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Swirling instability of viscous liquid jets with
axial shear effect in gas surroundings
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Linear instability analysis of a viscous swirling liquid jet surrounded by ambient gas is
carried out by considering the significant influence of axial shear effect. The jet azimuthal
flow is assumed as a Rankine vortex, and the non-uniform velocity distribution in the jet
axial direction is approximated by parabolic and error functions. The enhancement of jet
rotation is found to promote the predominant mode with larger azimuthal wavenumbers,
and the mode transition is decided by the competition between centrifugal force and axial
shear stress. Subsequently, the influence of the axial shear effect is examined through
changing the degree of shear stress and the thickness of the gas velocity boundary layer.
It is found that an increase of jet average velocity or surface velocity in the axial direction
leads to the predominant mode transition to smaller azimuthal wavenumbers, due to
the combined effects of shear stress and gas pressure perturbation. A larger velocity
difference between ambient gas and liquid jet also promotes the predominant modes with
smaller azimuthal wavenumbers, and the physical mechanism is attributed to gas pressure
perturbation. Phase diagrams of different azimuthal modes are given and compared with
the study of Kubitschek & Weidman (J. Fluid Mech., vol. 572, 2007, pp. 261–286), where
a static swirling column without axial shear stress was considered. The strengthened axial
shear effect is found to delay the transition of predominant modes with the increase
of angular velocity. Experimental studies considering the swirling jets with different
axial velocities are further carried out, which validate the theoretical findings. Different
instability mechanisms and their transition rules are also identified through energy budget
analysis. This study is expected to give scientific guidance on understanding the instability
mechanisms of the swirling jets that widely exist in natural phenomena and engineering
applications.
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1. Introduction

When one phase of fluid is injected into an ambient gas environment through a circular
tube, a cylindrical jet with axial velocity can be formed. Adding circumferential rotation
to the jet, a swirling jet with azimuthal velocity can be further produced. The swirling jet
is widely encountered in natural phenomena such as tornadoes and hurricanes (Karami
et al. 2019; Zhang et al. 2023). It also plays an important role in engineering applications
such as the reduction of noise (Lee et al. 2024; Li et al. 2024), the improvements
of combustion efficiency (Borsuk et al. 2015; Balakrishnan & Srinivasan 2016) and
atomization efficiency (Ghaffar et al. 2023; Shim et al. 2023). Therefore, it is crucial
to investigate the instability characteristics of the swirling jet.

Comparing with the non-swirling jet which has been widely investigated for more than
100 years (Lin 2003; Eggers & Villermaux 2008; Montanero & Ganán-Calvo 2020),
the instability of the swirling jet is much more complicated owing to the addition of an
azimuthal velocity component. For the swirling jet of a homogeneous medium without the
formation of an interface, numerous kinds of velocity profiles have been utilized to model
the azimuthal flow. For example, the well-known Batchelor vortex was used in some early
studies considering the temporal and spatiotemporal instabilities of the jet (Khorrami 1991;
Olendraru et al. 1999; Yin et al. 2000). The Taylor vortex and the Lamb–Ossen vortex have
also been utilized to approximate the basic azimuthal velocity profile of the swirling jet
(Hu, Sun & Yin 2001; Sun et al. 2002). Since the Rankine vortex which consists of a core
in solid-body rotation (i.e. the flow rotates with a constant angular velocity) surrounded by
a potential flow with constant circulation can approximate the final state of swirling flow, it
has been most commonly used for the jet azimuthal velocity profiles. Loiseleux, Chomaz
& Huerre (1998) conducted a spatiotemporal instability analysis of an inviscid swirling
jet based on the azimuthal Rankine vortex and the axial discontinuous velocity profile.
They derived an analytical dispersion relationship of perturbation development and studied
the transition between absolute instability (AI) and convective instability (CI). Gallaire &
Chomaz (2003a) considered a similar model but assumed that there was a sudden jump
of circulation outside the vortex core. They identified four physical mechanisms of jet
instability, i.e. the Coriolis effect and the centrifugal effect caused by vortex core rotation,
and the axial and the azimuthal Kelvin–Helmholtz instabilities (KHIs) caused by velocity
difference. Gallaire & Chomaz (2003b) considered a model which could describe the
intensity of shear stress in the azimuthal direction. The coefficient in their velocity profiles
can be determined precisely through the experimental measurements of Billant, Chomaz
& Huerre (1998). Healey (2008) utilized another kind of velocity profile with the form of
an error function, which was able to characterize the velocity boundary layer of azimuthal
and axial flows simultaneously.

The instability characteristics of a swirling jet composed of two immiscible phases are
more complicated due to the existence of an interface. Most theoretical models are based
on the azimuthal velocity profiles of solid-body rotation or free vortex (i.e. a potential
flow with constant circulation). For example, Liao et al. (2000) carried out a temporal
linear stability analysis of a viscous liquid jet surrounded by an inviscid swirling air
stream. The axial velocity profiles of the liquid jet and the air stream were assumed to
be uniform, and the azimuthal velocity of the air stream was established by the solid-body
rotation profile and the free vortex. They found that these two azimuthal velocity profiles
both have a stabilizing effect on the liquid jet. Parthasarathy & Subramaniam (2001)
conducted a linear temporal stability analysis of an inviscid gas jet swirling with constant
circulation inside a co-flowing viscous liquid. The axial velocity profiles of the gas jet
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and liquid stream were assumed to be uniform. They found that the swirling of gas
would enhance the jet instability and promote the occurrence of helical modes with high
azimuthal wavenumbers. Kubitschek & Weidman (2007a) considered a viscous liquid
column without axial velocity rotating with a uniform angular velocity, where the existence
of the ambient gas is ignored. They introduced the Reynolds number Re and the Hocking
number L which demonstrates the relative importance between the surface tension and
the centrifugal force to study the instability behaviours of the axisymmetric mode and
the helical modes with different azimuthal wavenumbers. The phase diagram of mode
transitions in L–Re space was also given by comparing the maximum value of perturbation
growth rate between different modes. Their later experimental studies (Kubitschek &
Weidman 2007b, 2008) validated the transition rule of different modes as the jet angular
velocity varies, and the refined interface structure and perturbation growth of the helical
jets were also shown in experiments. Lim & Redekopp (1998) considered two swirling
jet models, which correspond to the Rankine vortex with a jump of azimuthal velocity at
the interface and the free vortex with different circulations. They found that the swirling
effect would promote the AI of the jet as the vortex core size is smaller than the jet radius.
Recently, three-dimensional numerical simulations have also been performed to study the
helical breakup dynamics of a swirling jet. Sahu et al. (2022) carried out the simulation of
a swirling liquid jet in a quiescent gas environment based on the open-source platform
Gerris (Popinet 2003). The liquid–gas interface was resolved by the volume-of-fluid
method, and the solid-body rotation of the jet was given as the inlet boundary condition. It
was observed that under the action of centrifugal acceleration, the very small protrusions
at the interface would elongate along the radial direction, evolving into ligaments and
finally degenerating into droplets. Based on the Grabowski–Berger velocity profile (as
described in Grabowski & Berger (1976)), Schmidt & Oberleithner (2023) numerically
studied the linear and nonlinear dynamics of two-phase swirling flows under the influence
of a viscosity stratification. It was found that a more viscous outer liquid can lead to a more
unstable flow.

Despite the existing theoretical studies on the interfacial instability of the swirling
jet, it is notable that only the situations of a static column without axial velocity and a
moving jet with uniform velocity distribution have been considered. In these models, the
axial shear stress on jet interface is ignored due to the absence of velocity gradient. It is
notable that in previous studies considering an axisymmetric liquid jet (i.e. a cylindrical
jet without swirling), the shear effect has been proved to play a significant role in jet
instability. For example, Lin & Reitz (1998) considered the non-uniform velocity profiles
of a viscous liquid jet and ambient gas, pointing out the importance of velocity boundary
layer on jet instability. Additionally, Gañán-Calvo, Herrada & Montanero (2014) studied
the instability of a liquid jet with spatially evolving velocity boundary layer. They found
that the velocity boundary layer could hardly affect the jet instability as the flow evolved
a sufficiently long distance downstream of the jet, whereas the velocity boundary layer
would have a destabilizing effect on the jet at a distance of the order of the jet radius. As the
swirling liquid jet is more complicated than the non-swirling jet due to the existence of the
azimuthal velocity, how the axial shear effect manipulates the instability characteristics of
the swirling jet motivates our interest. Moreover, as multiple factors (e.g. surface tension,
centrifugal force, shear stress, etc.) act synergistically on the instability of a swirling liquid
jet, it is significant to reveal the primary physical mechanisms of jet instability within a
wide range of parameter space.

In this work, a linear temporal instability analysis is performed based on the swirling
jet model where the azimuthal and axial velocity profiles are described by the Rankine
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Figure 1. Sketch of a viscous swirling liquid jet emerging into gas surroundings under cylindrical coordinates
(z, r, θ). The Rankine vortex velocity profile and the non-uniform velocity profile with the form of parabolic
and error functions are utilized to approximate the azimuthal and the axial basic flows, respectively.

vortex and the non-uniform velocity profile, respectively. An energy budget analysis is
also employed to reveal the primary physical mechanisms of jet instability. The paper
is structured as follows. In § 2, the theoretical model is introduced, including the basic
flows, the governing equations and boundary conditions, and the procedures for linear
instability analysis and energy budget analysis. In § 3, the rotary effect on jet instability is
studied. In § 4, the parameters which measure the degree of axial shear effect are varied to
examine their influences on jet instability. In § 5, the effect of axial shear on the transition
of predominant modes is further examined. Experimental studies on interfacial instabilities
of the swirling liquid jet are also carried out to verify the theoretical findings. In § 6,
three primary jet instability mechanisms are identified by means of energy budget analysis.
The effects of the azimuthal rotation and axial shear on the transition between different
instability mechanisms are studied. The main conclusions are given in § 7.

2. Formulation of the problem

2.1. Physical model and governing equations
Figure 1 shows a sketch of the swirling liquid jet, in which a viscous jet with radius R1
is surrounded by ambient gas with radius R2 under cylindrical coordinates of (z, r, θ).
The liquid jet (with density ρ1 and dynamical viscosity μ1) flows with velocity U∗

1(r) =
U∗

1(r)ez + W∗
1 (r)eθ and the ambient gas (with density ρ2 and dynamical viscosity μ2)

evolves with velocity U∗
2(r) = U∗

2(r)ez + W∗
2 (r)eθ , where U∗

i (r) and W∗
i (r) (i = 1, 2)

denote the axial and azimuthal velocity components, respectively. The surface tension
of the liquid–gas interface is denoted by γ . To make the system dimensionless, the
characteristic length, velocity, time and pressure are chosen as R1, W∗

1 , R1/W∗
1 and

ρ1W∗2
1 , respectively, where W∗

1 represents the azimuthal velocity at the jet interface. As a
consequence, the dimensionless parameters involved in the theoretical model include the
Reynolds number Re = ρ1W∗

1 R1/μ1, the Weber number We = ρ1W∗2
1 R1/γ , the density

ratio J = ρ2/ρ1, the viscosity ratio N = μ2/μ1 and the radius ratio a = R2/R1. It is
notable that the value of a must be chosen much larger than unity to ensure a sufficient
width of the gas environment.

