∅ =Op Fail
(�) p q=Op (Or p q)

With this representation the right-distributivity law and the left-identity law follow
trivially from the definition of (>>=) for the free monad.

In contrast, the identity and associativity laws are not satisfied on the nose. Indeed,
Op (Or Fail p) is for instance a different abstract syntax tree than p. Yet, these syntactic
differences do not matter as long as their interpretation is the same. This is where the
handlers come in; the meaning they assign to effectful programs should respect the laws.
We have the following hND handler which interprets the free monad in terms of lists.

hND :: Free NondetF a→ [a]
hND = fold genND algND

where
genND x = [x]
algND Fail = []
algND (Or p q)= p++q

With this handler, the identity and associativity laws are satisfied up to handling as
follows:

hND (∅ � m) = hND m = hND (m �∅)
hND ((m � n) � o) = hND (m � (n � o))

In fact, two stronger contextual equalities hold:

hND ((∅ � m) >>= k) = hND (m >>= k) = hND ((m �∅) >>= k)
hND (((m � n) � o) >>= k) = hND ((m � (n � o)) >>= k)

These equations state that the interpretations of the left- and right-hand sides are indis-
tinguishable even when put in a larger program context >>= k. They follow from the
definitions of hND and (>>=), as well as the associativity and identity properties of (++).

We obtain the two non-contextual equations as a corollary by choosing k = η.

State. Again, instead of using the concrete State monad in Section 2.2, we model states
via the free monad Free (StateF s) over the state signature.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

10 W. Tang and T. Schrijvers

data StateF s a=Get (s→ a) | Put s a

This state signature gives the following MState s instance:

instance MState s (Free (StateF s)) where
get =Op (Get η)
put s=Op (Put s (η ()))

The following handler h′State maps this free monad to the State s monad.

h′State :: Free (StateF s) a→ State s a
h′State = fold gen′S alg′S

where
gen′S x = State $ λs→ (x, s)
alg′S (Get k)= State $ λs→ runState (k s) s
alg′S (Put s′ k)= State $ λs→ runState k s′

It is easy to verify that the four state laws hold contextually up to interpretation with h′State.

3.2 Modularly combining effects

Combining multiple effects is relatively easy in the axiomatic approach based on type
classes. By imposing multiple constraints on the monad m, e.g. (MState s m, MNondet m),
we can express that m should support both state and nondeterminism and respect their
associated laws. In practice, this is often insufficient: we usually require additional laws
that govern the interactions between the combined effects. We discuss possible interaction
laws between state and nondeterminism in details in Section 4.

The coproduct operator for combining effects. To combine the syntax of effects given
by free monads, we need to define a right-associative coproduct operator :+: for signatures.

data (f :+: g) a= Inl (f a) | Inr (g a)

Note that given two functors f and g, it is obvious that f :+: g is again a functor. This
coproduct operator allows a modular definition of the signatures of combined effects. For
instance, we can encode programs with both state and nondeterminism as effects using
the data type Free (StateF :+: NondetF) a. The coproduct also has a neutral element NilF ,
representing the empty effect set.

data NilF a -- no constructors

We define the following two instances, which allow us to compose state effects with any
other effect functor f , and nondeterminism effects with any other effect functors f and g,
respectively. As a result, it is easy to see that Free (StateF s :+: NondetF :+: f) supports
both state and nondeterminism for any functor f .

instance (Functor f)⇒MState s (Free (StateF s :+: f)) where
get =Op $ Inl $ Get η

put x=Op $ Inl $ Put x (η ())

instance (Functor f , Functor g)⇒MNondet (Free (g :+: NondetF :+: f)) where

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 11

∅ =Op $ Inr $ Inl Fail
x � y=Op $ Inr $ Inl (Or x y)

Modularly combining effect handlers. In order to interpret composite signatures, we
use the forwarding approach of Schrijvers et al. (2019). This way the handlers can be
modularly composed: they only need to know about the part of the syntax their effect is
handling and forward the rest of the syntax to other handlers.

A mediator (#) is used to separate the algebra alg for the handled effects and the
forwarding algebra fwd for the unhandled effects.

(#) :: (f a→ b)→ (g a→ b)→ (f :+: g) a→ b
(alg # fwd) (Inl op) = alg op
(alg # fwd) (Inr op)= fwd op

The handlers for state and nondeterminism we have given earlier require a bit of adjust-
ment to be used in the composite setting since they only consider the signature of their own
effects. We need to interpret the free monads into composite domains, StateT (Free f) a
and Free f [a], respectively. Here, StateT is the state transformer from the Monad
Transformer Library (Jones, 1995).

newtype StateT s m a= StateT {runStateT :: s→m (a, s)}
The new handlers, into these composite domains, are defined as follows:

hState :: Functor f ⇒ Free (StateF s :+: f) a→ StateT s (Free f) a
hState = fold genS (algS # fwdS)

where
genS x = StateT $ λs→ η (x, s)
algS (Get k)= StateT $ λs→ runStateT (k s) s
algS (Put s′ k)= StateT $ λs→ runStateT k s′

fwdS op = StateT $ λs→Op $ fmap (λk→ runStateT k s) op

hND+f :: Functor f ⇒ Free (NondetF :+: f) a→ Free f [a]
hND+f = fold genND+f (algND+f # fwdND+f)

where
genND+f = Var ◦ η

algND+f Fail = Var []
algND+f (Or p q)= liftM2 (++) p q
fwdND+f op =Op op

Also, the empty signature NilF has a trivial associated handler.

hNil :: Free NilF a→ a
hNil (Var x)= x

3.3 Proof device

The algebraic effects and handlers implementation we introduce in this paper is, much like
the core calculus of a programming language, a proof device and not an ergonomic library.
The results we obtain for this representation can be transferred to other representations.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

12 W. Tang and T. Schrijvers

Explicit isomorphisms. For instance, notice for instance that hState and hND+f both require
the signature they handle to be on the left in the co-product. It is possible to relax this
requirement by means of advanced type-level programming, e.g., using type class over-
loading (Swierstra, 2008). That makes using handlers more ergonomic at the cost of
obscuring formal reasoning about them. Because the latter is the focus of this paper, we
do not introduce the additional flexibility. Instead, we appeal to explicit isomorphisms, to
reorder the signatures in a co-product. For example, the (⇔) isomorphism that we will
use in Section 4.2 swaps the order of two functors in the co-product signature of the free
monad.

(⇔) :: (Functor f1, Functor f2, Functor f)⇒ Free (f1 :+: f2 :+: f) a→ Free (f2 :+: f1 :+: f) a
(⇔) (Var x) = Var x
(⇔) (Op (Inl k)) = (Op ◦ Inr ◦ Inl) (fmap (⇔) k)
(⇔) (Op (Inr (Inl k))) = (Op ◦ Inl) (fmap (⇔) k)
(⇔) (Op (Inr (Inr k)))= (Op ◦ Inr ◦ Inr) (fmap (⇔) k)

Transfer to other representations. Our use of type class constraints allows us to reduce
other monadic representations to the core algebraic effects and handlers representa-
tion by an appeal to parametricity (Voigtländer, 2009). For instance, for a program
p :: ∀m.MNondet m⇒m Int we have that:

p :: [Int]= hND (p :: Free NondetF Int)

This is true because hND is the structure-preserving map from the Free NondetF instance
of MNondet to the [] instance. That is to say, hND satisfies the following four equations:

hND (η x) = η x

hND (m >>= k) = hND m >>= hND ◦ k

hND ∅ = ∅

hND (m � n) = hND m � hND n

Since the free-monad representation is initial, the structure-preserving map hND is guar-
anteed to exist and be unique. Now, if we want to prove a property about p :: [Int], the
parametricity equation allows us to prove it instead about hND (p :: Free NondetF Int). A
similar observation can be made for other constraints, like MState or the combination of
MState and MNondet.

In the rest of this paper, we focus on results for the core representation of algebraic
effects and handlers. By means of the above approach, these results can be generalized to
other representations.

4 Modelling local state with global state

This section studies two flavours of effect interaction between state and nondeterminism:
local-state and global-state semantics. Local state is a higher-level effect than global state.
In a program with local state, each nondeterministic branch has its own local copy of
the state. This is a convenient programming abstraction provided by many systems that
solve search problems, e.g., Prolog. In contrast, global state linearly threads a single state

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 13

through the nondeterministic branches. This can be interesting for performance reasons:
we can limit memory use by avoiding multiple copies, and perform in-place updates to
reduce allocation and garbage collection, and to improve locality.

In this section, we first formally characterize local-state and global-state semantics,
and then define a translation from the former to the latter which uses the mechanism of
nondeterminism to store previous states and insert backtracking branches.

4.1 Local-state semantics

When a branch of a nondeterministic computation runs into a dead end and the continuation
is picked up at the most recent branching point, any alterations made to the state by the
terminated branch are invisible to the continuation. We refer to this semantics as local-state
semantics. Gibbons and Hinze (2011) also call it backtrackable state.

The local-state laws. The following two laws characterize the local-state semantics for a
monad with state and nondeterminism:

put-right-identity : put s >>∅=∅, (4.1)

put-left-distributivity : put s >> (m1 � m2)= (put s >> m1) � (put s >> m2). (4.2)

The equation (4.1) expresses that ∅ is the right identity of put; it annihilates state
updates. The other law expresses that put distributes from the left in (�).

These two laws only focus on the interaction between put and nondeterminism. The
following laws for get can be derived from other laws. The proof can be found in
Appendix 1.

get-right-identity : get >>∅=∅, (4.3)

get-left-distributivity : get >>= (λx→ k1 x � k2 x)= (get >>= k1) � (get >>= k2). (4.4)

If we take these four equations together with the left-identity and right-distributivity
laws of nondeterminism, we can say that nondeterminism and state “commute”; if a get or
put precedes a ∅ or �, we can exchange their order (and vice versa).

Implementation. Implementation-wise, the laws imply that each nondeterministic branch
has its own copy of the state. For instance, Equation (4.2) gives us

put 42 (put 21 � get)= (put 42 >> put 21) � (put 42 >> get)

The state we get in the second branch is still 42, despite the put 21 in the first branch.
One implementation satisfying the laws is

type Local s m a= s→m (a, s)

where m is a nondeterministic monad, the simplest structure of which is a list. This imple-
mentation is exactly that of StateT s m a in the Monad Transformer Library (Jones, 1995)
which we have introduced in Section 3.2.

With effect handling (Kiselyov and Ishii, 2015; Wu et al., 2014), we get the local state
semantics when we run the state handler before the nondeterminism handler:

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

14 W. Tang and T. Schrijvers

hLocal :: Functor f ⇒ Free (StateF s :+: NondetF :+: f) a→ (s→ Free f [a])
hLocal = fmap (fmap (fmap fst) ◦ hND+f) ◦ runStateT ◦ hState

In the case where the remaining signature is empty (f =NilF), we get:

fmap hNil ◦ hLocal :: Free (StateF s :+: NondetF :+: NilF) a→ (s→ [a])

Here, the result type (s→ [a]) differs from s→ [(a, s)] in that it produces only a list of
results ([a]) and not pairs of results and their final state ([(a, s)]). The latter is needed for
Local s m to have the structure of a monad, in particular to support the modular composition
of computations with (>>=). Such is not needed for the carriers of handlers because the
composition of computations is taken care of by the (>>=) operator of the free monad.

4.2 Global-state semantics

Alternatively, one can choose a semantics where state reigns over nondeterminism. In this
case of non-backtrackable state, alterations to the state persist over backtracks. Because
only a single state is shared over all branches of nondeterministic computation, we call
this state the global-state semantics.

The global-state law. The global-state semantics sets apart non-backtrackable state from
backtrackable state. In addition to the general laws for nondeterminism ((2.6) – (2.9)) and
state ((2.10) – (2.13)), we provide a global-state law to govern the interaction between
nondeterminism and state.

put-or : (put s >> m) � n= put s >> (m � n). (4.5)

This law allows lifting a put operation from the left branch of a nondeterministic choice.
For instance, if m=∅ in the left-hand side of the equation, then under local-state semantics
(laws (2.6) and (4.1)) the left-hand side becomes equal to n, whereas under global-state
semantics (laws (2.6) and (4.5)) the equation simplifies to put s >> n.

Implementation. Figuring out a correct implementation for the global-state monad is
tricky. One might believe that Global s m a= s→ (m a, s) is a natural implementation of
such a monad. However, the usual naive implementation of (>>=) for it does not satisfy
right-distributivity (2.8) and is therefore not even a monad. The type ListT (State s) from
the Monad Transformer Library (Jones, 1995) expands to essentially the same implementa-
tion with monad m instantiated by the list monad. This implementation has the same flaws.
More careful implementations of ListT (often referred to as “ListT done right”) satisfy-
ing right-distributivity (2.8) and other monad laws have been proposed by Volkov (2014);
Gale (2007). The following implementation is essentially that of Gale.

newtype Global s a=Gl {runGl :: s→ (Maybe (a, Global s a), s)}
The Maybe in this type indicates that a computation may fail to produce a result. However,
since the s is outside of the Maybe, a modified state is returned even if the computation
fails. This Global s a type is an instance of the MState and MNondet type classes.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 15

instance MNondet (Global s) where
∅ =Gl (λs→ (Nothing, s))
p � q=Gl (λs→ case runGl p s of

(Nothing, t)→ runGl q t
(Just (x, r), t)→ (Just (x, r � q), t))

instance MState s (Global s) where
get =Gl (λs→ (Just (s, ∅), s))
put s=Gl (λ → (Just ((), ∅), s))

Failure, of course, returns an empty continuation and an unmodified state. Branching
first exhausts the left branch before switching to the right branch.

Effect handlers (Kiselyov and Ishii, 2015; Wu et al., 2014) also provide implementations
that match our intuition of non-backtrackable computations. The global-state semantics can
be implemented by simply switching the order of the two effect handlers compared to the
local state handler hLocal.

hGlobal :: (Functor f)⇒ Free (StateF s :+: NondetF :+: f) a→ (s→ Free f [a])
hGlobal = fmap (fmap fst) ◦ runStateT ◦ hState ◦ hND+f ◦ (⇔)

This also runs a single state through a nondeterministic computation. Here, the (⇔)
isomorphism from Section 3.2 allows hLocal and hGlobal have the same type signature.

In the case where the remaining signature is empty (f =NilF), we get:

fmap hNil ◦ hGlobal :: Free (StateF s :+: NondetF :+: NilF) a→ (s→ [a])

Like in Section 4.1, the carrier type here is again simpler than that of the corresponding
monad because it does not have to support the (>>=) operator.

4.3 Simulating local state with global state

Both local state and global state have their own laws and semantics. Also, both interpreta-
tions of nondeterminism with state have their own advantages and disadvantages.

Local-state semantics imply that each nondeterministic branch has its own state. This
may be expensive if the state is represented by data structures, e.g. arrays, that are costly to
duplicate. For example, when each new state is only slightly different from the previous,
we have a wasteful duplication of information.

Global-state semantics, however, threads a single state through the entire computation
without making any implicit copies. Consequently, it is easier to control resource usage and
apply optimization strategies in this setting. However, doing this to a program that has a
backtracking structure, and would be more naturally expressed in a local-state style, comes
at a great loss of clarity. Furthermore, it is significantly more challenging for programmers
to reason about global-state semantics than local-state semantics.

To resolve this dilemma, we can write our programs in a local-state style and then
translate them to the global-state style to enable low-level optimizations. In this sub-
section, we show one systematic program translation that alters a program written for
local-state semantics to a program that, when interpreted under global-state semantics,
behaves exactly the same as the original program interpreted under local-state seman-
tics. This translation explicitly copies the whole state and relies on the nondeterminism
mechanism to insert state-restoring branches. We will show other translations from local-
state semantics to global-state semantics which avoid the copying and do not rely on
nondeterminism in Sections 7 and 8.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

16 W. Tang and T. Schrijvers

get→ λs′

(�)

put s put s′

comp ∅

s′

s s′

s

Fig. 1: State-restoring put-operation.

State-restoring put. Central to the implementation of backtracking in the global state
setting is the backtracking variant putR of put. The idea is that putR, when run with a
global state, satisfies laws (2.10) to (4.2) — the state laws and the local-state laws. Going
forward, putR modifies the state as usual, but, when backtracked over, it restores the old
state.

We implement putR using both state and nondeterminism as follows:

putR :: (MState s m, MNondet m)⇒ s→m ()
putR s= get >>= λs′ → put s � side (put s′)

Here the side branch is executed for its side effect only; it fails before yielding a result.

side :: MNondet m⇒m a→m b
side m=m >>∅

Intuitively, the second branch generated by putR can be understood as a backtracking or
state-restoring branch. The putR s operation changes the state to s in the first branch put s,
and then restores it to the original state s′ in the second branch after we finish all com-
putations in the first branch. Then, the second branch immediately fails so that we can
keep going to other branches with the original state s′. For example, assuming an arbitrary
computation comp is placed after a state-restoring put, we have the following calculation.

putR s >> comp
= {- definition of putR -}

(get >>= λs′ → put s � side (put s′)) >> comp
= {- right-distributivity (2.8) -}

(get >>= λs′ → (put s >> comp) � (side (put s′) >> comp))
= {- left identity (2.9) -}

(get >>= λs′ → (put s >> comp) � side (put s′))

This program saves the current state s′, computes comp using state s, and then restores the
saved state s′. Figure 1 shows how the state-passing works and the flow of execution for a
computation after a state-restoring put.

Another example of putR is shown in Table 2, where three programs are run with initial
state s0. Note the difference between the final state and the program result for the state-
restoring put.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 17

Table 2: Comparing put and putR

Program result Final state

η x >> get s0 s0
put s >> η x >> get s s
putR s >> η x >> get s s0

Translation with state-restoring put.
We do not expect the programmer to program against the global-state semantics directly

and use the state-restoring putR as they see fit, as this can be quite confusing and error-
prone. Instead, we provide an automatic translation: The programmer writes their program
against the local-state semantics and uses the regular put. We then translate the local-
state semantics program to a corresponding global-state semantics program using the effect
handler local2global:

local2global :: Functor f
⇒ Free (StateF s :+: NondetF :+: f) a
→ Free (StateF s :+: NondetF :+: f) a

local2global= fold Var alg
where

alg (Inl (Put t k))= putR t >> k
alg p=Op p

This handler maps the put with local-state semantics onto the state-restoring putR with
global-state semantics. All other local-state operations are mapped onto their global-state
counterpart.

For example, recall the backtracking algorithm queens for the n-queens example in
Section 2.3. It is initially designed to run in the local-state semantics because every branch
maintains its own copy of the state and has no influence on other branches. We can handle
it with hLocal as follows.

queensLocal :: Int→ [[Int]]
queensLocal = hNil ◦ flip hLocal (0, []) ◦ queens

With the simulation local2global, we can also translate queens to an equivalent program
in global-state semantics and handle it with hGlobal.

queensGlobal :: Int→ [[Int]]
queensGlobal = hNil ◦ flip hGlobal (0, []) ◦ local2global ◦ queens

The following theorem guarantees that the translation local2global preserves the
meaning when switching from local-state to global-state semantics:

Theorem 1. hGlobal ◦ local2global= hLocal

Proof Both the left-hand side and the right-hand side of the equation consist of function
compositions involving one or more folds. We apply fold fusion separately on both sides
to contract each into a single fold:

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

18 W. Tang and T. Schrijvers

hGlobal ◦ local2global = fold genLHS (algS
LHS # algND

RHS # fwdLHS)

hLocal = fold genRHS (algS
RHS # algND

RHS # fwdRHS)

We approach this calculationally. That is to say, we do not first postulate definitions of
the unknowns above (algS

LHS and so on) and then verify whether the fusion conditions are
satisfied. Instead, we discover the definitions of the unknowns. We start from the known
side of each fusion condition and perform case analysis on the possible shapes of input.
By simplifying the resulting case-specific expression, and pushing the handler applications
inwards, we end up at a point where we can read off the definition of the unknown that
makes the fusion condition hold for that case.

Finally, we show that both folds are equal by showing that their corresponding
parameters are equal:

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

A noteworthy observation is that, for fusing the left-hand side of the equation, we do not
use the standard fusion rule fusion-post (3.2):

hGlobal ◦ fold Var alg = fold (hGlobal ◦ Var) alg′

⇐ hGlobal ◦ alg = alg′ ◦ fmap hGlobal

where local2global= fold Var alg. The problem is that we will not find an appropriate alg′

such that alg′ (fmap hGlobal t) restores the state for any t of type (StateF s :+: NondetF :+:
f) (Free (StateF s :+: NondetF :+: f) a).

Fortunately, we do not need such an alg′. We can assume that the subterms of t have
already been transformed by local2global, and thus all occurrences of Put appear in the
putR constellation.

We can incorporate this assumption by using the alternative fusion rule fusion-
post’ (3.3):

hGlobal ◦ fold Var alg = fold (hGlobal ◦ Var) alg′

⇐ hGlobal ◦ alg ◦ fmap local2global = alg′ ◦ fmap hGlobal ◦ fmap local2global

The additional fmap local2global in the condition captures the property that all the
subterms have been transformed by local2global.

In order to not clutter the proofs, we abstract everywhere over this additional
fmap local2global application, except for the key lemma which expresses that the syn-
tactic transformation local2global makes sure that, despite any temporary changes, the
computation t restores the state back to its initial value.

We elaborate each of these steps in Appendix 2. �

Note on global replacement. To preserve the behaviour when going from local-state to
global-state semantics, care should be taken to replace all occurrences of put. Particularly,
placing a program in a larger context, where put has not been replaced, can change the

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 19

meaning of its subprograms. An example of such a problematic context is (>> put t), where
the get-put law (2.12) breaks and programs get >> putR and η () can be differentiated:

(get >> putR) >> put t
= {- definition of putR -}

(get >>= λs→ get >>= λs0→ put s � side (put s0)) >> put t
= {- get-get (2.13) -}

(get >>= λs→ put s � side (put s)) >> put t
= {- right-distributivity (2.8) -}

(get >>= λs→ (put s >> put t) � (side (put s)) >> put t)
= {- left-identity (2.9) -}

(get >>= λs→ (put s >> put t) � side (put s))
= {- put-put (2.10) -}

(get >>= λs→ put t � side (put s))

η () >> put t
= put t

Those two programs do not behave in the same way when s �≡ t. Hence, only provided
that all occurrences of put in a program are replaced by putR can we simulate local-state
semantics with global-state semantics. This has been articulated in the proof by the compo-
sition hGlobal ◦ local2global: there is no room between the replacement by local2global and
the interpretation with hGlobal to add plain put operations. The global replacement require-
ment also manifests itself in the proof, in the form of the fusion-post’ rule rather than the
more widely used fusion-post rule.

5 Modelling nondeterminism with state

In the previous section, we have translated the local-state semantics, a high-level combi-
nation of the state and nondeterminism effects, to the global-state semantics, a low-level
combination of the state and nondeterminism effects. In this section, we further translate
the resulting nondeterminism component, which is itself a relatively high-level effect, to
a lower-level implementation with the state effect. Our translation coincides with the fact
that, while nondeterminism is typically modelled using the List monad, many efficient
nondeterministic systems, such as Prolog, use a low-level state-based implementation to
implement the nondeterminism mechanism.

5.1 Simulating nondeterminism with state

The main idea of simulating nondeterminism with state is to explicitly manage

1. a list of the results found so far, and
2. a list of yet to be explored branches, which we call a stack.

This stack corresponds to the choicepoint stack in Prolog. When entering one branch,
we can push other branches to the stack. When leaving the branch, we collect its result and
pop a new branch from the stack to continue.

We define a new type S a consisting of the results and stack.

type Comp s a= Free (StateF s) a
data S a= S {results :: [a], stack :: [Comp (S a) ()]}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

20 W. Tang and T. Schrijvers

popS :: Comp (S a) ()
popS = do

S xs stack← get
case stack of

[] → η ()
p : ps→ do

put (S xs ps); p

(a) Popping from the stack.

pushS :: Comp (S a) ()
→Comp (S a) ()
→Comp (S a) ()

pushS q p= do
S xs stack← get
put (S xs (q : stack))
p

(b) Pushing to the stack.

appendS :: a
→Comp (S a) ()
→Comp (S a) ()

appendS x p= do
S xs stack← get
put (S (xs++[x]) stack)
p

(c) Appending a result.

Fig. 2: Auxiliary functions popS , pushS , and appendS .

The branches in the stack are represented by computations in the form of free monads over
the StateF signature. We do not allow branches to use other effects here to show the idea
more clearly. In Section 5.2, we will consider the more general case where branches can
have any effects abstracted by a functor f .

For brevity, instead of defining a new stack effect capturing the stack operations like pop
and push, we implement stack operations with the state effect. We define three auxiliary
functions in Figure 2 to interact with the stack in S a:

• The function popS removes and executes the top element of the stack.
• The function pushS pushes a branch into the stack.
• The function appendS adds a result to the current results.

Now, everything is in place to define a simulation function nondet2stateS that interprets
nondeterministic programs represented by the free monad Free NondetF a as state-wrapped
programs represented by the free monad Free (StateF (S a)) ().

nondet2stateS :: Free NondetF a→ Free (StateF (S a)) ()
nondet2stateS = fold gen alg

where
gen x = appendS x popS

alg Fail = popS

alg (Or p q)= pushS q p

The generator of this handler records a new result and then pops the next branch from the
stack and proceeds with it. Likewise, for failure the handler simply pops and proceeds with
the next branch. For nondeterministic choices, the handler pushes the second branch on
the stack and proceeds with the first branch. The nondet2stateS implements the depth-first
search strategy which is consistent with the implementation of hND

3.
To extract the final result from the S wrapper, we define the extractS function.

extractS :: State (S a) ()→ [a]
extractS x= results ◦ snd $ runState x (S [] [])

3 It is also possible to implement the breadth-first search strategy by replacing the stack with a queue.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 21

Finally, we define the function runND which wraps everything up to handle a non-
deterministic computation to a list of results. The state handler h′State is defined in
Section 3.1.

runND :: Free NondetF a→ [a]
runND = extractS ◦ h′State ◦ nondet2stateS

We have the following theorem showing the correctness of the simulation via the equiva-
lence of the runND function and the nondeterminism handler hND defined in Section 3.1.

Theorem 2. runND = hND

The proof can be found in Appendix 3.1. The main idea is again to use fold fusion.
Consider the expanded form

(extractS ◦ h′State) ◦ nondet2stateS = hND

Both nondet2stateS and hND are written as folds. We use the law fusion-post’ (3.3) to fuse
the left-hand side into a single fold. Since the right-hand side is already a fold, to prove
the equation we just need to check the components of the fold hND satisfy the conditions
of the fold fusion, i.e., the following two equations: For the latter, we only need to prove
the following two equations:

(extractS ◦ h′State) ◦ gen= genND

(extractS ◦ h′State) ◦ alg ◦ fmap nondet2stateS

= algND ◦ fmap (extractS ◦ h′State) ◦ fmap nondet2stateS

where gen and alg are from the definition of nondet2stateS , and genND and algND are from
the definition of hND.

5.2 Combining the simulation with other effects

The nondet2stateS function only considers nondeterminism as the only effect. In this sec-
tion, we generalize it to work in combination with other effects. One immediate benefit is
that we can use it in together with our previous simulation local2global in Section 4.3.

Firstly, we need to augment the signature in the computation type for branches with an
additional functor f for other effects. The computation type is essentially changed from
Free (StateF s) a to Free (StateF s :+: f) a. We define the state type SS f a as follows:

type CompSS s f a= Free (StateF s :+: f) a
data SS f a= SS {resultsSS :: [a], stackSS :: [CompSS (SS f a) f ()]}
We also modify the three auxiliary functions in Figure 2 to popSS , pushSS and appendSS

in Figure 3. They are almost the same as the previous versions apart from being adapted to
use the new state-wrapper type SS f a.

The simulation function nondet2state is also very similar to nondet2stateS except for
requiring a forwarding algebra fwd to deal with the additional effects in f .

nondet2state :: Functor f ⇒ Free (NondetF :+: f) a→ Free (StateF (SS f a) :+: f) ()
nondet2state= fold gen (alg # fwd)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

22 W. Tang and T. Schrijvers

popSS :: Functor f
⇒CompSS (SS f a) f ()

popSS = do
SS xs stack← get
case stack of

[] → η ()
p : ps→ do

put (SS xs ps); p

(a) Popping from the stack.

pushSS :: Functor f
⇒CompSS (SS f a) f ()
→CompSS (SS f a) f ()
→CompSS (SS f a) f ()

pushSS q p= do
SS xs stack← get
put (SS xs (q : stack))
p

(b) Pushing to the stack.

appendSS :: Functor f
⇒ a
→CompSS (SS f a) f ()
→CompSS (SS f a) f ()

appendSS x p= do
SS xs stack← get
put (SS (xs++[x]) stack)
p

(c) Appending a result.

Fig. 3: Auxiliary functions popSS , pushSS and appendSS .

where
gen x = appendSS x popSS

alg Fail = popSS

alg (Or p q)= pushSS q p
fwd y =Op (Inr y)

The function runND+f puts everything together: it translates the nondeterminism effect into
the state effect and forwards other effects using nondet2state, then handles the state effect
using hState, and finally extracts the results from the final state using extractSS .

runND+f :: Functor f ⇒ Free (NondetF :+: f) a→ Free f [a]
runND+f = extractSS ◦ hState ◦ nondet2state
extractSS :: Functor f ⇒ StateT (SS f a) (Free f) ()→ Free f [a]
extractSS x= resultsSS ◦ snd 〈$〉 runStateT x (SS [] [])

We have the following theorem showing that the simulation runND+f is equivalent to the
modular nondeterminism handler hND+f in Section 3.2.

Theorem 3. runND+f = hND+f

The proof proceeds essentially in the same way as in the non-modular setting. The main
difference, due to the modularity, is an additional proof case for the forwarding algebra.

(extractSS ◦ hState) ◦ fwd ◦ fmap nondet2stateS

= fwdND+f ◦ fmap (extractSS ◦ hState) ◦ fmap nondet2stateS

The full proof can be found in Appendix 3.2.

6 All in one

This section combines the results of the previous two sections to ultimately simulate the
combination of nondeterminism and state with a single state effect.

