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Abstract

Background: Neural predictors underlying variability in depression outcomes are poorly
understood. Functional MRI measures of subgenual cortex connectivity, self-blaming and
negative perceptual biases have shown prognostic potential in treatment-naïve, medication-free
and fully remitting forms of major depressive disorder (MDD). However, their role in more
chronic, difficult-to-treat forms of MDD is unknown.
Methods: Forty-five participants (n= 38 meeting minimum data quality thresholds) fulfilled
criteria for difficult-to-treat MDD. Clinical outcome was determined by computing percentage
change at follow-up from baseline (four months) on the self-reported Quick Inventory of
Depressive Symptomatology (16-item). Baseline measures included self-blame-selective
connectivity of the right superior anterior temporal lobe with an a priori Brodmann Area
25 region-of-interest, blood-oxygen-level-dependent a priori bilateral amygdala activation for
subliminal sad vs happy faces, and resting-state connectivity of the subgenual cortex with an a
priori defined ventrolateral prefrontal cortex/insula region-of-interest.
Findings: A linear regression model showed that baseline severity of depressive symptoms
explained 3% of the variance in outcomes at follow-up (F[3,34] = .33, p = .81). In contrast, our
three pre-registered neural measures combined, explained 32% of the variance in clinical
outcomes (F[4,33]= 3.86, p = .01).
Conclusion: These findings corroborate the pathophysiological relevance of neural signatures
of emotional biases and their potential as predictors of outcomes in difficult-to-treat depression.

Introduction

Currently, treatment of major depressive disorder (MDD) is based on a trial-and-error
approach, with only half of patients responding to their initial treatment (Rush et al. 2006).
There is a clear need for improving treatment in patients with depression, which could be
informed by standard clinical variables and biomarkers (Dunlop and Mayberg 2014; Fonseka
et al. 2018; Perlman et al. 2019). The field has started to identify various biomarkers showing
promise, such as genetic markers (Breitenstein et al. 2014; Laje et al. 2009), behavioural and
cognitive markers (Groves et al. 2018; Park et al. 2018; Perna et al. 2020), metabolic and
inflammatory markers (Lopresti et al. 2014; Schmidt et al. 2011) and neuroimaging markers
(Breitenstein et al. 2014; Dichter et al. 2015; Dunlop and Mayberg 2014; Fonseka et al. 2018;
Fu et al. 2013).

Such biomarkers are thought to represent underlying biological substrates of depression,
which can be used to predict general prognosis regardless of treatment, better outcome with any
treatment, or differential treatment response (Simon and Perlis 2010). For example, baseline
metabolic profile was found to differentiate between responders and non-responders to
sertraline or placebo (Kaddurah-Daouk et al. 2011), baseline C-reactive protein differentially
predicted response to escitalopram or nortriptyline (Uher et al. 2014), and baseline resting-state
functional connectivity with the subgenual cortex differentially predicted response to
antidepressant treatment or cognitive behavioural therapy (Dunlop et al. 2017).

It is important to note, however, that MDD is a multifaceted disorder associated with a wide
range of cognitive, behavioural, emotional and physiological symptoms (Disner et al. 2011). As
such, it is unlikely that a single clinical or biological marker can predict treatment outcome
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(Patel et al. 2016; Phillips et al. 2015). In fact, Lee et al. (2018)
showed that models informed by multiple data types, such as a
composite of clinical features, neuroimaging, or genetic measures,
were more accurate at predicting outcome than less complex
models. Nonetheless, current clinical practice is mostly based on
questionnaire- and interview-based assessments, which represent a
wealth of clinical data which can be used to predict treatment
outcome (Rost et al. 2022).

In recent years, machine-learning methods have been increas-
ingly employed to examine which clinical variables are most
predictive of response or remission, allowing identification of
patterns of information at an individual patient level (Chekroud
et al. 2021; Jankowsky et al. 2024). Various studies have
consistently identified baseline symptom severity, number of
depressive episodes and co-morbid anxiety disorders as predictors
of treatment outcome (Balestri et al. 2016; Bartova et al. 2019;
Chekroud et al. 2016; Iniesta et al. 2016; Kautzky et al. 2018; Perlis
2013). However, standard clinical variables alone capture a limited
amount of variance in clinical outcome, with estimates in the
region of 5–10% (Iniesta et al. 2016; Perlis 2013), and they tend to
performworse than neuroimagingmeasures (Dunlop 2015; Jollans
and Whelan 2016; Lee et al. 2018; Poirot et al. 2024; Schmaal
et al. 2015).