The flows of the swirling liquid jet and the ambient gas are governed by the
dimensionless Navier–Stokes equations which consist of the continuity equation and the

1000 A32-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1023


Swirling instability of liquid jets in gas surroundings

momentum equation, i.e.

∇·ui = 0, (2.1)

∂ui

∂t
+ ui·∇ui = −

(
1
J

)δ2i

∇pi +
(

N
J

)δ2i 1
Re

∇2ui, (2.2)

where ui (= (ui, vi, wi)) is the velocity component in cylindrical coordinates (z, r, θ), pi
denotes the pressure, δ2i is the Kronecker symbol and i = 1, 2 represent the liquid and the
gas phases, respectively.

The corresponding boundary conditions are also given. At the symmetric axis r = 0,
the bounded condition and the single-valued condition should be satisfied as follows:

u1 < ∞, v1 < ∞, w1 < ∞, lim
r→0

∂u1

∂θ
= 0, lim

r→0

∂p1

∂θ
= 0. (2.3)

At the interface (r = 1 + η, where η denotes a small perturbation of the interface
position), the velocity continuity condition, the kinetic boundary condition and the
dynamic boundary condition are given as

u1 = u2, (2.4)

v1 =
(

∂

∂t
+ u1·∇

)
η, (2.5)

(T 2 − T 1)·n − 1
We

(∇·n)n = 0, (2.6)

where n (= (−(∂η/∂z), 1, −(∂η/r∂θ))) represents the unit normal vector of the interface
and T 1 (= −p1δjlejel + (1/Re)[∇u1 + (∇u1)

T ]) and T 2 (= −p2δjlejel + (N/Re)[∇u2 +
(∇u2)

T ]) represent the hydrodynamic stress tensors of the liquid jet and the surrounding
gas, respectively.

The boundary condition at r = a is

u2 < ∞, v2 < ∞, w2 < ∞, p2 < ∞. (2.7)

2.2. Basic velocity profiles
To carry out the linear instability analysis, a basic flow state must be given first. In this
work, the velocity profile at the azimuthal direction is established as the Rankine vortex,
with the specific form

W∗
1 (r) = Ωr, at r ≤ R1, (2.8)

W∗
2 (r) = ΩR1

r
, at r > R1, (2.9)

where Ω is the rotary angular velocity of the liquid jet, as sketched in figure 1. The Rankine
vortex describes the steady state of the swirling liquid jet and has been commonly utilized
in previous theoretical studies (Moore & Saffman 1972; Loiseleux et al. 1998; Gallaire &
Chomaz 2003a). The use of the Rankine vortex has also proved to be valid by experiments
and numerical simulations (Billant et al. 1998; Sahu et al. 2022). The dimensionless forms
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of the azimuthal velocities correspond to

W1(r) = r, at r ≤ 1, (2.10)

W2(r) = 1
r
, at r > 1. (2.11)

As for the basic flow in the axial direction, we utilize the parabolic and error functions
for the velocity profiles of the liquid jet and the gas surroundings, respectively. The
parabolic function is known as the solution of pipe flow, which can be derived analytically
to approximate the velocity profile of the liquid jet. The error function has been widely
employed to construct the basic flow profiles of the jet or the mixing layers in previous
studies (Yecko, Zaleski & Fullana 2002; Otto, Rossi & Boeck 2013; Matas, Delon &
Cartellier 2018). In our previous work (Li et al. 2014), we successfully applied the error
functions to model the surrounding air stream of an electrified liquid jet, in which a good
agreement between theoretical predictions and experimental measurements was reached.
The dimensional form of the axial velocity profile can be written as

U∗
1(r) = US + 2

[
US − Q

πR2
1

][
r2

R2
1

− 1

]
, at r ≤ 1, (2.12)

U∗
2(r) = (U∞ − US)erf

⎡⎢⎢⎢⎢⎣
√

π

2

4μ1

(
US − Q

πR2
1

)
μ2(U∞ − US)

(
r

R1
− 1

)⎤⎥⎥⎥⎥⎦+ US, at r > 1,

(2.13)

where US is the axial velocity at the surface and U∞ is the axial velocity at the outer
boundary of the ambient gas (i.e. r = a), as sketched in figure 1, and Q is the flow rate
of the liquid jet. More details on the derivation of the velocity profile can be found in
Appendix A. The dimensionless form of the axial velocity profile corresponds to

U1(r) = V[VS + 2(VS − 1)(r2 − 1)], at r ≤ 1, (2.14)

U2(r) = V
[
(W − VS)erf

[√
π

2
4(VS − 1)

N(W − VS)
(r − 1)

]
+ VS

]
, at r > 1, (2.15)

where V = Ū1/ΩR1, VS = US/Ū1 and W = U∞/Ū1. Here, Ū1 = Q/πR2
1 is the average

axial velocity of the jet. To satisfy the real flow situations, the value of VS is directly related
to that of W. Specifically, when the axial velocity of the jet is larger than that of the gas
(i.e. W < 1), the value of VS should be less than 1 to maintain the continuity of velocity
at the interface. If the axial velocity of the jet is smaller than that of the gas (i.e. W > 1),
the value of VS should be larger than 1. When the jet velocity is equal to the gas velocity
(i.e. W = 1), the velocity profiles become uniform and thus VS = 1. It is notable that in
figure 1, only the situation of W < 1 is given for the sketch.

As the basic velocity profiles in the axial direction are non-uniform, axial shear stress
exists both at the jet interface and in the fluid bulk. The strength of axial shear stress is in
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direct proportion to the derivatives of the axial velocities, with the form

dU1(r)
dr

= 4V(VS − 1)r, at r ≤ 1, (2.16)

dU2(r)
dr

= 4V(VS − 1) exp

(
−
[

2
√

π(VS − 1)

N(W − VS)
(r − 1)

]2
)

, at r > 1. (2.17)

If VS = 1, the values of dU1(r)/dr and dU2(r)/dr are equal to zero invariably, and
the liquid jet and the surrounding gas both flow with uniform velocity without axial
shear stress. For the non-uniform velocity profiles with VS /= 1, the absolute values of
the velocity derivatives become larger as VS gradually diverges from 1, indicating the
enhancement of shear stress. A stronger axial shear stress can also be reached as V
increases. The value of W does not affect the strength of axial shear stress but mainly
modulates the thickness of the velocity boundary layer of gas surroundings. Specifically,
as the value of W gradually deviates from 1, the thickness of the gas velocity boundary
layer becomes larger due to the increase of the velocity difference between the liquid jet
and the gas surroundings.

2.3. Linear instability analysis
In theoretical analysis, the physical quantities (ui, pi, where i = 1, 2) are all divided into
two parts: the basic state (i.e. U i and Pi) and small disturbed quantities (denoted by ũi and
p̃i). Utilizing these forms and ignoring the high-order nonlinear terms, the linear equations
which govern the development of small perturbations are derived as

∇·ũi = 0, (2.18)

∂ũi

∂t
+ ũi·∇U i + U i·∇ũi = −

(
1
J

)δ2i

∇p̃i +
(

N
J

)δ2i 1
Re

∇2ũi. (2.19)

At the axisymmetric axis r = 0,

∂ṽ1

∂θ
− w̃1 = 0, ṽ1 + ∂w̃1

∂θ
= 0,

∂ ũ1

∂θ
= 0,

∂ p̃1

∂θ
= 0. (2.20)

At the jet interface r = 1 + η, the kinetic and dynamic boundary conditions can be
written as

ũ1 + dU1

dr
η = ũ2 + dU2

dr
η, (2.21)

ṽ1 = ṽ2, (2.22)

w̃1 + dW1

dr
η = w̃2 + dW2

dr
η, (2.23)

ṽ1 = ∂η

∂t
+ U1

∂η

∂z
+ W1

∂η

r∂θ
, (2.24)

1
Re

(
∂ṽ1

∂z
+ ∂ ũ1

∂r
+ d2U1

dr2 η

)
= N

Re

(
∂ṽ2

∂z
+ ∂ ũ2

∂r
+ d2U2

dr2 η

)
, (2.25)
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p̃1 − p̃2 + dP1

dr
η − dP2

dr
η − 2

Re
∂ṽ1

∂r
+ 2N

Re
∂ṽ2

∂r
+ 1

We

(
η + ∂2η

∂θ2 + ∂2η

∂z2

)
= 0, (2.26)

1
Re

[
∂ṽ1

∂θ
+ ∂w̃1

∂r
+ η

d2W1

dr2 −
(

w̃1 − ηW1 + dW1

dr
η

)]
− N

Re

[
∂ṽ2

∂θ
+ ∂w̃2

∂r
+ η

d2W2

dr2 −
(

w̃2 − ηW2 + dW2

dr
η

)]
= 0. (2.27)

At r = a, the boundary condition corresponds to
ũ2 = ṽ2 = w̃2 = p̃2 = 0. (2.28)

The normal mode decomposition is employed to study the development of small
perturbations, where the perturbations of velocity components, pressure and the
displacement of jet interface η are all expanded with the Fourier form, i.e.

(ũi, ṽi, w̃i, p̃i, η) = (ûi(r), v̂i(r), ŵi(r), p̂i(r), η̂) exp(i(kz + mθ − ωt)), (2.29)
where k is the dimensionless axial wavenumber, m is the dimensionless azimuthal
wavenumber and ω is the dimensionless perturbation frequency. In temporal instability
analysis, ω is a complex number with the form ω = ωr + iωi, m is a non-negative
integer and k is a real number. The imaginary and real parts of ω (denoted by ωi and
ωr, respectively) stand for the temporal growth rate and the frequency of disturbance,
respectively. If ωi < 0 for all values of k, the jet is stable invariably. However, if ωi > 0 for
some values of k, the jet can be unstable. The jet is neutrally stable at ωi = 0 as the initial
disturbance neither grows nor decays with time. The variation of m stands for different
azimuthal modes. Mode m = 0 represents the axisymmetric mode in which the jet evolves
with axisymmetric disturbance, and m ≥ 1 stands for the helical modes in which the jet
develops under non-axisymmetric perturbations. Without loss of generality, this study
mainly focuses on the growth of disturbance under azimuthal modes m = 0–5.