6.1 Modelling two states with one state

When we combine the two simulation steps from the two previous sections, we end up
with a computation that features two state effects. The first state effect is the one present

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 23

originally, and the second state effect keeps track of the results and the stack of remaining
branches to simulate the nondeterminism.

For a computation of type Free (StateF s1 :+: StateF s2 :+: f) a that features two state
effects, we can go to a slightly more primitive representation Free (StateF (s1, s2) :+: f) a
featuring only a single state effect that is a pair of the previous two states.

The handler states2state implements the simulation by projecting different get and put
operations to different components of the pair of states.

states2state :: Functor f
⇒ Free (StateF s1 :+: StateF s2 :+: f) a
→ Free (StateF (s1, s2) :+: f) a

states2state= fold Var (alg1 # alg2 # fwd)
where

alg1 (Get k) = get >>= λ(s1,) → k s1

alg1 (Put s′1 k)= get >>= λ(, s2)→ put (s′1, s2) >> k
alg2 (Get k) = get >>= λ(, s2)→ k s2

alg2 (Put s′2 k)= get >>= λ(s1,) → put (s1, s′2) >> k
fwd op =Op (Inr op)

We have the following theorem showing the correctness of states2state:

Theorem 4. hStates = nest ◦ hState ◦ states2state

On the left-hand side, we write hStates for the composition of two consecutive state handlers:

hStates :: Functor f ⇒ Free (StateF s1 :+: StateF s2 :+: f) a→ StateT s1 (StateT s2 (Free f)) a
hStates x= StateT (hState ◦ runStateT (hState x))
h′States :: Functor f ⇒ Free (StateF s1 :+: StateF s2 :+: f) a→ StateT (s1, s2) (Free f) a
h′States t= StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2

On the right-hand side, we use the isomorphism nest to mediate between the two different
carrier types. The definition of nest and its inverse flatten are defined as follows:

nest :: Functor f ⇒ StateT (s1, s2) (Free f) a→ StateT s1 (StateT s2 (Free f)) a
nest t = StateT $ λs1→ StateT $ λs2→ α−1 〈$〉 runStateT t (s1, s2)
flatten :: Functor f ⇒ StateT s1 (StateT s2 (Free f)) a→ StateT (s1, s2) (Free f) a
flatten t= StateT $ λ(s1, s2)→ α 〈$〉 runStateT (runStateT t s1) s2

where the isomorphism α−1 and its inverse α rearrange a nested tuple

α :: ((a, x), y)→ (a, (x, y))
α ((a, x), y)= (a, (x, y))

α−1 :: (a, (x, y))→ ((a, x), y)
α−1 (a, (x, y))= ((a, x), y)

The proof of Theorem 4 can be found in Appendix 4. Theorem 4 has two function com-
positions on the right-hand side, which would require using fusion twice, resulting
in a complicated handler. To avoid this complexity, we show the correctness of the
isomorphism of nest and flatten, and prove the following equation:

flatten ◦ hStates = hState ◦ states2state

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

24 W. Tang and T. Schrijvers

The following commuting diagram summarizes the simulation.

Free (StateF s1 :+: StateF s2 :+: f) a StateT s1 (StateT s2 (Free f)) a

Free (StateF (s1, s2) :+: f) a StateT (s1, s2) (Free f) a

flatten nest

hStates

hState

states2state

6.2 Putting everything together

We have defined three translations for encoding high-level effects as low-level effects.

• The function local2global simulates the high-level local-state semantics with global-
state semantics for the nondeterminism and state effects (Section 4).
• The function nondet2state simulates the high-level nondeterminism effect with the

state effect (Section 5).
• The function states2state simulates multiple state effects with a single state effect

(Section 6.1).

Combining them, we can encode the local-state semantics for nondeterminism and state
with just one state effect. The ultimate simulation function simulate is defined as follows:

simulate :: Functor f
⇒ Free (StateF s :+: NondetF :+: f) a
→ s→ Free f [a]

simulate= extract ◦ hState ◦ states2state ◦ nondet2state ◦ (⇔) ◦ local2global

Similar to the extractSS function in Section 5.2, we use the extract function to get the final
results from the final state.

extract :: Functor f
⇒ StateT (SS (StateF s :+: f) a, s) (Free f) ()
→ s→ Free f [a]

extract x s= resultsSS ◦ fst ◦ snd 〈$〉 runStateT x (SS [] [], s)

Figure 4 illustrates each step of this simulation.
In the simulate function, we first use our three simulations local2global, nondet2state

and states2state to interpret the local-state semantics for state and nondeterminism in terms
of only one state effect. Then, we use the handler hState to interpret the state effect into a
state monad transformer. Finally, we use the function extract to get the final results.

We have the following theorem showing that the simulate function exactly behaves the
same as the local-state semantics given by hLocal.

Theorem 5. simulate= hLocal

The proof can be found in Appendix 5.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 25

Free (StateF s :+: NondetF :+: f) a

Free (StateF s :+: NondetF :+: f) a

Free (NondetF :+: StateF s :+: f) a

Free (StateF (SS (StateF s :+: f) a) :+: StateF s :+: f) ()

Free (StateF (SS (StateF s :+: f) a, s) :+: f) ()

StateT (SS (StateF s :+: f) a, s) (Free f) ()

s→ Free f [a]

local2global

(⇔)

states2state

hState

extract

nondet2state

Fig. 4: An overview of the simulate function.

We provide a more compact and direct definition of simulate by fusing all the
consecutive steps into a single handler:

type Comp s f a= (CP f a s, s)→ Free f [a]
data CP f a s=CP {results :: [a], cpStack :: [Comp s f a]}
simulateF :: Functor f

⇒ Free (StateF s :+: NondetF :+: f) a
→ s
→ Free f [a]

simulateF x s= fold gen (alg1 # alg2 # fwd) x (CP [] [], s)
where

gen x (CP xs stack, s) = continue (xs++[x]) stack s
alg1 (Get k) (CP xs stack, s) = k s (CP xs stack, s)
alg1 (Put t k) (CP xs stack, s) = k (CP xs (backtracking s : stack), t)
alg2 Fail (CP xs stack, s) = continue xs stack s
alg2 (Or p q) (CP xs stack, s) = p (CP xs (q : stack), s)
fwd op (CP xs stack, s) =Op (fmap ($(CP xs stack, s)) op)
backtracking s (CP xs stack,)= continue xs stack s
continue xs stack s = case stack of

[] → η xs
(p : ps)→ p (CP xs ps, s)

The common carrier of the above algebras alg1 # alg2 # fwd is Comp s f a. This is a com-
putation that takes the current results, choicepoint stack and application state, and returns
the list of all results. The first two inputs are bundled in the CP type.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

26 W. Tang and T. Schrijvers

N-queens with only one state. With simulate, we can implement the backtracking
algorithm of the n-queens problem in Section 2.3 with only one state effect as follows.

queensSim :: Int→ [[Int]]
queensSim = hNil ◦ flip simulate (0, []) ◦ queens

7 Modelling local state with undo

Section 4.3 uses local2global to simulate local state with global state by replacing put
with the state-restoring version putR. The putR operation makes the implicit state copy-
ing of the local-state semantics explicit in the global-state semantics. This copying can
be rather costly if the state is big (e.g., a long array). It is especially wasteful when the
modifications made to that state are small (e.g., a single entry in the array). Fortunately,
lower-level effects present more opportunities for fine-grained optimization. In particular,
we can exploit the global-state semantics to avoid copying the whole state. Instead, we only
keep track of the modifications made to the state, and undo them when backtracking. This
section formalizes that approach in terms of an alternative translation from the local-state
semantics to the global-state semantics that incrementally records reversible state updates.

7.1 Reversible state updates

Our goal is to undo a state change without holding on to the old state. Instead, we should
be able to recover the old state from the new state. However, knowing only the new state
is usually not enough to accomplish this. We must also know “what update was applied to
the old state that led to the new state”.

We reify the information about the update in a type u, which depends on the particular
application at hand. For example, in the queens program of Section 2.3 we repeatedly
update the state to place an additional queen on the board. Recall that a state s of type
(Int, [Int]) consists of the current column c and the partial solution sol, i.e., the rows of the
already placed queens. Hence, the information we need to characterize an update is the row
r of the queen to place in the current column, i.e., u= Int. The update itself is performed
as s⊕ r, where

(⊕) :: (Int, [Int])→ Int→ (Int, [Int])
(⊕) (c, sol) r= (c+ 1, r : sol)

Now we can clearly recover the old state from the new state and the modification as
follows:

(�) :: (Int, [Int])→ Int→ (Int, [Int])
(�) (c, sol) r= (c− 1, tail sol)

Indeed, we clearly have (s⊕ r)� r= s.
In general, we define a typeclass Undo s u with two operations (⊕) and (�) to char-

acterize reversible state updates. Here, s is the type of states and u is the type of
updates.

class Undo s u where
(⊕) :: s→ u→ s
(�) :: s→ u→ s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 27

Instances of Undo should satisfy the following law which says that �x is a left inverse of
⊕x:

plus-minus : (�x) ◦ (⊕x) = id. (7.1)

7.2 Reversible state update effect

For our optimized approach to work, we have to restrict the way the state is changed in
local-state programs. We no longer allow arbitrary put s′ calls to change the implicit state.
The only supported changes are of the form put (s⊕ u) where s is the current state.

To enforce this requirement, we replace the general get/put interface provided by MState
with the more restricted interface of a new type class:

class (Monad m, Undo s u)⇒MModify s u m |m→ s, m→ u where
mget :: m s
update :: u→m ()
restore :: u→m ()

This MModify class has three operations: a mget operation that reads and returns the state
(similar to the get operation of MState), an update u operation that updates the state with
the reversible state change u, and a restore u operations that reverses the update u. Note
that only the mget and update operations are expected to be used by programmers; restore
operations are automatically generated by the translation to the global-state semantics.

The three operations satisfy the following laws:

mget-mget : mget >>= (λs→mget >>= k s)=mget >>= (λs→ k s s), (7.2)

update-mget : mget >>= λs→ update u >> η (s⊕ u)= update u >> mget, (7.3)

restore-mget : mget >>= λs→ restore u >> η (s� u)= restore u >> mget, (7.4)

update-restore : update u >> restore u= η (). (7.5)

The first law for mget corresponds to that for get. The second and third law, respectively,
capture the impact of update and restore on mget. Finally, the fourth law expresses that
restore undoes the effect of update.

We can rewrite the queens program to make use of this MModify type class. Compared
to the MState-based version in Section 2.3, we only need to replace get with mget and
put (s⊕ r) with update r.

queensM :: (MModify (Int, [Int]) Int m, MNondet m)⇒ Int→m [Int]
queensM n= loop where

loop= do (c, sol)←mget
if c � n then η sol
else do r← choose [1 . . n]

guard (safe r 1 sol)
update r
loop

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

28 W. Tang and T. Schrijvers

Like we did for the state effects in Section 3.1, we define a new signature ModifyF rep-
resenting the syntax of modification-based state effects and implement the free monad
Free (ModifyF s r :+: f) as an instance of MModify s r.

data ModifyF s r a=MGet (s→ a) |MUpdate r a |MRestore r a

instance (Functor f , Undo s r)⇒MModify s r (Free (ModifyF s r :+: f)) where
mget =Op (Inl (MGet η))
update r =Op (Inl (MUpdate r (η ())))
restore r=Op (Inl (MRestore r (η ())))

Like the hState handler, the following hModify handler maps this free monad to the StateT
monad transformer, but now using the operations (⊕) and (�) provided by Undo s r.

hModify :: (Functor f , Undo s r)⇒ Free (ModifyF s r :+: f) a→ StateT s (Free f) a
hModify = fold gen (alg # fwd)

where
gen x = StateT $ λs→ η (x, s)
alg (MGet k) = StateT $ λs→ runStateT (k s) s
alg (MUpdate r k) = StateT $ λs→ runStateT k (s⊕ r)
alg (MRestore r k)= StateT $ λs→ runStateT k (s� r)
fwd y = StateT $ λs→Op (fmap (λk→ runStateT k s) y)

It is easy to check that the four laws hold contextually up to interpretation with hModify.
Note that here we still use the StateT monad transformer and immutable states for the

clarity of presentation and simplicity of proofs. The (⊕) and (�) operations also take
immutable arguments. To be more efficient, we can use mutable states to implement in-
place updates or use the technique of functional but in-place update (Lorenzen et al., 2023).
We leave them as future work.

Similar to Sections 4.1 and 4.2, the local-state and global-state semantics of ModifyF

and NondetF are given by the following functions hLocalM and hGlobalM , respectively.

hLocalM :: (Functor f , Undo s r)
⇒ Free (ModifyF s r :+: NondetF :+: f) a→ (s→ Free f [a])

hLocalM = fmap (fmap (fmap fst) ◦ hND+f) ◦ runStateT ◦ hModify

hGlobalM :: (Functor f , Undo s r)
⇒ Free (ModifyF s r :+: NondetF :+: f) a→ (s→ Free f [a])

hGlobalM = fmap (fmap fst) ◦ runStateT ◦ hModify ◦ hND+f ◦ (⇔)

For example, the locate-state interpretation of queensM is obtained through:

queensLocalM :: Int→ [[Int]]
queensLocalM = hNil ◦ flip hLocalM (0, []) ◦ queensM

7.3 Simulating local state with global state and undo

We can implement the translation from local-state semantics to global-state semantics for
the modification-based state effects in a similar style to the translation local2global in

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 29

Section 4.3. The translation local2globalM still uses the mechanism of nondeterminism to
restore previous state updates for backtracking. In Section 8, we will show a lower-level
simulation of local-state semantics without relying on nondeterminism.

local2globalM :: (Functor f , Undo s u)
⇒ Free (ModifyF s u :+: NondetF :+: f) a
→ Free (ModifyF s u :+: NondetF :+: f) a

local2globalM = fold Var alg
where

alg (Inl (MUpdate u k))= (update u � side (restore u)) >> k
alg p=Op p

Compared to local2global, the main difference is that we do not need to copy and store the
whole state. Instead, we store the update u and reverse the state update using restore u in
the second branch. The following theorem shows the correctness of local2globalM .

Theorem 6. Given Functor f and Undo s u, the equation

hGlobalM ◦ local2globalM = hLocalM

holds for all programs p :: Free (ModifyF s u :+: NondetF :+: f) a that do not use the
operation Op (Inl MRestore).

The proof of this theorem can be found in Appendix 6.
As a consequence of the theorem, we can get the desired local-state behaviour for

queensM by simulating it with global-state semantics as follows:

queensGlobalM :: Int→ [[Int]]
queensGlobalM = hNil ◦ flip hGlobalM (0, []) ◦ local2globalM ◦ queensM

8 Modelling local state with trail stack

In order to restore the previous state during backtracking, the approaches of Section 4.3
and Section 7 both introduce a new failing branch at every individual modification of the
state. The Warren Abstract Machine (WAM) (Aït-Kaci, 1991) does this in a more efficient
and lower-level way: it stores consecutive updates in a trail stack and then batch-processes
them on backtracking. This avoids introducing any additional branches. This section first
incorporates that trail-stack idea in the modification-based approach of Section 7. Then, by
combining it with the earlier state-based simulation of nondeterminism, we get an overall
simulation of local state in terms of two stacks, the choicepoint stack and the trail stack.

8.1 Simulating local state with global trail stack

Let us work out the trail stack idea in more detail. For that, we will need a second instance
of the state effect. The primary one keeps track of the state featured in the local-state
semantics. The new, secondary one keeps track of the trail stack. We can easily model this
stack datastructure as a Haskell lists.

newtype Stack a= Stack [a]

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

30 W. Tang and T. Schrijvers

We store this stack in the secondary instance of the state effect, and we add and remove
elements through the pushStack and popStack functions.

pushStack :: MState (Stack a) m
⇒ a→m ()

pushStack x= do
Stack xs← get
put (Stack (x : xs))

popStack :: MState (Stack a) m
⇒m (Maybe a)

popStack = do
Stack xs← get
case xs of

[] → η Nothing
(x : xs′)→ do put (Stack xs′); η (Just x)

We store two types of entries in the trail stack. The first types are the reversible updates
u (see Section 7) that we apply to the primary state. The second types are markers that
mark the end of a batch on the trail stack; we represent these with the unit type (). Hence,
we use the sum type Either u () to use both as elements of the trail stack.

When we enter a left branch, we push a Right () marker on the trail stack. For every
state update u we perform in that branch, we push the corresponding Left u entry on top of
the marker. When we backtrack to the right branch, we unwind the trail stack down to the
marker and reverse all updates along the way. This process is known as “untrailing”.

untrail :: (MState (Stack (Either u ())) m, MModify s u m)⇒m ()
untrail= do top← popStack

case top of
Nothing → η ()
Just (Right ())→ η ()
Just (Left u) → restore u >> untrail

With the above trail stack functionality in place, the following translation function
local2trail simulates the local-state semantics with global-state semantics by means of
the trail stack.

local2trail :: (Functor f , Undo s u)
⇒ Free (ModifyF s u :+: NondetF :+: f) a
→ Free (ModifyF s u :+: NondetF :+: StateF (Stack (Either u ())) :+: f) a

local2trail= fold Var (alg1 # alg2 # fwd)
where

alg1 (MUpdate u k)= pushStack (Left u) >> update u >> k
alg1 p =Op ◦ Inl $ p
alg2 (Or p q) = (pushStack (Right ()) >> p) � (untrail >> q)
alg2 p =Op ◦ Inr ◦ Inl $ p
fwd p =Op ◦ Inr ◦ Inr ◦ Inr $ p

As already informally explained above, this translation function 1) pushes updates to the
trail tack, 2) pushes a marker to the trail stack in the left branch of a choice, and 3) untrails
in the right branch. All other operations remain as is.

To ensure that pushStack and popStack access the secondary, trail-stack state in the
above translation, we also need to define the following instance of MState.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 31

instance (Functor f , Functor g, Functor h)
⇒MState s (Free (f :+: g :+: StateF s :+: h)) where

get =Op ◦ Inr ◦ Inr ◦ Inl $ Get η

put x=Op ◦ Inr ◦ Inr ◦ Inl $ Put x (η ())

Now, we can combine the simulation local2trail with the global-state semantics
provided by hGlobalM , and handle the trail stack at the end.

hGlobalT :: (Functor f , Undo s u)
⇒ Free (ModifyF s n :+: NondetF :+: f) a→ s→ Free f [a]

hGlobalT = fmap (fmap fst ◦ flip runStateT (Stack []) ◦ hState) ◦ hGlobalM ◦ local2trail

The following theorem establishes the correctness of hGlobalT with respect to the local-state
semantics given by hLocal defined in Section 4.1.

Theorem 7. Given Functor f and Undo s u, the equation

hGlobalT = hLocalM

holds for all programs p :: Free (ModifyF s u :+: NondetF :+: f) a that do not use the
operation Op (Inl (MRestore)).

The proof can be found in Appendix 7; it uses the same fold fusion strategy as in the
proofs of other theorems.

8.2 Putting everything together, again

We can further combine the local2trail simulation with the nondet2state simulation
of nondeterminism from Section 5 and the state2state simulation of multiple states
from Section 6.1. The resulting simulation encodes the local-state semantics with one
modification-based state and two stacks, a choicepoint stack generated by nondet2state
and a trail stack generated by local2trail. This has a close relationship to the WAM of
Prolog. The modification-based state models the state of the program. The choicepoint
stack stores the remaining branches to implement the nondeterministic searching. The trail
stack stores the previous state updates to implement the backtracking.

The combined simulation function simulateT is defined as follows:

simulateT :: (Functor f , Undo s u)
⇒ Free (ModifyF s u :+: NondetF :+: f) a
→ s→ Free f [a]

simulateT x s= extractT ◦ hState

◦ fmap fst ◦ flip runStateT s ◦ hModify

◦ (⇔) ◦ states2state ◦ (�)
◦ (⇔) ◦ nondet2state ◦ (⇔)
◦ local2trail $ x

It uses the auxiliary function extractT to get the final results and (�) to reorder the signa-
tures. Note that the initial state used by extractT is (SS [] [], Stack []), which contains an
empty results list, an empty choicepoint stack, and an empty trail stack.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

32 W. Tang and T. Schrijvers

Free (ModifyF s u :+: NondetF :+: f) a

Free (ModifyF s u :+: NondetF :+: StateF (Stack (Either u ())) :+: f) a

Free (ModifyF s u :+: StateF (St s u f a) :+: StateF (Stack (Either u ())) :+: f) ()

Free (ModifyF s u :+: StateF (St s u f a, Stack (Either u ())) :+: f) ()

Free (StateF (St s u f a, Stack (Either u ())) :+: f) ()

Free f [a]

local2trail

(⇔)◦nondet2state◦(⇔)

fmap fst◦flip runStateT s◦hModify

(⇔)◦states2state◦(�)

extractT◦hState

Fig. 5: An overview of the simulateT function.

extractT x= resultsSS ◦ fst ◦ snd 〈$〉 runStateT x (SS [] [], Stack [])

(�) :: (Functor f1, Functor f2, Functor f3, Functor f4)
⇒ Free (f1 :+: f2 :+: f3 :+: f4) a→ Free (f2 :+: f3 :+: f1 :+: f4) a

(�) (Var x) = Var x
(�) (Op (Inl k)) = (Op ◦ Inr ◦ Inr ◦ Inl) (fmap (�) k)
(�) (Op (Inr (Inl k))) = (Op ◦ Inl) (fmap (�) k)
(�) (Op (Inr (Inr (Inl k)))) = (Op ◦ Inr ◦ Inl) (fmap (�) k)
(�) (Op (Inr (Inr (Inr k))))= (Op ◦ Inr ◦ Inr ◦ Inr) (fmap (�) k)

Figure 5 illustrates each step of this simulation. The state type St s u f a is defined as
SS (ModifyF s u :+: StateF (Stack (Either u ())) :+: f) a.

In the simulateT function, we first use our three simulations local2trail, nondet2state
and states2state (together with some reordering of signatures) to interpret the local-state
semantics for state and nondeterminism in terms of a modification-based state and a general
state containing two stacks. Then, we use the handler hModify to interpret the modification-
based state effect, and use the handler hState to interpret the two stacks. Finally, we use the
function extractT to get the final results.

As in Section 6.2, we can also fuse simulateT into a single handler.

type Comp f a s u= (WAM f a s u, s)→ Free f [a]
data WAM f a s u=WAM {results :: [a]

, cpStack :: [Comp f a s u]
, trStack :: [Either u ()]}

simulateTF :: (Functor f , Undo s u)
⇒ Free (ModifyF s u :+: NondetF :+: f) a
→ s
→ Free f [a]

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 33

simulateTF x s= fold gen (alg1 # alg2 # fwd) x (WAM [] [] [], s)
where

gen x (WAM xs cp tr, s)= continue (xs++[x]) cp tr s
alg1 (MGet k) (WAM xs cp tr, s)= k s (WAM xs cp tr, s)
alg1 (MUpdate u k) (WAM xs cp tr, s)= k (WAM xs cp (Left u : tr), s⊕ u)
alg1 (MRestore u k) (WAM xs cp tr, s)= k (WAM xs cp tr, s� u)
alg2 Fail (WAM xs cp tr, s)= continue xs cp tr s
alg2 (Or p q) (WAM xs cp tr, s)= p (WAM xs (untrail q : cp) (Right () : tr), s)
fwd op (WAM xs cp tr, s)=Op (fmap ($(WAM xs cp tr, s)) op)
untrail q (WAM xs cp tr, s)= case tr of

[]→ q (WAM xs cp tr, s)
Right () : tr′ → q (WAM xs cp tr′, s)
Left n : tr′ → untrail q (WAM xs cp tr′, s� u)

continue xs cp tr s= case cp of
[] → η xs
p : cp′ → p (WAM xs cp′ tr, s)

Here, the carrier type of the algebras is Comp f a s u. It differs from that of simulateF in
that it also takes a trail stack as an input.

N-queens with two stacks. With simulateT , we can implement the backtracking algorithm
of the n-queens problem with one modification-based state and two stacks.

queensSimT :: Int→ [[Int]]
queensSimT = hNil ◦ flip simulateT (0, []) ◦ queensM

9 Related work

There are various related works.

9.1 Prolog

Prolog is a prominent example of a system that exposes nondeterminism with local state
to the user, but is itself implemented in terms of a single, global state.

Warren abstract machine. The folklore idea of undoing modifications upon backtrack-
ing is a key feature of many Prolog implementations, in particular those based on the
Warren Abstract Machine (WAM) Warren (1983); Aït-Kaci (1991). The WAM’s global
state is the program heap and Prolog programs modify this heap during unification only in
a very specific manner: following the union-find algorithm, they overwrite cells that con-
tain self-references with pointers to other cells. Undoing these modifications only requires
knowledge of the modified cell’s address, which can be written back in that cell dur-
ing backtracking. The WAM has a special stack, called the trail stack, for storing these
addresses, and the process of restoring those cells is called untrailing.

WAM derivation and correctness. Several authors have studied the derivation of the
WAM from a specification of Prolog, and its correctness.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

34 W. Tang and T. Schrijvers

Börger and Rosenzweig (1995) start from an operational semantics of Prolog based on
derivation trees and refine this in successive steps to the WAM. Their approach was later
mechanized in Isabelle/HOL by Pusch (1996). Pirog and Gibbons (2011) sketch how the
WAM can be derived from a Prolog interpreter following the functional correspondence
between evaluator and abstract machine Ager et al. (2005).

Neither of these approaches is based on an abstraction of effects that separates them
from other aspects of Prolog.

The 4-port box model. While trailing happens under the hood, there is a folklore Prolog
programming pattern for observing and intervening at different point in the control flow
of a procedure call, known as the 4-port box model. In this model, upon the first entrance
of a Prolog procedure it is called; it may yield a result and exits; when the subsequent
procedure fails and backtracks, it is asked to redo its computation, possibly yielding the
next result; finally it may fail. Given a Prolog procedure p implemented in Haskell, the
following program prints debugging messages when each of the four ports are used:

(putStr "call" � side (putStr "fail")) >>

p >>= λx→
(putStr "exit" � side (putStr "redo")) >>

η x

This technique was applied in the monadic setting by Hinze (1996), and it has been our
inspiration for expressing the state restoration with global state.

Functional models of prolog. Various authors have modelled (aspects of) Prolog in func-
tional programming languages, often using monads to capture nondeterminism and state
effects. Notably, Spivey and Seres (1999) develop an embedding of Prolog in Haskell.

Most attention has gone towards modelling the nondeterminism or search aspect of
Prolog, with various monads and monad transformers being proposed (Hinze, 2000;
Kiselyov et al., 2005). Notably, Schrijvers et al. (2014) shows how Prolog’s search can
be exposed with a free monad and manipulated using handlers.

None of these works consider mapping high-level to low-level representations of the
effects.

9.2 Reasoning about side effects

There are many works on reasoning and modelling side effects. Here, we cover those that
have most directly inspired this paper.

Axiomatic reasoning. Gibbons and Hinze (2011) proposed to reason axiomatically about
programs with effects and provided an axiomatic characterization of local state seman-
tics. Our earlier work in Pauwels et al. (2019) was directly inspired by their work: we
introduced an axiomatic characterization of global state and used axiomatic reasoning to
prove handling local state with global state correct. We also provided models that satisfy
the axioms, whereas their paper mistakenly claims that one model satisfies the local state
axioms and that another model is monadic. This paper is an extension of Pauwels et al.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 35

(2019), but notably, we depart from the axiomatic reasoning approach; instead we use
proof techniques based on algebraic effects and handlers.

Algebraic effects. Our formulation of implementing local state with global state is directly
inspired by the effect handlers approach of Plotkin and Pretnar (2009). By making the free
monad explicit our proofs benefit directly from the induction principle that Bauer and
Pretnar established for effect handler programs . While Lawvere theories were originally
Plotkin’s inspiration for studying algebraic effects, the effect handlers community has for
a long time paid little attention to them. Yet, Lukšič and Pretnar (2020) have investigated
a framework for encoding axioms or effect theories in the type system: the type of an
effectful function declares the operators used in the function, as well as the equalities that
handlers for these operators should comply with. The type of a handler indicates which
operators it handles and which equations it complies with. This allows expressing at the
type level that a handler reduces a higher-level effect to a lower-level one.

Wu and Schrijvers (2015) first presented fusion as a technique for optimizing composi-
tions of effect handlers. They use a specific form of fusion known as fold–build fusion or
short-cut fusion (Gill et al., 1993). To enable this kind of fusion they transform the han-
dler algebras to use the codensity monad as their carrier. Their approach is not directly
usable because it does not fuse non-handler functions, and we derive simpler algebras (not
obfuscated by the codensity monad) than those they do.

More recently, Yang and Wu (2021) have used the fusion approach of Wu and Schrijvers
(2015) (but with the continuation monad rather than the codensity monad) for reasoning;
they remark that, although handlers are composable, the semantics of these composed han-
dlers are not always obvious and that determining the correct order of composition to arrive
at a desired semantics is nontrivial. They propose a technique based on modular handlers
(Schrijvers et al., 2019), which considers conditions under which the fusion of these mod-
ular handlers respect not only the laws of each of the handler’s algebraic theories but also
additional interaction laws. Using this technique they provide succinct proofs of the cor-
rectness of local state handlers, constructed from a fusion of state and nondeterminism
handlers.

Earlier versions. This paper refines and much expands on two earlier works of the last
author.

Pauwels et al. (2019) have the same goal as Section 4: it uses the state-restoring version
of put to simulate local state with global state. It differs from this work in that it relies on
an axiomatic (i.e., law-based), as opposed to handler-based, semantics for local and global
state. This means that handler fusion cannot be used as a reasoning technique. Moreover,
it uses a rather heavy-handed syntactic approach to contextual equivalence, and it assumes
that no other effects are invoked.