Neuroimaging measures may be of particular interest, as
dysfunctional neural processes are core to the development and
maintenance of depressive symptoms (Godlewska 2020). They
capture emotional biases associated with depression, such as the
tendency to focus more on negative facial expressions than positive
ones (Bourke et al. 2010; Krause et al. 2021), proneness to
experience excessive self-blaming emotions, such as overgeneral-
ised guilt and disgust/contempt towards oneself (Duan et al. 2021;
Duan et al. 2023; Green et al. 2013; Weiner 1985; Zahn et al. 2015),
as well as rumination, i.e., a tendency to engage in recursive,
automatic thoughts often linked to self-critical thinking (Berman
et al. 2014; Hamilton et al. 2015; Nolen-Hoeksema et al. 2008).

Leading neuroanatomical models of MDD propose that
impaired function within prefrontal-limbic neural circuits,
particularly the subgenual cingulate cortex and amygdala, explains
disruptions of emotional processing and regulation associated with
depression (Price and Drevets 2010; Ressler and Mayberg 2007).
Neuroimaging biomarkers capturing the aforementioned – often
implicit – emotional biases associated with depression have shown
promise in predicting prognosis in MDD at an individual level,
notably amygdala activation in response to emotional faces
(Williams et al. 2015) and resting-state posterior subgenual cortex
connectivity (Dunlop et al. 2017) in current MDD, and self-blame-
selective anterior temporal-subgenual connectivity in remitted
MDD (Lawrence et al. 2022). Despite these promising findings,
studies tend to focus on treatment-naïve and treatment-free
samples of MDD, and it is unclear whether these neural signatures
generalise to pragmatic samples of patients encountered in clinical
settings. Moreover, it is important to establish whether imaging
measures provide added value in predicting clinical outcomes
compared to standard baseline clinical variables.

Here, we probed the potential of these neural signatures of
emotional biases in predicting clinical outcomes in a pragmatic
sample of difficult-to-treat MDD after four months of primary
care. These pre-registered (NCT04342299) neural signatures were
selected based on their potential to predict response to treatment at
an individual level and cover complementary neurocognitive
aspects ofMDD, i.e., self-blaming biases, negative perceptual biases
and dysfunction of task-independent subgenual networks.

Methods

The functional MRI (fMRI) dataset reported here was collected as
part of an observational sub-study within a feasibility trial, the
Antidepressant Advisor Study (NCT03628027) (Harrison et al.
2020; Harrison et al. 2022). We have published tasked-based
functional imaging (Fennema et al. 2023; Fennema, Barker,
O’Daly, Duan, Godlewska, et al. 2024) and resting-state fMRI
results (Fennema, Barker, O’Daly, Duan, Carr, et al. 2024) from the
same cohort previously, but here, we report on the prediction
model for the first time.

Participants

Forty-five participants fulfilled criteria for current MDD
according to the Diagnostic and Statistical Manual of Mental
Health Disorders, Fifth Edition (DSM-5) (First et al. 2015) and had
not responded to at least two serotonergic antidepressants.
Participants were encouraged to book an appointment with their
general practitioner (GP) to review their medication and followed
up after receiving four months of standard care. For more
information about inclusion/exclusion criteria, recruitment and
assessment, please see Supplementary Methods.

Prior to their medication review, participants attended an fMRI
session, consisting of three paradigms: the moral sentiment task
(assessing self-blame-related biases), the subliminal faces task
(assessing bias in emotional processing), and a resting-state fMRI
scan. As part of the moral sentiment task, participants viewed self-
and other-blaming emotion-evoking statements. Participants were
shown written statements describing actions counter to socio-
moral values described by social concepts (e.g., impatient,
dishonest) in which the agent was either the participant (self-
agency) or their best friend (other-agency) (Fennema et al. 2023).
As part of the subliminal faces task, participants were presented
with a series of faces. The faces were shown in pairs, briefly
displaying a “target” face (expressing sad, happy or neutral
emotion) followed by another “mask” face of neutral expression
(Fennema, Barker, O’Daly, Duan, Godlewska, et al., 2024). As part
of the resting-state fMRI scan, participants were instructed to keep
their eyes open and let their mind wander while focusing on a cross
(Fennema, Barker, O’Daly, Duan, Carr, et al., 2024). For more
details on the fMRI paradigms, please see Supplementary
Materials.