Taking (2.29) into (2.18)–(2.28), the governing equations can be written as
dv̂i

dr
+ v̂i

r
+ im

r
ŵi + ikûi = 0, (2.30)

−
(

1
J

)δ2i

ikp̂i − v̂i
dUi

dr
+
(

N
J

)δ2i 1
Re

{
d2ûi

dr2 + 1
r

dûi

dr
−
[

k2 + m2

r2

+ i
(

kUi + Wim
r

)(
J
N

)δ2i

Re

]
ûi

}
= −iωûi, (2.31)

−
(

1
J

)δ2i dp̂i

dr
+
(

− 1
Re

2im
r2

(
N
J

)δ2i

+ 2Wi

r

)
ŵi + 1

Re

(
N
J

)δ2i
{

d2v̂i

dr2 + dv̂i

rdr

−
[

k2 + m2 + 1
r2 + i

(
kUi + mWi

r

)
Re
(

J
N

)δ2i
]

v̂i

}
= −iωv̂i, (2.32)

−
(

1
J

)δ2i im
r

p̂i +
(

1
Re

2im
r2

(
N
J

)δ2i

− Wi

r
− dWi

dr

)
v̂i + 1

Re

(
N
J

)δ2i
{

d2ŵi

dr2 + 1
r

dŵi

dr

−
[

k2 + m2 + 1
r2 + i

(
kUi + mWi

r

)
Re
(

J
N

)δ2i
]

ŵi

}
= −iωŵi. (2.33)
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Accordingly, the boundary conditions become as follows:

ŵ1 = v̂1 = dû1

dr
= dp̂1

dr
= 0, at r = 0, for m = 0, (2.34)

û1 = p̂1 = 0, v̂1 + iŵ1 = 0, 2
dv̂1

dr
+ i

dŵ1

dr
= 0, at r = 0, for m = 1, (2.35)

û1 = v̂1 = ŵ1 = p̂1 = 0, at r = 0, for m ≥ 2. (2.36)

At the jet interface r = 1 + η,

û1 + dU1

dr
η̂ = û2 + dU2

dr
η̂, (2.37)

−iωη̂ = v̂1 − i
(

kU1 + W1m
r

)
η̂, (2.38)

ikv̂1 + dû1

dr
+ d2U1

dr2 η̂ = N
(

ikv̂2 + dû2

dr
+ d2U2

dr2 η̂

)
, (2.39)

p̂1 − p̂2 + dP1

dr
η̂ − dP2

dr
η̂ − 2

Re
dv̂1

dr
+ 2N

Re
dv̂2

dr
+ 1

We
(1 − m2 − k2)η̂ = 0, (2.40)

imv̂1 + dŵ1

dr
− ŵ1 +

(
d2W1

dr2 + W1 − dW1

dr

)
η̂

− N
[

imv̂2 + dŵ2

dr
− ŵ2 +

(
d2W2

dr2 + W2 − dW2

dr

)
η̂

]
= 0. (2.41)

At the outside boundary r = a,

û2 = v̂2 = ŵ2 = p̂2 = 0. (2.42)

2.4. Numerical solutions and validations
The non-uniform characteristics of the velocity profiles bring about a difficulty in deducing
an analytical dispersion relation of perturbations. Therefore, we utilize the Chebyshev
collocation method (Weideman & Reddy 2000; Schmid & Henningson 2001; Chaudhary
et al. 2021) to solve the perturbation growth numerically. In the process of solution, the
liquid region r ∈ [0, 1] is mapped into the computational space of y ∈ [−1, 1] through the
linear transformation

r = 1 + y
2

(2.43)

and the gas region r ∈ [1, a] is mapped into the computational space y ∈ [−1, 1] by means
of linear transformation

r = y(1 − a) + (1 + a)

2
. (2.44)

In this way, the physical quantities ûi(r), v̂i(r), ŵi(r), p̂i(r) and their derivatives are
expanded in Chebyshev polynomials and inserted into governing equations as well as
boundary conditions to obtain discrete equations. The Gauss–Lobatto collocation points
yj = cos( jπ/N), j = 0, 1, . . . , N, are employed to discretize the computation domain.
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Therefore, the discrete equations and the corresponding boundary conditions form a
generalized eigenvalue problem with the form

iω[B]X = [A]X , (2.45)

where X denotes the characteristic vector. As the numbers of collocations for the liquid and
the gas domains are N1 + 1 and N2 + 1, respectively, the sizes of two coefficient matrices
A, B are equal to (4N1 + 4N2 + 9) × (4N1 + 4N2 + 9). A MATLAB code is utilized to
solve the generalized eigenvalue problem with QZ algorithm. In our study, we choose the
value of a = 10 to ensure the infinite characteristics of the outside boundary. The numbers
of the collocation points are selected to be N1 = 30 and N2 = 60 to satisfy the calculation
accuracy. The convergence studies on the selections of values of a, N1 and N2 and the
numerical validations of our results to previous studies are given in Appendix B.

2.5. Energy budget
To analyse the mechanism of the jet instability, the energy budget equation is also built,
which is able to trace the source of disturbance kinetic energy (Lin & Chen 1998; Lin 2003;
Ding et al. 2022). Considering a control volume of the liquid jet over one perturbation
wavelength λ, we form a dot product of (2.19) with dimensionless perturbation velocity
ũ1 and use the continuity equation of (2.18) to simplify the pressure term and the Gauss
theorem to reduce some of the volume integrals to surface integrals. Through integrating
over the control volume and averaging over one wavelength λ and one perturbation period
T = 2π/ωr, the energy equation can be derived as

1
Tλ

∫ T

0

∫
V

(
∂

∂t
+ U1·∇

)
e dV dt = − 1

Tλ

∫ T

0

∫
V

ũ1·(ũ1·∇U1) dV dt

− 1
Tλ

∫ T

0

∫
A

p̃1ũ1·n dA dt + 1
TλRe

∫ T

0

∫
A

ũ1·τ 1 dA dt − 1
2ReTλ

∫ T

0

∫
V

τ 1 : τ 1 dV dt,

(2.46)

where e = 1
2 ũ1·ũ1 denotes the disturbance kinetic energy and V and A stand for the control

volume and surface area, respectively. Considering the tangential and normal dynamic
boundary conditions at the jet surface, the energy budget can be finally obtained as

KE = REY + PRL + SHL + NVL + PRG + SUT + NVG

+ SHG + AHG + SHB + AHB + LSS + OGS + DIS. (2.47)

The detailed expressions of each term in (2.47) are given in Appendix C. The
left-hand-side term KE represents the time rate of change of the disturbance kinetic energy.
For the right-hand-side terms, REY represents the energy transfer between the disturbance
and the basic flow through the Reynolds stress; PRL, SHL and NVL demonstrate the rate of
work done by the pressure, the tangential and normal components of the viscous stress at
the top and the bottom ends of the control volume, respectively. Since the temporal analysis
assumes the jet is infinite and periodic in the axial direction, the terms worked at the top
and the bottom ends of the control volume equal zero invariably. Therefore, PRL, SHL and
NVL are neglected in energy budget analysis. Term SUT is the rate of work done by the
surface tension. Term PRG is the rate of work done by the gas pressure perturbation on
the swirling jet. Term NVG represents the rate of work done by the normal viscous stress
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Swirling instability of liquid jets in gas surroundings

exerted by the perturbed gas at the interface. Terms SHG and AHG are the rate of work
done by axial shear stress and azimuthal shear stress exerted by the perturbed gas at the
interface, respectively. Terms SHB and AHB represent the rate of work done by the axial
shear stress and azimuthal shear stress associated with the basic flow distortion caused by
the interface displacement, respectively. Terms LSS and OGS stand for the work done by
centrifugal force caused by the swirling of liquid and gas phases, respectively. Term DIS
is the rate of mechanical energy dissipation through viscosity.

To eliminate the non-uniqueness of the energy terms, we utilize the disturbance kinetic
energy EK to normalize each term in (2.47), i.e.

KE = KE/EK, REY = REY/EK, PRL = PRL/EK, SHL = SHL/EK, etc.,
(2.48)

with the specific form

EK =
∫ T

0

∫ λ
0

∫ 2

0

∫ 1

0

π

2
(ũ2

1 + ṽ2
1 + w̃2

1)r dr dθ dz dt. (2.49)

This strategy has been widely used in previous studies (Ye, Yang & Fu 2016; Ding
et al. 2022). It is notable that a positive value of a certain term indicates that the
corresponding force would promote the jet instability, while a negative value suggests
that the corresponding force would suppress the instability.

2.6. Reference state
To investigate the effect of circumferential rotation and axial flow on jet stability, a
reference state should be given first. To ensure the rationality of theoretical analysis,
the reference state must correspond to the real flow situation. Following the previous
experimental study of Kubitschek & Weidman (2007b), we choose silicone oil and air for
the liquid jet and the surrounding gas, respectively. The densities and dynamic viscosities
of fluids correspond to ρ1 = 971 kg m−3, ρ2 = 1.29 kg m−3, and μ1 = 0.1223 Pa s, μ2 =
2 × 10−5 Pa s, respectively. The interfacial tension is γ = 26 mN m−1 and the radius of
the liquid jet is R1 = 3.5 mm. For the reference state, the average axial velocity of the jet
(Ū1) is chosen to be 2.6 m s−1 and the annular velocity (Ω) is equal to 211 rad s−1. The jet
is supposed to move in static gas surroundings (i.e. U∞ = 0). We also assume the axial
velocity VS on the interface is slightly slower than the average axial velocity of the jet. The
specific values of the dimensionless parameters under the reference state are

Re = 20.5, We = 71.3, V = 3.5, VS = 0.995, W = 0, J = 0.0013,

N = 1.67 × 10−4. (2.50)

It is notable that as the characteristic velocity scale is chosen as ΩR1, the change
of the rotating angular velocity would affect the values of Re and We simutaneously.
Moreover, the value of V (= U1/ΩR1) also changes with the variation of Ω in order
to maintain a constant axial velocity U1. For the convenience of analysis, we also define
the Ohnesorge number Oh = √

We/Re = μ1/
√

ρ1γ R1 and the Reynolds number based on
the axial velocity in the z direction, i.e. Rez = ReV = ρ1Ū1R1/μ1. For the reference state,
the value of Oh is equal to 0.41, and the variations of angular velocity and axial velocity
can be represented through singly changing the value of Re and Rez, respectively.
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3. Azimuthal rotary effect on jet instability

We firstly study the effect of rotation on the jet instability since the existence of the angular
velocity is the primary feature of the swirling jet. The jet angular velocity is modulated
through changing the value of Re, while the values of Rez are fixed to maintain a constant
axial velocity. Figure 2 shows the growth rate ωi and the frequency −ωr of perturbation
versus the axial wavenumber k as Re gradually varies, in which the azimuthal modes with
wavenumber m = 0 to 5 are considered. Without loss of generality, the angular velocity
Ω of the swirling jet varies from 20.6 to 422 rad s−1 (the corresponding value of Re
changes from 2 to 41), which falls within the experimental parameter range of Kubitschek
& Weidman (2007b). For a certain growth rate curve, as sketched in figure 2(a), there exists
a cut-off wavenumber kc beyond which the growth rate becomes negative, indicating the
critical unstable region of perturbation wave. Since the perturbation grows exponentially
with the form eωit, the maximum value of perturbation growth rate (denoted by ωimax)
would dominate the jet instability among all perturbations in the unstable region, and the
corresponding wavenumber kmax decides the size of the resulting droplets. It is observed
that the helical modes with m ≥ 2 only become unstable as Re reaches some critical values.
For example, the unstable growth rate curves occur as Re ≥ 10.3 for modes m = 2–4
(see figures 2c–2e, respectively), and the unstable growth rate curves occur as Re ≥ 20.5
for mode m = 5 (see figure 2f ). Moreover, for the axisymmetric mode with m = 0 and
the helical mode with m = 1, the perturbation growth rates are equal to zero invariably
as k = 0. However, for the helical modes with m = 2–5, the swirling jet is unstable
with ωi > 0 at k = 0, indicating that the swirling jet is unstable at infinite perturbation
wavelength as the dimensionless wavelength λ is inversely proportional to the wavenumber
(λ = 2π/k).