Another precursor is the work of Seynaeve et al. (2020), which establishes similar results
as those in Section 5.1. However, instead of generic definitions for the free monad and
its fold, they use a specialized free monad for nondeterminism and ordinary recursive
functions for handling. As a consequence, their proofs use structural induction rather than
fold fusion. Furthermore, they did not consider other effects either.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

36 W. Tang and T. Schrijvers

10 Conclusion and future work

We studied the simulations of higher-level effects with lower-level effects for state and
nondeterminism. We started with the translation from the local-state semantics of state
and nondeterminism to the global-state semantics. Then, we further showed how to trans-
late nondeterminism to state (a choicepoint stack), and translate multiple state effects into
one state effect. Combining these results, we can simulate the local-state semantics, a
high-level programming abstraction, with only one low-level state effect. We also demon-
strated that we can simulate the local-state semantics using a trail stack in a similar style to
the Warren Abstract Machine of Prolog. We define the effects and their translations with
algebraic effects and effect handlers, respectively. These are implemented as free monads
and folds in Haskell. The correctness of all these translations has been proved using the
technique of program calculation, especially using the fusion properties.

In future work, we would like to explore the potential optimizations enabled by muta-
ble states. Mutable states fit the global-state semantics naturally. With mutable states, we
can implement more efficient state update and restoration operations for the simulation
local2globalM (Section 7), as well as more efficient implementations of the choicepoint
stacks and trail stacks used by the simulations nondet2state (Section 5.2) and local2trail
(Section 8), respectively. We would also like to consider the low-level simulations of other
control-flow constructs used in logical programming languages such as Prolog’s cut oper-
ator for trimming the search space. Since operators like cut are usually implemented as
scoped or higher order effects (Piróg et al., 2018; Wu et al., 2014; Yang et al., 2022;
van den Berg and Schrijvers, 2023), we would have to adapt our approach accordingly.

Conflicts of Interest

None.

References

Ager, M. S., Danvy, O. & Midtgaard, J. (2005) A functional correspondence between monadic evalu-
ators and abstract machines for languages with computational effects. Theor. Comput. Sci. 342(1),
149–172. Applied Semantics: Selected Topics.

Aït-Kaci, H. (1991) Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press.
Börger, E. & Rosenzweig, D. (1995) The WAM – definition and compiler correctness. In Logic

Programming: Formal Methods and Practical Applications, Studies in Computer Science and
Artificial Intelligence, Beierle, C. & Plümer, L. (eds). Elsevier Science B.V./North-Holland, pp.
20–90.

Felleisen, M. (1991) On the expressive power of programming languages. Sci. Comput. Program.
17(1–3), 35–75.

Gale, Y. (2007) ListT done right alternative. Available at: https://wiki.haskell.org/ListT_
done_right_alternative.

Gibbons, J. (2000) Calculating functional programs. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction, International Summer School and Workshop, Oxford, UK,
April 10-14, 2000, Revised Lectures. Springer, pp. 149–202.

Gibbons, J. & Hinze, R. (2011) Just do it: Simple monadic equational reasoning. SIGPLAN Not.
46(9), 2–14.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In Proceedings of
the Conference on Functional Programming Languages and Computer Architecture. New York,
NY, USA. Association for Computing Machinery, pp. 223–232.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://wiki.haskell.org/ListT_done_right_alternative
https://wiki.haskell.org/ListT_done_right_alternative
https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 37

Hinze, R. (1996) Monadic-style backtracking. Technical Report IAI-TR-96-9. Institut für Informatik
III, Universität Bonn.

Hinze, R. (2000) Deriving backtracking monad transformers. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000. ACM. pp. 186–197.

Hutton, G. & Fulger, D. (2008) Reasoning about Effects: Seeing the Wood through the Trees
(Extended Version).

Jones, M. P. (1995) Functional programming with overloading and higher-order polymorphism.
Kiselyov, O. (2015) Laws of monadplus. Available at: http://okmij.org/ftp/Computation/
monads.html#monadplus.

Kiselyov, O. & Ishii, H. (2015) Freer monads, more extensible effects. SIGPLAN Not. 50(12), 94–
105.

Kiselyov, O., Shan, C., Friedman, D. P. & Sabry, A. (2005) Backtracking, interleaving, and ter-
minating monad transformers: (functional pearl). In Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2005, Tallinn, Estonia, September
26-28, 2005. ACM, pp. 192–203.

Lorenzen, A., Leijen, D. & Swierstra, W. (2023) FP2: Fully in-place functional programming. Proc.
ACM Program. Lang. 7(ICFP).

Lukšič, Z. & Pretnar, M. (2020) Local algebraic effect theories. J. Funct. Program. 30, e13.
Moggi, E. (1991) Notions of computation and monads. Inform. Computat. 93(1), 55–92.
Pauwels, K., Schrijvers, T. & Mu, S.-C. (2019) Handling local state with global state. In International

Conference on Mathematics of Program Construction. Springer, pp. 18–44.
Pirog, M. & Gibbons, J. (2011) A functional derivation of the warren abstract machine. Unpublished.
Piróg, M., Schrijvers, T., Wu, N. & Jaskelioff, M. (2018) Syntax and semantics for operations with

scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pp. 809–818.

Plotkin, G. & Pretnar, M. (2009) Handlers of algebraic effects. In Programming Languages and
Systems. Berlin, Heidelberg. Springer Berlin Heidelberg, pp. 80–94.

Plotkin, G. D. & Power, J. (2002) Notions of computation determine monads. In Proceedings of the
5th International Conference on Foundations of Software Science and Computation Structures.
Berlin, Heidelberg. Springer-Verlag, pp. 342–356.

Plotkin, G. D. & Power, J. (2003) Algebraic operations and generic effects. Appl. Categorical Struct.
11(1), 69–94.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Log. Methods Comput. Sci. 9(4).
Pusch, C. (1996) Verification of compiler correctness for the wam. In Proceedings of the 9th

International Conference on Theorem Proving in Higher Order Logics. Berlin, Heidelberg.
Springer-Verlag, pp. 347–361.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Information Processing
83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983.
North-Holland/IFIP. pp. 513–523.

Rivas, E., Jaskelioff, M. & Schrijvers, T. (2018) A unified view of monadic and applicative non-
determinism. Sci. Comput. Program. 152, 70–98.

Schrijvers, T., Piróg, M., Wu, N. & Jaskelioff, M. (2019) Monad transformers and modular alge-
braic effects: what binds them together. In Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell, Haskell, ICFP 2019, Berlin, Germany, August 18-23, 2019. pp. 98–113.

Schrijvers, T., Wu, N., Desouter, B. & Demoen, B. (2014) Heuristics entwined with handlers com-
bined: From functional specification to logic programming implementation. In Proceedings of the
16th International Symposium on Principles and Practice of Declarative Programming, Kent,
Canterbury, United Kingdom, September 8-10, 2014. ACM, pp. 259–270.

Schulte, C. (1999) Comparing trailing and copying for constraint programming. In Proceedings of
the Sixteenth International Conference on Logic Programming, Las Cruces, NM, USA. The MIT
Press, pp. 275–289.

Seynaeve, W., Pauwels, K. & Schrijvers, T. (2020) State will do. In International Symposium on
Trends in Functional Programming. Springer, pp. 204–225.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

http://okmij.org/ftp/Computation/monads.html#monadplus
http://okmij.org/ftp/Computation/monads.html#monadplus
https://doi.org/10.1017/S0956796824000133

38 W. Tang and T. Schrijvers

Spivey, J. M. & Seres, S. (1999) Embedding Prolog in Haskell.
Swierstra, W. (2008) Data types à la carte. J. Funct. Program. 18(4), 423–436.
van den Berg, B. & Schrijvers, T. (2023) A framework for higher-order effects & handlers. CoRR.

abs/2302.01415.
Voigtländer, J. (2009) Free theorems involving type constructor classes: functional pearl. In

Proceeding of the 14th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009. ACM, pp. 173–184.

Volkov, N. (2014) list-t: ListT done right. https://github.com/nikita-volkov/list-t.
Wadler, P. (1989) Theorems for free! In Proceedings of the Fourth International Conference on

Functional Programming Languages and Computer Architecture, FPCA 1989, London, UK,
September 11-13, 1989. ACM, pp. 347–359.

Warren, D. H. D. (1983) An abstract prolog instruction set. Technical Report 309. AI Center, SRI
International. 333 Ravenswood Ave., Menlo Park, CA 94025.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput. 115(1),
38–94.

Wu, N. & Schrijvers, T. (2015) Fusion for free: Efficient algebraic effect handlers. In MPC 2015.
Wu, N., Schrijvers, T. & Hinze, R. (2014) Effect handlers in scope. In Proceedings of the 2014 ACM

SIGPLAN Symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014. pp. 1–12.
Yang, Z., Paviotti, M., Wu, N., van den Berg, B. & Schrijvers, T. (2022) Structured handling

of scoped effects. In Programming Languages and Systems – 31st European Symposium on
Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Springer,
pp. 462–491.

Yang, Z. & Wu, N. (2021) Reasoning about effect interaction by fusion. Proc. ACM Program. Lang.
5(ICFP), 1–29.

1 Proofs for get laws in local-state semantics

In this section, we prove two equations about the interaction of nondeterminism and state
in the local-state semantics.
Equation (4.3): get >>∅=∅

Proof

get >>∅

= {- definition of (>>) -}
get >>= (λs→∅)
= {- Law (4.1): put-right-identity -}

get >>= (λs→ put s >>∅)
= {- Law (2.5): associativity of (>>) -}

(get >>= put) >>∅

= {- Law (2.12): get-put -}
η () >>∅

= {- Law (2.3): return-bind and definition of (>>) -}
∅

�

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://github.com/nikita-volkov/list-t
https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 39

Equation (4.4): get >>= (λx→ k1 x � k2 x)= (get >>= k1) � (get >>= k2)

Proof

get >>= (λx→ k1 x � k2 x)
= {- Law (2.3): return-bind and definition of (>>) -}

η () >> (get >>= (λx→ k1 x � k2 x))
= {- Law (2.5): associativity of (>>=) -}

(η () >> get) >>= (λx→ k1 x � k2 x)
= {- Law (2.12): get-put -}

((get >>= put) >> get) >>= (λx→ k1 x � k2 x)
= {- Law (2.5): associativity of (>>) -}

(get >>= (λs→ put s >> get)) >>= (λx→ k1 x � k2 x)
= {- Law (2.5): associativity of (>>=) -}

get >>= (λs→ (λs→ put s >> get) s >>= (λx→ k1 x � k2 x))
= {- function application -}

get >>= (λs→ (put s >> get) >>= (λx→ k1 x � k2 x))
= {- Law (2.11): put-get -}

get >>= (λs→ (put s >> η s) >>= (λx→ k1 x � k2 x))
= {- Law (2.5): associativity of (>>) -}

get >>= (λs→ put s >> (η s >>= (λx→ k1 x � k2 x)))
= {- Law (2.3): return-bind and function application -}

get >>= (λs→ put s >> (k1 s � k2 s))
= {- Law (4.2): put-left-distributivity -}

get >>= (λs→ (put s >> k1 s) � (put s >> k2 s))
= {- Law (2.3): return-bind (twice) -}

get >>= (λs→ (put s >> (η s >>= k1)) � (put s >> (η s >>= k2)))
= {- Law (2.5): associativity of (>>) -}

get >>= (λs→ ((put s >> η s) >>= k1) � ((put s >> η s) >>= k2))
= {- Law (2.11): put-get -}

get >>= (λs→ ((put s >> get) >>= k1) � ((put s >> get) >>= k2))
= {- Law (2.5): associativity of (>>) -}

get >>= (λs→ (put s >> (get >>= k1)) � (put s >> (get >>= k2)))
= {- Law (4.2): put-left-distributivity -}

get >>= (λs→ put s >> ((get >>= k1) � (get >>= k2)))
= {- Law (2.5): associativity of (>>=) -}

(get >>= put) >> ((get >>= k1) � (get >>= k2))
= {- Law (2.12): get-put -}

η () >> ((get >>= k1) � (get >>= k2))
= {- Law (2.3): return-bind and definition of (>>) -}

(get >>= k1) � (get >>= k2)

�

2 Proofs for modelling local state with global state

This section proves the following theorem in Section 4.3.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

40 W. Tang and T. Schrijvers

Theorem 1. hGlobal ◦ local2global= hLocal

Preliminary. It is easy to see that runStateT ◦ hState can be fused into a single fold defined
as follows:

hState1 :: Functor f ⇒ Free (StateF s :+: f) a→ (s→ Free f (a, s))
hState1 = fold genS (algS # fwdS)

where
genS x s = Var (x, s)
algS (Get k) s = k s s
algS (Put s k) = k s
fwdS y s =Op (fmap ($s) y)

For brevity, we use hState1 to replace runStateT ◦ hState in the following proofs.

2.1 Main proof structure

The main theorem we prove in this section is

Theorem 8. hGlobal ◦ local2global= hLocal

Proof Both the left-hand side and the right-hand side of the equation consist of function
compositions involving one or more folds. We apply fold fusion separately on both sides
to contract each into a single fold:

hGlobal ◦ local2global = fold genLHS (algS
LHS # algND

RHS # fwdLHS)

hLocal = fold genRHS (algS
RHS # algND

RHS # fwdRHS)

We approach this calculationally. That is to say, we do not first postulate definitions of
the unknowns above (algS

LHS and so on) and then verify whether the fusion conditions are
satisfied. Instead, we discover the definitions of the unknowns. We start from the known
side of each fusion condition and perform case analysis on the possible shapes of input.
By simplifying the resulting case-specific expression, and pushing the handler applications
inwards, we end up at a point where we can read off the definition of the unknown that
makes the fusion condition hold for that case.

Finally, we show that both folds are equal by showing that their corresponding
parameters are equal:

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

A noteworthy observation is that, for fusing the left-hand side of the equation, we do not
use the standard fusion rule:

hGlobal ◦ fold Var alg = fold (hGlobal ◦ Var) alg′

⇐ hGlobal ◦ alg = alg′ ◦ fmap hGlobal

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 41

where local2global= fold Var alg. The problem is that we will not find an appropriate alg′

such that alg′ (fmap hGlobal t) restores the state for any t of type (StateF s :+: NondetF :+:
f) (Free (StateF s :+: NonDetF :+: f) a).

Fortunately, we do not need such an alg′. As we have already pointed out, we can
assume that the subterms of t have already been transformed by local2global, and thus
all occurrences of Put appear in the putR constellation.

We can incorporate this assumption by using the alternative fusion rule:

hGlobal ◦ fold Var alg = fold (hGlobal ◦ Var) alg′

⇐ hGlobal ◦ alg ◦ fmap local2global = alg′ ◦ fmap hGlobal ◦ fmap local2global

The additional fmap local2global in the condition captures the property that all the
subterms have been transformed by local2global.

In order to not clutter the proofs, we abstract everywhere over this additional
fmap local2global application, except in the one place where we need it. That is the appeal
to the key lemma:

hState1 (hND+f ((⇔) (local2global t))) s

=
do (x,)← hState1 (hND+f ((⇔) (local2global t))) s; η (x, s)

This expresses that the syntactic transformation local2global makes sure that, despite any
temporary changes, the computation t restores the state back to its initial value.

We elaborate each of these steps below. �

2.2 Fusing the right-hand side

We calculate as follows:

hLocal

= {- definition -}
hL ◦ hState1

with
hL :: (Functor f)⇒ (s→ Free (NondetF :+: f) (a, s))→ s→ Free f [a]
hL = fmap (fmap (fmap fst) ◦ hND+f)

= {- definition of hState1 -}
hL ◦ fold genS (algS # fwdS)
= {- fold fusion-post (Equation 3.2) -}

fold genRHS (algS
RHS # algND

RHS # fwdRHS)

This last step is valid provided that the fusion conditions are satisfied:

hL ◦ genS = genRHS

hL ◦ (algS # fwdS) = (algS
RHS # algND

RHS # fwdRHS) ◦ fmap hL

We calculate for the first fusion condition:

hL (genS x)
= {- definition of genS -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

42 W. Tang and T. Schrijvers

hL (λs→ Var (x, s))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ Var (x, s))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Var (x, s)))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (Var [(x, s)])
= {- definition of fmap (twice) -}

λs→ Var [x]
= {- define genRHS x= λs→ Var [x] -}
= genRHS x

We conclude that the first fusion condition is satisfied by

genRHS :: Functor f ⇒ a→ (s→ Free f [a])
genRHS x= λs→ Var [x]

The second fusion condition decomposes into two separate conditions:

hL ◦ algS = algS
RHS ◦ fmap hL

hL ◦ fwdS = (algND
RHS # fwdRHS) ◦ fmap hL

We calculate for the first subcondition:
case t=Get k

hL (algS (Get k))
= {- definition of algS -}

hL (λs→ k s s)
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ k s s)
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (k s s))
= {- beta-expansion (twice) -}
= λs→ (λs1 s2→ fmap (fmap fst) (hND+f (k s2 s1))) s s
= {- definition of fmap (twice) -}
= λs→ (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (λs1 s2→ k s2 s1)) s s
= {- eta-expansion of k -}
= λs→ (fmap (fmap (fmap (fmap fst) ◦ hND+f)) k) s s
= {- define algS

RHS (Get k)= λs→ k s s -}
= algS

RHS (Get (fmap (fmap (fmap (fmap fst) ◦ hND+f)) k))
= {- definition of fmap -}
= algS

RHS (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (Get k))
= {- definition of hL -}
= algS

RHS (fmap hL (Get k))

case t= Put s k

hL (algS (Put s k))
= {- definition of algS -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 43

hL (λ → k s)
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λ → k s)
= {- definition of fmap -}

λ → fmap (fmap fst) (hND+f (k s))
= {- beta-expansion -}
= λ → (λs1→ fmap (fmap fst) (hND+f (k s1))) s
= {- definition of fmap -}
= λ → (fmap (fmap (fmap fst) ◦ hND+f) (λs1→ k s1)) s
= {- eta-expansion of k -}
= λ → (fmap (fmap (fmap fst) ◦ hND+f) k) s
= {- define algS

RHS (Pus s k)= _→ k s -}
= algS

RHS (Put s (fmap (fmap (fmap fst) ◦ hND+f) k))
= {- definition of fmap -}
= algS

RHS (fmap (fmap (fmap fst) ◦ hND+f)) (Put s k))
= {- definition of hL -}
= algS

RHS (fmap hL (Put s k))

We conclude that the first subcondition is met by taking:

algS
RHS :: Functor f ⇒ StateF s (s→ Free f [a])→ (s→ Free f [a])

algS
RHS (Get k) = λs→ k s s

algS
RHS (Put s k)= λ → k s

The second subcondition can be split up in two further subconditions:

hL ◦ fwdS ◦ Inl = algND
RHS ◦ fmap hL

hL ◦ fwdS ◦ Inr = fwdRHS ◦ fmap hL

For the first of these, we calculate:

hL (fwdS (Inl op))
= {- definition of fwdS -}

hL (λs→Op (fmap ($s) (Inl op)))
= {- definition of fmap -}

hL (λs→Op (Inl (fmap ($s) op)))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→Op (Inl (fmap ($s) op)))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Op (Inl (fmap ($s) op))))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) op)))

We split on op:
case op= Fail

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) Fail)))
= {- defintion of fmap (twice) -}

λs→ fmap (fmap fst) (algND+f Fail)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

44 W. Tang and T. Schrijvers

= {- definition of algND+f -}
λs→ fmap (fmap fst) (Var [])
= {- definition of fmap (twice) -}

λs→ Var []
= {- define algND

RHS Fail= λs→ Var [] -}
algND

RHS Fail
= {-definition fo fmap -}

algND
RHS (fmap hL fail)

case op=Or p q

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) (Or p q))))
= {- defintion of fmap (twice) -}

λs→ fmap (fmap fst) (algND+f (Or (hND+f (p s)) (hND+f (q s))))
= {- definition of algND+f -}

λs→ fmap (fmap fst) (liftM2 (++) (hND+f (p s)) (hND+f (q s)))
= {- Lemma 3 -}

λs→ liftM2 (++) (fmap (fmap fst) (hND+f (p s))) (fmap (fmap fst) (hND+f (q s)))
= {- define algND

RHS (Or p q)= λs→ liftM2 (++) (p s) (q s) -}
algND

RHS (Or (fmap (fmap fst) ◦ hND+f ◦ p) (fmap (fmap fst) ◦ hND+f ◦ q))
= {- defintion of fmap (twice) -}

algND
RHS (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (Or p q))

= {- defintion of hL -}
algND

RHS (fmap hL (Or p q))

From this we conclude that the definition of algND
RHS should be:

algND
RHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])

algND
RHS Fail = λs→ Var []

algND
RHS (Or p q)= λs→ liftM2 (++) (p s) (q s)

For the last subcondition, we calculate:

hL (fwdS (Inr op))
= {- definition of fwdS -}

hL (λs→Op (fmap ($s) (Inr op)))
= {- definition of fmap -}

hL (λs→Op (Inr (fmap ($s) op)))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→Op (Inr (fmap ($s) op)))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Op (Inr (fmap ($s) op))))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (fwdND+f (fmap hND+f (fmap ($s) op)))
= {- definition of fwdND+f -}

λs→ fmap (fmap fst) (Op (fmap hND+f (fmap ($s) op)))
= {- definition of fmap -}

λs→Op (fmap (fmap (fmap fst)) (fmap hND+f (fmap ($s) op)))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 45

= {- definition of hL -} |
λs→Op (hL (fmap ($s) op))
= {- Lemma 2 -}

λs→Op (fmap ($s) (fmap hL op))
= {- define fwdRHS op= λs→Op (fmap ($s) op) -}

fwdRHS (fmap hL op)

From this we conclude that the definition of fwdRHS should be:

fwdRHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdRHS op= λs→Op (fmap ($s) op)

2.3 Fusing the left-hand side

We proceed in the same fashion with fusing left-hand side, discovering the definitions that
we need to satisfy the fusion condition.

We calculate as follows:

hGlobal ◦ local2global
= {- definition of local2global -}

hGlobal ◦ fold Var alg
where

alg (Inl (Put t k))= putR t >> k
alg p=Op p

= {- fold fusion-post (Equation 3.2) -}
fold genLHS (algS

LHS # algND
LHS # fwdLHS)

This last step is valid provided that the fusion conditions are satisfied:

hGlobal ◦ Var = genLHS

hGlobal ◦ alg = (algS
LHS # algND

LHS # fwdLHS) ◦ fmap hGlobal

We calculate for the first fusion condition:

hGlobal (Var x)
= {- definition of hGlobal -}

fmap (fmap fst) (hState1 (hND+f ((⇔) (Var x))))
= {- definition of (⇔) -}

fmap (fmap fst) (hState1 (hND+f (Var x)))
= {- definition of hND+f -}

fmap (fmap fst) (hState1 (Var [x]))
= {- definition of hState1 -}

fmap (fmap fst) (λs→ Var ([x], s))
= {- definition of fmap (twice) -}

λs→ Var [x]
= {- define genLHS x= λs→ Var [x] -}

genLHS x

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

46 W. Tang and T. Schrijvers

We conclude that the first fusion condition is satisfied by

genLHS :: Functor f ⇒ a→ (s→ Free f [a])
genLHS x= λs→ Var [x]

We can split the second fusion condition in three subconditions:

hGlobal ◦ alg ◦ Inl = algS
LHS ◦ fmap hGlobal

hGlobal ◦ alg ◦ Inr ◦ Inl = algND
LHS ◦ fmap hGlobal

hGlobal ◦ alg ◦ Inr ◦ Inr = fwdLHS ◦ fmap hGlobal

Let’s consider the first subconditions. It has two cases:
case op=Get k

hGlobal (alg (Inl (Get k)))
= {- definition of alg -}

hGlobal (Op (Inl (Get k)))
= {- definition of hGlobal -}

fmap (fmap fst) (hState1 (hND+f ((⇔) (Op (Inl (Get k))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hState1 (hND+f (Op (Inr (Inl (fmap (⇔) (Get k)))))))
= {- definition of fmap -}

fmap (fmap fst) (hState1 (hND+f (Op (Inr (Inl (Get ((⇔) ◦ k)))))))
= {- definition of hND+f -}

fmap (fmap fst) (hState1 (Op (fmap hND+f (Inl (Get ((⇔) ◦ k))))))
= {- definition of fmap -}

fmap (fmap fst) (hState1 (Op (Inl (Get (hND+f ◦ (⇔) ◦ k)))))
= {- definition of hState1 -}

fmap (fmap fst) (λs→ (hState1 ◦ hND+f ◦ (⇔) ◦ k) s s)
= {- definition of fmap -}

(λs→ fmap fst ((hState1 ◦ hND+f ◦ (⇔) ◦ k) s s))
= {- definition of fmap -}

(λs→ ((fmap (fmap fst) ◦ hState1 ◦ hND+f ◦ (⇔) ◦ k) s s))
= {- define algS

LHS (Get k)= λs→ k s s -}
algS

LHS (Get (hGlobal ◦ k))
= {- definition of fmap -}

algS
LHS (fmap hGlobal (Get k))

case op= Put s k

hGlobal (alg (Inl (Put s k)))
= {- definition of alg -}

hGlobal (putR s >> k)
= {- definition of putR -}

hGlobal ((get >>= λt→ put s � side (put t)) >> k)
= {- definitions of side, get, put, (�), (>>=) -}

hGlobal (Op (Inl (Get (λt→Op (Inr (Inl (Or (Op (Inl (Put s k)))
(Op (Inl (Put t (Op (Inr (Inl Fail)))))))))))))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 47

= {- definition of hGlobal -}
fmap (fmap fst) (hState1 (hND+f ((⇔)

(Op (Inl (Get (λt→Op (Inr (Inl (Or (Op (Inl (Put s k)))
(Op (Inl (Put t (Op Inr ((Inl Fail))))))))))))))))

= {- definition of (⇔) -}
fmap (fmap fst) (hState1 (hND+f (

(Op (Inr (Inl (Get (λt→Op (Inl (Or (Op (Inr (Inl (Put s ((⇔) k)))))
(Op (Inr (Inl (Put t (Op (Inl Fail))))))))))))))))

= {- definition of hND+f -}
fmap (fmap fst) (hState1 (

(Op (Inl (Get (λt→ liftM2 (++) (Op (Inl (Put s (hND+f ((⇔) k)))))
(Op (Inl (Put t (Var []))))))))))

= {- definition of hState1 -}
fmap (fmap fst)

(λt→ hState1 (liftM2 (++) (Op (Inl (Put s (hND+f ((⇔) k)))))
(Op (Inl (Put t (Var []))))) t)

= {- definition of liftM2 -}
fmap (fmap fst)

(λt→ hState1 (do x←Op (Inl (Put s (hND+f ((⇔) k))))
y←Op (Inl (Put t (Var [])))
Var (x++y)
) t)

= {- Lemma 4 -}
fmap (fmap fst)

(λt→ do (x, t1)← hState1 (Op (Inl (Put s (hND+f ((⇔) k))))) t
(y, t2)← hState1 (Op (Inl (Put t (Var [])))) t1
hState1 (Var (x++y)) t2

)
= {- definition of hState1 -}

fmap (fmap fst)
(λt→ do (x,)← hState1 (hND+f ((⇔) k)) s

(y, t2)← Var ([], t)
Var (x++y, t2)

)
= {- monad law -}

fmap (fmap fst)
(λt→ do (x,)← hState1 (hND+f ((⇔) k)) s

Var (x++[], t)
)

= {- right unit of (++) -}
fmap (fmap fst)

(λt→ do (x,)← hState1 (hND+f ((⇔) k)) s
Var (x, t)

)
= {- definition of fmap fst -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

48 W. Tang and T. Schrijvers

fmap (fmap fst)
(λt→ do x← fmap fst (hState1 (hND+f ((⇔) k)) s)

Var (x, t)
)

= {- definition of fmap -}
fmap (fmap fst)

(λt→ do x← (fmap (fmap fst) (hState1 (hND+f ((⇔) k)))) s
Var (x, t)

)
= {- definition of fmap (fmap fst) -}
_→ do x← (fmap (fmap fst) (hState1 (hND+f ((⇔) k)))) s

Var x
= {- monad law -}
_→ (fmap (fmap fst) (hState1 (hND+f ((⇔) k)))) s
= {- definition of hGlobal -}
_→ (hGlobal k) s
= {- define algS

LHS (Put s k)= _→ k s -}
algS

LHS (Put s (hGlobal k))
= {- definition of fmap -}

algS
LHS (fmap hGlobal (Put s))

We conclude that this fusion subcondition holds provided that:

algS
LHS :: Functor f ⇒ StateF s (s→ Free f [a])→ (s→ Free f [a])

algS
LHS (Get k) = λs→ k s s

algS
LHS (Put s k)= _→ k s

Let’s consider the second subcondition. It has also two cases:
case op= Fail

hGlobal (alg (Inr (Inl Fail)))
= {- definition of alg -}

hGlobal (Op (Inr (Inl Fail)))
= {- definition of hGlobal -}

fmap (fmap fst) (hState1 (hND+f ((⇔) (Op (Inr (Inl Fail))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hState1 (hND+f (Op (Inl (fmap (⇔) Fail)))))
= {- definition of fmap -}

fmap (fmap fst) (hState1 (hND+f (Op (Inl Fail))))
= {- definition of hND+f -}

fmap (fmap fst) (hState1 (Var []))
= {- definition of hState1 -}

fmap (fmap fst) (λs→ Var ([], s))
= {- definition of fmap twice and fst -}

λs→ Var []
= {- define algND

RHS Fail= λs→ Var [] -}
algND

RHS Fail

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 49

= {- definition of fmap -}
algND

RHS (fmap hGlobal Fail)

case op=Or p q

hGlobal (alg (Inr (Inl (Or p q))))
= {- definition of alg -}

hGlobal (Op (Inr (Inl (Or p q))))
= {- definition of hGlobal -}

fmap (fmap fst) (hState1 (hND+f ((⇔) (Op (Inr (Inl (Or p q)))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hState1 (hND+f (Op (Inl (fmap (⇔) (Or p q))))))
= {- definition of fmap -}

fmap (fmap fst) (hState1 (hND+f (Op (Inl (Or ((⇔) p) ((⇔) q))))))
= {- definition of hND+f -}

fmap (fmap fst) (hState1 (liftM2 (++) (hND+f ((⇔) p)) (hND+f ((⇔) q))))
= {- definition of liftM2 -}

fmap (fmap fst) (hState1 (do x← hND+f ((⇔) p)
y← hND+f ((⇔) q)
η (x++y)))