Main outcome

As stated in our pre-registered protocol (NCT04342299), we used a
continuous measure of clinical outcome rather than categorising
participants into responders and non-responders using the
standard definition of a 50% reduction (Nierenberg and
DeCecco 2001) in self-reported Quick Inventory of Depressive
Symptomatology (16-item; QIDS-SR16) (Rush et al. 2003) scores,
due to an unbalanced split between the resulting groups
(responders n= 8; non-responders n= 30). The outcome was
defined as the percentage change at follow-up from baseline on our
pre-registered primary outcome measure, QIDS-SR16, where
negative scores corresponded to a reduction in depressive
symptoms.

fMRI measures

Statistical Parametric Mapping 12 was used for blood-oxygen-
level-dependent (BOLD) effect analysis and psychophysiological
interaction analysis, while Data Processing Assistant for Resting-
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State fMRI was used for resting-state analysis (please see
Supplementary Methods for more details). Regression coefficient
averages (moral sentiment task and subliminal faces task) and
cluster mean z-score (resting-state scan) over our pre-registered
regions-of-interest (ROIs) were extracted for individual partic-
ipants using the MarsBaR toolbox (Rorden and Brett 2000), i.e.,
self-blame-selective connectivity between the right superior
anterior temporal lobe (RSATL) and posterior subgenual cortex
(BrodmannArea [BA] 25), bilateral amygdala BOLD activation for
subliminal sad vs happy faces, and resting-state functional
connectivity between the bilateral posterior subgenual cortex
and left ventrolateral prefrontal cortex (BA47; ventrolateral
prefrontal cortex [VLPFC])/insula. For more details, please see
Supplementary Materials.

Statistical analysis

Multiple linear regression was used to assess potential predictors of
QIDS-SR16 percentage change, as well as an exploratory logistic
regression to determine likelihood of response vs. non-response.
The aim of the study was to estimate the effect size of using our pre-
registered imaging measures as predictors of clinical outcomes,
rather than tease out the importance of each predictor given the
limitations of our sample size. As such, we ran our main “fMRI”
multivariable model which assessed the contribution of our three
pre-registered fMRI measures as outlined above, with baseline
Maudsley Modified Patient Health Questionnaire, 9 items (MM-
PHQ-9; measure of severity of depressive symptoms) (Harrison
et al. 2021) as a covariate.

In addition, we ran a supplementary “clinical” multivariable
model to compare the contribution of standard clinical measures
(baseline MM-PHQ-9, baseline Generalised Anxiety Disorder,
7-items (GAD-7; measure of severity of anxiety symptoms)
(Spitzer et al. 2006), and Maudsley Staging Method total score
(proxy of treatment-resistance based on duration, severity and
treatment failures) (Fekadu et al. 2018); please see Supplementary
Methods for more details on the clinical measures). Another
supplementary “high-quality fMRI” multivariable model assessed
the impact of suboptimal fMRI quality, i.e., signal drop-out and/or
more motion, on the predictive value of the fMRI measures,
including only participants with high-quality fMRI data for all
three scans (n=30). Other supplementary models considered the
individual contribution of the pre-registered fMRI measures
(please see Supplementary Methods and Results).

Please note that our pre-registered imaging measures also
included additional regions of interest: functional resting-state
subgenual cortex connectivity with the left ventromedial prefrontal
cortex (BA10) and with the dorsal midbrain (Fennema, Barker,
O’Daly, Duan, Carr, et al. 2024), as well as pregenual anterior
cingulate cortex BOLD activation for subliminal sad vs happy faces
(Fennema, Barker, O’Daly, Duan, Godlewska, et al. 2024).
However, as our sample size only allowed us to model a limited
number of variables without risk of overfitting, for our primary
prediction model, we solely included variables showing univariate
prediction effects in our previous analyses (Fennema, Barker,
O’Daly, Duan, Carr, et al. 2024; Fennema, Barker, O’Daly, Duan,
Godlewska, et al., 2024). For more details on the exploratory “pre-
registration” model, please see Supplementary Methods.

All variables were Fisher Z-transformed to derive beta
coefficients and corresponding standard error. Correlation
analysis (Spearman’s rho) was used to investigate the association
between the pre-registered neural signatures. To test whether there

is any link between treatment change and symptom change, a one-
way analysis of variance was conducted (please see Supplementary
Methods for a description of treatment change). All tests were
carried out using IBM SPSS Statistics 27, using a significance
threshold of p = .05, two-tailed.

