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ABSTRACT

It appears that it is necessary to look for oscillatory (i.e. overstable) instabilities as the cause of
energy transport in sunspots. Making use of recent calculations on the hydromagnetic stability of
thermally unstable layers with open boundary conditions, it is found that oscillatory modes can occur
in the interior of sunspots. Some possible consequences of these oscillatory modes are discussed.

1. Introduction

A long-standing problem in solar physics is the energy balance in a center of activity.
This problem is often referred to as the missing energy in a sunspot, i.e.: what has
happened to the energy the Sun would have radiated if the sunspot had not been
present? This problem is still unsolved and will probably remain so until the mecha-
nism of energy transport in sunspots is understood. For this reason, this paper will
largely be concerned with the method of energy transport in a sunspot.

It is often tacitly assumed that some form of convection takes place in sunspots and
that the convection motions are the main mechanism of energy transport. Some argu-
ments to support this idea are as follows. First, some fine structure such as the small
umbral dots reported by Danielson (1964) and Beckers and Schréter (1967) and the
larger umbral granules reported by Bray and Loughhead (1959) suggests the presence
of convection. Second, the ‘turbulent velocities’ observed in sunspots are comparable
with those observed in the undisturbed photosphere (Howard, 1958; Elste, 1963;
Elsdsser and Fricke, 1965; Briickner, 1965) and suggest that some type of convective
or oscillatory motion takes place. And thirdly, it is very difficult (if not impossible) to
produce a self-consistent model of a sunspot with only radiative transport (Chitre, 1963).

However, hydromagnetic stability calculations have failed to reveal any unstable
convective modes in the sunspot if we assume the presence of a vertical magnetic field
of about 2500 gauss. In general this is to be expected because H.,, the equipartition
magnetic field (i.e. the magnetic field for which the magnetic-energy density equals the
convective-energy density in the normal convective zone), is generally smaller than
the magnetic field in the sunspot.

* Presented by R. E. Danielson.
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As shown in the appendix,

gm 1/6 l 1/3
H,, < 6600 gauss <p[~—3]> ( ) . )
cm h

It is evident from Equation (1) that H, is quite insensitive to the value of the mixing
length which one chooses. The value of H,, computed from Equation (1) is shown in
Figure 1 as a function of depth in the normal convection zone. The values of p which
were used were taken from a table adapted by B6hm (1963) from a model (based on
I/h=1) computed by Bohm-Vitense (1958).
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F1G. 1. The equipartition magnetic field and the magnetic field in a sunspot model of Yun (1967)
as a function of depth (z) into the sunspot. Also shown is a constant field (2500 gauss) sunspot model.

It is clear from Figure 1 that the equipartition magnetic field is several times smaller
than the field in a sunspot model computed by Yun (1967) following the methods of
Deinzer (1965). Indeed for //h=1, H,, does not exceed 2500 gauss (the surface field in
Yun’s model) for any depth in the convection zone. However, if //h=2, H,, exceeds
2500 gauss at depths in excess of 30000 km, but never exceeds the magnetic fields in
Yun’s model. The values of H,, calculated by Marik (1966) based on an earlier model
of the convection zone (Vitense, 1953) are somewhat larger than given in Figure 1,
but they do not exceed the magnetic fields in Yun’s model.

Thus, with the possible exception of some very special modes, one would in general
not expect any convection modes in sunspots. No such special modes have been found
and therefore it is necessary to look for oscillatory (i.e. overstable) instabilities as the
cause of energy transport in sunspots. Section 2 of this paper summarizes our present
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understanding of these oscillatory instabilities, while some possible consequences of
them in sunspots are discussed in Section 3.

2. Summary of Hydromagnetic Stability Calculations in the Presence of a
Vertical Magnetic Field

Early studies of hydromagnetic stabilities in the presence of a vertical magnetic field
(Danielson, 1961; Weiss, 1964; for a general summary see Chandrasekhar, 1961)
assumed a superadiabatic plane-parallel layer of depth d and employed the Boussinesq
approximation (Spiegel and Veronis, 1960). The free-free boundary conditions were
used because they led to a very simple eigenfunction for w, the vertical (or z) compo-
nent of the perturbation velocity, i.e.