= {- Lemma 4 -}
fmap (fmap fst) (λs0→ (do (x, s1)← hState1 (hND+f ((⇔) p)) s0

(y, s2)← hState1 (hND+f ((⇔) q)) s1

hState1 (η (x++y)) s2))
= {- definition of hState1 -}

fmap (fmap fst) (λs0→ (do (x, s1)← hState1 (hND+f ((⇔) p)) s0

(y, s2)← hState1 (hND+f ((⇔) q)) s1

Var (x++y, s2)))
= {- Lemma 1 (p and q are in the codomain of local2global) -}

fmap (fmap fst) (λs0→ (do (x, s1)← do {(x,)← hState1 (hND+f ((⇔) p)) s0; η (x, s0)}
(y, s2)← do {(y,)← hState1 (hND+f ((⇔) q)) s1; η (x, s1)}
Var (x++y, s2)))

= {- monad laws -}
fmap (fmap fst) (λs0→ (do (x,)← hState1 (hND+f ((⇔) p)) s0

(y,)← hState1 (hND+f ((⇔) q)) s0

Var (x++y, s0)))
= {- definition of fmap (twice) and fst -}

λs0→ (do (x,)← hState1 (hND+f ((⇔) p)) s0

(y,)← hState1 (hND+f ((⇔) q)) s0

Var (x++y))
= {- definition of fmap, fst and monad laws -}

λs0→ (do x← fmap fst (hState1 (hND+f ((⇔) p)) s0)
y← fmap fst (hState1 (hND+f ((⇔) q)) s0)
Var (x++y))

= {- definition of fmap -}
λs0→ (do x← fmap (fmap fst) (hState1 (hND+f ((⇔) p))) s0

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

50 W. Tang and T. Schrijvers

y← fmap (fmap fst) (hState1 (hND+f ((⇔) q))) s0

Var (x++y))
= {- definition of hGlobal -}

λs0→ (do x← hGlobal p s0

y← hGlobal q s0

Var (x++y))
= {- definition of liftM2 -}

λs0→ liftM2 (++) (hGlobal p s0) (hGlobal q s0)
= {- define algND

LHS (Or p q)= λs→ liftM2 (++) (p s) (q s) -}
algND

LHS (Or (hGlobal p) (hGlobal q))
= {- definition of fmap -}

algND
LHS (fmap hGobal (Or p q))

We conclude that this fusion subcondition holds provided that:

algND
LHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])

algND
LHS Fail = λs→ Var []

algND
LHS (Or p q)= λs→ liftM2 (++) (p s) (q s)

Finally, the last subcondition:

hGlobal (alg (Inr (Inr op)))
= {- definition of alg -}

hGlobal (Op (Inr (Inr op)))
= {- definition of hGlobal -}

fmap (fmap fst) (hState1 (hND+f ((⇔) (Op (Inr (Inr op))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hState1 (hND+f (Op (Inr (Inr (fmap (⇔) op))))))
= {- definition of hND+f -}

fmap (fmap fst) (hState1 (Op (fmap hND+f (Inr (fmap (⇔) op)))))
= {- definition of fmap -}

fmap (fmap fst) (hState1 (Op (Inr (fmap hND+f (fmap (⇔) op)))))
= {- fmap fusion -}

fmap (fmap fst) (hState1 (Op (Inr (fmap (hND+f ◦ (⇔)) op))))
= {- definition of hState1 -}

fmap (fmap fst) (λs→Op (fmap ($s) (fmap hState1 (fmap (hND+f ◦ (⇔)) op))))
= {- fmap fusion -}

fmap (fmap fst) (λs→Op (fmap ($s) (fmap (hState1 ◦ hND+f ◦ (⇔)) op)))
= {- definition of fmap -}

λs→ fmap fst (Op (fmap ($s) (fmap (hState1 ◦ hND+f ◦ (⇔)) op)))
= {- definition of fmap -}

λs→Op (fmap (fmap fst) (fmap ($s) (fmap (hState1 ◦ hND+f ◦ (⇔)) op)))
= {- fmap fusion -}

λs→Op (fmap (fmap fst ◦ ($s)) (fmap (hState1 ◦ hND+f ◦ (⇔)) op)))
= {- Lemma 2 -}

λs→Op (fmap (($s) ◦ fmap (fmap fst)) (fmap (hState1 ◦ hND+f ◦ (⇔)) op)))
= {- fmap fission -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 51

λs→Op ((fmap ($s) ◦ fmap (fmap (fmap fst))) (fmap (hState1 ◦ hND+f ◦ (⇔)) op))
= {- fmap fusion -}

λs→Op (fmap ($s) (fmap (fmap (fmap fst) ◦ hState1 ◦ hND+f ◦ (⇔)) op))
= {- definition of hGlobal -}

λs→Op (fmap ($s) (fmap hGlobal op))
= {- define fwdLHS op= λs→Op (fmap ($s) op -}

fwdLHS (fmap hGlobal op)

We conclude that this fusion subcondition holds provided that:

fwdLHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdLHS op= λs→Op (fmap ($s) op)

2.4 Equating the fused sides

We observe that the following equations hold trivially.

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

Therefore, the main theorem holds.

2.5 Key lemma: State restoration

The key lemma is the following, which guarantees that local2global restores the initial
state after a computation.

Lemma 1 (State is Restored).

hState1 (hND+f ((⇔) (local2global t))) s

=
do (x,)← hState1 (hND+f ((⇔) (local2global t))) s; η (x, s)

Proof The proof proceeds by structural induction on t.
case t= Var y

hState1 (hND+f ((⇔) (local2global (Var y)))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (Var y))) s
= {- definition of (⇔) -}

hState1 (hND+f (Var y)) s
= {- definition of hND+f -}

hState1 (Var [y]) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

52 W. Tang and T. Schrijvers

= {- definition of hState1 -}
Var ([y], s)
= {- monad law -}

do (x,)← Var ([y], s); Var (x, s)
= {- definition of local2global, hND+f , (⇔), hState1 and η -}

do (x,)← hState1 (hND+f ((⇔) (local2global (Var y)))) s; η (x, s)

case t=Op (Inl (Get k))

hState1 (hND+f ((⇔) (local2global (Op (Inl (Get k)))))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (Op (Inl (Get (local2global ◦ k)))))) s
= {- definition of (⇔) -}

hState1 (hND+f (Op (Inr (Inl (Get ((⇔) ◦ local2global ◦ k)))))) s
= {- definition of hND+f -}

hState1 (Op (Inl (Get (hND+f ◦ (⇔) ◦ local2global ◦ k)))) s
= {- definition of hState1 -}

(hState1 ◦ hND+f ◦ (⇔) ◦ local2global ◦ k) s s
= {- definition of (◦) -}

(hState1 (hND+f ((⇔) (local2global (k s))))) s
= {- induction hypothesis -}

do (x,)← hState1 ((⇔) (hND+f (local2global (k s)))) s; η (x, s)
= {- definition of local2global, (⇔), hND+f , hState1 -}

do (x,)← hState1 (hND+f (local2global (Op (Inl (Get k))))) s; η (x, s)

case t=Op (Inr (Inl Fail))

hState1 (hND+f ((⇔) (local2global (Op (Inr (Inl Fail)))))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (Op (Inr (Inl Fail))))) s
= {- definition of (⇔) -}

hState1 (hND+f (Op (Inl Fail))) s
= {- definition of hND+f -}

hState1 (Var []) s
= {- definition of hState1 -}

Var ([], s)
= {- monad law -}

do (x,)← Var ([], s); Var (x, s)
= {- definition of local2global, (⇔), hND+f , hState1 -}

do (x,)← hState1 (hND+f ((⇔) (local2global (Op (Inr (Inl Fail)))))) s; η (x, s)

case t=Op (Inl (Put t k))

hState1 (hND+f ((⇔) (local2global (Op (Inl (Put t k)))))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (putR t >> local2global k))) s
= {- definition of putR -}

hState1 (hND+f ((⇔) ((get >>= λt′ → put t � side (put t′)) >> local2global k))) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 53

= {- definition of (�), get, put, side and (>>=) -}
hState1 (hND+f ((⇔) (Op (Inl (Get (λt′ →

Op (Inr (Inl (Or (Op (Inl (Put t (local2global k))))
(Op (Inl (Put t′ (Op (Inr (Inl Fail))))))))))))))) s

= {- definition of (⇔) -}
hState1 (hND+f (Op (Inr (Inl (Get (λt′ →

Op (Inl (Or (Op (Inr (Inl (Put t ((⇔) (local2global k))))))
(Op (Inr (Inl (Put t′ (Op (Inl Fail)))))))))))))) s

= {- definition of hND+f -}
hState1 (Op (Inl (Get (λt′ →

liftM2 (++) (Op (Inl (Put t (hND+f ((⇔) (local2global k))))))
(Op (Inl (Put t′ (Var [])))))))) s

= {- definition of hState1 -}
hState1 (liftM2 (++) (Op (Inl (Put t (hND+f ((⇔) (local2global k))))))

(Op (Inl (Put s (Var []))))) s
= {- definition of liftM2 -}

hState1 (do x←Op (Inl (Put t (hND+f ((⇔) (local2global k)))))
y←Op (Inl (Put s (Var [])))
Var (x++y)

) s
= {- Lemma 4 -}

do (x, s1)← hState1 (Op (Inl (Put t (hND+f ((⇔) (local2global k)))))) s
(y, s2)← hState1 (Op (Inl (Put s (Var [])))) s1

Var (x++y, s2)
= {- definition of hState1 -}

do (x, s1)← hState1 (hND+f ((⇔) (local2global k))) t
(y, s2)← Var ([], s)
Var (x++y, s2)

= {- monad laws -}
do (x,)← hState1 (hND+f ((⇔) (local2global k))) t

Var (x++[], s)
= {- right unit of (++) -}

do (x,)← hState1 (hND+f ((⇔) (local2global k))) t
Var (x, s)

= {- monad laws -}
do (x,)← do {(x,)← hState1 (hND+f ((⇔) (local2global k))) t; η (x, s)}

Var (x, s)
= {- deriviation in reverse -}

do (x,)← hState1 (hND+f ((⇔) (local2global (Op (Inl (Put t k)))))) s
Var (x, s)

case t=Op (Inr (Inl (Or p q)))

hState1 (hND+f ((⇔) (local2global (Op (Inr (Inl (Or p q))))))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (Op (Inr (Inl (Or (local2global p) (local2global q))))))) s
= {- definition of (⇔) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

54 W. Tang and T. Schrijvers

hState1 (hND+f (Op (Inl (Or ((⇔) (local2global p)) ((⇔) (local2global q)))))) s
= {- definition of hND+f -}

hState1 (liftM2 (++) (hND+f ((⇔) (local2global p))) (hND+f ((⇔) (local2global q)))) s
= {- definition of liftM2 -}

hState1 (do x← hND+f ((⇔) (local2global p))
y← hND+f ((⇔) (local2global q))
Var (x++y)

) s
= {- Lemma 4 -}

do (x, s1)← hState1 (hND+f ((⇔) (local2global p))) s
(y, s2)← hState1 (hND+f ((⇔) (local2global q))) s1

hState1 (Var (x++y)) s2

= {- induction hypothesis -}
do (x, s1)← do {(x,)← hState1 (hND+f ((⇔) (local2global p))) s; η (x, s)}

(y, s2)← do {(y,)← hState1 (hND+f ((⇔) (local2global q))) s1; η (y, s1)}
hState1 (Var (x++y)) s2

= {- monad laws -}
do (x,)← hState1 (hND+f ((⇔) (local2global p))) s

(y,)← hState1 (hND+f ((⇔) (local2global q))) s1

hState1 (Var (x++y)) s
= {- definition of hState1 -}

do (x,)← hState1 (hND+f ((⇔) (local2global p))) s
(y,)← hState1 (hND+f ((⇔) (local2global q))) s
η (x++y, s)

= {- monad laws -}
do (x,)← (

do (x,)← hState1 (hND+f ((⇔) (local2global p))) s
(y,)← hState1 (hND+f ((⇔) (local2global q))) s1

η (x++y, s)
)

η (x, s)
= {- derivation in reverse (similar to before) -}

do (x,)← hState1 (hND+f ((⇔) (local2global (Op (Inr (Inl (Or p q))))))) s
η (x, s)

case t=Op (Inr (Inr y))

hState1 (hND+f ((⇔) (local2global (Op (Inr (Inr y)))))) s
= {- definition of local2global -}

hState1 (hND+f ((⇔) (Op (Inr (Inr (fmap local2global y)))))) s
= {- definition of (⇔); fmap fusion -}

hState1 (hND+f (Op (Inr (Inr (fmap ((⇔) ◦ local2global) y))))) s
= {- definition of hND+f ; fmap fusion -}

hState1 (Op (Inr (fmap (hND+f ◦ (⇔) ◦ local2global) y))) s
= {- definition of hState1; fmap fusion -}

Op (fmap (($s) ◦ hState1 ◦ hND+f ◦ (⇔) ◦ local2global) y)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 55

= {- induction hypothesis -}
Op (fmap ((>>= λ(x,)→ η (x, s)) ◦ ($s) ◦ hState1 ◦ hND+f ◦ (⇔) ◦ local2global) y)
= {- fmap fission; definition of (>>=) -}

do (x,)←Op (fmap (($s) ◦ hState1 ◦ hND+f ◦ (⇔) ◦ local2global) y)
η (x, s)

= {- deriviation in reverse (similar to before) -}
do (x,)← hState1 (hND+f ((⇔) (local2global (Op (Inr (Inr y)))))) s

η (x, s)

�
2.6 Auxiliary lemmas

The derivations above make use of two auxiliary lemmas. We prove them here.

Lemma 2 (Naturality of ($s)). ($x) ◦ fmap f = f ◦ ($x)

Proof

(($x) ◦ fmap f) m
= {- function application -}

(fmap f m) x
= {- eta-expansion -}

(fmap f (λy ◦m y)) x
= {- definition of fmap -}

(λy ◦ f (m y)) x
= {- function application -}

f (m x)
= {- definition of ◦ and $ -}

(f ◦ ($x)) m

�

Lemma 3.

fmap (fmap fst) (liftM2 (++) p q)= liftM2 (++) (fmap (fmap fst) p) (fmap (fmap fst) q)

Proof

fmap (fmap fst) (liftM2 (++) p q)
= {- definition of liftM2 -}

fmap (fmap fst) (do {x← p; y← q; η (x++y)})
= {- derived property for monad: fmap f (m >>= k)=m >>= fmap f ◦ k -}

do {x← p; y← q; fmap (fmap fst) (η (x++y))}
= {- definition of fmap -}

do {x← p; y← q; η (fmap fst (x++y))}
= {- naturality of (++) -}

do {x← p; y← q; η ((fmap fst x)++(fmap fst y))}
= {- monad left unit law (twice) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

56 W. Tang and T. Schrijvers

do {x← p; x′ ← η (fmap fst x); y← q; y′ ← η (fmap fst y) η (x′ ++y′)}
= {- definition of fmap -}

do {x← fmap (fmap fst) p; y← fmap (fmap fst) q; η (x++y)}
= {- definition of liftM2 -}

liftM2 (++) (fmap (fmap fst) p) (fmap (fmap fst) q)

�

Lemma 4 (Distributivity of hState1).

hState1 (p >>= k) s= hState1 p s >>= λ(x, s′)→ hState1 (k x) s′

Proof The proof proceeds by induction on p.
case p= Var x

hState1 (Var x >>= k) s
= {- monad law -}

hState1 (k x) s
= {- monad law -}

η (x, s) >>= λ(x, s′)→ hState1 (k x) s′

= {- definition of hState1 -}
hState1 (Var x) s >>= λ(x, s′)→ hState1 (k x) s′

case p=Op (Inl (Get p))

hState1 (Op (Inl (Get p)) >>= k) s
= {- definition of (>>=) for free monad -}

hState1 (Op (fmap (>>= k) (Inl (Get p)))) s
= {- definition of fmap for coproduct (:+:) -}

hState1 (Op (Inl (fmap (>>= k) (Get p)))) s
= {- definition of fmap for Get -}

hState1 (Op (Inl (Get (λx→ p s >>= k)))) s
= {- definition of hState1 -}

hState1 (p s >>= k) s
= {- induction hypothesis -}

hState1 (p s) s >>= λ(x, s′)→ hState1 (k x) s′

= {- definition of hState1 -}
hState1 (Op (Inl (Get p))) s >>= λ(x, s′)→ hState1 (k x) s′

case p=Op (Inl (Put t p))

hState1 (Op (Inl (Put t p)) >>= k) s
= {- definition of (>>=) for free monad -}

hState1 (Op (fmap (>>= k) (Inl (Put t p)))) s
= {- definition of fmap for coproduct (:+:) -}

hState1 (Op (Inl (fmap (>>= k) (Put t p)))) s
= {- definition of fmap for Put -}

hState1 (Op (Inl (Put t (p >>= k)))) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 57

= {- definition of hState1 -}
hState1 (p >>= k) t
= {- induction hypothesis -}

hState1 p t >>= λ(x, s′)→ hState1 (k x) s′

= {- definition of hState1 -}
hState1 (Op (Inl (Put t p))) s >>= λ(x, s′)→ hState1 (k x) s′

case p=Op (Inr y)

hState1 (Op (Inr y) >>= k) s
= {- definition of (>>=) for free monad -}

hState1 (Op (fmap (>>= k) (Inr y))) s
= {- definition of fmap for coproduct (:+:) -}

hState1 (Op (Inr (fmap (>>= k) y))) s
= {- definition of hState1 -}

Op (fmap (λx→ hState1 x s) (fmap (>>= k) y))
= {- fmap fusion -}

Op (fmap ((λx→ hState1 (x >>= k) s)) y)
= {- induction hypothesis -}

Op (fmap (λx→ hState1 x s >>= λ(x′, s′)→ hState1 (k x′) s′) y)
= {- fmap fission -}

Op (fmap (λx→ x >>= λ(x′, s′)→ hState1 (k x′) s′) (fmap (λx→ hState1 x s) y))
= {- definition of (>>=) -}

Op ((fmap (λx→ hState1 x s) y)) >>= λ(x′, s′)→ hState1 (k x′) s′

= {- definition of hState1 -}
Op (Inr y) s >>= λ(x′, s′)→ hState1 (k x′) s′

�

import Data.Bitraversable (Bitraversable)

3 Proofs for modelling nondeterminism with state

In this section, we prove the theorems in Section 5.

3.1 Only nondeterminism

This section proves the following theorem in Section 5.1.

Theorem 2. runND = hND

Proof We start with expanding the definition of runND:

extractS ◦ h′State ◦ nondet2stateS = hND

Both nondet2stateS and hND are written as folds. We use the fold fusion law fusion-
post’ (3.3) to fuse the left-hand side. Since the right-hand side is already a fold, to prove
the equation we just need to check the components of the fold hND satisfy the conditions

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

58 W. Tang and T. Schrijvers

of the fold fusion, i.e., the following two equations:

(extractS ◦ h′State) ◦ gen= genND

(extractS ◦ h′State) ◦ alg ◦ fmap nondet2stateS

= algND ◦ fmap (extractS ◦ h′State) ◦ fmap nondet2stateS

For brevity, we omit the last common part fmap nondet2stateS of the second equa-
tion in the following proof. Instead, we assume that the input is in the codomain of
fmap nondet2stateS .

For the first equation, we calculate as follows:

extractS (h′State (gen x))
= {- definition of gen -}

extractS (h′State (appendS x popS))
= {- definition of extractS -}

results ◦ snd $ runState (h′State (appendS x popS)) (S [] [])
= {- Lemma 6 -}

results ◦ snd $ runState (h′State popS) (S ([]++[x]) [])
= {- definition of (++) -}

results ◦ snd $ runState (h′State popS) (S [x] [])
= {- Lemma 7 -}

results ◦ snd $ ((), S [x] [])
= {- definition of snd -}

results (S [x] [])
= {- definition of results -}

[x]
= {- definition of genND -}

genND x

For the second equation, we proceed with a case analysis on the input.
case Fail

extractS (h′State (alg Fail))
= {- definition of alg -}

extractS (h′State popS)
= {- definition of extractS -}

results ◦ snd $ runState (h′State popS) (S [] [])
= {- Lemma 7 -}

results ◦ snd $ ((), S [] [])
= {- evaluation of results, snd -}

[]
= {- definition of algND -}

algND Fail
= {- definition of fmap -}

(algND ◦ fmap (extractS ◦ h′State)) Fail

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 59

case Or p q

extractS (h′State (alg (Or p q)))
= {- definition of alg -}

extractS (h′State (pushS q p))
= {- definition of extract -}

results ◦ snd $ runState (h′State (pushS q p)) (S [] [])
= {- Lemma 9 -}

results ◦ snd $ runState (h′State p) (S [] [q])
= {- Lemma 5 -}

results ◦ snd $ runState (h′State popS) (S ([]++extractS (h′State p)) [q])
= {- definition of (++) -}

results ◦ snd $ runState (h′State popS) (S (extractS (h′State p)) [q])
= {- Lemma 8 -}

results ◦ snd $ runState (h′State q) (S (extractS (h′State p)) [])
= {- Lemma 5 -}

results ◦ snd $ runState (h′State popS) (S (extractS (h′State p)++extractS (h′State q)) [])
= {- Lemma 7 -}

results ◦ snd $ ((), S (extractS (h′State p)++extractS (h′State q)) [])
= {- evaluation of results, snd -}

extractS (h′State p)++extractS (h′State q)
= {- definition of algND -}

algND (Or ((extractS ◦ h′State) p) ((extractS ◦ h′State) q))
= {- definition of fmap -}

(algND ◦ fmap (extractS ◦ h′State)) (Or p q)

�

In the above proof we have used several lemmas. Now we prove them.

Lemma 5 (pop-extract).

runState (h′State p) (S xs stack)= runState (h′State popS) (S (xs++extractS (h′State p)) stack)

holds for all p in the codomain of the function nondet2stateS.

Proof We prove this lemma by structural induction on p :: Free (StateF (S a)) (). For
each inductive case of p, we not only assume this lemma holds for its sub-terms (this is the
standard induction hypothesis) but also assume Theorem 2 holds for p and its sub-terms.
This is sound because in the proof of Theorem 2, for (extractS ◦ h′State ◦ nondet2stateS) p=
hND p, we only apply Lemma 5 to the sub-terms of p, which is already included in the
induction hypothesis so there is no circular argument.

Since we assume Theorem 2 holds for p and its sub-terms, we can use several useful
properties proved in the sub-cases of the proof of Theorem 2. We list them here for easy
reference:

• extract-gen: extractS ◦ h′State ◦ gen= η

• extract-alg1: extractS (h′State (alg Fail))= []
• extract-alg2: extractS (h′State (alg (Or p q)))= extractS (h′State p)++extractS (h′State q)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

60 W. Tang and T. Schrijvers

We proceed by structural induction on p. Note that for all p in the codomain of
nondet2stateS , it is either generated by the gen or the alg of nondet2stateS . Thus, we only
need to prove the following two equations where p= gen x or p= alg x and x is in the
codomain of fmap nondet2stateS .

1. runState (h′State (gen x)) (S xs stack)= runState (h′State popS) (S (xs+
+extractS (h′State (gen x))) stack)

2. runState (h′State (alg x)) (S xs stack)= runState (h′State popS) (S (xs+
+extractS (h′State (alg x))) stack)

For the case p= gen x, we calculate as follows:

runState (h′State (gen x)) (S xs stack)
= {- definition of gen -}

runState (h′State (appendS x popS)) (S xs stack)
= {- Lemma 6 -}

runState (h′State popS) (S (xs++[x]) stack)
= {- definition of η -}

runState (h′State popS) (S (xs++η x) stack)
= {- extract-gen -}

runState (h′State popS) (S (xs++extractS (h′State (gen x))) stack)

For the case p= alg x, we proceed with a case analysis on x.
case Fail

runState (h′State (alg Fail)) (S xs stack)
= {- definition of alg -}

runState (h′State (popS)) (S xs stack)
= {- definition of [] -}

runState (h′State popS) (S (xs++[]) stack)
= {- extract-alg1 -}

runState (h′State popS) (S (xs++extractS (h′State (alg Fail))) stack)

case Or p1 p2

runState (h′State (alg (Or p1 p2))) (S xs stack)
= {- definition of alg -}

runState (h′State (pushS p2 p1)) (S xs stack)
= {- Lemma 9 -}

runState (h′State p1) (S xs (p2 : stack))
= {- induction hypothesis -}

runState (h′State popS) (S (xs++extractS (h′State p1)) (p2 : stack))
= {- Lemma 8 -}

runState (h′State p2) (S (xs++extractS (h′State p1)) stack)
= {- induction hypothesis -}

runState (h′State popS) (S (xs++extractS (h′State p1)++extractS (h′State p2)) stack)
= {- extract-alg2 -}

runState (h′State popS) (S (xs++h′State (alg (Or p1 p2))) stack)

�

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 61

The following four lemmas characterise the behaviours of stack operations.

Lemma 6 (evaluation-append).

runState (h′State (appendS x p)) (S xs stack)= runState (h′State p) (S (xs++[x]) stack)

Proof

runState (h′State (appendS x p)) (S xs stack)
= {- definition of appendS -}

runState (h′State (get >>= λ(S xs stack)→ put (S (xs++[x]) stack) >> p)) (S xs stack)
= {- definition of get -}

runState (h′State (Op (Get η) >>= λ(S xs stack)→ put (S (xs++[x]) stack) >> p)) (S xs stack)
= {- definition of (>>=) for free monad and Law 2.3: return-bind -}

runState (h′State (Op (Get (λ(S xs stack)→ put (S (xs++[x]) stack) >> p)))) (S xs stack)
= {- definition of h′State -}

runState (State (λs→ runState (h′State ((λ(S xs stack)→ put (S (xs++[x]) stack) >> p) s)) s))
(S xs stack)

= {- definition of runState -}
(λs→ runState (h′State ((λ(S xs stack)→ put (S (xs++[x]) stack) >> p) s)) s) (S xs stack)
= {- function application -}

runState (h′State ((λ(S xs stack)→ put (S (xs++[x]) stack) >> p) (S xs stack))) (S xs stack)
= {- function application -}

runState (h′State (put (S (xs++[x]) stack) >> p)) (S xs stack)
= {- definition of put -}

runState (h′State (Op (Put (S (xs++[x]) stack) (η ())) >> p)) (S xs stack)
= {- definition of (>>) for free monad and Law 2.3: return-bind -}

runState (h′State (Op (Put (S (xs++[x]) stack) p))) (S xs stack)
= {- definition of h′State -}

runState (State (λs→ runState (h′State p) (S (xs++[x]) stack))) (S xs stack)
= {- definition of runState -}

(λs→ runState (h′State p) (S (xs++[x]) stack)) (S xs stack)
= {- function application -}

runState (h′State p) (S (xs++[x]) stack)

�

Lemma 7 (evaluation-pop1).

runState (h′State popS) (S xs [])= ((), S xs [])

Proof

runState (h′State popS) (S xs [])
= {- definition of popS -}

runState (h′State (get >>= λ(S xs stack)→

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

62 W. Tang and T. Schrijvers

case stack of [] → η ()
op : ps→ do put (S xs ps); op)) (S xs [])

= {- definition of get -}
runState (h′State (Op (Get η) >>= λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op)) (S xs [])

= {- definition of (>>=) for free monad and Law 2.3: return-bind -}
runState (h′State (Op (Get (λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op)))) (S xs [])

= {- definition of h′State -}
runState (State (λs→ runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) s)) s)) (S xs [])

= {- definition of runState -}
(λs→ runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) s)) s) (S xs [])

= {- function application -}
runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) (S xs []))) (S xs [])

= {- function application, case-analysis -}
runState (h′State (η ())) (S xs [])
= {- definition of h′State -}

runState (State (λs→ ((), s))) (S xs [])
= {- definition of runState, function application -}

((), S xs [])

�

Lemma 8 (evaluation-pop2).

runState (h′State popS) (S xs (q : stack))= runState (h′State q) (S xs stack)

Proof

runState (h′State popS) (S xs (q : stack))
= {- definition of popS -}

runState (h′State (get >>= λ(S xs stack)→
case stack of [] → η ()

op : ps→ do put (S xs ps); op)) (S xs (q : stack))
= {- definition of get -}

runState (h′State (Op (Get η) >>= λ(S xs stack)→
case stack of [] → η ()

op : ps→ do put (S xs ps); op)) (S xs (q : stack))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 63

= {- definition of (>>=) for free monad and Law 2.3: return-bind -}
runState (h′State (Op (Get (λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op)))) (S xs (q : stack))

= {- definition of h′State -}
runState (State (λs→ runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) s)) s)) (S xs (q : stack))

= {- definition of runState -}
(λs→ runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) s)) s) (S xs (q : stack))

= {- function application -}
runState (h′State ((λ(S xs stack)→

case stack of [] → η ()
op : ps→ do put (S xs ps); op) (S xs (q : stack)))) (S xs (q : stack))

= {- function application, case-analysis -}

runState (h′State (put (S xs stack) >> q)) (S xs (q : stack))
= {- definition of put -}

runState (h′State (Op (Put (S xs stack) (η ())) >> q)) (S xs (q : stack))
= {- definition of (>>) for free monad and Law 2.3: return-bind -}

runState (h′State (Op (Put (S xs stack) q))) (S xs (q : stack))
= {- definition of h′State -}

runState (State (λs→ runState (h′State q) (S xs stack))) (S xs (q : stack))
= {- definition of runState -}

(λs→ runState (h′State q) (S xs stack)) (S xs (q : stack))
= {- function application -}

runState (h′State q) (S xs stack)

�

Lemma 9 (evaluation-push).

runState (h′State (pushS q p)) (S xs stack)= runState (h′State p) (S xs (q : stack))

Proof

runState (h′State (pushS q p)) (S xs stack)
= {- definition of pushS -}

runState (h′State (get >>= λ(S xs stack)→ put (S xs (q : stack)) >> p)) (S xs stack)
= {- definition of get -}

runState (h′State (Op (Get η) >>= λ(S xs stack)→ put (S xs (q : stack)) >> p)) (S xs stack)
= {- definition of (>>=) for free monad and Law 2.3: return-bind -}

runState (h′State (Op (Get (λ(S xs stack)→ put (S xs (q : stack)) >> p)))) (S xs stack)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

64 W. Tang and T. Schrijvers

= {- definition of h′State -}
runState (State (λs→ runState (h′State ((λ(S xs stack)→ put (S xs (q : stack)) >> p) s)) s))

(S xs stack)
= {- definition of runState -}

(λs→ runState (h′State ((λ(S xs stack)→ put (S xs (q : stack)) >> p) s)) s) (S xs stack)
= {- function application -}

runState (h′State ((λ(S xs stack)→ put (S xs (q : stack)) >> p) (S xs stack))) (S xs stack)
= {- function application -}

runState (h′State (put (S xs (q : stack)) >> p)) (S xs stack)
= {- definition of put -}

runState (h′State (Op (Put (S xs (q : stack)) (η ())) >> p)) (S xs stack)
= {- definition of (>>) for free monad and Law 2.3: return-bind -}

runState (h′State (Op (Put (S xs (q : stack)) p))) (S xs stack)
= {- definition of h′State -}

runState (State (λs→ runState (h′State p) (S xs (q : stack)))) (S xs stack)
= {- definition of runState -}

(λs→ runState (h′State p) (S xs (q : stack))) (S xs stack)
= {- function application -}

runState (h′State p) (S xs (q : stack))

�

3.2 Combining with other effects

This section proves the following theorem in Section 5.2.