It can be seen from figure 2(a,b) that as Re increases, the cut-off wavenumbers kc
increase continuously to induce a much wider unstable wavenumber region. In these
situations, the jet breakup presents the Taylor mode where the resulting droplets can
be much smaller than the jet diameter (Lin & Chen 1998). The maximum growth rates
ωimax of the axisymmetric mode and the helical mode m = 1 are found to decrease firstly
as Re increases from 2 to 10.3 and increase monotonically as Re increases from 10.3
to 41, showing a dual effect of rotation on the instability of m = 0 and m = 1 modes.
However, the most unstable wavenumbers kmax increase continuously with the increase
of Re. As a larger kmax leads to a smaller perturbation wavelength, a stronger rotation
can lead to the formation of smaller droplets. For the helical modes m = 2–5, as shown in
figures 2(c)–2( f ), respectively, the values of kc and ωimax both increase with an increase of
Re, indicating that a wider unstable perturbation wave region and a more unstable liquid jet
can be obtained. The value of kmax for mode m = 2 increases continuously with an increase
of Re, while those for modes m = 3 and 4 decrease firstly and then keep constant at zero.
For the helical mode m = 5, the value of kmax stays at zero invariably as Re increases
from 20.5 to 41. As for the perturbation frequency −ωr shown in figure 2, it is clear
that the perturbation frequency presents a linear increasing tendency with an increase
of wavenumber k. More specifically, the slope of −ωr versus k is found to approximate
the value of V (= Rez/Re) for each azimuthal mode. For example, under the reference
case where Re = 20.5 and Rez = 71.75, the slope is equal to 3.5 (which is the value of
V) invariably. This indicates that the dimensionless phase velocity for the propagation of
disturbance (−ωr/k) approximately approaches a constant value of V . Therefore, if one
stands on the axial local framework along with the liquid jet, the disturbance only grows
temporally and hardly propagates upstream or downstream of the jet, which is similar to
the standard temporal stability analysis of a capillary jet (Lin & Chen 1998; Eggers &
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Figure 2. Perturbation growth rate ωi and frequency −ωr versus wavenumber k for different azimuthal modes
as Re changes under constant Oh = 0.41, Rez = 71.75, VS = 0.995, W = 0, J = 0.0013 and N = 1.67 × 10−4:
(a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3, (e) m = 4, ( f ) m = 5.

Villermaux 2008). It is notable that for modes m = 2–5, small values of intercepts exist
on the vertical axis, indicating that the phase velocity −ωr/k would diverge from V under
very low values of k. However, this limitation does not affect the feasibility of temporal
instability analysis once k increases to large values.

To gain more details about the effect of rotation on the jet instability, the maximum
growth rates ωimax and the most unstable wavenumbers kmax for modes m = 0–5 as Re
gradually increases are given in figures 3(a) and 3(b), respectively. As we have found
in figure 2, the values of ωimax for m = 0 and 1 firstly decrease and then increase
with an increase of Re, while those for modes m = 2–5 present an overall increasing
tendency. Generally, the azimuthal mode which corresponds to the maximum value of
ωimax can dominate the jet breakup, which is referred to as the predominant mode. By
comparing the values of ωimax between different azimuthal modes, the predominant mode
can be determined. The red numbers in figure 3(a) indicate the predominant mode as Re
varies. It can be seen that the axisymmetric mode with m = 0 maintains the predominant
mode under relatively low Re. As Re gradually increases, the predominant mode firstly
changes from m = 0 to m = 2 and then shifts from m = 2 to m = 3, 4 and 5 step by
step, which means the enhancement of rotation can promote the occurrence of helical
modes with larger azimuthal wavenumbers. This observation is qualitatively consistent
with the experimental results of Kubitschek & Weidman (2007b). As for the variations
of the most unstable wavenumber (see figure 3b), it is found that the values of kmax for
m = 0–2 increase monotonically with the increase of Re, while those for m = 3 firstly
decrease slightly and then increase dramatically. For azimuthal modes m = 4 and 5, the
most unstable wavenumbers decrease at first and then keep constant as Re increases. As the

1000 A32-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1023


Y.Q. Xu, K. Mu, Y. Xin, R. Qiao, C.X. Zhao and T. Si

2
6

4

2

0

1

0 10 20 30 40 0 10 20 30 40

0
0 0 0 2 3 4 5

0

0 2

3

4
5

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

Re

ωimax kmax

Re

(a) (b)

Figure 3. (a) Maximum perturbation growth rate ωimax for different azimuthal modes as Re varies. (b) Most
unstable wavenumber kmax for different azimuthal modes as Re varies, where the most unstable wavenumbers
corresponding to the predominant mode are depicted by the filled symbols and connected by the black thick
dashed line. In both panels, the predominant modes are indicated by red numbers. The other parameters are the
same as those in figure 2.

increase of Re leads to the transition between different azimuthal modes, we also highlight
kmax which corresponds to the predominant mode as filled symbols in figure 3(b), and the
filled symbols are connected with a black thick dashed line. It can be observed that the
most unstable wavenumber of the predominant mode increases at first and then decreases
gradually as Re increases from 2 to 41.

To reveal the physical mechanism of jet instability, energy budget analysis is further
employed. Figure 4 shows the energy budget results of different azimuthal modes
(m = 0–5) for the reference state (corresponding to Re = 20.5). As the most unstable
perturbation with axial wavenumber kmax can decide the breakup of the liquid jet, the
values of each term under kmax are also labelled by symbols. It should be emphasized
that as the terms REY , NVG, AHG, SHB, AHB and OGS are very small with their values
less than 5 % of KE, they are supposed to have a very weak effect and thus not shown in
figures. It can be clearly seen that the values of LSS, PRG and SHG remain positive for
each mode, indicating that the centrifugal force, the gas pressure perturbation and the axial
shear stress exerted by the gas surroundings act jointly on the instability of the jet. Since
the value of LSS remains largest at kmax for all modes, the centrifugal force of the liquid
jet plays the primary role in jet instability. It can be also observed that the values of SUT
and DIS remain negative for each mode, implying that the surface tension and viscous
dissipation contribute to stabilizing the jet.

To further consider the effect of rotation, figure 5 gives the energy budget results of the
most unstable axial wavenumber kmax as Re changes. It is notable that as the predominant
mode decides the instability characteristics of the swirling liquid jet, only the energy
budget of the predominant mode (as indicated by the red numbers) should be considered
under different values of Re, as shown in figure 5. Under relatively low Re, it is observed
that the axial shear stress exerted by the gas is the main inducement of jet instability as the
term SHG has the largest positive value, thus promoting the axisymmetric instability (i.e.
m = 0) of the swirling liquid jet under weak rotation. The perturbation of gas pressure also
plays an important role in jet breakup since PRG remains positive and has relatively large
values. It is notable that these two terms (SHG and PRG) are the direct measurement of
KHI on the jet interface. As Re increases, the values of SHG and PRG decrease while the
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Figure 4. Energy budget of different azimuthal modes under the reference state where Re = 20.5, Oh =
0.41, VS = 0.995, Rez = 71.75, W = 0, J = 0.0013 and N = 1.67 × 10−4: (a) m = 0, (b) m = 1, (c) m = 2,
(d) m = 3, (e) m = 4, ( f ) m = 5.
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Figure 5. Energy budget of the most unstable perturbation wave at the predominant mode as Re changes
under constant Oh = 0.41, Rez = 71.75, VS = 0.995, W = 0, J = 0.0013 and N = 1.67 × 10−4, where the
predominant modes are indicated by red numbers.

value of LSS increases quickly and becomes the largest (e.g. Re = 10.3). The combined
effects of LSS, PRG and SHG lead to the dual effect of Re on the axisymmetric mode
(see figure 3a). With a continuous increase of Re, LSS remains significantly larger than
SHG and PRG, and the jet tends to evolve under the helical modes with m ≥ 2 due to
the dominance of centrifugal force. The viscous dissipation effect acts as the primary
stabilizing factor for both the axisymmetric mode and helical modes as the values of
DIS have the smallest negative values. Overall, the enhancement of rotation will lead
to the predominant inducing factor of jet instability from the axial shear stress to the
centrifugal force, promoting the occurrence of instability modes with higher azimuthal
wavenumbers m.
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4. Axial shear effect on jet instability

As the effect of azimuthal rotation has been studied in § 3, we further consider the
influence of axial shear on the instability of the swirling liquid jet. In previous studies
of non-swirling jets, the shear effect has been found to have a significant impact on jet
instability (Lin & Chen 1998; Gordillo, Pérez-Saborid & Gañán-Calvo 2001; Gañán-Calvo
et al. 2014). For the current model, the parabolic and the error functions (see (2.14) and
(2.15)) are utilized as the basic velocity profile in the axial direction, in which the degree
of shear stress is reflected by the values of VS and V and the thickness of gas velocity
boundary layer can be modulated by W, respectively. Specifically, a stronger shear stress
can be reached by increasing the value of V or changing the value of VS away from 1, as
shown by (2.16) and (2.17), respectively. Moreover, the boundary layer thickness of the
gas surroundings increases as the value of W gradually diverges from 1, which has been
discussed in § 2.2. In this section, the effects of these parameters (i.e. VS, V and W) related
to the velocity profiles on the growth of perturbation are examined in detail, and an energy
budget analysis is also conducted to reveal the instability mechanisms related to the axial
shear effect.

4.1. Effect of axial velocity profile
We firstly consider the effect of axial velocity profile on jet instability through changing
the value of VS. For the reference state, the ambient gas remains static with W = 0,
indicating that only the non-uniform velocity profiles with VS < 1 would conform to real
flow situations. In our study, the value of VS is varied within the range from 0.9 to 1 to
modulate the degree of shear stress, where VS = 1 represents the case of a discontinuous
velocity profile (i.e. U1 = V and U2 = 0) without axial shear stress on the jet interface.

As we mainly focus on the mode transitions between different azimuthal wavenumbers
m, we no longer give the growth rate curves and only display the maximum growth rates
ωimax accompanied by the most unstable wavenumbers kmax under different values of VS,
as shown in figures 6(a) and 6(b), respectively. It can be seen from figure 6(a) that the
values of ωimax increase for all azimuthal modes as VS decreases from 1, suggesting that the
instabilities of the perturbations will be strengthened as the axial shear stress is enhanced.
Comparing the values of ωimax between different azimuthal modes, the predominant mode
can be determined, as sketched by the red numbers in figure 6(a). It is observed that
the mode with smaller m gradually becomes the predominant mode as VS decreases,
suggesting that the increase of axial shear stress can promote the mode transition to smaller
azimuthal wavenumber. It should be emphasized that the helical mode m = 1 appears to
be the predominant mode at VS = 0.98, which is not observed in § 3. The emergence of
m = 1 mode is mainly attributed to the non-negligible axial shear effect. Figure 6(b) shows
that the decrease of VS also leads to an increase of kmax for all azimuthal modes. The
most unstable wavenumbers of the predominant mode under different VS are highlighted
with filled symbols and connected with the black thick dashed line. It can be clearly seen
that as the value of VS decreases, kmax of the predominant mode increases monotonically,
indicating that the enhancement of the axial shear stress could result in smaller size
of droplets. Moreover, the values of kmax remain significantly smaller than unity under
relatively large VS (e.g. VS > 0.98) but increase to much larger than unity as VS decreases
(e.g. VS ≤ 0.98) for the predominant mode, showing that the jet breakup regime gradually
shifts from the Rayleigh mode to the Taylor mode with an increase of shear stress, which
is in accordance with previous work on a non-swirling liquid jet (Lin & Chen 1998).
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Figure 6. (a) Maximum perturbation growth rate ωimax for different azimuthal modes as VS varies. (b) Most
unstable wavenumber kmax for different azimuthal modes as VS varies, where the most unstable wavenumbers
corresponding to the predominant mode are depicted by the filled symbols and connected by the black thick
dashed line. In both panels, the predominant modes are indicated by red numbers. The parameters are unified
at Re = 20.5, Oh = 0.41, V = 3.5, W = 0, J = 0.0013 and N = 1.67 × 10−4.