. onz
W= [cos k.x cos k,y sin :| e (2)

where k, and k, are the horizontal wave numbers and where 7 is the complex growth
rate. We will call such eigenfunctions ‘closed’, and the corresponding boundary
conditions (in this case the free-free boundary conditions) will be referred to as
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FiG. 2. An R, Q stability diagram for a closed fluid layer (no outgoing hydromagnetic waves per-
mitted). Shown are closed instability and overstability curves. The overstability curve marked njx = 102
includes only resistive heating as a dissipation mechanism. The curves marked m = 1 and 10 include the
compressive heating mechanism of Kato (1966) as the means of dissipation. The points are the R, O
coordinates of Yun’s (1967) sunspot model at each pressure scale height into the model. The depth (Z)
into the model at which these quantities were computed is indicated.
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‘closed’ boundary conditions since they prohibit hydromagnetic wave emission from
the superadiabatic layer.

The results of the calculations with the free-free boundary conditions are summa-
rized in Figure 2, where the curves separate regions in the R, @ plane according to the
character of n. The dimensionless numbers R and Q are defined by:
goapd* ~ uHd?

‘and 0= IEEE (3)
where g is the acceleration of gravity, ax 1/T is the volume coefficient of expansion,
T is the temperature, d is the depth of the superadiabatic layer, x is the radiative
diffusivity, u is the magnetic permeability, H is the strength of the vertical magnetic

field, p is the mean density in the layer, and f is the superadiabatic gradient defined by:

_ dT ¢
()

In Equation (4), (—g/cp) is the adiabatic temperature gradient. The calculations
assumed that the cell shape factor,

d
s= (k2 + k) (5)

was equal to unity and that n/k =102, where n is the magnetic diffusivity. This value
of n/k is approximately the mean value between Z=2000 and Z=9000 km in Yun’s
(1967) sunspot model (see Figure 3). The exchange of stabilities curve is not shown
because of its minor physical significance (Danielson, 1961).

The R, O coordinates of Yun’s sunspot model at each pressure scale height are also
shown in Figure 2. That is, the pressure has increased by a factor of e at the depth
represented by each point and the characteristic depth d has been set equal to the local
pressure scale height at each point. It is evident that the points lie about a factor of 30
below the closed instability curve. Approximately the same situation occurs for a
uniform 2500-gauss field superimposed on the normal convection zone supporting the
general conclusion (based on the equipartition magnetic field) that there are no un-
stable convective modes in the sunspot umbra. However, the points do lie somewhat
above the overstability curve for joule heating, based on 7/k =102, and therefore the
possibility of overstable oscillations is not excluded. The overstability curve for com-
pressive heating (Kato, 1966) is also shown for m= V5/V,=1 and m=10, where Vj
and V, are the sound and Alfvén velocities, respectively. The overstability curve for
m=4 coincides with the overstability curve for n/x = 10~2. However, Kato’s simplified
dispersion relation overestimates the dissipation for m>1 and therefore the true
curves lie below the indicated ones. Since m is greater than 10 for Z greater than
7000 km (see Figure 4), compressive heating is probably less important than joule
heating as a source of dissipation in the bulk of the sunspot interior.
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F1G.3. Log k (the radiative diffusivity) and log n (the magnetic diffusivity) as a function of depth
in Yun’s (1967) sunspot model.
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FIiG. 4. m=Vs/Va as a function of depth in Yun’s (1967) sunspot model.

However, the closed boudary conditions upon which Figure 2 is based are probably
rather unrealistic because they do not allow any energy to be emitted from the layer
in the form of hydromagnetic waves. The first calculations with open boundary
conditions (Danielson, 1966; Musman, 1967) are shown in Figure 5. Again in the
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Boussinesq approximation, free-free boundary conditions were chosen for the bottom
of the superadiabatic layer while the boundary conditions at the top of the layer were
chosen in such a way as to allow hydromagnetic waves to propagate upwards into a
semi-infinite adiabatic region.
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FiG. 5. R, Q stability diagram for an open fluid layer (upward-propagating hydromagnetic waves
are permitted). Shown are the open instability and overstability curves obtained by Musman (1967)
for the case of no density discontinuity (4 =paown/pup =1). The R, § coordinates of Yun’s (1967)
sunspot model are also shown.

The open instability curve in Figure 5 is lower than the closed instability curve due
to the fact that the open eigenfunction in the superadiabatic layer is approximately
sinusoidal with a wavelength equal to 4d while the closed eigenfunction has a wave-
length of 2d. The largest change takes place in the open overstability curve because
the damping caused by hydromagnetic wave emission is so large that the open over-
stability curve lies nearly as high in the R, Q plane as the open instability curve.
Furthermore, attempts to reduce the wave emission from the superadiabatic layer by
introducing a discontinuity in the hydromagnetic velocity (by means of a density
discontinuity between the superadiabatic and adiabatic regions) did not significantly
affect the results (Danielson, 1965). The reason for this is that very large density
discontinuities are required before a large fraction of the hydromagnetic waves are
reflected.