Theorem 3. runND+f = hND+f

Proof The proof is very similar to that of Theorem 2 in Appendix 3.1.
We start with expanding the definition of runND+f :

extractSS ◦ hState ◦ nondet2state= hND

We use the fold fusion law fusion-post’ (3.3) to fuse the left-hand side. Since the right-
hand side is already a fold, to prove the equation we just need to check the components of
the fold hND satisfy the conditions of the fold fusion. The conditions can be splitted into
the following three equations:

(extractSS ◦ hState) ◦ gen= genND+f

(extractSS ◦ hState) ◦ alg ◦ fmap nondet2stateS

= algND+f ◦ fmap (extractSS ◦ hState) ◦ fmap nondet2stateS

(extractSS ◦ hState) ◦ fwd ◦ fmap nondet2stateS

= fwdND+f ◦ fmap (extractSS ◦ hState) ◦ fmap nondet2stateS

For brevity, we omit the last common part fmap nondet2stateS of the second equa-
tion in the following proof. Instead, we assume that the input is in the codomain of
fmap nondet2stateS .

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 65

For the first equation, we calculate as follows:

extractSS (hState (gen x))
= {- definition of gen -}

extractSS (hState (appendSS x popSS))
= {- definition of extractSS -}

resultsSS ◦ snd 〈$〉 runStateT (hState (appendSS x popSS)) (SS [] [])
= {- Lemma 11 -}

resultsSS ◦ snd 〈$〉 runStateT (hState popSS) (SS ([]++[x]) [])
= {- definition of (++) -}

resultsSS ◦ snd 〈$〉 runStateT (hState popSS) (SS [x] [])
= {- Lemma 12 -}

resultsSS ◦ snd 〈$〉 η ((), SS [x] [])
= {- evaluation of snd, resultsSS -}

η [x]
= {- definition of η for free monad -}

Var [x]
= {- definition of η[] -}

(Var ◦ η) x
= {- definition of genND+f -}

genND+f x

For the second equation, we proceed with a case analysis on the input.
case Fail

extractSS (hState (alg Fail))
= {- definition of alg -}

extractSS (hState popSS)
= {- definition of extractSS -}

resultsSS ◦ snd 〈$〉 runStateT (hState popSS) (SS [] [])
= {- Lemma 12 -}

resultsSS ◦ snd 〈$〉 η ((), SS [] [])
= {- evaluation of snd, resultsSS -}

η []
= {- definition of η for free monad -}

Var []
= {- definition of algND+f -}

algND+f Fail
= {- definition of fmap -}

(algND+f ◦ fmap (extractSS ◦ hState)) Fail

case Inl (Or p q)

extractSS (hState (alg (Or p q)))
= {- definition of alg -}

extractSS (hState (pushSS q p))
= {- definition of extractSS -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

66 W. Tang and T. Schrijvers

resultsSS ◦ snd 〈$〉 runStateT (hState (pushSS q p)) (SS [] [])
= {- Lemma 14 -}

resultsSS ◦ snd 〈$〉 runStateT (hState p) (SS [] [q])
= {- Lemma 10 -}

resultsSS ◦ snd 〈$〉
do {p′ ← extractSS (hState p); runStateT (hState popSS) (SS ([]++p′) [q])}

= {- definition of (++) -}
resultsSS ◦ snd 〈$〉 do {p′ ← extractSS (hState p); runStateT (hState popSS) (SS p′ [q])}
= {- Lemma 13 -}

resultsSS ◦ snd 〈$〉 do {p′ ← extractSS (hState p); runStateT (hState q) (SS p′ [])}
= {- Lemma 10 -}

resultsSS ◦ snd 〈$〉 do {p′ ← extractSS (hState p);
do {q′ ← extractSS (hState q); runStateT (hState popSS) (SS (p′ ++q′) [])}}

= {- Law (2.5) for do-notation -}
resultsSS ◦ snd 〈$〉 do {p′ ← extractSS (hState p); q′ ← extractSS (hState q);

runStateT (hState popSS) (SS (p′ ++q′) [])}
= {- Lemma 12 -}

resultsSS ◦ snd 〈$〉
do {p′ ← extractSS (hState p); q′ ← extractSS (hState q); η ((), SS (p′ ++q′) [])}

= {- evaluation of snd, resultsSS -}
do {p′ ← extractSS (hState p); q′ ← extractSS (hState q); η (p′ ++q′)}
= {- definition of liftM2 -}

liftM2 (++) ((extractSS ◦ hState) p) ((extractSS ◦ hState) q)
= {- definition of algND+f -}

algND+f (Or ((extractSS ◦ hState) p) ((extractSS ◦ hState) q))
= {- definition of fmap -}

(algND+f ◦ fmap (extractSS ◦ hState)) (Or p q)

For the last equation, we calculate as follows:

extractSS (hState (fwd y))
= {- definition of fwd -}

extractSS (hState (Op (Inr y)))
= {- definition of hState -}

extractSS (StateT $ λs→Op $ fmap (λk→ runStateT k s) (fmap hState y))
= {- definition of extractSS -}

resultsSS ◦ snd 〈$〉
runStateT (StateT $ λs→Op $ fmap (λk→ runStateT k s) (fmap hState y)) (SS [] [])

= {- definition of runStateT -}
resultsSS ◦ snd 〈$〉 (λs→Op $ fmap (λk→ runStateT k s) (fmap hState y)) (SS [] [])
= {- function application -}

resultsSS ◦ snd 〈$〉Op $ fmap (λk→ runStateT k (SS [] [])) (fmap hState y))
= {- definition of 〈$〉 -}

Op (fmap (λk→ resultsSS ◦ snd 〈$〉 runStateT k (SS [] [])) (fmap hState y))
= {- definition of fwdND+f -}

fwdND+f (fmap (λk→ resultsSS ◦ snd 〈$〉 runStateT k (SS [] [])) (fmap hState y))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 67

= {- definition of extractSS -}
fwdND+f (fmap extractSS (fmap hState y))
= {- Law (2.2) -}

fwdND+f (fmap (extractSS ◦ hState) y)

�

In the above proof we have used several lemmas. Now we prove them.

Lemma 10 (pop-extract of SS).

runStateT (hState p) (SS xs stack)
= do {p′ ← extractSS (hState p); runStateT (hState popSS) (SS (xs++p′) stack)}

holds for all p in the codomain of the function nondet2state.

Proof The proof structure is similar to that of Lemma 5. We prove this lemma by struc-
tural induction on p :: Free (StateF (SS f a) :+: f) (). For each inductive case of p, we not
only assume this lemma holds for its sub-terms (this is the standard induction hypothesis)
but also assume Theorem 3 holds for p and its sub-terms. This is sound because in the proof
of Theorem 3, for (extractSS ◦ hState ◦ nondet2state) p= hND+f p, we only apply Lemma 10
to the sub-terms of p, which is already included in the induction hypothesis so there is no
circular argument.

Since we assume Theorem 3 holds for p and its sub-terms, we can use several useful
properties proved in the sub-cases of the proof of Theorem 3. We list them here for easy
reference:

• extract-gen-ext: extractSS ◦ hState ◦ gen= Var ◦ η

• extract-alg1-ext: extractSS (hState (alg Fail))= Var []
• extract-alg2-ext: extractSS (hState (alg (Or p q)))= liftM2 (++) (extractSS (hState p))

(extractSS (hState q))
• extract-fwd extractSS (hState (fwd y))= fwdND+f (fmap (extractSS ◦ hState) y)

We proceed by structural induction on p. Note that for all p in the codomain of
nondet2state, it is either generated by the gen, alg, or fwd of nondet2state. Thus,
we only need to prove the following three equations, where x is in the codomain of
fmap nondet2stateS and p= gen x, p= alg x, and p= fwd x, respectively.

1. runStateT (hState (gen x)) (SS xs stack)
= do {p′ ← extractSS (hState (gen x)); runStateT (hState popSS) (SS (xs++p′) stack)}

2. runStateT (hState (alg x)) (SS xs stack)
= do {p′ ← extractSS (hState (alg x)); runStateT (hState popSS) (SS (xs++p′) stack)}

3. runStateT (hState (fwd x)) (SS xs stack)
= do {p′ ← extractSS (hState (fwd x)); runStateT (hState popSS) (SS (xs++p′) stack)}

For the case p= gen x, we calculate as follows:

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

68 W. Tang and T. Schrijvers

runStateT (hState (gen x)) (SS xs stack)
= {- definition of gen -}

runStateT (hState (appendSS x popSS)) (SS xs stack)
= {- Lemma 11 -}

runStateT (hState popSS) (SS (xs++[x]) stack)
= {- definition of η[] -}

runStateT (hState popSS) (SS (xs++η x) stack)
= {- definition of Var and reformulation -}

do {p′ ← Var (η x); runStateT (hState popSS) (SS (xs++p′) stack)}
= {- extract-gen-ext -}

do {p′ ← extractSS (hState (gen x)); runStateT (hState popSS) (SS (xs++p′) stack)}
For the case p= alg x, we proceed with a case analysis on x.
case Fail

runStateT (hState (alg Fail)) (SS xs stack)
= {- definition of alg -}

runStateT (hState popSS) (SS xs stack)
= {- definition of [] -}

runStateT (hState popSS) (SS (xs++[]) stack)
= {- definition of Var -}

do {p′ ← Var []; runStateT (hState popSS) (SS (xs++p′) stack)}
= {- extract-alg1-ext -}

do {p′ ← extractSS (hState (alg Fail)); runStateT (hState popSS) (SS (xs++p′) stack)}
case Or p1 p2

runStateT (hState (alg (Or p1 p2))) (SS xs stack)
= {- definition of alg -}

runStateT (hState (pushSS p2 p1)) (SS xs stack)
= {- Lemma 14 -}

runStateT (hState p1) (SS xs (p2 : stack))
= {- induction hypothesis: pop-extract of p1 -}

do {p′1← extractSS (hState p1); runStateT (hState popSS) (SS (xs++p′1) (p2 : stack))}
= {- Lemma 13 -}

do {p′1← extractSS (hState p1); runStateT (hState p2) (SS (xs++p′1) stack)}
= {- induction hypothesis: pop-extract of p2 -}

do {p′2← extractSS (hState p2); do {p′1← extractSS (hState p1);
runStateT (hState popSS) (SS (xs++p′1 ++p′2) stack)}}

= {- Law (2.5) with do-notation -}
do {p′2← extractSS (hState p2); p′1← extractSS (hState p1);

runStateT (hState popSS) (SS (xs++p′1 ++p′2) stack)}
= {- definition of liftM2 -}

do {p′ ← liftM2 (++) (extractSS (hState p2)) (extractSS (hState p1));
runStateT (hState popSS) (SS (xs++p′) stack)}

= {- extract-alg2-ext -}
do {p′ ← extractSS (hState (alg (Or p1 p2))); runStateT (hState popSS) (SS (xs++p′) stack)}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 69

For the case p= fwd x, we proceed with a case analysis on x.

runStateT (hState (fwd x)) (SS xs stack)
= {- definition of fwd -}

runStateT (hState (Op (Inr x))) (SS xs stack)
= {- definition of hState -}

runStateT (StateT (λs→Op (fmap (λy→ runStateT (hState y s)) x))) (SS xs stack)
= {- definition of runStateT -}

Op (fmap (λy→ runStateT (hState y (SS xs stack))) x)
= {- induction hypothesis -}

Op (fmap (λy→ do {p′ ← extractSS (hState y); runStateT (hState popSS) (SS (xs++p′) stack)}) x)
= {- definition of >>= -}

do {p′ ←Op (fmap (λy→ extractSS (hState y)) x); runStateT (hState popSS) (SS (xs++p′) stack)}
= {- definition of fwdND+f -}

do {p′ ← fwdND+f (fmap (λy→ extractSS (hState y)) x); runStateT (hState popSS)
(SS (xs++p′) stack)}
= {- extract-fwd -}
= do {p′ ← extractSS (hState (fwd x)); runStateT (hState popSS) (SS (xs++p′) stack)}

�

The following four lemmas characterize the behaviours of stack operations.

Lemma 11 (evaluation-append-ext).

runStateT (hState (appendSS x p)) (SS xs stack)= runStateT (hState p) (SS (xs++[x]) stack)

Proof

runStateT (hState (appendSS x p)) (SS xs stack)
= {- definition of appendSS -}

runStateT (hState (get >>= λ(SS xs stack)→ put (SS (xs++[x]) stack) >> p)) (SS xs stack)
= {- definition of get -}

runStateT (hState (Op (Inl (Get η)) >>= λ(SS xs stack)→ put (SS (xs++[x]) stack) >> p))
(SS xs stack)

= {- definition of (>>=) for free monad and Law 2.3: return-bind -}
runStateT (hState (Op (Inl (Get (λ(SS xs stack)→ put (SS (xs++[x]) stack) >> p)))))

(SS xs stack)
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState ((λ(SS xs stack)→ put (SS (xs++[x]) stack)
>> p) s)) s)) (SS xs stack)

= {- definition of runStateT -}
(λs→ runStateT (hState ((λ(SS xs stack)→ put (SS (xs++[x]) stack) >> p) s)) s)

(SS xs stack)
= {- function application -}

runStateT (hState ((λ(SS xs stack)→ put (SS (xs++[x]) stack) >> p) (SS xs stack)))
(SS xs stack)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

70 W. Tang and T. Schrijvers

= {- function application -}
runStateT (hState (put (SS (xs++[x]) stack) >> p)) (SS xs stack)
= {- definition of put -}

runStateT (hState (Op (Inl (Put (SS (xs++[x]) stack) (η ()))) >> p)) (SS xs stack)
= {- definition of (>>) for free monad and Law 2.3: return-bind -}

runStateT (hState (Op (Inl (Put (SS (xs++[x]) stack) p)))) (SS xs stack)
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState p) (SS (xs++[x]) stack))) (SS xs stack)
= {- definition of runStateT -}

(λs→ runStateT (hState p) (SS (xs++[x]) stack)) (SS xs stack)
= {- function application -}

runStateT (hState p) (SS (xs++[x]) stack)

�

Lemma 12 (evaluation-pop1-ext).

runStateT (hState popSS) (SS xs [])= η ((), SS xs [])

Proof

runStateT (hState popSS) (SS xs [])
= {- definition of popSS -}

runStateT (hState (get >>= λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op)) (SS xs [])
= {- definition of get -}

runStateT (hState (Op (Inl (Get η)) >>= λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op)) (SS xs [])
= {- definition of (>>=) for free monad and Law 2.3: return-bind -}

runStateT (hState (Op (Inl (Get (λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op))))) (SS xs [])
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) s)) s)) (SS xs [])
= {- definition of runStateT -}

(λs→ runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) s)) s) (SS xs [])
= {- function application -}

runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) (SS xs []))) (SS xs [])
= {- function application, case-analysis -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 71

runStateT (hState (η ())) (SS xs [])
= {- definition of hState -}

runStateT (StateT (λs→ η ((), s))) (SS xs [])
= {- definition of runStateT -}

(λs→ η ((), s)) (SS xs [])
= {- function application -}

((), SS xs [])

�

Lemma 13 (evaluation-pop2-ext).

runStateT (hState popSS) (SS xs (q : stack))= runStateT (hState q) (SS xs stack)

Proof

runStateT (hState popSS) (SS xs (q : stack))
= {- definition of popSS -}

runStateT (hState (get >>= λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op)) (SS xs (q : stack))
= {- definition of get -}

runStateT (hState (Op (Inl (Get η)) >>= λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op)) (SS xs (q : stack))
= {- definition of (>>=) for free monad and Law 2.3: return-bind -}

runStateT (hState (Op (Inl (Get (λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op))))) (SS xs (q : stack))
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) s)) s)) (SS xs (q : stack))
= {- definition of runStateT -}

(λs→ runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) s)) s) (SS xs (q : stack))
= {- function application -}

runStateT (hState ((λ(SS xs stack)→
case stack of [] → η ()

op : ps→ do put (SS xs ps); op) (SS xs (q : stack)))) (SS xs (q : stack))
= {- function application, case-analysis -}

runStateT (hState (put (SS xs stack) >> q)) (SS xs (q : stack))
= {- definition of put -}

runStateT (hState (Op (Inl (Put (SS xs stack) (η ()))) >> q)) (SS xs (q : stack))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

72 W. Tang and T. Schrijvers

= {- definition of (>>) for free monad and Law 2.3: return-bind -}
runStateT (hState (Op (Inl (Put (SS xs stack) q)))) (SS xs (q : stack))
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState q) (SS xs stack))) (SS xs (q : stack))
= {- definition of runStateT -}

(λs→ runStateT (hState q) (SS xs stack)) (SS xs (q : stack))
= {- function application -}

runStateT (hState q) (SS xs stack)

�

Lemma 14 (evaluation-push-ext).

runStateT (hState (pushSS q p)) (SS xs stack)= runStateT (hState p) (SS xs (q : stack))

Proof

runStateT (hState (pushSS q p)) (SS xs stack)
= {- definition of pushSS -}

runStateT (hState (get >>= λ(SS xs stack)→ put (SS xs (q : stack)) >> p)) (SS xs stack)
= {- definition of get -}

runStateT (hState (Op (Inl (Get η)) >>= λ(SS xs stack)→ put (SS xs (q : stack)) >> p))
(SS xs stack)

= {- definition of (>>=) for free monad and Law 2.3: return-bind -}
runStateT (hState (Op (Inl (Get (λ(SS xs stack)→ put (SS xs (q : stack)) >> p)))))

(SS xs stack)
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState ((λ(SS xs stack)→ put (SS xs (q : stack)) >> p) s)) s))
(SS xs stack)

= {- definition of runStateT -}
(λs→ runStateT (hState ((λ(SS xs stack)→ put (SS xs (q : stack)) >> p) s)) s) (SS xs stack)
= {- function application -}

runStateT (hState ((λ(SS xs stack)→ put (SS xs (q : stack)) >> p) (SS xs stack))) (SS xs stack)
= {- function application -}

runStateT (hState (put (SS xs (q : stack)) >> p)) (SS xs stack)
= {- definition of put -}

runStateT (hState (Op (Inl (Put (SS xs (q : stack)) (η ()))) >> p)) (SS xs stack)
= {- definition of (>>) for free monad and Law 2.3: return-bind -}

runStateT (hState (Op (Inl (Put (SS xs (q : stack)) p)))) (SS xs stack)
= {- definition of hState -}

runStateT (StateT (λs→ runStateT (hState p) (SS xs (q : stack)))) (SS xs stack)
= {- definition of runStateT -}

(λs→ runStateT (hState p) (SS xs (q : stack))) (SS xs stack)
= {- function application -}

runStateT (hState p) (SS xs (q : stack))

�

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 73

4 Proofs for modelling two states with one state

In this section, we prove the following theorem in Section 6.1.

Theorem 4. hStates = nest ◦ hState ◦ states2state

Proof Instead of proving it directly, we show the correctness of the isomorphism of nest
and flatten and prove the following equation:

flatten ◦ hStates = hState ◦ states2state

It is obvious that α and α−1 form an isomorphism, i.e., α ◦ α−1 = id and α−1 ◦ α=
id. We show that nest and flatten form an isomorphism by calculation. For all t ::
StateT s1 (StateT s2 (Free f)) a, we show that (nest ◦ flatten) t= t.

(nest ◦ flatten) t
= {- definition of flatten -}

nest $ StateT $ λ(s1, s2)→ α 〈$〉 runStateT (runStateT t s1) s2

= {- definition of nest -}
StateT $ λs1→ StateT $ λs2→ α−1 〈$〉

runStateT (StateT $ λ(s1, s2)→ α 〈$〉 runStateT (runStateT t s1) s2) (s1, s2)
= {- definition of runStateT -}

StateT $ λs1→ StateT $ λs2→ α−1 〈$〉
(λ(s1, s2)→ α 〈$〉 runStateT (runStateT t s1) s2) (s1, s2)

= {- function application -}
StateT $ λs1→ StateT $ λs2→ α−1 〈$〉 (α 〈$〉 runStateT (runStateT t s1) s2)
= {- Equation (2.2) -}

StateT $ λs1→ StateT $ λs2→ (fmap (α−1 ◦ α) (runStateT (runStateT t s1) s2))
= {- α−1 ◦ α = id -}

StateT $ λs1→ StateT $ λs2→ (fmap id (runStateT (runStateT t s1) s2))
= {- Equation (2.1) -}

StateT $ λs1→ StateT $ λs2→ (runStateT (runStateT t s1) s2)
= {- η-reduction and reformulation -}

StateT $ λs1→ (StateT ◦ runStateT) (runStateT t s1)
= {- StateT ◦ runStateT = id -}

StateT $ λs1→ runStateT t s1

= {- η-reduction -}
StateT $ runStateT t
= {- StateT ◦ runStateT = id -}

t

For all t :: StateT (s1, s2) (Free f) a, we show that (flatten ◦ nest) t= t.

(flatten ◦ nest) t= t
= {- definition of nest -}

flatten $ StateT $ λs1→ StateT $ λs2→ α−1 〈$〉 runStateT t (s1, s2)
= {- definition of flatten -}

StateT $ λ(s1, s2)→ α 〈$〉

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

74 W. Tang and T. Schrijvers

runStateT (runStateT (StateT $ λs1→ StateT $ λs2→ α−1 〈$〉 runStateT t (s1, s2)) s1) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT ((λs1→ StateT $ λs2→ α−1 〈$〉 runStateT t (s1, s2)) s1) s2

= {- function application -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (StateT $ λs2→ α−1 〈$〉 runStateT t (s1, s2)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉 (λs2→ α−1 〈$〉 runStateT t (s1, s2)) s2

= {- function application -}
StateT $ λ(s1, s2)→ α 〈$〉 (α−1 〈$〉 runStateT t (s1, s2))
= {- definition of 〈$〉 -}

StateT $ λ(s1, s2)→ fmap α (fmap α−1 (runStateT t (s1, s2)))
= {- Equation (2.2) -}

StateT $ λ(s1, s2)→ fmap (α ◦ α−1) (runStateT t (s1, s2))
= {- α ◦ α−1 = id -}

StateT $ λ(s1, s2)→ fmap id (runStateT t (s1, s2))
= {- Equation (2.1) -}

StateT $ λ(s1, s2)→ runStateT t (s1, s2)
= {- η-reduction -}

StateT $ runStateT t
= {- StateT ◦ runStateT = id -}

t

Then, we first calculate the LHS flatten ◦ hStates into one function h′States which is defined as

h′States :: Functor f ⇒ Free (StateF s1 :+: StateF s2 :+: f) a→ StateT (s1, s2) (Free f) a
h′States t= StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2

For all t :: Free (StateF s1 :+: StateF s2 :+: f) a, we show the equation (flatten ◦ hStates) t=
h′States t by the following calculation.

(flatten ◦ hStates) t
= {- definition of hStates -}

(flatten ◦ (λt→ StateT (hState ◦ runStateT (hState t)))) t
= {- function application -}

flatten (StateT (hState ◦ runStateT (hState t)))
= {- definition of flatten -}

StateT $ λ(s1, s2)→ α 〈$〉
runStateT (runStateT (StateT (hState ◦ runStateT (hState t))) s1) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT ((hState ◦ runStateT (hState t)) s1) s2

= {- definition of h′States -}
h′States t

Now we only need to show that for any input t :: Free (StateF s1 :+: StateF s2 :+: f) a, the
equation h′States t= (hState ◦ states2state) t holds. Note that both sides use folds. We can

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 75

proceed with either fold fusion, as what we have done in the proofs of other theorems, or
a direct structural induction on the input t. Although using fold fusion makes the proof
simpler than using structural induction, we opt for the latter here to show that the our
methods of defining effects and translations based on algebraic effects and handlers also
work well with structural induction.
case t= Var x

(hState ◦ states2state) (Var x)
= {- definition of states2state -}

hState (Var x)
= {- definition of hState -}

StateT $ λs→ η (x, s)
= {- let s= (s1, s2) -}

StateT $ λ(s1, s2)→ Var (x, (s1, s2))
= {- definition of α -}

StateT $ λ(s1, s2)→ Var (α ((x, s1), s2))
= {- definition of fmap -}

StateT $ λ(s1, s2)→ fmap α $ Var ((x, s1), s2)
= {- definition of η -}

StateT $ λ(s1, s2)→ fmap α $ η ((x, s1), s2)
= {- β-expansion -}

StateT $ λ(s1, s2)→ fmap α $ (λs→ η ((x, s1), s)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ fmap α $ runStateT (StateT $ λs→ η ((x, s1), s)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ fmap α $ runStateT (hState (η (x, s1))) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ fmap α $ runStateT (hState ((λs→ η (x, s)) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ fmap α $ runStateT (hState (runStateT (StateT $ λs→ η (x, s)) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ fmap α $ runStateT (hState (runStateT (hState (Var x)) s1)) s2

= {- definition of 〈$〉 -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState (Var x)) s1)) s2

= {- definition of h′States -}
h′States (Var x)

case t=Op (Inl (Get k))
Induction hypothesis: h′States (k s)= (hState ◦ states2state) (k s) for any s.

(hState ◦ states2state) (Op (Inl (Get k)))
= {- definition of states2state -}

hState $ get >>= λ(s1,)→ states2state (k s1)
= {- definition of get -}

hState $ Op (Inl (Get η)) >>= λ(s1,)→ states2state (k s1)
= {- definition of (>>=) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

76 W. Tang and T. Schrijvers

hState (Op (Inl (Get (λ(s1,)→ states2state (k s1)))))
= {- definition of hState -}

StateT $ λs→ runStateT ((λ(s1,)→ hState (states2state (k s1))) s) s
= {- let s= (s1, s2) -}

StateT $ λ(s1, s2)→ runStateT ((λ(s1,)→ hState (states2state (k s1))) (s1, s2)) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ runStateT (hState (states2state (k s1))) (s1, s2)
= {- induction hypothesis -}

StateT $ λ(s1, s2)→ runStateT (h′States (k s1)) (s1, s2)
= {- definition of h′States -}

StateT $ λ(s1, s2)→ runStateT (StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState (k s1)) s1)) s2) (s1, s2)

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ (λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (k s1)) s1)) s2) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState (k s1)) s1)) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState ((λs→ runStateT (hState (k s)) s) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (StateT $ λs→ runStateT (hState (k s)) s) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState (Op (Inl (Get k)))) s1)) s2

= {- definition of h′States -}
h′States (Op (Inl (Get k)))

case t=Op (Inl (Put s k))
Induction hypothesis: h′States k = (hState ◦ states2state) k.

(hState ◦ states2state) (Op (Inl (Put s k)))
= {- definition of states2state -}

hState $ get >>= λ(, s2)→ put (s, s2) >> (states2state k)
= {- definition of get and put -}

hState $ Op (Inl (Get η)) >>= λ(, s2)→Op (Inl (Put (s, s2) (η ()))) >> (states2state k)
= {- definition of (>>=) and (>>) -}

hState $ Op (Inl (Get (λ(, s2)→Op (Inl (Put (s, s2) (states2state k))))))
= {- definition of hState -}

algS (Get (λ(, s2)→ hState (Op (Inl (Put (s, s2) (states2state k))))))
= {- definition of algS -}

StateT $ λs′ → runStateT

((λ(, s2)→ hState (Op (Inl (Put (s, s2) (states2state k))))) s′) s′

= {- let s′ = (s1, s2) -}
StateT $ λ(s1, s2)→ runStateT

((λ(, s2)→ hState (Op (Inl (Put (s, s2) (states2state k))))) (s1, s2)) (s1, s2)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 77

= {- function application -}
StateT $ λ(s1, s2)→ runStateT

(hState (Op (Inl (Put (s, s2) (states2state k))))) (s1, s2)
= {- definition of hState -}

StateT $ λ(s1, s2)→ runStateT

(StateT $ λ → runStateT (hState (states2state k)) (s, s2)) (s1, s2)
= {- definition of runStateT -}

StateT $ λ(s1, s2)→ (λ → runStateT (hState (states2state k)) (s, s2)) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ runStateT (hState (states2state k)) (s, s2)
= {- induction hypothesis -}

StateT $ λ(s1, s2)→ runStateT (h′States k) (s, s2)
= {- definition of h′States -}

StateT $ λ(s1, s2)→ runStateT (StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState k) s1)) s2) (s, s2)

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ (λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState k) s1)) s2) (s, s2)
= {- function application -}

StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState k) s)) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState ((λs′ → runStateT (hState k) s) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (StateT $ λs′ → runStateT (hState k) s) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (Op (Inl (Put s k)))) s1)) s2

= {- definition of h′States -}
h′States (Op (Inl (Put s k)))

case t=Op (Inr (Inl (Get k)))
Induction hypothesis: h′States (k s)= (hState ◦ states2state) (k s) for any s.