Figure 7 depicts the energy budget of the most unstable axial wavenumber kmax as
VS gradually changes. Similar to the analysis in figure 5, only the energy budgets of the
predominant modes (indicated by the red numbers) are given in figure 7. Clearly, the terms
LSS, PRG and SHG are positive, indicating that the centrifugal force of jet swirling, the
gas pressure perturbation and the axial shear stress exerted by the gas surroundings at the
interface can promote the growth of disturbances. As the terms SUT and DIS are negative,
the surface tension and the viscous dissipation would restrain the perturbation growth.
For the discontinuous velocity profile (VS = 1), the instability of the swirling liquid jet is
mainly induced by the centrifugal force as the term LSS has the maximum positive value.
As VS gradually decreases, the terms SHG and PRG become larger simultaneously, which
indicates that both the axial shear stress and the perturbation of gas pressure at the interface
play a more significant role in jet instability, and the absolute value of SHG remains larger
than that of PRG. Since there is little difference in the energy budget results between the
cases of VS = 0.995 and 1, the physical mechanism of jet breakup could hardly be affected
under relatively weak axial shear stress. However, as VS keeps decreasing, the terms SHG
and PRG gradually exceed LSS, indicating that the axial KHI is a main contribution for
the growth of perturbations when the shear stress is relatively strong. In these situations,
the jet instability presents a lower azimuthal wavenumber and finally converts to the
axisymmetric mode with m = 0. For the negative terms which suppress the jet instability,
as DIS has the smallest value, the viscous dissipation plays the leading effect.

4.2. Effect of axial velocity of liquid jet
The value of V reflects the axial velocity of the swirling liquid jet. A larger V under
constant VS can result in faster axial velocity of the jet and thus stronger axial shear stress
on the jet interface, as shown by (2.16) and (2.17), respectively. Figures 8(a) and 8(b) show
the maximum perturbation growth rate ωimax and the most unstable wavenumber kmax for
azimuthal modes for m = 0–5 as the value of V gradually varies, respectively. Clearly, the
values of ωimax for each mode increase gradually as V increases, as shown in figure 8(a),
indicating that the increase of axial velocity can promote the jet instability. It is also
observed that the azimuthal mode with a smaller m presents a faster increasing tendency of
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Figure 7. Energy budget of the most unstable perturbation wave at the predominant mode as VS changes under
Re = 20.5, Oh = 0.41, V = 3.5, W = 0, J = 0.0013 and N = 1.67 × 10−4, where the predominant modes are
indicated by red numbers.
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Figure 8. (a) Maximum perturbation growth rate ωimax for different azimuthal modes as V varies. (b) Most
unstable wavenumber kmax for different azimuthal modes as V varies, where the most unstable wavenumbers
corresponding to the predominant mode at different V are depicted by the filled symbols and connected by the
black thick dashed line. In both panels, the predominant modes are indicated by red numbers. The parameters
are unified at Re = 20.5, Oh = 0.41, VS = 0.995, W = 0, J = 0.0013 and N = 1.67 × 10−4.

ωimax, which demonstrates that the mode with a smaller m would be affected more strongly
by the axial shear stress. Comparing the maximum value of ωimax between different
azimuthal modes, the increase of V (i.e. the enhancement of shear stress) can lead to the
predominant mode transition to smaller m, as indicated by the red numbers. Figure 8(b)
shows an overall increasing tendency of kmax for each azimuthal mode as V increases.
Moreover, the most unstable wavenumbers kmax corresponding to the predominant mode
are highlighted with filled symbols and connected with the black thick dashed line. It can
be clearly seen that an increase of V can lead to an increase of kmax of the predominant
mode, implying that the smaller size of droplets will be generated as the axial jet velocity
increases. Similar to the situation of VS decreasing (see figure 6b), an enhancement of
shear stress by increasing V can also lead to the transition of jet breakup regimes from the
Rayleigh mode to the Taylor mode.

The energy budget results of the predominant mode (see the red numbers) as V gradually
changes are shown in figure 9. Similarly, we only focus on the energy budget at the most
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Figure 9. Energy budget of the most unstable perturbation wave at the predominant mode as V gradually
changes under Re = 20.5, Oh = 0.41, VS = 0.995, W = 0, J = 0.0013 and N = 1.67 × 10−4, where the
predominant modes are indicated by red numbers.

unstable wavenumber kmax. The terms LSS, PRG and SHG are positive, indicating that the
centrifugal force, the gas pressure perturbation and the axial shear stress exerted by the
gas surroundings at the jet interface would promote the growth of disturbances. As the
terms SUT and DIS are negative, the surface tension and the viscous dissipation would
restrain the perturbation growth. Different from the situation of VS varying (see figure 7),
the values of PRG are larger than those of SHG invariably, indicating that the gas pressure
perturbation has a more significant effect than the shear stress on jet instability. With
an increase of V , the values of PRG and SHG increase rapidly while the values of LSS
present a firstly increasing and then decreasing tendency. Specifically, LSS remains the
predominant energy term as V is less than a critical value around 10, suggesting that the
centrifugal force plays the primary role in jet instability at relatively low axial velocity.
Therefore, the breakup of the liquid jet presents the helical modes with m ≥ 1. As V
exceeds the critical value, PRG becomes the predominant energy term, which indicates
that the gas pressure perturbation at the interface mainly contributes to jet breakup under
large axial velocity. The enhancement of KHI leads to the final transition of jet breakup to
the axisymmetric mode with m = 0. The value of DIS remains negative with the smallest
value among all energy terms, which indicates that the viscous dissipation plays the
primary role in stabilizing the jet.

4.3. Effect of axial velocity of gas surroundings
The parameter W represents the ratio of average axial velocity between the ambient gas
and the liquid jet. As W gradually diverges from 1, the velocity boundary layer of the gas
widens but the degree of shear stress at the interface maintains unchanged, as shown by
(2.16) and (2.17). It has been indicated in § 2.2 that if W > 1, the value of VS should also
be larger than 1. Therefore, we choose VS = 1.005 for the cases of W > 1 to maintain
the same shear stress as the reference state (i.e. W = 0, VS = 0.995). Also, we set VS = 1
as W = 1 to realize equal velocity between the liquid and the gas, and the shear stress is
absent.

The maximum perturbation growth rates ωimax under different azimuthal modes as W
increases from 0 to 6 are presented in figure 10(a). As the axial shear effect is totally
ignored at W = 1, the value of ωimax reaches the smallest. As W diverges from 1, the

1000 A32-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1023


Y.Q. Xu, K. Mu, Y. Xin, R. Qiao, C.X. Zhao and T. Si

ωimax kmax

(b)(a)
6

4

2

0

1.2

1.6

0.8

W
20 4 6

W
20 4 6

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

3 3 3 3

3 3 3 3 0 0 0

0

0

0

Figure 10. (a) Maximum perturbation growth rate ωimax for different azimuthal modes as W varies. (b) Most
unstable wavenumber kmax for different azimuthal modes as W varies, where the most unstable wavenumbers
corresponding to the predominant mode are depicted by the filled symbols and connected by the black thick
dashed line. In both panels, the predominant modes are indicated by red numbers. The parameters are unified
at Re = 20.5, Oh = 0.41, VS = 0.995, V = 3.5, J = 0.0013 and N = 1.67 × 10−4.

values of ωimax increase generally for each mode. Specifically, the maximum growth rates
under W = 0 and W = 2 almost coincide with each other. It is also found that the modes
with smaller azimuthal wavenumbers are more sensitive to the increase of W as a faster
increasing tendency of ωimax can be observed. The red numbers in figure 10(a) demonstrate
the predominant modes. When the value of W gradually diverges from 1, the mode with
smaller azimuthal wavenumber m becomes the predominant mode, indicating that a larger
velocity difference between the ambient gas and the liquid jet can promote jet breakup with
smaller m. The most unstable wavenumbers kmax for different azimuthal modes as W varies
are displayed in figure 10(b). It is found that kmax of all modes increase generally as the
value of W gradually diverges from 1. The most unstable wavenumbers kmax corresponding
to the predominant mode are highlighted with filled symbols and connected with the black
thick dashed line. It can be observed that kmax of the predominant mode increases when
the value of W diverges from 1, indicating that a greater gas boundary layer thickness can
lead to smaller droplet size and also promote the transition of jet instability regimes from
Rayleigh mode to Taylor mode.

Figure 11 presents the energy budget of the predominant mode as W gradually
changes, in which the predominant modes are indicated by red numbers. Only the results
corresponding to the most unstable wavenumber kmax are given. Similar to figures 7 and
9, the values of LSS, PRG and SHG remain positive, while those of SUT and DIS are
negative. It is notable that the term PRG is markedly larger than SHG, especially under
large values of W, indicating that the change of W mainly affects the jet instability through
gas pressure perturbation instead of shear stress. The physical mechanism lies in that the
change of W mainly modulates the thickness of the gas velocity boundary layer but does
not change the degree of shear stress at the interface. Under relatively low gas velocity
(e.g. 0 ≤ W ≤ 3), the change of W has little impact on the values of all the energy terms,
and the predominant mode remains at m = 3. Once W ≥ 3, the increase of W leads to
obvious changes of the energy terms LSS, PRG, SUT and DIS. Specifically, the value of
LSS presents an overall decreasing tendency, while the value of PRG increases invariably.
As the predominant energy term finally changes from LSS to PRG, the enhancement of gas
pressure perturbation promotes the transition from helical mode to axisymmetric mode
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Figure 11. Energy budget of the most unstable perturbation wave at the predominant mode as W gradually
changes under Re = 20.5, Oh = 0.41, VS = 0.995, V = 3.5, J = 0.0013 and N = 1.67 × 10−4, where the
predominant modes are indicated by red numbers.

(i.e. m = 3 to 0). For the negative energy terms, DIS maintains the smallest value, and
thus the viscous dissipation has the primary stabilizing effect.

5. Transition of the predominant modes

As it has been observed in § 4 that the enhancement of the axial shear stress would promote
the predominant mode transition to a smaller azimuthal wavenumber m, this section further
gives the quantitative measurements on the influence of shear stress through depicting
the phase diagrams of different azimuthal modes. In the previous theoretical study of
Kubitschek & Weidman (2007a), a static rotating liquid column (with constant angular
velocity) without axial velocity in a vacuum was considered, in which the effects of
Hocking number L and Re on the predominant mode transition were examined carefully. It
is notable that L is defined as the reciprocal of We which is utilized in this work. A phase
diagram of the predominant azimuthal modes in L–Re space is given in their work and
the transition boundaries between different modes are identified, as shown by the open
symbols in figure 12. As the jet angular velocity increases, the parameters gradually shift
from the lower right side to the upper left side of the phase diagram, and the predominant
azimuthal mode converts from low m to high m. It is notable that the axial shear stress
is totally ignored in their study due to the assumption of a static rotating column. In
this section, we further examine the effect of the axial shear stress on mode transition
of an axial moving jet through an integration of theoretical analyses and experimental
measurements.