Figure 5 repeats the R, O coordinates of Yun’s model and it is evident that they lie
below the open overstability curve. Thus on the basis of these calculations, one would
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conclude that the sunspot umbra is stable not only to convective overturning but also
to overstable oscillations.

However, a density discontinuity introduces the possibility of surface gravity waves.
The effect of these gravity waves was not included in Musman’s (1967) calculations,
but Savage (1967) has extended the calculations to include the presence of standing
gravity waves at the interface. His results are summarized in Figure 6 where a new set
of coordinates, R and Q, are used. These coordinates are defined by
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FiG. 6. TQ, O stability diagram including standing gravity waves obtained by Savage (1967). The
solid curves are open instability and overstability curves for 4 =paown/pup=1.1, 3 and 10 and for
G =69.5 and s = |. The upper short-dashed curve is the closed instability curve. The two long dashed
curves are open (A4 =1) instability and overstability curves. This stability plot is valid for the surface
layer of a sunspot.

where G, a dimensionless gravity, is given by
gd®

G = . 7
2 (7
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The R, O coordinates eliminate the k> dependence of both R and Q and emphasize
the effect of gravity waves.

It is evident from Figure 6 (which is based on a typical value of G for the surface
layer of a sunspot) that the gravity waves produce a large change in the open over-
stability curve for Q < 1. The physical reason for this large change can be seen with the
aid of Figure 7, which shows the fraction of the energy of an incident Alfvén wave

10. T - T

0.0l 1 L
-3 -2 ll 0

LOG w,
FiG. 7. The energy flux transmission coefficient of Alfvén waves through a density interface as a
function of wa, the Alfvén wave frequency. We assume the horizontal wave number, kv is 10 7 cm™1,

Va = 108 cm/sec (the incident Alfvén velocity) and 4 = 3. The vertical dashed line indicates the gravity
wave frequency.

which is transmitted by the interface. For frequencies larger than w,, the frequency of
the gravity wave oscillations, the transmission is nearly unity. The slight difference
from unity is a result of a small amount of wave reflection due to the change in the
Alfvén velocity at the interface. For frequencies less than w,, however, the amount of
transmitted energy is very much smaller. For these frequencies, the gravity waves
respond to perturbations at the interface caused by the incident Alfvén wave in a time
which is short compared with the period of the Alfvén wave. This has the result that
the reflection coefficient increases greatly and correspondingly produces a large decrease
in the overstability curve. The reason that gravity waves affect the overstability curves
for Q <1 can be understood in terms of the above discussion by noting that Q can be

written as
NEAAS
= 8
o-( Vg) ®)

https://doi.org/10.1017/5S0074180900021392 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900021392

120 R.E.DANIELSON AND B.D.SAVAGE

where V, is the Alfvén velocity and where V, is the velocity of gravity waves having
a wavelength equal to twice the depth of the superadiabatic layer.

Thus for J <1, the gravity waves reduce the energy loss by hydromagnetic wave
emission and therefore tend to ‘close’ the layer. This ‘closing’ can also be seen in the
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FI1G. 8. Anestimated 1’2‘ O stability diagram (including gravity waves) which is valid for deep umbral
layers (G ~ 1013). The R, Q coordinates of Yun’s (1967) sunspot model are included.

instability curves shown in Figure 6 where the transition from the open instability
curve for Q> 1 to the closed instability curve for § <1 is evident.

Figure 8 shows an estimated R, Q diagram valid for deep umbral layers (G~ 10'3).
The open overstability curve is for 4 =3, which may be the most appropriate curve
for our purposes (Savage, 1967). The R, O coordinates for each pressure scale height
in the model computed by Yun (1967) are also shown. One sees that for Z 2 3000 km
(about 2000 km below the surface of the sunspot) one is in a regime of overstable
oscillations. And if the characteristic depth d for this stability theory is more than one
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pressure scale height (as may well be the case in a vertical magnetic field) the upper
three scale heights may also lie in the overstable region.