(hState ◦ states2state) (Op (Inr (Inl (Get k))))
= {- definition of states2state -}

hState $ get >>= λ(, s2)→ states2state (k s2)
= {- definition of get -}

hState $ Op (Inl (Get η)) >>= λ(, s2)→ states2state (k s2)
= {- definition of (>>=) for free monad -}

hState (Op (Inl (Get (λ(, s2)→ states2state (k s2)))))
= {- definition of hState -}

StateT $ λs→ runStateT ((λ(, s2)→ hState (states2state (k s2))) s) s
= {- let s= (s1, s2) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

78 W. Tang and T. Schrijvers

StateT $ λ(s1, s2)→ runStateT ((λ(, s2)→ hState (states2state (k s2))) (s1, s2)) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ runStateT (hState (states2state (k s2))) (s1, s2)
= {- induction hypothesis -}

StateT $ λ(s1, s2)→ runStateT (h′States (k s2)) (s1, s2)
= {- definition of h′States -}

StateT $ λ(s1, s2)→ runStateT (StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState (k s2)) s1)) s2) (s1, s2)

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ (λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (k s2)) s1)) s2) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState (k s2)) s1)) s2

= {- reformulation -}
StateT $ λ(s1, s2)→ α 〈$〉

(runStateT ((hState ◦ (λk→ runStateT k s1) ◦ hState ◦ k) s2) s2)
= {- β-expansion -}

StateT $ λ(s1, s2)→ α 〈$〉
(λs→ runStateT ((hState ◦ (λk→ runStateT k s1) ◦ hState ◦ k) s) s) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (StateT $ λs→ runStateT ((hState ◦ (λk→ runStateT k s1) ◦ hState ◦ k) s) s) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (Op (Inl (Get ((λk→ runStateT k s1) ◦ hState ◦ k))))) s2

= {- definition of fmap -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (Op $ fmap (λk→ runStateT k s1) (Inl (Get (hState ◦ k))))) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState ((λs→Op $ fmap (λk→ runStateT k s) (Inl (Get (hState ◦ k)))) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState

(runStateT (StateT $ λs→Op $ fmap (λk→ runStateT k s) (Inl (Get (hState ◦ k)))) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (Op (Inr (Inl (Get k))))) s1)) s2

= {- definition of h′States -}
h′States (Op (Inr (Inl (Get k))))

case t=Op (Inr (Inl (Put s k)))
Induction hypothesis: h′States k = (hState ◦ states2state) k.

(hState ◦ states2state) (Op (Inr (Inl (Put s k))))
= {- definition of states2state -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 79

hState $ get >>= λ(s1,)→ put (s1, s) >> (states2state k)
= {- definition of get and put -}

hState $ Op (Inl (Get η)) >>= λ(s1,)→Op (Inl (Put (s1, s) (η ()))) >> (states2state k)
= {- definition of (>>=) and (>>) -}

hState $ Op (Inl (Get (λ(s1,)→Op (Inl (Put (s1, s) (states2state k))))))
= {- definition of hState -}

StateT $ λs′ → runStateT

((λ(s1,)→ hState (Op (Inl (Put (s1, s) (states2state k))))) s′) s′

= {- let s′ = (s1, s2) -}
StateT $ λ(s1, s2)→ runStateT

((λ(s1,)→ hState (Op (Inl (Put (s1, s) (states2state k))))) (s1, s2)) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ runStateT

(hState (Op (Inl (Put (s1, s) (states2state k))))) (s1, s2)
= {- definition of hState -}

StateT $ λ(s1, s2)→ runStateT (StateT $
λs′ → runStateT (hState (states2state k)) (s1, s)) (s1, s2)

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ (λs′ → runStateT (hState (states2state k)) (s1, s)) (s1, s2)
= {- function application -}

StateT $ λ(s1, s2)→ runStateT (hState (states2state k)) (s1, s)
= {- induction hypothesis -}

StateT $ λ(s1, s2)→ runStateT (h′States k) (s1, s)
= {- definition of h′States -}

StateT $ λ(s1, s2)→ runStateT (StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState k) s1)) s2) (s1, s)

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ (λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState k) s1)) s2) (s1, s)
= {- function application -}

StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState k) s1)) s

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉

(λs′ → runStateT (hState (runStateT (hState k) s1)) s) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (StateT $ λs′ → runStateT (hState (runStateT (hState k) s1)) s) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (Op (Inl (Put s (runStateT (hState k) s1))))) s2

= {- reformulation -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (Op (Inl (Put s ((λk→ runStateT k s1) (hState k)))))) s2

= {- definition of fmap -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

80 W. Tang and T. Schrijvers

StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (Op $ fmap (λk→ runStateT k s1) (Inl (Put s (hState k))))) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT

(hState ((λs′ →Op $ fmap (λk→ runStateT k s′) (Inl (Put s (hState k)))) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (StateT $

λs′ →Op $ fmap (λk→ runStateT k s′) (Inl (Put s (hState k)))) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (Op (Inr (Inl (Put s k))))) s1)) s2

= {- definition of h′States -}
h′States (Op (Inr (Inl (Put s k))))

case t=Op (Inr (Inr y))
Induction hypothesis: h′States y= (hState ◦ states2state) y.

(hState ◦ states2state) (Op (Inr (Inr y)))
= {- definition of states2state -}

hState $ Op (Inr (fmap states2state y))
= {- definition of hState -}

fwdS (fmap (hState ◦ states2state) y)
= {- induction hypothesis -}

fwdS (fmap h′States y)
= {- definition of h′States -}

fwdS (fmap (λt→ StateT
$ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2) y)

= {- definition of fwdS -}
StateT $ λs→Op $ fmap (λk→ runStateT k s) (fmap (λt→ StateT

$ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2) y)
= {- Equation (2.2) -}

StateT $ λs→Op (fmap ((λk→ runStateT k s) ◦ (λt→ StateT
$ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2)) y)

= {- reformulation -}
StateT $ λs→Op (fmap (λt→ runStateT (StateT

$ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2) s) y)
= {- definition of runStateT -}

StateT $ λs→Op (fmap (λt→
(λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2) s) y)

= {- let s= (s1, s2) -}
StateT $ λ(s1, s2)→Op (fmap (λt→

(λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2) (s1, s2)) y)
= {- function application -}

StateT $ λ(s1, s2)→Op (fmap (λt→ α 〈$〉
runStateT (hState (runStateT (hState t) s1)) s2) y)

= {- reformulation -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 81

StateT $ λ(s1, s2)→Op (fmap (α 〈$〉
◦ (λk→ runStateT k s2) ◦ hState ◦ (λk→ runStateT k s1) ◦ hState) y)

= {- definition of 〈$〉 -}
StateT $ λ(s1, s2)→ α 〈$〉

Op (fmap ((λk→ runStateT k s2) ◦ hState ◦ (λk→ runStateT k s1) ◦ hState) y)
= {- Equation (2.2) -}

StateT $ λ(s1, s2)→ α 〈$〉
Op $ fmap (λk→ runStateT k s2) (fmap (hState ◦ (λk→ runStateT k s1) ◦ hState) y)

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉 (λs→Op $

fmap (λk→ runStateT k s) (fmap (hState ◦ (λk→ runStateT k s1) ◦ hState) y)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (StateT $ λs→Op $

fmap (λk→ runStateT k s) (fmap (hState ◦ (λk→ runStateT k s1) ◦ hState) y)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT

(hState (Op (Inr (fmap ((λk→ runStateT k s1) ◦ hState) y)))) s2

= {- Equation (2.2) -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT

(hState (Op (Inr (fmap (λk→ runStateT k s1) (fmap hState y))))) s2

= {- definition of fmap -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT

(hState (Op $ fmap (λk→ runStateT k s1) (Inr (fmap hState y)))) s2

= {- β-expansion -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState

((λs→Op $ fmap (λk→ runStateT k s) (Inr (fmap hState y))) s1)) s2

= {- definition of runStateT -}
StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (StateT $

λs→Op $ fmap (λk→ runStateT k s) (Inr (fmap hState y))) s1)) s2

= {- definition of hState -}
StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState (Op (Inr (Inr y)))) s1)) s2

= {- definition of h′States -}
h′States (Op (Inr (Inr y)))

�

5 Proofs for the all in one simulation

In this section, we prove the correctness of the final simulation in Section 6.2.

Theorem 5. simulate= hLocal

Proof We calculate as follows, using all our three previous theorems Theorem 1,
Theorem 3, Theorem 4, and an auxiliary lemma Lemma 15.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

82 W. Tang and T. Schrijvers

simulate
= {- definition of simulate -}

extract ◦ hState ◦ states2state ◦ nondet2state ◦ (⇔) ◦ local2global
= {- Theorem 4 -}

extract ◦ flatten ◦ hStates ◦ nondet2state ◦ (⇔) ◦ local2global
= {- Lemma 15 -}

fmap (fmap fst) ◦ runStateT ◦ hState ◦ extractSS ◦ hState ◦ nondet2state ◦ (⇔) ◦ local2global
= {- definition of runND+f -}

fmap (fmap fst) ◦ runStateT ◦ hState ◦ runND+f ◦ (⇔) ◦ local2global
= {- Theorem 3 -}

fmap (fmap fst) ◦ runStateT ◦ hState ◦ hND+f ◦ (⇔) ◦ local2global
= {- definition of hGlobal -}

hGlobal ◦ local2global
= {- Theorem 1 -}

hLocal

�

Lemma 15. extract ◦ flatten ◦ hStates = fmap (fmap fst) ◦ runStateT ◦ hState ◦ extractSS ◦ hState

Proof As shown in Appendix 4, we can combine flatten ◦ hStates into one function h′States

defined as follows:

h′States :: Functor f ⇒ Free (StateF s1 :+: StateF s2 :+: f) a→ StateT (s1, s2) (Free f) a
h′States t= StateT $ λ(s1, s2)→ α 〈$〉 runStateT (hState (runStateT (hState t) s1)) s2

Then we show that for any input t :: Free (StateF (SS (StateF s :+: f) a) :+: (StateF s :+:
f)) (), we have (extract ◦ h′States) t= (fmap (fmap fst) ◦ runStateT ◦ hState ◦ extractSS ◦ hState) t
via the following calculation.

(extract ◦ h′States) t
= {- function application -}

extract (h′States t)
= {- definition of h′States -}

extract (StateT $ λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState t) s1)) s2)

= {- definition of extract -}
λs→ resultsSS ◦ fst ◦ snd 〈$〉 runStateT (StateT $ λ(s1, s2)→ α 〈$〉

runStateT (hState (runStateT (hState t) s1)) s2) (SS [] [], s)
= {- definition of runStateT -}

λs→ resultsSS ◦ fst ◦ snd 〈$〉 (λ(s1, s2)→ α 〈$〉
runStateT (hState (runStateT (hState t) s1)) s2) (SS [] [], s)

= {- function application -}
λs→ resultsSS ◦ fst ◦ snd 〈$〉 (α 〈$〉

runStateT (hState (runStateT (hState t) (SS [] []))) s)
= {- Equation (2.2) -}

λs→ resultsSS ◦ fst ◦ snd ◦ α 〈$〉

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 83

runStateT (hState (runStateT (hState t) (SS [] []))) s
= {- fst ◦ snd ◦ α = snd ◦ fst -}

λs→ resultsSS ◦ snd ◦ fst 〈$〉 runStateT (hState (runStateT (hState t) (SS [] []))) s
= {- Equation (2.2) and definition of 〈$〉 -}

λs→ fmap (resultsSS ◦ snd) ◦ fmap fst $
runStateT (hState (runStateT (hState t) (SS [] []))) s

= {- definition of flip and reformulation -}
λs→ fmap (resultsSS ◦ snd) ◦ fmap fst $

flip (runStateT ◦ hState) s (runStateT (hState t) (SS [] []))
= {- reformulation -}

λs→ fmap (resultsSS ◦ snd) ◦ (fmap fst ◦ flip (runStateT ◦ hState) s) $
runStateT (hState t) (SS [] [])

= {- parametricity of free monads -}
λs→ (fmap fst ◦ flip (runStateT ◦ hState) s) ◦ fmap (resultsSS ◦ snd) $

runStateT (hState t) (SS [] [])
= {- definition of 〈$〉 -}

λs→ (fmap fst ◦ flip (runStateT ◦ hState) s) $ resultsSS ◦ snd 〈$〉
runStateT (hState t) (SS [] [])

= {- function application -}
λs→ fmap fst (runStateT (hState (resultsSS ◦ snd 〈$〉

runStateT (hState t) (SS [] []))) s)
= {- definition of fmap -}

λs→ fmap (fmap fst) (runStateT (hState (resultsSS ◦ snd 〈$〉
runStateT (hState t) (SS [] [])))) s

= {- reformulation -}
λs→ (fmap (fmap fst) ◦ runStateT ◦ hState $ resultsSS ◦ snd 〈$〉

runStateT (hState t) (SS [] [])) s
= {- η-reduction -}

fmap (fmap fst) ◦ runStateT ◦ hState $ resultsSS ◦ snd 〈$〉 runStateT (hState t) (SS [] [])
= {- definition of extractSS -}

fmap (fmap fst) ◦ runStateT ◦ hState $ extractSS (hState t)
= {- -}

(fmap (fmap fst) ◦ runStateT ◦ hState ◦ extractSS ◦ hState) t

Note that in the above calculation, we use the parametricity (Reynolds, 1983; Wadler,
1989) of free monads which is formally stated as follows:

fmap f ◦ g= g ◦ fmap f

for any g :: ∀a.Free F a→ Free G a with two functors F and G.
�

6 Proofs for modelling local state with undo

In this section, we prove the following theorem in Section 7.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

84 W. Tang and T. Schrijvers

Theorem 6. Given Functor f and Undo s u, the equation

hGlobalM ◦ local2globalM = hLocalM

holds for all programs p :: Free (ModifyF s u :+: NondetF :+: f) a that do not use the
operation Op (Inl MRestore).

The proof structure is very similar to that in Appendix 2. We start with the following
preliminary fusion.

Preliminary. It is easy to see that runStateT ◦ hModify can be fused into a single fold defined
as follows:

hModify1 :: (Functor f , Undo s r)⇒ Free (ModifyF s r :+: f) a→ (s→ Free f (a, s))
hModify1 = fold genS (algS # fwdS)

where
genS x s= Var (x, s)
algS (MGet k) s= k s s
algS (MUpdate r k) s= k (s⊕ r)
algS (MRestore r k) s= k (s� r)
fwdS y s=Op (fmap ($s) y)

For brevity, we use hModify1 to replace runStateT ◦ hModify in the following proofs.

6.1 Main proof structure

The main proof structure of Theorem 6 is as follows.

Proof Both the left-hand side and the right-hand side of the equation consist of function
compositions involving one or more folds. We apply fold fusion separately on both sides
to contract each into a single fold:

hGlobalM ◦ local2globalM = fold genLHS (algS
LHS # algND

RHS # fwdLHS)

hLocalM = fold genRHS (algS
RHS # algND

RHS # fwdRHS)

Finally, we show that both folds are equal by showing that their corresponding parameters
are equal:

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

We elaborate each of these steps below. �

6.2 Fusing the right-hand side

We calculate as follows:

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 85

hLocalM

= {- definition -}
hL ◦ hModify1

with
hL :: (Functor f , Functor g)
⇒ g (Free (NondetF :+: f) (a, s))→ g (Free f [a])

hL = fmap (fmap (fmap fst) ◦ hND+f)
= {- definition of hModify1 -}

hL ◦ fold genS (algS # fwdS)
= {- fold fusion-post (Equation 3.2) -}

fold genRHS (algS
RHS # algND

RHS # fwdRHS)

This last step is valid provided that the fusion conditions are satisfied:

hL ◦ genS = genRHS (1)
hL ◦ (algS # fwdS) = (algS

RHS # algND
RHS # fwdRHS) ◦ fmap hL (2)

For the first fusion condition (1), we define genRHS as follows

genRHS :: Functor f ⇒ a→ (s→ Free f [a])
genRHS x= λs→ Var [x]

We show that (1) is satisfied by the following calculation.

hL (genS x)
= {- definition of genS -}

hL (λs→ Var (x, s))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ Var (x, s))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Var (x, s)))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (Var [(x, s)])
= {- definition of fmap (twice) -}

λs→ Var [x]
= {- definition of genRHS -}
= genRHS x

By a straightforward case analysis on the two cases Inl and Inr, the second fusion condition
(2) decomposes into two separate conditions:

hL ◦ algS = algS
RHS ◦ fmap hL (3)

hL ◦ fwdS ◦ Inl = algND
RHS ◦ fmap hL (4)

hL ◦ fwdS ◦ Inr = fwdRHS ◦ fmap hL (5)

For the subcondition (3), we define algS
RHS as follows.

algS
RHS :: Undo s r⇒ModifyF s r (s→ p)→ (s→ p)

algS
RHS (MGet k) = λs→ k s s

algS
RHS (MUpdate r k) = λs→ k (s⊕ r)

algS
RHS (MRestore r k)= λs→ k (s⊕ r)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

86 W. Tang and T. Schrijvers

We prove its correctness by a case analysis on the shape of input t :: StateF s (s→
Free (NondetF :+: f) (a, s)).

case t=Get k

hL (algS (Get k))
= {- definition of algS -}

hL (λs→ k s s)
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ k s s)
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (k s s))
= {- beta-expansion (twice) -}
= λs→ (λs1 s2→ fmap (fmap fst) (hND+f (k s2 s1))) s s
= {- definition of fmap (twice) -}
= λs→ (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (λs1 s2→ k s2 s1)) s s
= {- eta-expansion of k -}
= λs→ (fmap (fmap (fmap (fmap fst) ◦ hND+f)) k) s s
= {- definition of algRHS -}
= algS

RHS (Get (fmap (fmap (fmap (fmap fst) ◦ hND+f)) k))
= {- definition of fmap -}
= algS

RHS (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (Get k))
= {- definition of hL -}
= algS

RHS (fmap hL (Get k))

case t=MUpdate r k

hL (algS (MUpdate r k))
= {- definition of algS -}

hL (λs→ k (s⊕ r))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ k (s⊕ r))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (k (s⊕ r)))
= {- beta-expansion -}
= λs→ (λs1→ fmap (fmap fst) (hND+f (k s1))) (s⊕ r)
= {- definition of fmap -}
= λs→ (fmap (fmap (fmap fst) ◦ hND+f) (λs1→ k s1)) (s⊕ r)
= {- eta-expansion of k -}
= λs→ (fmap (fmap (fmap fst) ◦ hND+f) k) (s⊕ r)
= {- definition of algS

RHS -}
= algS

RHS (MUpdate r (fmap (fmap (fmap fst) ◦ hND+f) k))
= {- definition of fmap -}
= algS

RHS (fmap (fmap (fmap fst) ◦ hND+f)) (MUpdate r k))
= {- definition of hL -}
= algS

RHS (fmap hL (MUpdate r k))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 87

case t=MRestore r k

hL (algS (MRestore r k))
= {- definition of algS -}

hL (λs→ k (s� r))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→ k (s� r))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (k (s� r)))
= {- beta-expansion -}
= λs→ (λs1→ fmap (fmap fst) (hND+f (k s1))) (s� r)
= {- definition of fmap -}
= λs→ (fmap (fmap (fmap fst) ◦ hND+f) (λs1→ k s1)) (s� r)
= {- eta-expansion of k -}
= λs→ (fmap (fmap (fmap fst) ◦ hND+f) k) (s� r)
= {- definition of algS

RHS -}
= algS

RHS (MRestore r (fmap (fmap (fmap fst) ◦ hND+f) k))
= {- definition of fmap -}
= algS

RHS (fmap (fmap (fmap fst) ◦ hND+f)) (MRestore r k))
= {- definition of hL -}
= algS

RHS (fmap hL (MRestore r k))

For the subcondition (4), we define algND
RHS as follows.

algND
RHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])

algND
RHS Fail = λs→ Var []

algND
RHS (Or p q)= λs→ liftM2 (++) (p s) (q s)

To show its correctness, given op :: NondetF (s→ Free (NondetF :+: f) (a, s)) with
Functor f , we calculate:

hL (fwdS (Inl op))
= {- definition of fwdS -}

hL (λs→Op (fmap ($s) (Inl op)))
= {- definition of fmap -}

hL (λs→Op (Inl (fmap ($s) op)))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→Op (Inl (fmap ($s) op)))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Op (Inl (fmap ($s) op))))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) op)))

We proceed by a case analysis on op:
case op= Fail

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) Fail)))
= {- defintion of fmap (twice) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

88 W. Tang and T. Schrijvers

λs→ fmap (fmap fst) (algND+f Fail)
= {- definition of algND+f -}

λs→ fmap (fmap fst) (Var [])
= {- definition of fmap (twice) -}

λs→ Var []
= {- definition of algND

RHS -}
algND

RHS Fail
= {-definition of fmap -}

algND
RHS (fmap hL fail)

case op=Or p q

λs→ fmap (fmap fst) (algND+f (fmap hND+f (fmap ($s) (Or p q))))
= {- defintion of fmap (twice) -}

λs→ fmap (fmap fst) (algND+f (Or (hND+f (p s)) (hND+f (q s))))
= {- definition of algND+f -}

λs→ fmap (fmap fst) (liftM2 (++) (hND+f (p s)) (hND+f (q s)))
= {- Lemma 3 -}

λs→ liftM2 (++) (fmap (fmap fst) (hND+f (p s))) (fmap (fmap fst) (hND+f (q s)))
= {- definition of algND

RHS -}
algND

RHS (Or (fmap (fmap fst) ◦ hND+f ◦ p) (fmap (fmap fst) ◦ hND+f ◦ q))
= {- defintion of fmap (twice) -}

algND
RHS (fmap (fmap (fmap (fmap fst) ◦ hND+f)) (Or p q))

= {- defintion of hL -}
algND

RHS (fmap hL (Or p q))

For the last subcondition (5), we define fwdRHS as follows.

fwdRHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdRHS op= λs→Op (fmap ($s) op)

To show its correctness, given input op :: f (s→ Free (NondetF :+: f) (a, s)), we calculate:

hL (fwdS (Inr op))
= {- definition of fwdS -}

hL (λs→Op (fmap ($s) (Inr op)))
= {- definition of fmap -}

hL (λs→Op (Inr (fmap ($s) op)))
= {- definition of hL -}

fmap (fmap (fmap fst) ◦ hND+f) (λs→Op (Inr (fmap ($s) op)))
= {- definition of fmap -}

λs→ fmap (fmap fst) (hND+f (Op (Inr (fmap ($s) op))))
= {- definition of hND+f -}

λs→ fmap (fmap fst) (fwdND+f (fmap hND+f (fmap ($s) op)))
= {- definition of fwdND+f -}

λs→ fmap (fmap fst) (Op (fmap hND+f (fmap ($s) op)))
= {- definition of fmap -}

λs→Op (fmap (fmap (fmap fst)) (fmap hND+f (fmap ($s) op)))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 89

= {- fmap fusion -}
λs→Op (fmap (fmap (fmap fst) ◦ hND+f) (fmap ($s) op))
= {- definition of hL -} |

λs→Op (hL (fmap ($s) op))
= {- Lemma 2 -}

λs→Op (fmap (($s) ◦ hL) op)
= {- fmap fusion -}

λs→Op (fmap ($s) (fmap hL op))
= {- definition of fwdRHS -}

fwdRHS (fmap hL op)

6.3 Fusing the left-hand side

We calculate as follows:

hGlobalM ◦ local2globalM
= {- definition of local2globalM -}

hGlobalM ◦ fold Var alg
where

alg (Inl (MUpdate r k))= (update r � side (restore r)) >> k
alg p =Op p

= {- fold fusion-post’ (Equation 3.3) -}
fold genLHS (algS

LHS # algND
LHS # fwdLHS)

This last step is valid provided that the fusion conditions are satisfied:

hGlobalM ◦ Var = genLHS (1)

hGlobalM ◦ alg ◦ fmap local2globalM
= (algS

LHS # algND
LHS # fwdLHS) ◦ fmap hGlobalM ◦ fmap local2globalM (2)

The first subcondition (1) is met by

genLHS :: Functor f ⇒ a→ (s→ Free f [a])
genLHS x= λs→ Var [x]

as established in the following calculation:

hGlobalM (Var x)
= {- definition of hGlobalM -}

fmap (fmap fst) (hModify1 (hND+f ((⇔) (Var x))))
= {- definition of (⇔) -}

fmap (fmap fst) (hModify1 (hND+f (Var x)))
= {- definition of hND+f -}

fmap (fmap fst) (hModify1 (Var [x]))
= {- definition of hModify1 -}

fmap (fmap fst) (λs→ Var ([x], s))
= {- definition of fmap (twice) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

90 W. Tang and T. Schrijvers

λs→ Var [x]
= {- definition of genLHS -}

genLHS x

We can split the second fusion condition (2) in three subconditions:

hGlobalM ◦ alg ◦ Inl ◦ fmap local2globalM = algS
LHS ◦ fmap hGlobalM ◦ fmap local2globalM (3)

hGlobalM ◦ alg ◦ Inr ◦ Inl ◦ fmap local2globalM = algND
LHS ◦ fmap hGlobalM ◦ fmap local2globalM (4)

hGlobalM ◦ alg ◦ Inr ◦ Inr ◦ fmap local2globalM = fwdLHS ◦ fmap hGlobalM ◦ fmap local2globalM (5)

For brevity, we omit the last common part fmap local2globalM of these equations
in the following proofs. Instead, we assume that the input is in the codomain of
fmap local2globalM . Also, we use the condition in Theorem 6 that the input program does
not use the restore operation.

For the first subcondition (3), we can define algS
LHS as follows.

algS
LHS :: (Functor f , Undo s r)⇒ModifyF s r (s→ Free f [a])→ (s→ Free f [a])

algS
LHS (MGet k) = λs→ k s s

algS
LHS (MUpdate r k) = λs→ k (s⊕ r)

algS
LHS (MRestore r k)= λs→ k (s� r)

We prove it by a case analysis on the shape of input op :: ModifyF s r (Free (ModifyF s r :+:
NondetF :+: f) a). Note that we only need to consider the case that op is of form MGet k
or MUpdate r k where restore is also not used in the continuation k.
case op=MGet k

hGlobalM (alg (Inl (MGet k)))
= {- definition of alg -}

hGlobalM (Op (Inl (MGet k)))
= {- definition of hGlobalM -}

fmap (fmap fst) (hModify1 (hND+f ((⇔) (Op (Inl (MGet k))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inr (Inl (fmap (⇔) (MGet k)))))))
= {- definition of fmap -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inr (Inl (MGet ((⇔) ◦ k)))))))
= {- definition of hND+f -}

fmap (fmap fst) (hModify1 (Op (fmap hND+f (Inl (MGet ((⇔) ◦ k))))))
= {- definition of fmap -}

fmap (fmap fst) (hModify1 (Op (Inl (MGet (hND+f ◦ (⇔) ◦ k)))))
= {- definition of hModify1 -}

fmap (fmap fst) (λs→ (hModify1 ◦ hND+f ◦ (⇔) ◦ k) s s)
= {- definition of fmap -}

λs→ fmap fst ((hModify1 ◦ hND+f ◦ (⇔) ◦ k) s s)
= {- definition of fmap -}

λs→ ((fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ k) s s)
= {- definition of hGlobalM -}

λs→ (hGlobalM ◦ k) s s
= {- definition of algS

LHS -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 91

algS
LHS (MGet (hGlobalM ◦ k))

= {- definition of fmap -}
algS

LHS (fmap hGlobalM (MGet k))

case op=MUpdate r k From op is in the codomain of fmap local2globalM we obtain k is
in the codomain of local2globalM .

hGlobalM (alg (Inl (MUpdate r k)))
= {- definition of alg -}

hGlobalM ((update r � side (restore r)) >> k)
= {- definitions of side, update, restore, (�), and (>>) -}

hGlobalM (Op (Inr (Inl (Or (Op (Inl (MUpdate r k)))
(Op (Inl (MRestore r (Op (Inr (Inl Fail))))))))))

= {- definition of hGlobalM -}
fmap (fmap fst) (hModify1 (hND+f ((⇔)

(Op (Inr (Inl (Or (Op (Inl (MUpdate r k)))
(Op (Inl (MRestore r (Op Inr ((Inl Fail)))))))))))))

= {- definition of (⇔) -}
fmap (fmap fst) (hModify1 (hND+f (

(Op (Inl (Or (Op (Inr (Inl (MUpdate r ((⇔) k)))))
(Op (Inr (Inl (MRestore r (Op (Inl Fail))))))))))))

= {- definition of hND+f -}
fmap (fmap fst) (hModify1 (

(liftM2 (++) (Op (Inl (MUpdate r (hND+f ((⇔) k)))))
(Op (Inl (MRestore r (Var [])))))))

= {- definition of liftM2 -}
fmap (fmap fst) (hModify1 (

do x←Op (Inl (MUpdate r (hND+f ((⇔) k))))
y←Op (Inl (MRestore r (Var [])))
Var (x++y)

))
= {- Lemma 17 -}

fmap (fmap fst) (λt→
do (x, t1)← hModify1 (Op (Inl (MUpdate r (hND+f ((⇔) k))))) t

(y, t2)← hModify1 (Op (Inl (MRestore r (Var [])))) t1
hModify1 (Var (x++y)) t2

)
= {- definition of hModify1 -}

fmap (fmap fst)
(λt→ do (x,) ← hModify1 (hND+f ((⇔) k)) (t⊕ r)

(y, t2) ← Var ([], t� r)
Var (x++y, t2)

)
= {- monad law -}

fmap (fmap fst)
(λt→ do (x, t1)← hModify1 (hND+f ((⇔) k)) (t⊕ r)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

92 W. Tang and T. Schrijvers

Var (x++[], t1 � r)
)

= {- right unit of (++) -}
fmap (fmap fst)

(λt→ do (x, t1)← hModify1 (hND+f ((⇔) k)) (t⊕ r)
Var (x, t1 � r)

)
= {- Lemma 16 -}

fmap (fmap fst)
(λt→ do (x, t⊕ r)← hModify1 (hND+f ((⇔) k)) (t⊕ r)

Var (x, (t⊕ r)� r)
)

= {- Equation (7.1) -}
fmap (fmap fst)

(λt→ do (x,)← hModify1 (hND+f ((⇔) k)) (t⊕ r)
Var (x, t)

)
= {- definition of fmap fst -}

fmap (fmap fst)
(λt→ do x← fmap fst (hModify1 (hND+f ((⇔) k)) (t⊕ r))

Var (x, t)
)

= {- definition of fmap -}
fmap (fmap fst)

(λt→ do x← (fmap (fmap fst) (hModify1 (hND+f ((⇔) k)))) (t⊕ r)
Var (x, t)