The phase diagram of the predominant azimuthal modes in L–Re space under the axial
non-uniform velocity profiles described by (2.14) and (2.15) is also given in figure 12.
The values of VS and V are changed to modulate the strength of axial shear stress. Under
the reference state where V = 3.5 and VS = 0.995, as shown by the red dashed line, it
is observed that the mode transitions from m = 0 to 2 and m = 1 to 2 shift to the the
upper left direction of the phase diagram comparing with the results of Kubitschek &
Weidman (2007a), indicating that the mode transitions are delayed and occur at larger
angular velocities due to the addition of axial shear stress. However, the mode transitions
between the helical modes with larger azimuthal wavenumbers (i.e. m = 2 to 3, 3 to 4
and 4 to 5) would not be affected obviously, which is qualitatively consistent with the
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Figure 12. Phase diagrams of the azimuthal modes in Re–1/We space, where swirling liquid jets in static gas
surroundings (W = 0) are considered. The black circles are the results from Kubitschek & Weidman (2007a)
and the lines denote the results calculated under non-uniform velocity profiles with VS = 0.995 and V = 3.5;
VS = 0.995 and V = 4.5; and VS = 0.992 and V = 3.5.

previous findings that the azimuthal modes with smaller m are affected more markedly by
the axial shear effect (see figures 6 and 8). Figure 12 also considers the mode transition
boundaries under V = 4.5, VS = 0.995 and V = 3.5, VS = 0.992 (see the blue dotted
and green dash-dotted lines, respectively). Comparing with the reference state where
V = 3.5, VS = 0.995, these two cases bring in a stronger axial shear stress. It can be
observed that the enhanced axial shear stress would cause the mode transitions of m = 0
to 2 and m = 1 to 2 to be further delayed. Moreover, the transitions of helical modes with
larger azimuthal wavenumbers would also be delayed with the enhancement of axial shear
stress.

To further study the effect of the azimuthal rotation and axial shear flow on the
predominant mode transition, the phase diagram of modes m = 0–5 is given in figure 13,
considering the variations of Re and Rez. It is notable that the variation of Re under fixed
Rez (= ReV) represents the change of jet angular velocity under constant axial velocity,
and the single increase of Rez under fixed Re leads to a larger axial velocity, which results
in a stronger axial shear stress. Without loss of generality, the value of Rez varies from
0 to 53.58, corresponding to dimensional axial velocities between 0 and 1.93 m s−1. The
theoretical mode boundaries calculated under the non-uniform velocity profile described
by (2.14)–(2.15) are depicted in figure 13 by open circles and black solid lines, in which
the specific value of VS = 0.985 is selected to realize a relatively strong axial shear stress.
It is clear that our results totally coincide with those of Kubitschek & Weidman (2007a)
under vanishing axial velocity (i.e. Rez = 0). At relatively low axial velocity of the jet
(e.g. Rez < 34), the predominant mode will transit from the axisymmetric mode m = 0 to
the non-axisymmetric modes m = 2, 3, 4 and 5 step by step as the value of Re gradually
increases. As the jet axial velocity increases to a relatively high value (e.g. Rez ≥ 34), the
helical mode m = 1 emerges during the mode transition with an increase of Re. Besides,
it can be clearly seen from figure 13 that the increase of Rez has a strong effect on mode
transition. For the transition from m = 0 to 2, the transition boundary shifts upward as
soon as the value of Rez increases from 0, indicating the delayed mode transition from
0 to 2 even under relatively low axial velocity. The transition boundaries of m = 0 to 1
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Figure 13. Phase diagrams of the azimuthal modes in Re–Rez space, where the swirling liquid jet in static gas
surroundings (W = 0) is considered. The solid lines are theoretical boundaries calculated under non-uniform
velocity profiles with VS = 0.985, and the dashed orange lines are the theoretical boundaries of Kubitschek &
Weidman (2007a). The coloured squares correspond to the experimental results shown in figure 14.

and m = 1 to 2 also shift upward monotonically with an increase of Rez. However, the
transition boundary of m = 2–3 keeps almost unchanged at first as Rez increases. When
the value of Rez exceeds 30, the boundary shifts upward dramatically, indicating that the
delay of mode transition from 2 to 3 will be triggered under relatively large axial velocity.
The transition from m = 3 to m = 4 is found to be delayed apparently if Rez ≥ 40, whereas
the transition from m = 4 to m = 5 is slightly affected by the increase of Rez within the
considered range. Therefore, it can be concluded that the enhancement of the axial shear
stress leads to the delay of the predominant mode transition from smaller m to larger m,
and a more dramatic effect can be observed on the transition between smaller values of m.

In order to substantiate the theoretical findings, an experimental study considering the
swirling liquid jet in ambient air is also conducted. The experimental facility is able to
provide a swirling jet of diameter R1 = 7 mm. We select silicone oil for the swirling jet,
with physical properties consistent with the reference state in theoretical analysis (i.e.
ρ1 = 971 kg m−3, μ1 = 0.1223 Pa s and γ = 26 mN m−1). A detailed description of the
experimental set-up can be found in Appendix D. As the strength of the axial shear
stress can be modulated by jet axial velocity, two groups of experiments are conducted
(see figure 14), where the jet axial velocities are equal to 0.38 m s−1 (corresponding to
Rez = 10.56) and 1.93 m s−1 (corresponding to Rez = 53.58), respectively. For each axial
velocity, the angular velocity Ω of the swirling jet is increased from an initially very
low value to trigger the azimuthal mode transition. Figure 14(a) shows the morphologies
of the swirling jet with Rez = 10.56 under different angular velocities. It can be clearly
seen that the azimuthal mode appears to be m = 0, 2 and 3 (from left to right) under
Ω = 47.6, 95.2 and 190.5 rad s−1, which correspond to the values of Re = 4.63, 9.26
and 18.52, respectively. It is notable that as the the value of Ω increases further, the jet
cannot form as the flow destabilizes right at the tube exit, which is beyond the scope of
the present study. Figure 14(b) displays the images of the swirling jet with Rez = 53.58
under different angular velocities. The azimuthal mode is m = 0, 2, 3 and 4 (from left
to right) when the angular velocity is equal to 95.2, 190.5, 224.5 and 275.5 rad s−1,
corresponding to Re = 9.26, 18.52, 21.83 and 26.78, respectively. It can be clearly seen
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Figure 14. Morphologies of the swirling liquid jet under different axial velocities and angular velocities.
(a) Rez = 10.56, corresponding to axial velocity of Ū1 = 0.38 m s−1. The azimuthal mode varies as m = 0,
2 and 3 at Re = 4.63, 9.26 and 18.52, corresponding to angular velocity of Ω = 47.6, 95.2 and 190.5 rad s−1,
respectively. (b) Rez = 53.58, corresponding to axial velocity of Ū1 = 1.93 m s−1. The azimuthal mode varies
as m = 0, 2, 3 and 4 at Re = 9.26, 18.52, 21.83 and 26.78, corresponding to angular velocity of Ω = 95.2,
190.5, 224.5 and 275.5 rad s−1, respectively.

from figure 14(a,b) that the increase of the rotation leads to the transition of the azimuthal
mode from smaller m to larger m, which is consistent with the previous work of Kubitschek
& Weidman (2007b) and the theoretical findings in the present work. It is important
to note that the azimuthal mode of the swirling jet with Rez = 10.56 is m = 2 when
Re = 9.26 (see figure 14a ii), while that of the swirling jet with Rez = 53.58 appears to be
m = 0 (see figure 14b i). Also, the azimuthal mode of the swirling jet with Rez = 10.56 is
m = 3 as Re = 18.52 (see figure 14a iii), whereas that of the swirling jet with Rez = 53.58
appears to be m = 2 (see figure 14b ii). Since the axial shear stress is strengthened as
Rez increases, the above observation suggests that the mode transition will be delayed
by the enhancement of the axial shear stress. The experimental results in figure 14 are
compared with the previous theoretical findings. As shown in figure 13, the coloured
squares represent the experimental settings, with different colours demonstrating different
azimuthal modes (red, blue, green, purple correspond to m = 0, 2, 3, 4, respectively). It
can be found that the experimental results fall in the range of the theoretical predictions.
Therefore, it can be concluded both theoretically and experimentally that the enhancement
of the axial shear stress will lead to the delay of the azimuthal mode transition which is
triggered by the increase of the angular velocity.

6. Transition of the instability mechanisms

As the transition of predominant mode is related to different instability mechanisms,
we also analyse the variation of the primary instability mechanisms according to the
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energy budget analysis of the predominant mode. In §§ 3 and 4, it has been found that
the predominant energy terms with the maximum positive value can be either LSS, SHG
or PRG, as shown by figures 5, 7, 9 and 11. We also emphasize that under certain
conditions (e.g. at relatively weak axial shear stress and centrifugal force), the term SUT
can also become the predominant energy term. The typical cases are given in Appendix
E. Based on the predominant energy terms, different primary instability mechanisms can
be identified. Specifically, the term SUT characterizes the instability caused by surface
tension, which corresponds to the capillary instability (CPI). Term LSS is the direct
measurement of the centrifugal force exerted by the swirling jet and thus brings in the
centrifugal instability (CTI). The terms SHG and PRG represent the instability contributed
by the axial shear stress and the gas pressure perturbation on the jet interface, respectively,
which corresponds to the KHI. As the values of these terms are related to the jet angular
velocity, axial velocity and the degree of shear stress represented by the velocity profiles,
we consider the transitions of instability mechanisms as the values of Re, Rez and VS vary.