It therefore seems that overstable oscillatory modes can occur in the interior of
sunspots but that unstable convective modes do not occur. However, one should not
forget that the existence of the overstable modes is based on a rather crude hydro-
magnetic model which, strictly speaking, should only be applied to the surface layer
of the sunspot. The situation may alter a great deal when the stability of more realistic
sunspot models are investigated. With these reservations, some possible consequences
of overstable oscillations are discussed in the next section.

3. Some Possible Consequences of Oscillatory Modes in Sunspots

If oscillations occur in the interior of sunspots, one can compute some characteristic
periods from the hydromagnetic velocity by choosing the vertical wavelength to be
equal to 2 d, where d is the characteristic depth in the stability calculations. This
corresponds to nearly closed boundaries for the layer under consideration. And if we
choose d to be the pressure scale height, we find (as shown in Figure 9) that the pre-
dicted period of oscillation varies from about 1 min at the surface of the sunspot
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F1G. 9. Period of oscillation (in minutes) of umbral layers as a function of depth into the sunspot.

(Z~1x10° km) to nearly 1 hour at a depth of 10* km (Z~11 x 10° km) below the
surface. The latter depth is about equal to the umbral diameter for a sunspot having
a total area of about 150 x 10 ° of the solar hemisphere.
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Thus at depths of 5 x 103 to 10* km beneath the surface of the sunspot, one expects
periods of the order of 4 hour. It is interesting to note that the lifetime of the umbra
dots is also about 4 hour. This suggests the possibility that the umbral dots are caused
by some sort of ‘overshoot’ from overstable oscillations deep in the interior of the
sunspot.

Another possible consequence of oscillations in the interior of a sunspot is that
they may play an important role in the missing energy of sunspots. Some of the
missing energy is undoubtedly radiated upward at the surface of the sunspot in the
form of hydromagnetic waves. Indeed if the observed ‘turbulent velocities’ in sunspots
are interpreted as displacement velocities in a hydromagnetic traveling wave, the
resulting non-thermal flux will be

F=13pVauVa ©)

and if we choose the density (p) at which the maximum turbulent velocities ( V,,,,) are
measured to be approximately 5x 10”7 gm/cm?, we find that (for H=2500 gauss) the
Alfvén velocity (V,) is approximately 10° cm/sec. Then for V,, =3x10° cm/sec
(r.m.s. turbulent velocity=2x10° cm/sec), we find that F=2x10'® ergs/cm? sec
which is a significant fraction of the solar flux in the undisturbed photosphere (i.e.
6 x 10'° ergs/cm? sec).

The above flux is essentially the maximum possible mechanical flux that can be
radiated from the surface of the umbra, but it is still a factor of 2.5 less than the
missing energy in the umbra. The latter quantity is about 5 x 10'° ergs/cm? sec based
on an effective temperature of 3700 °K and it is far from certain that the observed
turbulent velocities have the proper phase relation with height to represent an upward
traveling wave. Indeed, a flux of 2 x 10'° ergs/cm? sec emitted by an umbra having a
diameter of 10* km amounts to nearly 2 x 1028 ergs/sec. This amount of energy is
sufficient to keep a small flare going continuously! Thus while hydromagnetic wave
emission by the surface of the umbra may account for some of the missing energy, it
does not seem possible to account for it all by this means.

Oscillations in the interior of sunspots suggest another possible way for accounting
for some of the missing energy. It seems likely that the oscillations in the sunspot
would give rise to horizontally propagating hydromagnetic waves (i.e. longitudinal
magnetosonic waves). Since the speed of sound is several times larger than the Alfvén
velocity at depths of 5000 to 10000 km in the spot, the longitudinal magnetosonic
wave velocity inside the sunspot is approximately the same as the sound velocity
outside the spot. At these depths, the speed of sound is of the order of 20 km/sec and
the density is of the order of 5x 10™3 gm/cm?2. One may estimate the horizontal flux
from an equation similar to Equation (9) and one finds the horizontal fluxes equal to
5x 10! ergs/cm? sec (nearly 10 times the normal photospheric flux) for displacement
velocities of 1 km/sec. And for this flux, the total energy emitted by a cylindrical
surface having a diameter of 10* km and a depth of 5 x 10° km is nearly 103° ergs/sec.
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This is approximately equal to the missing energy of an entire sunspot having a
penumbral diameter of 2.5 x 10* km (and an umbral diameter of 10* km) if one takes
1 of the photospheric flux over the entire sunspot area to be the missing energy.