)
= {- definition of fmap (fmap fst) -}

λt→ do x← (fmap (fmap fst) (hModify1 (hND+f ((⇔) k)))) (t⊕ r)
Var x

= {- monad law -}
λt→ (fmap (fmap fst) (hModify1 (hND+f ((⇔) k)))) (t⊕ r)
= {- definition of hGlobalM -}

λt→ (hGlobalM k) (t⊕ r)
= {- definition of algS

LHS -}
algS

LHS (MUpdate r (hGlobalM k))
= {- definition of fmap -}

algS
LHS (fmap hGlobalM (MUpdate r k))

For the second subcondition (4), we can define algND
LHS as follows.

algND
LHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])

algND
LHS Fail = λs→ Var []

algND
LHS (Or p q)= λs→ liftM2 (++) (p s) (q s)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 93

We prove it by a case analysis on the shape of input op :: NondetF (Free (ModifyF s r :+:
NondetF :+: f) a).
case op= Fail

hGlobalM (alg (Inr (Inl Fail)))
= {- definition of alg -}

hGlobalM (Op (Inr (Inl Fail)))
= {- definition of hGlobalM -}

fmap (fmap fst) (hModify1 (hND+f ((⇔) (Op (Inr (Inl Fail))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inl (fmap (⇔) Fail)))))
= {- definition of fmap -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inl Fail))))
= {- definition of hND+f -}

fmap (fmap fst) (hModify1 (Var []))
= {- definition of hModify1 -}

fmap (fmap fst) (λs→ Var ([], s))
= {- definition of fmap twice and fst -}

λs→ Var []
= {- definition of algND

RHS -}
algND

RHS Fail
= {- definition of fmap -}

algND
RHS (fmap hGlobalM Fail)

case op=Or p q From op is in the codomain of fmap local2globalM , we obtain p and q are
in the codomain of local2globalM .

hGlobalM (alg (Inr (Inl (Or p q))))
= {- definition of alg -}

hGlobalM (Op (Inr (Inl (Or p q))))
= {- definition of hGlobalM -}

fmap (fmap fst) (hModify1 (hND+f ((⇔) (Op (Inr (Inl (Or p q)))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inl (fmap (⇔) (Or p q))))))
= {- definition of fmap -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inl (Or ((⇔) p) ((⇔) q))))))
= {- definition of hND+f -}

fmap (fmap fst) (hModify1 (liftM2 (++) (hND+f ((⇔) p)) (hND+f ((⇔) q))))
= {- definition of liftM2 -}

fmap (fmap fst) (hModify1 (do x← hND+f ((⇔) p)
y← hND+f ((⇔) q)
η (x++y)))

= {- Lemma 17 -}
fmap (fmap fst) (λs0→ (do (x, s1)← hModify1 (hND+f ((⇔) p)) s0

(y, s2)← hModify1 (hND+f ((⇔) q)) s1

hModify1 (η (x++y)) s2))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

94 W. Tang and T. Schrijvers

= {- definition of hModify1 -}
fmap (fmap fst) (λs0→ (do (x, s1)← hModify1 (hND+f ((⇔) p)) s0

(y, s2)← hModify1 (hND+f ((⇔) q)) s1

Var (x++y, s2)))
= {- Lemma 16 -}

fmap (fmap fst) (λs0→ (do (x, s1)← do {(x,)← hModify1 (hND+f ((⇔) p)) s0; η (x, s0)}
(y, s2)← do {(y,)← hModify1 (hND+f ((⇔) q)) s1; η (x, s1)}
Var (x++y, s2)))

= {- monad laws -}
fmap (fmap fst) (λs0→ (do (x,)← hModify1 (hND+f ((⇔) p)) s0

(y,)← hModify1 (hND+f ((⇔) q)) s0

Var (x++y, s0)))
= {- definition of fmap (twice) and fst -}

λs0→ (do (x,)← hModify1 (hND+f ((⇔) p)) s0

(y,)← hModify1 (hND+f ((⇔) q)) s0

Var (x++y))
= {- definition of fmap, fst and monad laws -}

λs0→ (do x← fmap fst (hModify1 (hND+f ((⇔) p)) s0)
y← fmap fst (hModify1 (hND+f ((⇔) q)) s0)
Var (x++y))

= {- definition of fmap -}
λs0→ (do x← fmap (fmap fst) (hModify1 (hND+f ((⇔) p))) s0

y← fmap (fmap fst) (hModify1 (hND+f ((⇔) q))) s0

Var (x++y))
= {- definition of hGlobalM -}

λs0→ (do x← hGlobalM p s0

y← hGlobalM q s0

Var (x++y))
= {- definition of liftM2 -}

λs0→ liftM2 (++) (hGlobalM p s0) (hGlobalM q s0)
= {- definition of algND

LHS -}
algND

LHS (Or (hGlobalM p) (hGlobalM q))
= {- definition of fmap -}

algND
LHS (fmap hGobal (Or p q))

For the last subcondition (5), we can define fwdLHS as follows.

fwdLHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdLHS op= λs→Op (fmap ($s) op)

We prove it by the following calculation for input op :: f (Free (ModifyF s r :+:
NondetF :+: f) a).

hGlobalM (alg (Inr (Inr op)))
= {- definition of alg -}

hGlobalM (Op (Inr (Inr op)))
= {- definition of hGlobalM -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 95

fmap (fmap fst) (hModify1 (hND+f ((⇔) (Op (Inr (Inr op))))))
= {- definition of (⇔) -}

fmap (fmap fst) (hModify1 (hND+f (Op (Inr (Inr (fmap (⇔) op))))))
= {- definition of hND+f -}

fmap (fmap fst) (hModify1 (Op (fmap hND+f (Inr (fmap (⇔) op)))))
= {- definition of fmap -}

fmap (fmap fst) (hModify1 (Op (Inr (fmap hND+f (fmap (⇔) op)))))
= {- fmap fusion -}

fmap (fmap fst) (hModify1 (Op (Inr (fmap (hND+f ◦ (⇔)) op))))
= {- definition of hModify1 -}

fmap (fmap fst) (λs→Op (fmap ($s) (fmap hModify1 (fmap (hND+f ◦ (⇔)) op))))
= {- fmap fusion -}

fmap (fmap fst) (λs→Op (fmap ($s) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op)))
= {- definition of fmap -}

λs→ fmap fst (Op (fmap ($s) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op)))
= {- definition of fmap -}

λs→Op (fmap (fmap fst) (fmap ($s) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op)))
= {- fmap fusion -}

λs→Op (fmap (fmap fst ◦ ($s)) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op)))
= {- Lemma 2 -}

λs→Op (fmap (($s) ◦ fmap (fmap fst)) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op)))
= {- fmap fission -}

λs→Op ((fmap ($s) ◦ fmap (fmap (fmap fst))) (fmap (hModify1 ◦ hND+f ◦ (⇔)) op))
= {- fmap fusion -}

λs→Op (fmap ($s) (fmap (fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔)) op))
= {- definition of hGlobalM -}

λs→Op (fmap ($s) (fmap hGlobalM op))
= {- definition of fwdLHS -}

fwdLHS (fmap hGlobalM op)

6.4 Equating the fused sides

We observe that the following equations hold trivially.

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

Therefore, the main theorem (Theorem 6) holds.

6.5 Key lemma: State restoration

Similar to Appendix 2, we have a key lemma saying that local2globalM restores the initial
state after a computation.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

96 W. Tang and T. Schrijvers

Lemma 16 (State is Restored).
For any program p :: Free (ModifyF s r :+: NondetF :+: f) a that do not use the operation
OP (Inl MRestore), we have

hModify1 (hND+f ((⇔) (local2globalM p))) s
= do (x,)← hModify1 (hND+f ((⇔) (local2globalM p))) s; η (x, s)

Proof The proof follows the same structure of Lemma 1. We proceed by induction on t.
case t= Var y

hModify1 (hND+f ((⇔) (local2globalM (Var y)))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) (Var y))) s
= {- definition of (⇔) -}

hModify1 (hND+f (Var y)) s
= {- definition of hND+f -}

hModify1 (Var [y]) s
= {- definition of hModify1 -}

Var ([y], s)
= {- monad law -}

do (x,)← Var ([y], s); Var (x, s)
= {- definition of local2globalM , hND+f , (⇔), hModify1 and η -}

do (x,)← hModify1 (hND+f ((⇔) (local2globalM (Var y)))) s; η (x, s)

case t=Op (Inl (MGet k))

hModify1 (hND+f ((⇔) (local2globalM (Op (Inl (MGet k)))))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) (Op (Inl (MGet (local2globalM ◦ k)))))) s
= {- definition of (⇔) -}

hModify1 (hND+f (Op (Inr (Inl (MGet ((⇔) ◦ local2globalM ◦ k)))))) s
= {- definition of hND+f -}

hModify1 (Op (Inl (MGet (hND+f ◦ (⇔) ◦ local2globalM ◦ k)))) s
= {- definition of hModify1 -}

(hModify1 ◦ hND+f ◦ (⇔) ◦ local2globalM ◦ k) s s
= {- definition of (◦) -}

(hModify1 (hND+f ((⇔) (local2globalM (k s))))) s
= {- induction hypothesis -}

do (x,)← hModify1 ((⇔) (hND+f (local2globalM (k s)))) s; η (x, s)
= {- definition of local2globalM , (⇔), hND+f , hModify1 -}

do (x,)← hModify1 (hND+f (local2globalM (Op (Inl (MGet k))))) s; η (x, s)

case t=Op (Inr (Inl Fail))

hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inl Fail)))))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) (Op (Inr (Inl Fail))))) s
= {- definition of (⇔) -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 97

hModify1 (hND+f (Op (Inl Fail))) s
= {- definition of hND+f -}

hModify1 (Var []) s
= {- definition of hModify1 -}

Var ([], s)
= {- monad law -}

do (x,)← Var ([], s); Var (x, s)
= {- definition of local2globalM , (⇔), hND+f , hModify1 -}

do (x,)← hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inl Fail)))))) s; η (x, s)

case t=Op (Inl (MUpdate r k))

hModify1 (hND+f ((⇔) (local2globalM (Op (Inl (Put t k)))))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) ((update r � side (restore r)) >> local2globalM k))) s
= {- definition of (�), update, restore, side and (>>=) -}

hModify1 (hND+f ((⇔) (
Op (Inr (Inl (Or (Op (Inl (MUpdate r (local2globalM k))))

(Op (Inl (MRestore r (Op (Inr (Inl Fail)))))))))))) s
= {- definition of (⇔) -}

hModify1 (hND+f (
Op (Inl (Or (Op (Inr (Inl (MUpdate r ((⇔) (local2globalM k))))))

(Op (Inr (Inl (MRestore r (Op (Inl Fail)))))))))) s
= {- definition of hND+f -}

hModify1 (
liftM2 (++) (Op (Inl (MUpdate r (hND+f ((⇔) (local2globalM k))))))

(Op (Inl (MRestore r (Var []))))) s
= {- definition of liftM2 -}

hModify1 (do x←Op (Inl (MUpdate r (hND+f ((⇔) (local2globalM k)))))
y←Op (Inl (MRestore r (Var [])))
Var (x++y)

) s
= {- Lemma 17 -}

do (x, s1)← hModify1 (Op (Inl (MUpdate r (hND+f ((⇔) (local2globalM k)))))) s
(y, s2)← hModify1 (Op (Inl (MRestore r (Var [])))) s1

Var (x++y, s2)
= {- definition of hModify1 -}

do (x, s1)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r)
(y, s2)← Var ([], s1 � r)
Var (x++y, s2)

= {- monad laws -}
do (x, s1)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r)

Var (x++[], s1 � r)
= {- right unit of (++) -}

do (x, s1)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r)
Var (x, s1 � r)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

98 W. Tang and T. Schrijvers

= {- induction hypothesis -}
do (x, s1)← do {(x,)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r); η (x, s⊕ r)}

Var (x, s1 � r)
= {- monad laws -}

do (x,)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r)
Var (x, (s⊕ r)� r)

= {- Equation (7.1) -}
do (x,)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r)

Var (x, s)
= {- monad laws -}

do (x,)← do {(x,)← hModify1 (hND+f ((⇔) (local2globalM k))) (s⊕ r); η (x, s)}
Var (x, s)

= {- deriviation in reverse -}
do (x,)← hModify1 (hND+f ((⇔) (local2globalM (Op (Inl (MUpdate r k)))))) s

Var (x, s)

case t=Op (Inr (Inl (Or p q)))

hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inl (Or p q))))))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) (Op (Inr (Inl (Or (local2globalM p) (local2globalM q))))))) s
= {- definition of (⇔) -}

hModify1 (hND+f (Op (Inl (Or ((⇔) (local2globalM p)) ((⇔) (local2globalM q)))))) s
= {- definition of hND+f -}

hModify1 (liftM2 (++) (hND+f ((⇔) (local2globalM p))) (hND+f ((⇔) (local2globalM q)))) s
= {- definition of liftM2 -}

hModify1 (do x← hND+f ((⇔) (local2globalM p))
y← hND+f ((⇔) (local2globalM q))
Var (x++y)

) s
= {- Lemma 17 -}

do (x, s1)← hModify1 (hND+f ((⇔) (local2globalM p))) s
(y, s2)← hModify1 (hND+f ((⇔) (local2globalM q))) s1

hModify1 (Var (x++y)) s2

= {- induction hypothesis -}
do (x, s1)← do {(x,)← hModify1 (hND+f ((⇔) (local2globalM p))) s; η (x, s)}

(y, s2)← do {(y,)← hModify1 (hND+f ((⇔) (local2globalM q))) s1; η (y, s1)}
hModify1 (Var (x++y)) s2

= {- monad laws -}
do (x,)← hModify1 (hND+f ((⇔) (local2globalM p))) s

(y,)← hModify1 (hND+f ((⇔) (local2globalM q))) s1

hModify1 (Var (x++y)) s
= {- definition of hModify1 -}

do (x,)← hModify1 (hND+f ((⇔) (local2globalM p))) s
(y,)← hModify1 (hND+f ((⇔) (local2globalM q))) s
η (x++y, s)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 99

= {- monad laws -}
do (x,)← (

do (x,)← hModify1 (hND+f ((⇔) (local2globalM p))) s
(y,)← hModify1 (hND+f ((⇔) (local2globalM q))) s1

η (x++y, s)
)

η (x, s)
= {- derivation in reverse (similar to before) -}

do (x,)← hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inl (Or p q))))))) s
η (x, s)

case t=Op (Inr (Inr y))

hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inr y)))))) s
= {- definition of local2globalM -}

hModify1 (hND+f ((⇔) (Op (Inr (Inr (fmap local2globalM y)))))) s
= {- definition of (⇔); fmap fusion -}

hModify1 (hND+f (Op (Inr (Inr (fmap ((⇔) ◦ local2globalM) y))))) s
= {- definition of hND+f ; fmap fusion -}

hModify1 (Op (Inr (fmap (hND+f ◦ (⇔) ◦ local2globalM) y))) s
= {- definition of hModify1; fmap fusion -}

Op (fmap (($s) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ local2globalM) y)
= {- induction hypothesis -}

Op (fmap ((>>= λ(x,)→ η (x, s)) ◦ ($s) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ local2globalM) y)
= {- fmap fission; definition of (>>=) -}

do (x,)←Op (fmap (($s) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ local2globalM) y)
η (x, s)

= {- deriviation in reverse (similar to before) -}
do (x,)← hModify1 (hND+f ((⇔) (local2globalM (Op (Inr (Inr y)))))) s

η (x, s)

�

6.6 Auxiliary lemmas

The derivations above made use of several auxliary lemmas. We prove them here.

Lemma 17 (Distributivity of hModify1).

hModify1 (p >>= k) s = hModify1 p s >>= λ(x, s′)→ hModify1 (k x) s′

Proof The proof follows the same structure of Lemma 4. We proceed by induction on p.
case p= Var x

hModify1 (Var x >>= k) s
= {- monad law -}

hModify1 (k x) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

100 W. Tang and T. Schrijvers

= {- monad law -}
η (x, s) >>= λ(x, s′)→ hModify1 (k x) s′

= {- definition of hModify1 -}
hModify1 (Var x) s >>= λ(x, s′)→ hModify1 (k x) s′

case p=Op (Inl (MGet p))

hModify1 (Op (Inl (MGet p)) >>= k) s
= {- definition of (>>=) for free monad -}

hModify1 (Op (fmap (>>= k) (Inl (MGet p)))) s
= {- definition of fmap for coproduct (:+:) -}

hModify1 (Op (Inl (fmap (>>= k) (MGet p)))) s
= {- definition of fmap for MGet -}

hModify1 (Op (Inl (MGet (λx→ p s >>= k)))) s
= {- definition of hModify1 -}

hModify1 (p s >>= k) s
= {- induction hypothesis -}

hModify1 (p s) s >>= λ(x, s′)→ hModify1 (k x) s′

= {- definition of hModify1 -}
hModify1 (Op (Inl (MGet p))) s >>= λ(x, s′)→ hModify1 (k x) s′

case p=Op (Inl (MUpdate r p))

hModify1 (Op (Inl (MUpdate r p)) >>= k) s
= {- definition of (>>=) for free monad -}

hModify1 (Op (fmap (>>= k) (Inl (MUpdate r p)))) s
= {- definition of fmap for coproduct (:+:) -}

hModify1 (Op (Inl (fmap (>>= k) (MUpdate r p)))) s
= {- definition of fmap for MUpdate -}

hModify1 (Op (Inl (MUpdate r (p >>= k)))) s
= {- definition of hModify1 -}

hModify1 (p >>= k) (s⊕ r)
= {- induction hypothesis -}

hModify1 p (s⊕ r) >>= λ(x, s′)→ hModify1 (k x) s′

= {- definition of hModify1 -}
hModify1 (Op (Inl (MUpdate r p))) s >>= λ(x, s′)→ hModify1 (k x) s′

case p=Op (Inl (MRestore r p))

hModify1 (Op (Inl (MRestore r p)) >>= k) s
= {- definition of (>>=) for free monad -}

hModify1 (Op (fmap (>>= k) (Inl (MRestore r p)))) s
= {- definition of fmap for coproduct (:+:) -}

hModify1 (Op (Inl (fmap (>>= k) (MRestore r p)))) s
= {- definition of fmap for MRestore -}

hModify1 (Op (Inl (MRestore r (p >>= k)))) s
= {- definition of hModify1 -}

hModify1 (p >>= k) (s� r)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 101

= {- induction hypothesis -}
hModify1 p (s� r) >>= λ(x, s′)→ hModify1 (k x) s′

= {- definition of hModify1 -}
hModify1 (Op (Inl (MRestore r p))) s >>= λ(x, s′)→ hModify1 (k x) s′

case p=Op (Inr y)

hModify1 (Op (Inr y) >>= k) s
= {- definition of (>>=) for free monad -}

hModify1 (Op (fmap (>>= k) (Inr y))) s
= {- definition of fmap for coproduct (:+:) -}

hModify1 (Op (Inr (fmap (>>= k) y))) s
= {- definition of hModify1 -}

Op (fmap (λx→ hModify1 x s) (fmap (>>= k) y))
= {- fmap fusion -}

Op (fmap ((λx→ hModify1 (x >>= k) s)) y)
= {- induction hypothesis -}

Op (fmap (λx→ hModify1 x s >>= λ(x′, s′)→ hModify1 (k x′) s′) y)
= {- fmap fission -}

Op (fmap (λx→ x >>= λ(x′, s′)→ hModify1 (k x′) s′) (fmap (λx→ hModify1 x s) y))
= {- definition of (>>=) -}

Op ((fmap (λx→ hModify1 x s) y)) >>= λ(x′, s′)→ hModify1 (k x′) s′

= {- definition of hModify1 -}
Op (Inr y) s >>= λ(x′, s′)→ hModify1 (k x′) s′

�

7 Proofs for modelling local state with trail stack

In this section, we prove the following theorem in Section 8.

Theorem 7. Given Functor f and Undo s u, the equation

hGlobalT = hLocalM

holds for all programs p :: Free (ModifyF s u :+: NondetF :+: f) a that do not use the
operation Op (Inl (MRestore)).

The proof follows a similar structure to those in Appendix 2 and Appendix 6.
As in Appendix 6, we fuse runStateT ◦ hModify into hModify1 and use it instead in the

following proofs.

7.1 Main proof structure

The main proof structure of Theorem 7 is as follows.

Proof The left-hand side is expanded to

hGlobalT = fmap (fmap fst ◦ flip runStateT (Stack []) ◦ hState) ◦ hGlobalM ◦ local2trail

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

102 W. Tang and T. Schrijvers

Both the left-hand side and the right-hand side of the equation consist of function com-
positions involving one or more folds. We apply fold fusion separately on both sides to
contract each into a single fold:

hGlobalT = fold genLHS (algS
LHS # algND

RHS # fwdLHS)

hLocalM = fold genRHS (algS
RHS # algND

RHS # fwdRHS)

Finally, we show that both folds are equal by showing that their corresponding parameters
are equal:

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

We elaborate each of these steps below. �

7.2 Fusing the right-hand side

We have already fused hLocalM in Appendix 6.2. We just show the result here for easy
reference.

hLocalM = fold genRHS (algS
RHS # algND

RHS # fwdRHS)
where

genRHS :: Functor f ⇒ a→ (s→ Free f [a])
genRHS x= λs→ Var [x]
algS

RHS :: Undo s r⇒ StateF s (s→ p)→ (s→ p)
algS

RHS (MGet k) = λs→ k s s
algS

RHS (MUpdate r k) = λs→ k (s⊕ r)
algS

RHS (MRestore r k)= λs→ k (s⊕ r)
algND

RHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])
algND

RHS Fail = λs→ Var []
algND

RHS (Or p q)= λs→ liftM2 (++) (p s) (q s)
fwdRHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdRHS op= λs→Op (fmap ($s) op)

7.3 Fusing the left-hand side

As in Appendix 2, we fuse runStateT ◦ hState into hState1. For brevity, we define

runStack = fmap fst ◦ flip hState1 (Stack [])

The left-hand side is simplified to

fmap runStack ◦ hGlobalM ◦ local2trail

We calculate as follows:

fmap runStack ◦ hGlobalM ◦ local2trail
= {- definition of local2trail -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 103

fmap runStack ◦ hGlobalM ◦ fold Var (alg1 # alg2 # fwd)
where

alg1 (MUpdate r k)= pushStack (Left r) >> update r >> k
alg1 p =Op ◦ Inl $ p
alg2 (Or p q) = (pushStack (Right ()) >> p) � (untrail >> q)
alg2 p =Op ◦ Inr ◦ Inl $ p
fwd p =Op ◦ Inr ◦ Inr ◦ Inr $ p
untrail= do top← popStack;

case top of
Nothing→ η ()
Just (Right ())→ η ()
Just (Left r)→ do restore r; untrail

= {- fold fusion-post’ (Equation 3.3) -}
fold genLHS (algS

LHS # algND
LHS # fwdLHS)

This last step is valid provided that the fusion conditions are satisfied:

fmap runStack ◦ hGlobalM ◦ Var = genLHS (1)

fmap runStack ◦ hGlobalM ◦ (alg1 # alg2 # fwd) ◦ fmap local2trail
= (algS

LHS # algND
LHS # fwdLHS) ◦ fmap (fmap runStack ◦ hGlobalM) ◦ fmap local2trail (2)

The first subcondition (1) is met by

genLHS :: Functor f ⇒ a→ (s→ Free f [a])
genLHS x= λs→ Var [x]

as established in the following calculation:

fmap runStack $ hGlobalM (Var x)
= {- definition of hGlobalM -}

fmap runStack $ fmap (fmap fst) (hModify1 (hND+f ((⇔) (Var x))))
= {- definition of (⇔) -}

fmap runStack $ fmap (fmap fst) (hModify1 (hND+f (Var x)))
= {- definition of hND+f -}

fmap runStack $ fmap (fmap fst) (hModify1 (Var [x]))
= {- definition of hModify1 -}

fmap runStack $ fmap (fmap fst) (λs→ Var ([x], s))
= {- definition of fmap (twice) -}

fmap runStack $ λs→ Var [x]
= {- definition of fmap -}

λs→ runStack $ Var [x]
= {- definition of runStack -}

λs→ fmap fst ◦ flip hState1 (Stack []) $ Var [x]
= {- definition of hState1 -}

λs→ fmap fst $ (λs→ Var ([x], s)) (Stack [])
= {- function application -}

λs→ fmap fst (Var ([x], Stack []))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

104 W. Tang and T. Schrijvers

= {- definition of fmap -}
λs→ Var [x]
= {- definition of genLHS -}

genLHS x

We can split the second fusion condition (2) in three subconditions:

fmap runStack ◦ hGlobalM ◦ alg1 ◦ fmap local2trail
= algS

LHS ◦ fmap (fmap runStack ◦ hGlobalM) ◦ fmap local2trail (3)
fmap runStack ◦ hGlobalM ◦ hGlobalM ◦ alg2 ◦ fmap local2trail

= algND
LHS ◦ fmap (fmap runStack ◦ hGlobalM) ◦ fmap local2trail (4)

fmap runStack ◦ hGlobalM ◦ hGlobalM ◦ fwd ◦ fmap local2trail
= fwdLHS ◦ fmap (fmap runStack ◦ hGlobalM) ◦ fmap local2trail (5)

For brevity, we omit the last common part fmap local2globalM of these equations.
Instead, we assume that the input is in the codomain of fmap local2globalM .

For the first subcondition (3), we define algS
LHS as follows.

algS
LHS :: (Functor f , Undo s r)⇒ModifyF s r (s→ Free f [a])→ (s→ Free f [a])

algS
LHS (MGet k) = λs→ k s s

algS
LHS (MUpdate r k) = λs→ k (s⊕ r)

algS
LHS (MRestore r k)= λs→ k (s� r)

We prove it by a case analysis on the shape of input op :: ModifyF s r (Free (ModifyF s r :+:
NondetF :+: f) a). We use the condition in Theorem 6 that the input program does not use
the restore operation. We only need to consider the case that op is of form MGet k or
MUpdate r k, where restore is also not used in the continuation k.
case op=MGet k In the corresponding case of Appendix 6.3, we have calculated that
hGlobalM (Op (Inl (MGet k)))= λs→ (hGlobalM ◦ k) s s (�).

fmap runStack $ hGlobalM (alg1 (MGet k))
= {- definition of alg1 -}

fmap runStack $ hGlobalM (Op (Inl (MGet k)))
= {- Equation (�) -}

fmap runStack $ λs→ (hGlobalM ◦ k) s s
= {- definition of fmap -}

λs→ runStack $ (hGlobalM ◦ k) s s
= {- definition of fmap -}

λs→ (fmap runStack ◦ hGlobalM ◦ k) s s
= {- definition of algS

LHS -}
algS

LHS (MGet (fmap runStack ◦ hGlobalM ◦ k))
= {- definition of fmap -}

algS
LHS (fmap (fmap runStack ◦ hGlobalM) (MGet k))

case op=MUpdate r k From op is in the codomain of fmap local2globalM we obtain k is
in the codomain of local2globalM .

fmap runStack ◦ hGlobalM $ alg1 (MUpdate r k)
= {- definition of alg1 -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 105

fmap runStack ◦ hGlobalM $ pushStack (Left r) >> update r >> k
= {- definition of pushStack -}

fmap runStack ◦ hGlobalM $ do
Stack xs← get
put (Stack (Left r : xs))
update r >> k

= {- definition of get, put, and update -}
fmap runStack ◦ hGlobalM $

Op ◦ Inr ◦ Inr ◦ Inl $ Get (λ(Stack xs)→
Op ◦ Inr ◦ Inr ◦ Inl $ Put (Stack (Left r : xs)) (

Op ◦ Inl $ MUpdate r k))
= {- definition of hGlobalM -}

fmap runStack ◦ fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔) $
Op ◦ Inr ◦ Inr ◦ Inl $ Get (λ(Stack xs)→

Op ◦ Inr ◦ Inr ◦ Inl $ Put (Stack (Left r : xs)) (
Op ◦ Inl $ MUpdate r k))

= {- definition of (⇔) -}
fmap runStack ◦ fmap (fmap fst) ◦ hModify1 ◦ hND+f $

Op ◦ Inr ◦ Inr ◦ Inl $ Get (λ(Stack xs)→
Op ◦ Inr ◦ Inr ◦ Inl $ Put (Stack (Left r : xs)) (

Op ◦ Inr ◦ Inl $ MUpdate r ((⇔) k)))
= {- definition of hND+f -}

fmap runStack ◦ fmap (fmap fst) ◦ hModify1 $
Op ◦ Inr ◦ Inl $ Get (λ(Stack xs)→

Op ◦ Inr ◦ Inl $ Put (Stack (Left r : xs)) (
Op ◦ Inl $ MUpdate r (hND+f ◦ (⇔) $ k)))

= {- definition of hModify1 -}
fmap runStack ◦ fmap (fmap fst) $ λs→

Op ◦ Inl $ Get (λ(Stack xs)→
Op ◦ Inl $ Put (Stack (Left r : xs)) (

(hModify1 ◦ hND+f ◦ (⇔) $ k) (s⊕ r)))
= {- definition of fmap (fmap fst) -}

fmap runStack $ λs→
Op ◦ Inl $ Get (λ(Stack xs)→

Op ◦ Inl $ Put (Stack (Left r : xs)) (
(fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔) $ k) (s⊕ r)))

= {- definition of fmap -}
λs→ runStack $

Op ◦ Inl $ Get (λ(Stack xs)→
Op ◦ Inl $ Put (Stack (Left r : xs)) (

(fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔) $ k) (s⊕ r)))
= {- definition of hGlobalM -}

λs→ runStack $
Op ◦ Inl $ Get (λ(Stack xs)→

Op ◦ Inl $ Put (Stack (Left r : xs)) (

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

106 W. Tang and T. Schrijvers

(hGlobalM k) (s⊕ r)))
= {- definition of runStack -}

λs→ fmap fst ◦ flip hState1 (Stack []) $
Op ◦ Inl $ Get (λ(Stack xs)→

Op ◦ Inl $ Put (Stack (Left r : xs)) (
(hGlobalM k) (s⊕ r)))