Figure 15 gives the phase diagrams of primary instability mechanisms in Rez–Re space,
which correspond to individual variations of jet axial velocity and angular velocity. The
liquid jet evolves in static gas surroundings with W = 0, and different velocity profiles are
considered. For the discontinuous velocity profile where VS = 1, the axial shear effect
is ignored, and thus only CPI and CTI exist for the swirling liquid jet, as shown in
figure 15(a). It is clearly seen that the primary instability mechanism gradually converts
from CPI to CTI with an increase of Re (i.e. angular velocity), which is the same as the
tendency shown in figure 5. The transition between CPI and CTI occurs around Re ∼ O(1),
and the variation of Rez hardly affects the transition boundary. It is notable that more
values of Re and Rez than those plotted in figure 15(a) have been calculated to obtain the
precise position of transition boundary. The axial shear stress is also taken into account
by utilizing the non-uniform velocity profile where VS < 1. The strength of the axial
shear is affected by the values of VS and Rez, as has been studied in §§ 4.1 and 4.2. The
phase diagrams of instability mechanisms in Rez–Re space under different values of VS
(= 0.999, 0.996, 0.992) are shown in figure 15(b–d). It can be found that the parameter
space dominated by KHI is triggered by the axial shear effect. The transition boundaries
between KHI and CTI and between KHI and CPI are denoted by the dash-dotted line and
dotted line, respectively. For a certain value of VS, it can be observed that CPI maintains
the primary mechanism at relatively low values of Rez and Re, indicating that the surface
tension dominates the jet instability and the centrifugal and axial shear forces only play a
secondary role under relatively low angular and axial velocities of the liquid jet. With an
increase of Re (i.e. angular velocity), the primary instability mechanism shifts from CPI
to CTI, and the critical value of transition remains constant under different values of Rez
(i.e. jet axial velocity). The typical cases for the transition of mechanisms from CPI to
CTI are also shown clearly in Appendix E. Similarly, the primary instability mechanism
converts from CPI to KHI with an increase of Rez, and the critical transitional value
remains almost constant as Re changes. Under relatively large values of Rez, it is clear that
the increase of Re can lead to the transition from KHI to CPI, and the critical transitional
value increases with the increase of Rez, which indicates that the enhancement of shear
stress can delay the transition from KHI to CTI. Comparing the transition boundaries under
different values of VS, it is observed that a decrease of VS leads to a wider KHI zone and
narrower CPI and CTI zones, which also indicates an enhancing effect of axial shear stress
on KHI.
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Figure 15. Phase diagrams of primary instability mechanisms in Rez–Re space under different velocity
profiles: (a) VS = 1, corresponding to the discontinuous velocity profile, (b) VS = 0.999, (c) VS = 0.996 and
(d) VS = 0.992. The CTI mode, KHI mode and CPI mode are denoted by the black squares, red triangles and
green diamonds, respectively. The dash-dotted line, dashed line and dotted line denote the boundaries between
CTI/KHI mode, CPI/CTI mode and CPI/KHI mode, respectively.

7. Conclusion and outlook

Linear temporal instability analysis of a viscous swirling liquid jet surrounded by ambient
gas is carried out, where the importance of axial shear effect on the development of
perturbation and transition of azimuthal modes are examined for the first time. The basic
flows in azimuthal and axial directions are approximated by the Rankine vortex and the
non-uniform velocity profile with the form of parabolic and error functions, respectively.
The normal mode method is employed to inspect the perturbation growth of the liquid
jet, and the Chebyshev spectral collocation method is utilized to solve the generalized
eigenvalue problem. Energy budget analysis is also implemented to reveal the physical
mechanism of jet instability. The effect of azimuthal rotation on jet instability is firstly
studied through changing the angular velocity of the jet (non-dimensionalized by Re) under
constant jet axial velocity (non-dimensionalized by Rez). It is found that the enhancement
of the rotation has a dual effect on the axisymmetric mode but promotes the instability
of the helical modes. Moreover, the predominant mode gradually converts to the mode
with the larger azimuthal wavenumber m with an increase of Re. The energy budget
analysis shows that the shear stress and the perturbation pressure exerted by the ambient
gas contribute to the axisymmetric mode, while the helical modes are mainly induced by
the centrifugal force. The effects of the axial shear flow on jet instability are examined,
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in which the variations of jet surface velocity VS, axial average velocity V and ambient
gas velocity W are each considered. A decrease of VS could enhance the axial shear
stress of the jet, thus promoting the jet instability under different azimuthal wavenumbers
m and leading to the transition of predominant mode to smaller m. The energy budget
analysis indicates that the shear stress and the gas pressure perturbation play a more
significant role over the centrifugal force under relatively low VS. The increase of V also
enhances the axial shear stress of the jet. Therefore, the variation characteristics of jet
instability with the increase of V are similar to those as VS decreases. As the value of
W gradually diverges from 1, the jet instability would be enhanced and the predominant
mode converts to the azimuthal mode with smaller m. The energy budget shows that the
jet instability is mainly induced by gas pressure perturbation as the variation of W changes
the thickness of gas velocity boundary layer but does not affect the shear stress. The
effect of the axial shear stress is further analysed by comparing our results with those
in Kubitschek & Weidman (2007a) where the instability of a swirling liquid column in a
vacuum without axial flow was studied. It is found that the axial shear stress can delay the
mode transition obviously, especially under small azimuthal wavenumber m. Experimental
studies under different jet axial velocities are further carried out, which find that a jet
with higher axial velocity exhibits the azimuthal mode with smaller m under a fixed
angular velocity, thus substantiating the findings of the theoretical work. Three instability
mechanisms are identified according to the energy budget analysis, i.e. the CPI, the CTI
and the KHI. The effects of azimuthal rotation and axial flow on the transition of instability
mechanisms are examined by phase diagrams in Rez–Re space, where different values of
VS are considered. This work is expected to provide some guidances for understanding
the physical mechanisms of the instability of a swirling liquid jet, contributing to process
optimization in real applications such as liquid atomization and combustion.

At the end of this paper, some possible avenues for future work are provided and
discussed, as presented in the following subsections.

7.1. Spatiotemporal instability analysis
The current work is under the scope of convective temporal instability, which is confirmed
to be feasible as the swirling liquid jets establish downstream after flowing out of the
rotating tube. However, for certain parametric space (e.g. very low axial jet velocity), the
swirling liquid jets fail to be generated, resulting in the disintegration of liquid interface to
droplets right at the tube exit. From the theoretical perspective, this behaviour corresponds
to the AI, where the initial disturbances at the jet interface propagate both upstream and
downstream. Therefore, it is of great significance to further study the spatiotemporal
instability of the jets, which contributes to clarifying the criterion of the formation of
swirling liquid jets. Once the jets fall within the parametric space of CI, the spatial
analysis of jet instability can also be carried out, which is intended to present the evolutive
characteristics of disturbances in space more clearly. More details of the discussions of the
spatiotemporal instability and the spatial instability can be found in Appendix F.

7.2. Global instability analysis
In the present theoretical model, the effect of gravity is ignored as we mainly focus on
the development of disturbances at the early stages of jet evolution. Therefore, only the
local instability of swirling jets is considered, where the radius of the jet is assumed to be
spatially invariant. However, the gravity force could play a more prominent effect as the jet
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evolves further downstream, and the radius of the jet is considered to be spatially relevant
in real situations. To figure out the effect of gravity, a global instability analysis is desired,
which takes the gravity force and the variation of the jet radius into account.

7.3. Swirling instability of non-Newtonian liquid jets
Non-Newtonian liquids commonly occur in engineering applications, such as gelled
propellants and slurries. Compared with a Newtonian liquid whose shear stress is
proportional to the shear rate, a non-Newtonian liquid exhibits abundant rheological
behaviours due to existence of complex microstructures (Phan-Thien & Mai-Duy
2013; Ewoldt & Saengow 2022). The axisymmetric instability characteristics of a
non-Newtonian liquid jet have been proved to be quite different from those of a Newtonian
jet (Mohamed et al. 2015; Ding et al. 2022; Mousavi, Siavashi & Bagheri 2023). However,
systematic analysis of the circumferential instability of non-Newtonian swirling jets is still
limited, which would be our future work.
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Appendix A. Derivation of the axial velocity profiles

To derive the analytical axial velocity profiles of the liquid jet and the gas surroundings,
we consider the axisymmetric axial flow, represented by U i = Ui(r)ez, where i = 1, 2
represent the liquid and gas phases, respectively.

For the liquid jet, (2.2) can be reduced to

1
r

d
dr

[
r

dU1(r)
dr

]
= − G

μ1
, (A1)

where G = −∂p1/∂z is the adverse pressure gradient. The general solution of (A1) is

U1(r) = − G
4μ1

r2 + B ln r + C. (A2)

Considering the boundary condition at the axis (i.e. (2.3)), the value of B must be equal
to 0. Assuming the axial velocity at the interface (r = R1) to be US, we have

C = US + GR2
1

4μ1
. (A3)
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Since the flow rate of the liquid jet can be expressed as

Q =
∫ 2π

0
dθ

∫ R1

0
U1(r)r dr = π

[
USR2

1 + GR4
1

8μ1

]
, (A4)

the basic axial velocity profile of the liquid jet can be obtained as

U∗
1(r) = US + 2

[
US − Q

πR2
1

][
r2

R2
1

− 1

]
, (A5)

which corresponds to (2.12) in the main text.
The basic velocity profile of the gas surroundings is assumed with the form

U2(r) = aerf[b(r − R1)] + c, where erf(x) is the error function and can be expressed as
erf(x) = 2/

√
π
∫ x

0 e−η2
dη. As the axial velocity at infinity (r → ∞) is equal to U∞, we

have
a + c = U∞. (A6)

Taking the basic velocity profile into the boundary conditions of (2.4) and (2.6), we can
obtain the following equations:

c = US, (A7)

2μ2ab√
π

= 4μ1

R1

[
US − Q

πR2
1

]
. (A8)

Combining (A6)–(A8), the expression of a, b and c can be determined. Finally, the basic
velocity profile of the gas surroundings can be obtained as

U2(r) = (U∞ − US)erf

[√
π

2
4μ1(US − Q/πR2

1)

μ2(U∞ − US)

(
r

R1
− 1

)]
+ US, (A9)

which corresponds to (2.13) in the main text.

Appendix B. Validations of numerical calculation

To validate the numerical calculation, a convergence study of the calculated complex
frequency ω (= ωr + iωi) is firstly carried out, considering different numbers of the
collocation points (N1 and N2) and variations of the radius ratio a. The results are given
in tables 1 and 2, respectively, which indicate that a selection of values N1 ≥ 20, N2 ≥ 50
and a ≥ 8 is sufficient to ensure numerical convergence. Therefore, we choose N1 = 30,
N2 = 60 and a = 10 in all our calculations.

To check the accuracy of our code, we further simplify the current model and compare
the calculated results with those of previous studies. On the one hand, the model can be
reduced to a non-swirling liquid jet in co-flowing gas stream by setting Re = 0 and We = 0.
In this way, the circumferential velocity profile is ignored, and the axial velocity profile
is set to be consistent with our previous work, where the hyperbolic-tangent function is
utilized to approximate the basic flows (Si et al. 2009). The comparison between the
current results and those of Si et al. (2009) is given in figure 16(a), where the perturbation
growth rates of axisymmetric mode with m = 0 are considered under the same axial
Reynolds number and Ohnesorge number. Clearly, a good agreement can be reached. On
the other hand, the swirling liquid jet can be reduced to a swirling column without axial
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N1 N2 ωr ωi

20 60 5.84 0.9615
30 60 5.84 0.9615
40 60 5.84 0.9615
30 50 5.84 0.9618
30 70 5.84 0.9615

Table 1. Calculated complex frequency ω (= ωr + iωi) under different values of N1 and N2, where
Re = 20.5, We = 71.3, VS = 0.995, W = 0, V = 3.5, J = 0.0013, N = 1.67 × 10−4, m = 3, k = 1 and a =
10.

a ωr ωi

7 5.84 0.9616
8 5.84 0.9615
9 5.84 0.9615
10 5.84 0.9615
11 5.84 0.9615

Table 2. Calculated complex frequency ω (= ωr + iωi) under different values of a, where Re = 20.5, We =
71.3, VS = 0.995, W = 0, V = 3.5, J = 0.0013, N = 1.67 × 10−4, m = 3, k = 1, N1 = 30 and N2 = 60.