Results

Subgroup characteristics

Table 1 presents participant characteristics at baseline, split by
responders and non-responders. Of 45 included participants, 38
had usable fMRI data (31 [82%] female, mean [SD] age = 41.8
[14.8] years). Most participants fulfilled the DSM-5 anxious
distress specifier criteria (82%) andmet criteria for a life-time axis I
co-morbidity (87%). Average baseline depression severity was
severe according to MM-PHQ-9 (mean [SD] = 18.7 [4.7]) and
QIDS-SR16 (mean [SD] = 17.3 [3.5]), and 82% of the participants
were taking a selective serotonin-reuptake inhibitor. There were no
significant differences between responders and non-responders at
baseline in terms of demographic and clinical characteristics
(t< 1.31 and p > .20), except for current major depressive episode
duration (responders mean [SD] = 6.3 [5.3]; non-responders mean
[SD]= 32.8 [50.2]; t[31.2] = −2.85, p = .01).

As part of the study, participants were encouraged to book an
appointment with their GP to review their antidepressant
medication. Even though UK care guidelines would recommend
changing antidepressant medications in non-responders, unex-
pectedly, more than half (55%) did not change their medication
and some even stopped their medication (16%; Supplementary
Table 1). Despite little change in treatment, on average,
participants showed a significant reduction in depressive symp-
toms from baseline to follow-up in QIDS-SR16 scores (mean [95%
CI] = −4.1 [−5.8, −2.4]). This was also the case for other self- and
observer-rated scores (Supplementary Table 2).

There was a mean percentage change [SD] of −23.1 [30.0] in
QIDS-SR16: those with a relevant change showed the most
improvement in QIDS-SR16 (mean percentage change
[SD] = −43.8 [20.3]), followed by participants with a minimal
change (mean percentage change [SD] = −32.1 [32.4]) and
participants with no change (mean percentage change [SD] =
−17.6 [29.6]). However, there was no significant difference between
the groups (F[2,37]= 1.78, p = .18).

Prediction models

The “fMRI” model using the pre-registered fMRI measures with
baseline MM-PHQ-9 as a covariate explained 32% of the variance
of QIDS-SR16 percentage change (F[4,33]= 3.86, p= .01, R2= .32,
R2

adjusted = .24; Table 2). When including all previously pre-
registered regions, the overall prediction effect for the “pre-
registration” model was comparable (R2= 33%, please see
Supplementary Results). When limiting to “high-quality fMRI,”
the model explained 43% of the variance of QIDS-SR16 percentage
change (F[4,25]= 4.67, p = .01, R2 = .43, R2

adjusted = .34;
Supplementary Table 3). In contrast, the “clinical” model using
standard clinical measures at baseline, i.e. MM-PHQ-9, GAD-7
and Maudsley Staging Method, explained only 3% of the variance
of QIDS-SR16 percentage change (F[3,34] = .33, p = .81, R2 = .03,
R2

adjusted = −.06; Table 2).
Bilateral amygdala BOLD activation positively contributed to

the variance in QIDS-SR16 percentage change (partial β = 11.11,
t[33] = 2.21), while partial effects of resting-state functional
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Table 1. Baseline demographic and clinical characteristics by responders and non-responders (n= 38)

Characteristic

Responders (n= 8) Non-responders (n= 30)

n (%) or mean ± SD; range

Age, in years 42.9 ± 16.1; 19-66 41.6 ± 14.8; 20-62

Sex

Female 7 (88) 24 (80)

Male 1 (13) 5 (17)

Other 0 (0) 1 (3)

Ethnicitya

Asian 1 (13) 24 (80)

Black 0 (0) 2 (7)

White 5 (63) 3 (10)

Other ethnicity 1 (13) 1 (3)

Years of education, in years 17.4 ± 3.3; 12-22 16.9 ± 3.6; 10-24

Depression severity

Current MDE duration, in months 6.3 ± 5.3; 1-15 32.8 ± 50.2; 1-176

Number of MDEs 7.3 ± 5.6; 3-20 6.2 ± 4.8; 1-20

MM-PHQ-9 total score 20.0 ± 3.8; 13-25 18.4 ± 4.9; 8-27

QIDS-SR16 total score 17.9 ± 3.9; 11-22 17.2 ± 3.5; 10-23

MADRS total score 29.5 ± 5.0; 23-38 32.0 ± 4.9; 22-42

SOFAS total score 55.9 ± 3.5; 52-61 53.1 ± 5.7; 33-61

Maudsley Staging Method

Mild 3 (38) 12 (40)