= {- definition of hState1 -}
λs→ fmap fst $ (λt→

(λ(Stack xs)→ λ →
((fmap hState1 ◦ hGlobalM $ k) (s⊕ r)) (Stack (Left r : xs))

) t t
)(Stack [])
= {- function application -}

λs→ fmap fst $
(λ(Stack xs)→ λ →

((fmap hState1 ◦ hGlobalM $ k) (s⊕ r)) (Stack (Left r : xs))
) (Stack []) (Stack [])

= {- function application -}
λs→ fmap fst $

(λ →
((fmap hState1 ◦ hGlobalM $ k) (s⊕ r)) (Stack (Left r : []))

) (Stack [])
= {- function application -}

λs→ fmap fst $
((fmap hState1 ◦ hGlobalM $ k) (s⊕ r)) (Stack (Left r : []))

= {- function application -}
λs→ fmap fst $

((fmap hState1 ◦ hGlobalM $ k) (s⊕ r)) (Stack (Left r : []))
= {- definition of flip and reformulation -}

λs→ (fmap (fmap fst ◦ flip hState1 (Stack [Left r])) ◦ hGlobalM $ k) (s⊕ r)
= {- Lemma 18 and definition of fmap and fst -}

λs→ (fmap (fmap fst ◦ flip hState1 (Stack [])) ◦ hGlobalM $ k) (s⊕ r)
= {- definition of runStack -}

λs→ (fmap runStack ◦ hGlobalM $ k) (s⊕ r)
= {- definition of algS

LHS -}
algS

LHS (MUpdate r (fmap runStack ◦ hGlobalM $ k))
= {- definition of fmap -}

algS
LHS (fmap (fmap runStack ◦ hGlobalM) (MUpdate r k))

For the second subcondition (4), we can define algND
LHS as follows.

algND
LHS :: Functor f ⇒NondetF (s→ Free f [a])→ (s→ Free f [a])

algND
LHS Fail = λs→ Var []

algND
LHS (Or p q)= λs→ liftM2 (++) (p s) (q s)

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 107

We prove it by a case analysis on the shape of input op :: NondetF (Free (ModifyF s r :+:
NondetF :+: f) a).
case op= Fail In the corresponding case of Appendix 6.3, we have calculated that
hGlobalM (Op (Inr (Inl Fail)))= λs→ Var [] (�).

fmap runStack $ hGlobalM (alg2 (Fail))
= {- definition of alg2 -}

fmap runStack $ hGlobalM (Op (Inr (Inl Fail)))
= {- Equation (�) -}

fmap runStack $ λs→ Var []
= {- definition of fmap -}

λs→ runStack $ Var []
= {- definition of runStack -}

λs→ fmap fst ◦ flip hState1 (Stack []) $ Var []
= {- definition of hState1 -}

λs→ fmap fst $ Var ([], Stack [])
= {- definition of fmap -}

λs→ Var []
= {- definition of algND

RHS -}
algND

RHS Fail
= {- definition of fmap -}

algND
RHS (fmap (fmap runStack ◦ hGlobalM) Fail)

case op=Or p q From op is in the codomain of fmap local2globalM , we obtain p and q are
in the codomain of local2globalM .

fmap runStack ◦ hGlobalM $ alg2 (Or p q)
= {- definition of alg2 -}

fmap runStack ◦ hGlobalM $ (pushStack (Right ()) >> p) � (untrail >> q)
= {- definition of (�) -}

fmap runStack ◦ hGlobalM $ Op ◦ Inr ◦ Inl $ Or
(pushStack (Right ()) >> p) (untrail >> q)

= {- definition of hGlobalM -}
fmap runStack ◦ fmap (fmap fst) ◦ hModify1 ◦ hND+f ◦ (⇔) $ Op ◦ Inr ◦ Inl $ Or

(pushStack (Right ()) >> p) (untrail >> q)
= {- definition of (⇔) -}

fmap runStack ◦ fmap (fmap fst) ◦ hModify1 ◦ hND+f $ Op ◦ Inl $ Or
(pushStack (Right ()) >> (⇔) p) (untrail >> (⇔) q)

= {- definition of hND+f and liftM2 -}
fmap runStack ◦ fmap (fmap fst) ◦ hModify1 $ do

x← hND+f ((⇔) (pushStack (Right ()))) >> hND+f ((⇔) p)
y← hND+f ((⇔) untrail) >> hND+f ((⇔) q)
η (x++y)

= {- monad law -}
fmap runStack ◦ fmap (fmap fst) ◦ hModify1 $ do

hND+f ((⇔) (pushStack (Right ())))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

108 W. Tang and T. Schrijvers

x← hND+f ((⇔) p)
hND+f ((⇔) untrail)
y← hND+f ((⇔) q)
η (x++y)

= {- definition of hModify1 and Lemma 17 -}
fmap runStack ◦ fmap (fmap fst) $ λs→ do

(, s1)← hModify1 (hND+f ((⇔) (pushStack (Right ())))) s
(x, s2) ← hModify1 (hND+f ((⇔) p)) s1

(, s3)← hModify1 (hND+f ((⇔) untrail)) s2

(y, s4)← hModify1 (hND+f ((⇔) q)) s3
η (x++y, s4)

= {- definition of fmap (twice) -}
fmap runStack $ λs→ do

(, s1)← hModify1 (hND+f ((⇔) (pushStack (Right ())))) s
(x, s2)← hModify1 (hND+f ((⇔) p)) s1

(, s3)← hModify1 (hND+f ((⇔) untrail)) s2

(y,)← hModify1 (hND+f ((⇔) q)) s3
η (x++y)

= {- definition of fmap and runStack -}
λs→ fmap fst ◦ flip hState1 (Stack []) $ do

(, s1)← hModify1 (hND+f ((⇔) (pushStack (Right ())))) s
(x, s2)← hModify1 (hND+f ((⇔) p)) s1

(, s3)← hModify1 (hND+f ((⇔) untrail)) s2

(y,)← hModify1 (hND+f ((⇔) q)) s3
η (x++y)

= {- definition of hState1 and Lemma 4 -}
λs→ fmap fst $ (λt→ do

((, s1), t1)← hState1 (hModify1 (hND+f ((⇔) (pushStack (Right ())))) s) t
((x, s2), t2)← hState1 (hModify1 (hND+f ((⇔) p)) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y,), t4)← hState1 (hModify1 (hND+f ((⇔) q)) s3) t3
η (x++y, t4)) (Stack [])

= {- function application -}
λs→ fmap fst $ do

((, s1), t1)← hState1 (hModify1 (hND+f ((⇔) (pushStack (Right ())))) s) (Stack [])
((x, s2), t2)← hState1 (hModify1 (hND+f ((⇔) p)) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y,), t4)← hState1 (hModify1 (hND+f ((⇔) q)) s3) t3
η (x++y, t4)

= {- definition of fmap -}
λs→ do

((, s1), t1)← hState1 (hModify1 (hND+f ((⇔) (pushStack (Right ())))) s) (Stack [])
((x, s2), t2)← hState1 (hModify1 (hND+f ((⇔) p)) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y,),)← hState1 (hModify1 (hND+f ((⇔) q)) s3) t3

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 109

η (x++y)
= {- Lemma 20 -}

λs→ do
((x,),)← hState1 (hModify1 (hND+f ((⇔) p)) s) (Stack [])
((y,),)← hState1 (hModify1 (hND+f ((⇔) q)) s) (Stack [])
η (x++y)

= {- definition of runStack -}
λs→ do

(x,)← runStack (hModify1 (hND+f ((⇔) p)) s)
(y,)← runStack (hModify1 (hND+f ((⇔) q)) s)
η (x++y)

= {- definition of hGlobalM -}
λs→ do

x← runStack (hGlobalM p s)
y← runStack (hGlobalM q s)
η (x++y)

= {- definition of fmap -}
λs→ do

x← (fmap runStack ◦ hGobalM) p s
y← (fmap runStack ◦ hGobalM) q s
η (x++y))

= {- definition of liftM2 -}
λs→ liftM2 (++) ((fmap runStack ◦ hGobalM) p s) ((fmap runStack ◦ hGobalM) q s)
= {- definition of algND

LHS -}
algND

LHS (Or ((fmap runStack ◦ hGobalM) p) ((fmap runStack ◦ hGobalM) q))
= {- definition of fmap -}

algND
LHS (fmap (fmap runStack ◦ hGobalM) (Or p q))

For the last subcondition (5), we can define fwdLHS as follows.

fwdLHS :: Functor f ⇒ f (s→ Free f [a])→ (s→ Free f [a])
fwdLHS op= λs→Op (fmap ($s) op)

We prove it by the following calculation for input op :: f (Free (ModifyF s r :+:
NondetF :+: f) a). In the corresponding case of Appendix 6.3, we have calculated that
hGlobalM (Op (Inr (Inr op)))= λs→Op (fmap ($s) (fmap hGlobalM op)) (�).

fmap runStack $ hGlobalM (fwd op)
= {- definition of fwd -}

fmap runStack $ hGlobalM (Op ◦ Inr ◦ Inr ◦ Inr $ op)
= {- Equation (�) -}

fmap runStack $ λs→Op (fmap ($s) (fmap hGlobalM (Inr op)))
= {- fmap fusion -}

fmap runStack $ λs→Op (fmap (($s) ◦ hGlobalM) (Inr op))
= {- reformulation -}

fmap runStack $ λs→Op (fmap (λx→ hGlobalM x s) (Inr op))
= {- definition of fmap -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

110 W. Tang and T. Schrijvers

λs→ runStack $ Op (fmap (λx→ hGlobalM x s) (Inr op))
= {- definition of runStack -}

λs→ fmap fst ◦ flip hState1 (Stack []) $
Op (fmap (λx→ hGlobalM x s) (Inr op))

= {- definition of hState1 -}
λs→ fmap fst $ (λt→

Op (fmap ($t) ◦ fmap (hState1) $ fmap (λx→ hGlobalM x s) op)) (Stack [])
= {- fmap fusion and reformulation -}

λs→ fmap fst $ (λt→
Op (fmap (λx→ hState1 (hGlobalM x s) t) op)) (Stack [])

= {- function application -}
λs→ fmap fst $

Op (fmap (λx→ hState1 (hGlobalM x s) (Stack [])) op)
= {- definition of fmap -}

λs→Op (fmap (λx→ fmap fst (hState1 (hGlobalM x s) (Stack []))) op)
= {- reformulation -}

λs→Op (fmap (λx→ fmap (fmap fst ◦ flip hState1 (Stack [])) ◦ hGlobalM $ x s) op)
= {- reformulation -}

λs→Op (fmap (λx→ (fmap runStack ◦ hGlobalM $ x) s) op)
= {- fmap fission -}

λs→Op (fmap ($s) (fmap (fmap runStack ◦ hGlobalM) op))
= {- definition of fwdLHS -}

fwdLHS (fmap (fmap runStack ◦ hGlobalM) op)

7.4 Equating the fused sides

We observe that the following equations hold trivially.

genLHS = genRHS

algS
LHS = algS

RHS

algND
LHS = algND

RHS

fwdLHS = fwdRHS

Therefore, the main theorem (Theorem 7) holds.

7.5 Lemmas

In this section, we prove the lemmas used in Appendix 7.3.
The following lemma shows the relationship between the state and trail stack.

Intuitively, the trail stack contains all the deltas (updates) that have not been restored in
the program. Previous elements in the trail stack do not influence the result and state of
programs.

Lemma 18 (Trail stack tracks state). For t :: Stack (Either r ()), s :: s, and p ::
Free (ModifyF s r :+: NondetF :+: f) a which does not use the restore operation, we have

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 111

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) t
=

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) (Stack [])
η ((x, fplus s ys), extend t ys)

for some ys= [Left rn, ..., Left r_1]. The functions extend and fplus are defined as follows:

extend :: Stack s→ [s]→ Stack s
extend (Stack xs) ys= Stack (ys++xs)
fplus :: Undo s r⇒ s→ [Either r b]→ s
fplus s ys= foldr (λ(Left r) s→ s⊕ r) s ys

Note that an immediate corollary of Lemma 18 is that in addition to replacing the stack
t with the empty stack Stack [], we can also replace it with any other stack. The following
equation holds.

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) t
=

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) t′

η ((x, fplus s ys), extend t ys)

We will also use this corollary in the proofs.

Proof
We proceed by induction on p.

case p= Var y

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Var y)) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Var y) s) t
= {- definition of (⇔) -}

hState1 ((hModify1 ◦ hND+f) (Var y) s) t
= {- definition of hND+f -}

hState1 (hModify1 (Var [y]) s) t
= {- definition of hModify1 and functiona application -}

hState1 (Var ([y], s)) t
= {- definition of hState1 and functiona application -}

Var (([y], s), t)
= {- similar derivation in reverse -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Var y)) s) (Stack [])
Var ((x, s), t)

case t=Op ◦ Inr ◦ Inl $ Fail

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op ◦ Inr ◦ Inl $ Fail)) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Op ◦ Inr ◦ Inl $ Fail) s) t
= {- definition of (⇔) and hND+f -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

112 W. Tang and T. Schrijvers

hState1 (hModify1 (Var []) s) t
= {- definition of hModify1 and function application -}

hState1 (Var ([], s)) t
= {- definition of hState1 and functiona application -}

Var (([], s), t)
= {- similar derivation in reverse -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
(local2trail (Op ◦ Inr ◦ Inl $ Fail)) s) (Stack [])

Var ((x, s), t)

case t=Op (Inl (MGet k))

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op (Inl (MGet k)))) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Op (Inl (MGet (local2trail ◦ k)))) s) t
= {- definition of (⇔) and hND+f -}

hState1 (hModify1 (Op (Inl (MGet (hND+f ◦ (⇔) ◦ local2trail ◦ k)))) s) t
= {- definition of hModify1 and function application -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail ◦ k) s s) t
= {- reformulation -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (k s)) s) t
= {- induction hypothesis on k s -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (k s)) s) (Stack [])
η ((x, fplus s ys), extend t ys)

= {- similar derivation in reverse -}
do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail (Op (Inl (MGet k)))) s) (Stack [])
η ((x, fplus s ys), extend t ys)

case t=Op (Inl (MUpdate r k))

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op (Inl (MUpdate r k)))) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (do
pushStack (Left r)
update r
local2trail k

)s) t
= {- definition of (⇔) and hND+f -}

hState1 (hModify1 (do
hND+f ◦ (⇔) $ pushStack (Left r)
hND+f ◦ (⇔) $ update r
hND+f ◦ (⇔) ◦ local2trail $ k

)s) t
= {- definition of hModify1, Lemma 17 and function application -}

hState1 (do
(, s1)← (hModify1 ◦ hND+f ◦ (⇔) $ pushStack (Left r)) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 113

(, s2)← (hModify1 ◦ hND+f ◦ (⇔) $ update r) s1

(hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail $ k) s2

) t
= {- definition of hModify1 and update -}

hState1 (do
(, s1)← (hModify1 ◦ hND+f ◦ (⇔) $ pushStack (Left r)) s
(, s2)← η ([()], s1 ⊕ r)
(hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail $ k) s2

) t
= {- monad law -}

hState1 (do
(, s1)← (hModify1 ◦ hND+f ◦ (⇔) $ pushStack (Left r)) s
(hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail $ k) (s1 ⊕ r)

) t
= {- definition of hState1, Lemma 4, and function application -}

do ((, s1), t1)← hState1 ((hModify1 ◦ hND+f ◦ (⇔) $ pushStack (Left r)) s) t
hState1 ((hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail $ k) (s1 ⊕ r)) t1

= {- definition of pushStack -}
do ((, s1), t1)← hState1 ((hModify1 ◦ hND+f ◦ (⇔) $ do

Stack xs← get
put (Stack (Left r : xs))) s) t

hState1 ((hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail $ k) (s1 ⊕ r)) t1
= {- definition of hState1, hModify1, hND+f , (⇔), get, and put; let t= Stack xs -}

do ((, s1), t1)← η (([()], s), Stack (Left r : xs))
hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail k) (s1 ⊕ r)) t1

= {- monad law -}
hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail k) (s⊕ r)) (Stack (Left r : xs))
= {- by induction hypothesis on k, for some ys the equation holds -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
(local2trail k) (s⊕ r)) (Stack [Left r])

η ((x, fplus (s⊕ r) ys), extend (Stack (Left r : xs)) ys)
= {- definition of fplus and extend -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
(local2trail k) (s⊕ r)) (Stack [Left r])

η ((x, fplus s (ys++[Left r])), extend (Stack xs) (ys++[Left r]))
= {- let ys′ = ys++[Left r]; Equation t= Stack xs -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
(local2trail k) (s⊕ r)) (Stack [Left r])

η ((x, fplus s ys′), extend t ys′)
= {- similar derivation in reverse -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
(local2trail (Op (Inl (MUpdate r k)))) s) (Stack [])

η ((x, fplus s ys′), extend t ys′)

case t=Op ◦ Inr ◦ Inl $ Or p q

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

114 W. Tang and T. Schrijvers

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op ◦ Inr ◦ Inl $ Or p q)) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (
(pushStack (Right ()) >> local2trail p) � (untrail >> local2trail q)) s) t

= {- definition of (�) -}
hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Op ◦ Inr ◦ Inl $ Or

(pushStack (Right ()) >> local2trail p)
(untrail >> local2trail q)) s) t

= {- definition of hND+f , (⇔), and liftM2 -}
hState1 (hModify1 (do

x← hND+f ((⇔) (pushStack (Right ()))) >> hND+f ((⇔) (local2trail p))
y← hND+f ((⇔) untrail) >> hND+f ((⇔) (local2trail q))
η (x++y)

)s) t
= {- monad law -}

hState1 (hModify1 (do
hND+f ((⇔) (pushStack (Right ())))
x← hND+f ((⇔) (local2trail p))
hND+f ((⇔) untrail)
y← hND+f ((⇔) (local2trail q))
η (x++y)

)s) t
= {- definition of hModify1, Lemma 17, and function application -}

hState1 (do
(, s1)← hModify1 (hND+f ((⇔) (pushStack (Right ())))) s
(x, s2) ← hModify1 (hND+f ((⇔) (local2trail p))) s1

(, s3)← hModify1 (hND+f ((⇔) untrail)) s2

(y, s4)← hModify1 (hND+f ((⇔) (local2trail q))) s3
η (x++y, s4)

) t
= {- definition of hState1, Lemma 4, and function application -}

do ((, s1), t1) ← hState1 (hModify1 (hND+f ((⇔) (pushStack (Right ())))) s) t
((x, s2), t2) ← hState1 (hModify1 (hND+f ((⇔) (local2trail p))) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y, s4), t4)← hState1 (hModify1 (hND+f ((⇔) (local2trail q))) s3) t3
η ((x++y, s4), t4)

= {- definition of pushStack -}
do ((, s1), t1) ← hState1 (hModify1 (hND+f ((⇔) (do

Stack xs← get
put (Stack (Right () : xs))))) s) t

((x, s2), t2) ← hState1 (hModify1 (hND+f ((⇔) (local2trail p))) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y, s4), t4)← hState1 (hModify1 (hND+f ((⇔) (local2trail q))) s3) t3
η ((x++y, s4), t4)

= {- definition of hState1, hModify1, hND+f , (⇔), get, put; let t= Stack xs -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 115

do ((, s1), t1) ← η (([()], s), Stack (Right () : xs))
((x, s2), t2) ← hState1 (hModify1 (hND+f ((⇔) (local2trail p))) s1) t1
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y, s4), t4)← hState1 (hModify1 (hND+f ((⇔) (local2trail q))) s3) t3
η ((x++y, s4), t4)

= {- monad law -}
do ((x, s2), t2) ← hState1 (hModify1 (hND+f ((⇔)

(local2trail p))) s) (Stack (Right () : xs))
((, s3), t3)← hState1 (hModify1 (hND+f ((⇔) untrail)) s2) t2
((y, s4), t4)← hState1 (hModify1 (hND+f ((⇔) (local2trail q))) s3) t3
η ((x++y, s4), t4)

= {- reformulation -}
do ((x, s2), t2) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack (Right () : xs))
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
((y, s4), t4)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail q) s3) t3
η ((x++y, s4), t4)

= {- by induction hypothesis on p, for some ys the equation holds -}
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack (Right ()))
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

untrail (fplus s ys)) (extend (Stack (Right () : xs)) ys)
((y, s4), t4)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail q) s3) t3
η ((x++y, s4), t4)

= {- Lemma 19 -}
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack (Right ()))
((y, s4), t4)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail q) (fminus (fplus s ys) ys)) (Stack xs)
η ((x++y, s4), t4)

= {- Equation (7.1) gives fminus (fplus s ys) ys= s -}
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack (Right ()))
((y, s4), t4)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail q) s) (Stack xs)
η ((x++y, s4), t4)

= {- by induction hypothesis on p, for some ys′ the equation holds -}
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack (Right ()))
((y,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail q) s) (Stack [])
η ((x++y, fplus s ys′), extend (Stack xs) ys′)

= {- similar derivation in reverse -}
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

116 W. Tang and T. Schrijvers

(local2trail (Op ◦ Inr ◦ Inl $ Or p q)) s) (Stack [])
η ((x, fplus s ys′), extend t ys′)

case t=Op ◦ Inr ◦ Inr $ y

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op ◦ Inr ◦ Inr $ y)) s) t
= {- definition of local2trail -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Op ◦ Inr ◦ Inr ◦ Inr ◦ fmap local2trail $ y) s) t
= {- definition of (⇔) and hND+f -}

hState1 (hModify1 (Op ◦ Inr ◦ Inr ◦ fmap (hND+f ◦ (⇔) ◦ local2trail) $ y) s) t
= {- definition of hModify1 and function application -}

hState1 (Op ◦ Inr ◦ fmap (($s) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail) $ y) t
= {- definition of hState1 and function application -}

Op ◦ fmap (($t) ◦ hState1 ◦ ($s) ◦ hModify1 ◦ hND+f ◦ (⇔) ◦ local2trail) $ y
= {- reformulation -}

Op ◦ fmap (λk→ hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail k) s) t) $ y
= {- by induction hypothesis on y, for some ys the equation holds -}

Op ◦ fmap (λk→ do
((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail k) s) t
η ((x, fplus s ys), extend t ys)) $ y

= {- definition of free monad -}
do ((x,),)←Op ◦ fmap (λk→

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail k) s) t) $ y
η ((x, fplus s ys), extend t ys)

= {- similar derivation in reverse -}
do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail (Op ◦ Inr ◦ Inr $ y)) s) t

η ((x, fplus s ys), extend t ys)

�

The following lemma shows that the untrail function restores all the updates in the trail
stack until it reaches a time stamp Right ().

Lemma 19 (UndoTrail undos). For t= Stack (ys++(Right () : xs)) and ys=
[Left r1, ..., Left rn], we have

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s) t
=

η (([()], fminus s ys), Stack xs)

The function fminus is defined as follows:

fminus :: Undo s r⇒ s→ [Either r b]→ s
fminus s ys= foldl (λs (Left r)→ s� r) s ys

Proof
We first calculate as follows:

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s) t
= {- definition of untrail -}

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 117

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (do
top← popStack
case top of

Nothing→ η ()
Just (Right ())→ η ()
Just (Left r)→ do restore r; untrail

)s) t
= {- definition of popStack -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (do
top← do Stack xs← get

case xs of
[] → η Nothing
(x : xs′)→ do put (Stack xs′); η (Just x)

case top of
Nothing→ η ()
Just (Right ())→ η ()
Just (Left r)→ do restore r; untrail

)s) t
= {- monad law and case split -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (do
Stack xs← get
case xs of

[] → η ()
(Right () : xs′)→ do put (Stack xs′); η ()
(Left r : xs′) → do put (Stack xs′); restore r; untrail

)s) t
= {- definition of get -}

hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (Op ◦ Inr ◦ Inr ◦ Inl ◦Get $ λ(Stack xs)→
case xs of

[] → η ()
(Right () : xs′)→ do put (Stack xs′); η ()
(Left r : xs′) → do put (Stack xs′); restore r; untrail

)s) t
= {- definition of hND+f and (⇔) -}

hState1 (hModify1 (Op ◦ Inr ◦ Inl ◦Get $ λ(Stack xs)→
case xs of

[] → η [()]
(Right () : xs′)→ hND+f ◦ (⇔) $ do put (Stack xs′); η ()
(Left r : xs′) → hND+f ◦ (⇔) $ do put (Stack xs′); restore r; untrail

)s) t
= {- definition of hModify1 and function application -}

hState1 (Op ◦ Inl ◦Get $ λ(Stack xs)→
case xs of

[] → η ([()], s)
(Right () : xs′)→ hModify1 (hND+f ◦ (⇔) $ do put (Stack xs′); η ()) s

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

118 W. Tang and T. Schrijvers

(Left r : xs′) → hModify1 (hND+f ◦ (⇔) $ do put (Stack xs′); restore r; untrail) s
) t
= {- definition of hState1 and function application; let t= Stack (ys++(Right () : xs)) -}

case (ys++(Right () : xs)) of
[] → η (([()], s), t)
(Right () : xs′)→ η (([()], s), Stack xs′)
(Left r : xs′) → hState1 (hModify1 (hND+f ◦ (⇔) $

do put (Stack xs′); restore r; untrail) s) t

Then, we proceed by an induction on the structure of ys.
case ys= []

case (ys++(Right () : xs)) of
[] → η (([()], s), t)
(Right () : xs′)→ η (([()], s), Stack xs′)
(Left r : xs′) → hState1 (hModify1 (hND+f ◦ (⇔) $

do put (Stack xs′); restore r; untrail) s) t
= {- case split -}

η (([()], s), Stack xs)
= {- definition of fminus -}

η (([()], fminus s []), Stack xs)

case ys= (Left r : ys′)

case (ys++(Right () : xs)) of
[] → η (([()], s), t)
(Right () : xs′)→ η (([()], s), Stack xs′)
(Left r : xs′) → hState1 (hModify1 (hND+f ◦ (⇔) $

do put (Stack xs′); restore r; untrail) s) t
= {- case split -}

hState1 (hModify1 (hND+f ◦ (⇔) $
do put (Stack (ys′ ++(Right () : xs))); restore r; untrail) s) t

= {- definition of hState1, hModify1, hND+f , (⇔) and reformulation -}
hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail (s� r))

(Stack (ys′ ++(Right () : xs)))
= {- induction hypothesis on ys′ -}

η (([()], fminus (s� r) ys′), Stack xs)
= {- definition of fminus -}

η (([()], fminus s (Left r : ys′)), Stack xs)
= {- definition of ys -}

η (([()], fminus s ys), Stack xs)

�

The following lemma is obvious from Lemma 18 and Lemma 19. It shows that we can
restore the previous state and stack by pushing a time stamp on the trail stack and use the
function untrail afterwards.

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

From high to low: Simulating nondeterminism and state with state 119

Lemma 20 (State and stack are restored). For t :: Stack (Either r ()), s :: s, and p ::
Free (ModifyF s r :+: NondetF :+: f) a which does not use the restore operation, we have

do ((, s1), t1) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (pushStack (Right ())) s) t
((x, s2), t2) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s1) t1
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
η ((x, s3), t3)

=
do ((x,),) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) (Stack [])

η ((x, s), t)

Proof Suppose t= Stack xs. We calculate as follows.

do ((, s1), t1) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (pushStack (Right ())) s) (Stack xs)
((x, s2), t2) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s1) t1
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
η ((x, s3), t3)

= {- definition of hState1, hModify1, hND+f , (⇔), pushStack -}
do ((, s1), t1) ← η (([()], s), Stack (Right () : xs))

((x, s2), t2) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s1) t1
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
η ((x, s3), t3)

= {- monad law -}
do ((x, s2), t2) ← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s)

(Stack (Right () : xs))
((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
η ((x, s3), t3)

= {- by Lemma 18, for some ys= [Left r1, ..., Left rn] the equation holds -}
do ((x, s2), t2) ← do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))

(local2trail p) s) (Stack [])
η ((x, fplus s ys), extend (Stack (Right () : xs)) ys)

((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) untrail s2) t2
η ((x, s3), t3)

= {- monad law and definition of extend -}
do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) (Stack [])

((, s3), t3)← hState1 ((hModify1 ◦ hND+f ◦ (⇔))
untrail (fplus s ys)) (Stack (ys++(Right () : xs)))

η ((x, s3), t3)
= {- Lemma 19 and monad law -}

do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) (Stack [])
η ((x, fminus (fplus s ys) ys), Stack xs)

= {- Equation (7.1) gives fminus (fplus s ys) ys= s -}
do ((x,),)← hState1 ((hModify1 ◦ hND+f ◦ (⇔)) (local2trail p) s) (Stack [])

η ((x, s), Stack xs)

�

https://doi.org/10.1017/S0956796824000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000133

	From high to low: Simulating nondeterminism and state with state
	Introduction
	Background and motivation
	Functors and monads
	Nondeterminism and state
	The N-queens puzzle

	Algebraic effects and handlers
	Free monads and their folds
	Modularly combining effects
	Proof device

	Modelling local state with global state
	Local-state semantics
	Global-state semantics
	Simulating local state with global state

	Modelling nondeterminism with state
	Simulating nondeterminism with state
	Combining the simulation with other effects

	All in one
	Modelling two states with one state
	Putting everything together

	Modelling local state with undo
	Reversible state updates
	Reversible state update effect
	Simulating local state with global state and undo

	Modelling local state with trail stack
	Simulating local state with global trail stack
	Putting everything together, again

	Related work
	Prolog
	Reasoning about side effects

	Conclusion and future work
	Proofs for get laws in local-state semantics
	Proofs for modelling local state with global state
	Main proof structure
	Fusing the right-hand side
	Fusing the left-hand side
	Equating the fused sides
	Key lemma: State restoration
	Auxiliary lemmas

	Proofs for modelling nondeterminism with state
	Only nondeterminism
	Combining with other effects

	Proofs for modelling two states with one state
	Proofs for the all in one simulation
	Proofs for modelling local state with undo
	Main proof structure
	Fusing the right-hand side
	Fusing the left-hand side
	Equating the fused sides
	Key lemma: State restoration
	Auxiliary lemmas

	Proofs for modelling local state with trail stack
	Main proof structure
	Fusing the right-hand side
	Fusing the left-hand side
	Equating the fused sides
	Lemmas