The numbers in the above paragraph are very speculative, but they may indicate
one way to account for the missing energy in sunspots. And if this be the case, the
lack of a substantial bright ring near sunspots could be understood if the horizontally
propagating waves travel several times the penumbral radius of the sunspot before
dissipating. Also some energy may be propagated away from the sunspot by means of
surface gravity waves.

A third implication of oscillatory modes in the sunspot interior is that they may lend
some support to the use of a reduced mixing length by Deinzer (1965) and Yun (1967)
in computing models of the sunspot interior. In the absence of a magnetic field, the
reason for using a mixing length (equal to the local-pressure scale height, for example)
is that an upward-moving element goes roughly one scale height before stopping and
giving up its excess thermal energy to its surroundings. In the case of oscillations in
the presence of a vertical magnetic field, however, the upward-moving elements do
not stop and mix with the surroundings, but reverse their motion instead. Thus the
moving elements have a limited amount of time in which to exchange energy with
respect to their surroundings and therefore the use of a mixing length which is only a
fraction of a scale height seems like a plausible first approximation to estimating the
non-radiative energy transport in a sunspot.

In the event that horizontally propagating hydromagnetic waves are emitted in the
interior of the sunspot, a modification to the procedure used by Deinzer (1965) and by
Yun (1967) is suggested. Namely, the total flux is not constant in the sunspot but
decreases with height as energy is radiated horizontally. Thus, the flux should be
varied with the depth in future models. One consequence of this is that the larger flux
in the deeper portions of a sunspot would produce a larger superadiabatic gradient
and, therefore, a greater instability to oscillations.

Appendix
In mixing length theory, the convective flux F, is given by (Bohm-Vitense, 1958)

F.= %CppTV<il> (V - V/)’

where C,, is the heat capacity per gram, p is the density, T is the temperature, Vis the
mean velocity of a ‘turbulent element’, / is Prandtl’s mixing length, # is the pressure
scale height, V=(d(InT))/(d (In P)), where p is the gas pressure, and where V' is the
same quantity in a ‘turbulent element’. Similarly (Bohm-Vitense, 1958),

. _RT l>2 o
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where R is the gas constant, where M is the mean molecular weight, and where the

parameter Q=1—(dIn M)/(0 In T).
Eliminating (V—V’) from the above two equations and defining the equipartition
magnetic field H., by
ﬂHeZq
8n

o\ 4 mc,) \n) ’

where p is the magnetic permeability.
Since F-< F, where F is the total flux, and since R/MC,<0.4 (the value for a mon-

atomic gas), one obtains

gm 1/6 l 1/3
Heq<6600gauss<p[c—m§]> (h Q'3

The parameter Q differs from unity only in the upper few thousand kilometers of
the normal convection zone (where it takes on values of the order of 2). Therefore Q
may be set equal to unity for the purposes of this paper and

gm 1/6 l 1/3
H., < 6600gauss| p| —5 : .
cm h
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DISCUSSION

Severny: Should there exist some phase shift in oscillations at different levels inside a sunspot?

Danielson: Yes, oscillations at different levels inside the sunspot will be coupled to some extent
since they are traversed by the same magnetic field. However, the extent of this coupling will not be
known until the actual modes in Deinzer’s model are computed.

Maltby: Since you have mentioned the transport of energy by sound waves in the horizontal
direction, I would like to draw attention to a paper by G. Eriksen and myself (to be published in
Solar Physics) where the Evershed effect is explained as a wave phenomenon and the effect of energy
transport is mentioned.

Sturrock: Sunspots normally begin as a small dark pore, giving the impression that, when the
magnetic-field strength grows to a certain value, the normal convection pattern is suppressed and
some other pattern is set up. Can your theory predict the field strength at which a pore would form?

Danielson: Our stability model predicts that the normal convection pattern begins to be suppressed
at the instability curve. The magnetic field corresponding to the half open instability curve is of the
order of 800 gauss, but this value should not be taken too seriously since our stability model is
rather crude.

Eliske Smith: Some very tentative results of my study of vertical velocities in the umbra of sunspots
may have some bearing on Danielson’s model. I have found downward velocities, relative to the
photosphere, of the order of 0.3 km/sec in certain photospheric lines (1 5123, 5434, and 5576). There
is an indication that these velocities show a time variation with a period of about 5 min. Hence the
actual velocities range from almost zero to 0.6 km/sec or even higher, though almost always down-
ward. Weaker lines, like A 5436 (Ni1), arising from greater depths in the umbra, have smaller ve-
locities, on the average of the order of 0.1 km/sec.
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