Moderate 5 (63) 18 (60)

Severe 0 (0) 0 (0)

MDD DSM-5 subtype

Anxious distress only 0 (0) 7 (23)

Melancholic features þ anxious distress 1 (13) 4 (13)

Atypical features only 0 (0) 1 (3)

Atypical features þ anxious distress 3 (38) 15 (50)

No specific subtype 4 (50) 3 (10)

Treatment at baseline

SSRI 6 (75) 25 (83)

SNRI 1 (13) 3 (10)

Other class 1 (13) 2 (7)

Non-pharmacological treatment 4 (50) 6 (20)

GAD-7 total score 10.4 ± 6.6; 1-21 11.6 ± 3.6; 5-20

Life-time axis-I co-morbidity

Posttraumatic stress disorder 2 (25) 15 (50)

Other anxiety disorder 4 (50) 12 (40)

Obsessive-compulsive disorder 0 (0) 3 (10)

Eating disorder 3 (38) 10 (33)

None 2 (25) 3 (10)

Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; DSM-5 = Diagnostic and Statistical Manual for Mental Disorders 5th edition; MDE = major depressive
episode; SD = standard deviation; MM-PHQ-9 = Maudsley Modified Patient Health Questionnaire, 9 items; QIDS-SR16 = Quick Inventory Depressive Symptomatology, self-rated, 16 items;
MADRS = Montgomery-Åsberg Depression Rating Scale; SOFAS = Social and Occupational Functioning Scale; SSRI = selective serotonin reuptake inhibitor; SNRI = selective norepinephrine
reuptake inhibitor; GAD-7 = Generalised Anxiety Disorder, 7 items.
aMissing data for one participant. Ethnicity categories have been combined: “White” includes White: British, Other and Polish; “Asian” includes Asian or Asian British: Indian, Chinese and Other
Asian; “Black” includes Black or Black British: Caribbean.
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connectivity between the posterior subgenual cortex and left
VLPFC/insula as well as self-blame-selective RSATL-BA25
connectivity contributed negatively (resting-state: partial
β = −8.15, t[33] = −1.95; RSATL-BA25: partial β = −7.28, t[33]
= −1.71; Figure 1). Please see Supplementary Results and
Supplementary Table 3 for exploratory separate prediction models
for each fMRI paradigm showing a maximum of 18% variance in
clinical outcomes explained, when using the bilateral amygdala
BOLD signature.

Notably, there were no bivariate associations between the three
pre-registered fMRI measures (self-blame-selective RSATL-
BA25 connectivity and bilateral amygdala BOLD activation:
rs[38] = −.06, p = .71; self-blame-selective RSATL-BA25
connectivity and resting-state functional connectivity between
posterior subgenual cortex and left VLPFC/insula: rs[38] = .09,
p = .61; bilateral amygdala BOLD activation and resting-state
functional connectivity between posterior subgenual cortex and
left VLPFC/insula: rs[38] = −.09, p = .61).

Exploratory findings responders vs. non-responders

A logistic regression was performed to determine the effects of the
pre-registered neural measures and baseline MM-PHQ-9 on the
likelihood of response vs. non-response. The logistic regression
model was statistically significant, χ2(4) = 11.09, p = .03. The
model explained 39% (Nagelkerke R2) of the variance in
responders and correctly classified 81.6% of the cases.
Increased functional connectivity between the bilateral subgenual
cortex and left VLPFC/insula was associated with an increased

likelihood of response. For more details, please see Supplementary
Results.

Discussion

To our knowledge, this is the first study to combine comple-
mentary functional imaging measures of affective circuits in MDD
and to probe their role in prospectively predicting clinical
outcomes in a pragmatic setting. We show that neuroimaging
markers hold promise: the model with the three pre-registered
fMRI measures explained more variance in clinical outcomes
compared with the clinical model, i.e. 32% vs 3%. The model that
only included participants with high-quality fMRI measures
explained an even larger amount of variance (43%), highlighting
the need to adequately account for signal drop-out and/or motion
artefacts. However, it is important to acknowledge that no formal
statistical tests were undertaken to compare the regression models
as the study was not powered for such comparisons, which limits
the interpretability of differences between the models.