1.2

0.8

0.4

0.6

0.4

0.2

00 5 100.5 1.0 1.5 2.0

k k

ωi

Si et al. (2009)

Present result Present result

Kubitschek & Weidman (2007)

(b)(a)

Figure 16. Validations of our numerical code with previous studies. (a) Non-swirling axisymmetric liquid jet
in co-flowing gas stream, where Rez = 100, Oh = 3.16 × 10−3, J = 0.0013, N = 0.018 and m = 0. The basic
velocity profile is unified as the hyperbolic-tangent function and the results are compared with those of Si
et al. (2009). (b) Swirling liquid column in a vacuum, where Re = 10, We = 100, V = 0, VS = 1, W = 0, J =
0, N = 0 and m = 1. Our results are compared with those of Kubitschek & Weidman (2007a).

velocity by setting V = W = 0. The presence of gas surroundings is totally ignored by
setting J = N = 0. By further ignoring the azimuthal velocity of the gas phase and only
considering the rotation of the liquid jet, our model can be simplified to that considered
by Kubitschek & Weidman (2007a). Figure 16(b) shows the growth rate curve of our
calculation and that in Kubitschek & Weidman (2007a) for the helical mode with m = 1,
under the same Reynolds and Weber numbers. A good agreement can also be reached.
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Appendix C. Specific forms of the terms in energy budget analysis

KE = 1
2Tλ

∫ T

0

∫ λ
0

∫ 2π

0

∫ 1

0

(
∂

∂t
+ U1

∂

∂z
+ W1

∂

r∂θ

)
(ũ2

1 + ṽ2
1 + w̃2

1)r dr dθ dz dt,

(C1)

REY = − 1
Tλ

∫ T

0

∫ λ
0

∫ 2π

0

∫ 1

0

(
ũ1ṽ1

dU1

dr
+ w̃1ṽ1

dW1

dr
− w̃1ṽ1

W1

r

)
r dr dθ dz dt, (C2)

PRL = − 1
Tλ

∫ T

0

∫ 2π

0

∫ 1

0
[p̃1ũ1]z=λ

z=0r dr dθ dt, (C3)

PRG = − 1
Tλ

∫ T

0

∫ 2π

0

∫ λ
0

[p̃2ṽ1]r=1 dz dθ dt, (C4)

LSS = 1
Tλ

∫ T

0

∫ 2π

0

∫ λ
0

[
W2

1
r

ηṽ1

]
r=1

dz dθ dt, (C5)

OGS = − 1
Tλ

∫ T

0

∫ 2π

0

∫ λ
0

[
J

W2
2

r
ηṽ1

]
r=1

dz dθ dt, (C6)

NVG = 2N
TλRe

∫ T

0

∫ 2π

0

∫ λ
0

[
∂ṽ2

∂r
ṽ1

]
r=1

dz dθ dt, (C7)

SUT = 1
WeTλ

∫ T

0

∫ 2π

0

∫ λ
0

[(
1 + ∂2

∂θ2 + ∂2

∂z2

)
ηṽ1

]
r=1

dz dθ dt, (C8)

SHL = 1
TλRe

∫ T

0

∫ 2π

0

∫ 1

0

[
ṽ1

(
∂ṽ1

∂z
+ ∂ ũ1

∂r

)
+ w̃1

(
∂w̃1

∂z
+ ∂ ũ1

r∂θ

)]z=λ

z=0
r dr dθ dt,

(C9)

NVL = 1
TλRe

∫ T

0

∫ 2π

0

∫ 1

0

[
2ũ1

∂ ũ1

∂z

]z=λ

z=0
r dr dθ dt, (C10)

SHG = 1
TλRe

∫ T

0

∫ 2π

0

∫ λ
0

[
Nũ1

(
∂ ũ2

∂r
+ ∂ṽ2

∂z

)]
r=1

dz dθ dt, (C11)

SHB = 1
TλRe

∫ T

0

∫ 2π

0

∫ λ
0

[
η

(
N

d2U2

dr2 − d2U1

dr2

)
ũ1

]
r=1

dz dθ dt, (C12)

AHG = 1
TλRe

∫ T

0

∫ 2π

0

∫ λ
0

[
Nw̃1

(
∂ṽ2

∂θ
+ ∂w̃2

∂r
− w̃2

)]
r=1

dz dθ dt, (C13)

AHB = 1
TλRe

∫ T

0

∫ 2π

0

∫ λ
0

{
w̃1η

[
N
(

d2W2

dr2 + W2 − dW2

dr

)
−
(

d2W1

dr2 + W1 − dW1

dr

)]}
r=1

dz dθ dt, (C14)
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Figure 17. Schematic of the experimental platform.

DIS = − 1
TλRe

∫ T

0

∫ λ
0

∫ 2π

0

∫ 1

0

[
2
(

∂ṽ1

∂r

)2

+ 2
(

∂w̃1

r∂θ
+ ṽ1

r

)2

+ 2
(

∂ ũ1

∂z

)2

+
(

∂w̃1

∂r
+ ∂ṽ1

r∂θ
− w̃1

r

)2

+
(

∂ṽ1

∂z
+ ∂ ũ1

∂r

)2

+
(

∂ ũ1

r∂θ
+ ∂w̃1

∂z

)2
]

r dr dθ dz dt. (C15)

Appendix D. Set-up of experiments

The experimental platform for generating the swirling liquid jet is shown in figure 17. The
liquid jet is generated from a 30 cm long rotating tube with an inner diameter of 7 mm,
which is supported by the rotary fitting. A DC motor, coupled with a transmission gear
with a diameter ratio of 7 : 10, provides the angular velocity of the rotating tube up to
272 rad s−1. The liquid is supplied from the reservoir connected to the top of the rotating
tube, and the actuating pressure of liquid is created by a nitrogen cylinder which is able to
produce an axial jet velocity of up to 2 m s−1 at the tube exit. The liquid is recycled by a
tank positioned 1 m below the outlet of the tube. A high-speed camera (Phantom V2012)
operating at 4000 frames per second is used to capture the interface morphology of the
swirling jet on side views.

To confirm that the rotation of the liquid jet is fully developed inside the tube, we
compare the angular velocity of the swirling jet (i.e. Ω) measured at the tube exit with
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Figure 18. Measured angular velocities of the swirling jet (Ω) under different angular velocities of the
rotating tube (Ωt). The relationship between Ω and Ωt satisfies Ω = Ωt (the red dashed line).
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Figure 19. Energy budget of the most unstable perturbation wave at the predominant mode as Re changes
under Oh = 0.41, Rez = 20, VS = 0.999, W = 0, J = 0.0013 and N = 1.67 × 10−4, where the predominant
modes are indicated by red numbers.

the angular velocity of the rotating tube (i.e. Ωt), and the results are shown in figure 18. It
can be clearly seen that the relationship between Ωm and Ωt satisfies Ω = Ωt, as indicated
by the red dashed line. The results suggest that the angular velocity of the jet has been fully
developed inside the tube.

Appendix E. Energy budget analysis under low axial shear stress

The energy budget analysis of the effect of rotation with relatively low axial shear stress
(VS = 0.999, Rez = 20) is given in this appendix. Figure 19 shows the energy budget of
the most unstable axial wavenumber at the predominant mode as Re varies, in which
all the energy terms are divided by KE to measure the proportion of each term on
the changing rate of the disturbance kinetic energy. It should be noted that the terms
REY, NVG, AHG, SHB, AHB and OGS are not shown in the figure since their values are
less than 5 % of KE. Under relatively low Re (e.g. Re < 2), the surface tension mainly
contributes to jet instability as the term SUT has the largest positive value, thus promoting
the axisymmetric instability (i.e. m = 0) of the swirling jet under weak rotation. As Re
increases, the value of SUT decreases and eventually becomes negative, indicating that
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the surface tension plays a stabilizing effect. Meanwhile, the value of LSS increases over
SUT and remains as the largest term, indicating that the centrifugal force becomes the
predominant factor for jet instability. With a continuing increase of Re, the helical modes
with m ≥ 2 are triggered under the dominance of the centrifugal force. As for the negative
terms which suppress the jet instability, the viscous dissipation effect plays the primary
stabilizing role as DIS has the smallest negative values.

Appendix F. Further discussions about convective versus absolute instability and
temporal versus spatial analysis

It is well known that the AI mechanism exists for the instability of liquid jets. However, for
the swirling liquid jets considered in this work, the jets maintain CI, which can be proved
by a spatiotemporal instability analysis. Different from the temporal instability analysis
where a real axial wavenumber k and a complex perturbation frequency ω are assumed,
the spatiotemporal instability analysis considers the complex axial wavenumber k and
perturbation frequency ω (i.e. k = kr + iki and ω = ωr + iωi, respectively). The AI and
CI characteristics of the liquid jet can be determined from the solutions of the dispersion
relation D(ω, m, k; Re, We, VS, V, W, J, N) = 0 which have zero group velocity, namely
for the complex pair (k0, ω0):

∂ω

∂k
|k0 = 0, ω0 = ω(k0, m; Re, We, VS, V, W, J, N). (F1)

In general, there are two distinct spatial branches of solutions of D = 0 on the complex
k plane. The two branches will approach each other as the growth rate ωi is decreased from
large positive values, and a saddle point on the complex k plane will occur at point k = k0.
It is notable that the physical saddle point must satisfy the Briggs–Bers collision criterion
(Briggs 1964; Bers 1973; Huerre & Rossi 1998). According to the Briggs–Bers collision
criterion, the only relevant complex pair (k0, ω0) is the physical one if two branches come
respectively from the downstream-propagating branch k+(ω) and upstream-propagating
branch k−(ω) on the complex k plane. At the saddle point, if ω0i < 0, the flow is
considered to be convective unstable, while if ω0i > 0, the flow is said to be absolute
unstable. For the swirling liquid jet considered in our study, the isopotential line of ωi and
the saddle point on the complex k plane under the reference state are given in figure 20. It is
notable that only the saddle point under the azimuthal mode m = 3 is depicted as it acts as
the predominant mode. The saddle point at k0 = (0.24, −0.50) satisfies the Briggs–Bers
collision criterion, with the corresponding value of ω0i = −0.0071, indicating that the
swirling liquid jet is dominated by CI.

As it has been confirmed that the evolution of the jet is decided by CI, this work
considers the temporal instability of disturbances. It should be noted that for the liquid jet
with axial downstream velocity, a spatial framework may be more relevant to applications.
However, it has been proved that the spatial growth rate of perturbation can be converted
to the temporal one and vice versa through the Gaster transformation (Gaster 1962), which
has been widely utilized in various researches (Schmid & Henningson 2001; Jia et al.
2023; Mohamed, Sesterhenn & Biancofiore 2023). Considering that the spatial instability
analysis is mathematically much more challenging than the temporal one, we select the
temporal instability analysis for our theoretical model. We further emphasize that in our
temporal instability analysis, it has been found that the dimensionless phase velocity for
the propagation of disturbance approaches the jet axial velocity (see figure 2 and the
corresponding discussion). Therefore, the disturbance only grows temporally and hardly
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Figure 20. Isopotential lines of ωi and the saddle point (k0r = 0.24, k0i = −0.5, ω0i = −0.0071) on the
complex k plane for azimuthal mode m = 3 under the reference state (Re = 20.5, We = 71.3, VS = 0.995, V =
3.5, W = 0, J = 0.0013 and N = 1.67 × 10−4).

propagates upstream or downstream of the jet under the local framework along the jet,
which proves the rationality of the temporal instability analysis.
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