Interestingly, the effects of the three pre-registered fMRI
measures were uncorrelated, showing that these may capture
distinct aspects of MDD pathophysiology, i.e. self-blaming biases
(right superior anterior temporal-subgenual connectivity), neg-
ative perceptual biases (amygdala) and dysfunction of task-
independent subgenual networks. If these neural signatures were to
relate to specific subtypes rather than independently predicting the
same underlying general pathophysiology, then this would offer
the intriguing possibility of stratification for neuromodulation and
neurofeedback studies based on distinct neural circuits of interest,
by either modulating self-blaming or emotional perception biases
in patients non-responsive to standard treatments. The feasibility
of such interventions has recently been confirmed, with reports of a
training-induced reduction in self-blame-selective connectivity
(Jaeckle et al. 2023) and an enhancement of amygdala responsive-
ness to positive autobiographical memories (Young et al. 2019).

However, it is important to first determine whether these neural
signatures represent a trait-like feature of a fully remitting subtype
of MDD, or whether it is also modulated by depressive state. For
example, both self-blame-related and emotional perception-
related changes have been identified in remitted MDD
(Joormann and Gotlib 2007; Lythe et al. 2022; Ruhe et al. 2019).
It is unclear whether these changes are more pronounced when
people develop a recurrent episode or are merely due to underlying
vulnerabilities which are not modulated by symptomatic state.
This question is key to a deeper pathophysiological understanding
of MDD in that little is known about how trait-related changes
interact with precipitating biological and psychological trigger
events to result in a depressive brain state, and how it affects
subsequent response to treatment.

Limitations

Due to our relatively modest sample size, we were unable to use
cross-validated and data-driven machine learning algorithms,
which may have improved the prediction model performance.
Moreover, our sample consisted of chronic MDD patients, often
with anxious distress and other co-morbidities. In addition,
treatment was not standardised and, unlike previous studies in
randomised controlled trials, did not allow us to distinguish
spontaneous remission and placebo effects from treatment-related

Table 2. Prediction models of clinical outcomes in depression (n= 38)

Model parameters
Overall
model

β SE t p R2 p

Standard clinical
variables model

.03 .81

Baseline MM-PHQ-9 .15 10.86 .01 .99

Baseline GAD-7 3.76 8.53 .44 .66

Maudsley Staging
Method

3.37 5.35 .63 .53

fMRI measures model .32 .01*

Baseline MM-PHQ-9 4.19 6.97 .60 .55

Self-blame-selective
RSATL-BA25
connectivity

−7.28 4.25 −1.71 .10

Bilateral amygdala
BOLD activation for
sad vs happy
subliminal faces

11.11 5.04 2.21 .04*

Resting-state posterior
subgenual cortex-
VLPFC/insula
functional connectivity

−8.15 4.18 −1.95 .06

* Significant at p < .05 threshold, two-tailed. SE = standard error; MM-PHQ-9 = Maudsley
Modified Patient Health Questionnaire, 9 items; GAD-7 = Generalised Anxiety Disorder,
7 items; RSATL = right superior anterior temporal lobe; BA = Brodmann Area; BOLD = blood-
oxygen level-dependent; VLPFC = ventrolateral prefrontal cortex.
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effects. Given the selection biases in randomised controlled trials,
however, it was important to investigate a pragmatic sample as we
have undertaken in this study.

Clinical utility is complicated by the heterogenous nature of
MDD, resulting in patients with a wide variety of symptoms,
disease severity and treatment history (Strawbridge et al. 2017),
as well as patient response to treatment (Mayberg and Dunlop
2023). Further complementary predictive measures, such as
novel cognitive markers (Lawrence et al. 2022), would be useful
in addition to imaging markers to achieve clinically relevant
levels of individual prediction of response to specific types of
treatment.

Moreover, it is important to acknowledge that percentage-
based reduction scores to define treatment response have been
criticised, as it is biased towards more severe depressive symptoms
at baseline (Rost et al. 2022). As a result, it is plausible for a
responder to still experience clinically significant distress or
impairment when starting with a baseline score in the severe range,
while a non-responder may show a clinically significant improve-
ment – which was also observed in the current study.

Conclusions

Taken together, we reproduced clinically relevant neural signatures
in an independent, pragmatic sample of difficult-to-treat MDD.

The findings confirm the pathophysiological relevance and
potential of the proposed candidate neural signatures to make
relevant contributions to the prospective prediction of clinical
outcomes in more chronic, difficult-to-treat forms of MDD and
call for stratified neurofeedback and neuromodulation
interventions.
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