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Abstract
Hyper-redundant cable-driven manipulators (CDMs) are widely used for operations in confined spaces due to their
slender bodies and multiple degrees of freedom. Most research focuses on their path following but not path planning.
This work investigates a deep deterministic policy gradient (DDPG)-based path-planning algorithm for CDMs
in multi-obstacle environments. To plan passable paths under many constraints, a DDPG algorithm is modified
according to features of CDMs. To improve adaptability of planned paths, a specialized reward function is newly
designed. In this function, such factors as smoothness, arrival time and distance are taken into account. Results of
simulations and physical experiments are presented to demonstrate the performances of the proposed methods for
planning paths of CDMs.

1. Introduction
Cable-driven manipulators (CDMs) are a novel class of robots. Similar to snake robots [1], they can
move flexibly in confined environments due to their slender bodies and a large number of degrees of
freedom (DOFs) [2]. Unlike snake robots, CDMs have separate driving systems and all DOFs can be
independently controlled. This makes them more suitable than snake robots for executing dangerous
tasks such as operating in nuclear facilities and intricate industrial devices [3, 4].

In the past decades, many hyper-redundant manipulators were designed, which can be roughly classi-
fied into two categories: rigid-backbone and continuum-backbone manipulators [5, 6]. As a main form
of these robots, a rigid-backbone robot is connected by a number of joints and links. As a pioneer,
Shigeo designs a multi-segment manipulator [7]. Several commercial manipulators of this structure
are developed by OC robotics [8]. Kang and Dai designed a pneumatic muscle-based continuum robot
with embedded tendons in ref. [9] and a novel continuum robot with shape memory alloy initiated
variable stiffness in [10]. In refs. [11, 12], mechanism and control of a manipulator that can coil and
uncoil are investigated. Such robots as the hyper-redundant manipulator developed by OC Robotics
[13] and a collaborative continuous robot system developed by Dong [14] are used in challenging
environments.

Since CDMs execute tasks in confined spaces with multi-obstacle, they require high performances
in terms of safety and precision. However, it is difficult to control them due to their hyper-redundancy
DOFs, nonlinear and multi-level relationships among motors, joints and end effectors [15]. To solve
these problems, several motion control methods including path following and path planning of CDMs
were proposed in the past years.

Path following of CDMs is to control their slender bodies to track desired paths without collision.
Since high DOFs of CDMs, their path following is usually solved by using an iterative Jacobian-based
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method [16]. Conkur computes link’s position relative to a given B-spline curve path by using a numer-
ical approach [17]. To control a snake arm robot following desired trajectories with minimal errors,
Palmer et al. propose a tip-following approach by using a sequential quadratic programing optimization
method [18]. In ref. [19], a tip-following method is proposed for CDMs and its performance is analyzed.
A path-following method with prediction lookup and interpolation algorithms is investigated for CDMs
working in confined spaces [20]. With these methods, CDMs can move along desired paths accurately.
However, these paths are given by operators according to constraints of tasks and CDMs. When they
are required to automatically execute special tasks in multi-obstacle environments, their path planning
is essential.

Unlike path following, path-planning methods are rarely researched. In the recent years, path plan-
ning for CDMs has emerged as a prominent research area. In ref. [21], bilevel optimization and genetic
algorithms are used to plan paths for redundant manipulators. It maximizes the manipulability of the
robot but fails to consider smoothness of the planned paths. In ref. [22], a motion planning method that
considers constraints of joint limits and environments is designed for a novel coiled CDM. However,
this motion planning method depends on the kinematic model. Wei et al. propose a specialized rapidly
exploring random tree (RRT) path-planning method for achieving a follow-the-leader motion of CDMs
[23]. A CDM controlled by this method can move in porous plate environments. Jia et al. propose an
MDA + RRT path-planning approach for CDMs that considers the maximum deflection angle of joints
[24]. To quickly plan suitable paths for CDMs, an RRT-A∗ method is proposed and verified in ref. [25].
Yang et al. designed an ellipsoid-shaped RRT∗-based path-planning method for CDMs with angle lim-
itations [26]. The mentioned methods are based on research conducted on accurate models of CDMs.
In reality, it is difficult to establish such accurate models because of their complex mechanisms and
coupling relationships.

Different from these model-based methods, reinforcement learning (RL) algorithm can plan suitable
paths without depending on any models [27, 28]. In ref. [27], Sangiovanni et al. propose a collision avoid-
ance method for a 6-DOF manipulator based on a deep RL algorithm. The manipulator can complete
tasks with an unpredictable obstacle invasive its workspace. To plan collision-free path in duct-entry
space for an 8-DOF manipulator, an RL-based collision-free path planner is designed [28]. The gener-
ality of the planner is not enough for different ducts. This work is significant for control manipulators.
However, their manipulators’ DOF is lesser than CDMs’ and their environments are not complex enough.
Driven by this work, it is valuable to research RL-based path-planning methods for hyper-redundant
CDMs in multi-obstacle environments.

In this paper, path planning of CDMs in multi-obstacle environments is tackled with a deep determin-
istic policy gradient (DDPG) algorithm. To meet pose constraints of hyper-redundant CDMs, DDPG is
modified according to CDMs’ features. A specialized reward function considering smoothness, arrival
time and distance is designed to improve the adaptability of planned paths. A tip-following method is
used to control CDMs to move along a planned path. Extensive simulations and experiments about path
planning and following a 17-DOF CDM are conducted. To the best of our knowledge, there has been
little research on using DDPG for path planning of CDM.

The rest of this paper is organized as follows: design and kinematics of CDM are described in
Section 2. A DDPG-based path planning and tip-following methods are given in Section 3. Simulations
and experiments are conducted to verify its efficiency in Section 4. Section 5 concludes the paper.

2. Design and mathematical model of CDM
As shown in Fig. 1, a CDM with 17 DOFs is designed. It consists of a robotic manipulator and an
actuation system. The manipulator is connected by 8 rotational sections. Each section is driven by 3
cables and it can rotate in pitch and yaw directions through coupling control of corresponding cables.
There are 24 groups of motors and driving modules arranged circularly on a pedestal. In order to expand
the robot’s workspace, the pedestal is fixed on a platform that can move forward and backward.
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Table I. Mathematical notation.

Symbol Description
dl The length of each link
de The distance between the end effector and joint 8
db Translation distance of B relative to S

dS,B Transformation matrix from S to B

dS,E Transformation matrix from S to E

dB,E Transformation matrix from B to E

ξ̂i Twist of joint i
ωi Unit direction vector of axis i
qi Center of mass of the rotation axis i
S= (XS, YS, ZS) Reference coordinate system
B= (XB, YB, ZB) Base coordinate system
E= (XE, YE, ZE) End coordinate system
θ2i−1, i = 1, 2, . . . , 8 Pitch angle of joint i
θ2i, i = 1, 2, . . . , 8 Yaw angle of joint i
Cθ , Sθ cos θ , sin θ

Figure 1. Design and model of a 17-degree of freedom cable-driven manipulator (CDM). (a) The
designed hyper-redundant CDM. (b) A simplified geometric model of the CDM. (c) Model of a joint. (d)
Geometric model.

2.1. Kinematics analysis of CDM
In order to control CDM, we establish and analyze its kinematics model and mapping relationships by
using a product of exponentials (POEs) formula method. As shown in Fig. 1(d), the robotic manipulator
has 8 sections. Each section is composed of a link and a universal joint. Mathematical symbols used in
this paper are listed in Table I.

The kinematics analysis of CDM includes relationships among task space, joint space and driving
space. Since the focus of this work is path planning of CDM, we mainly derive kinematics between task
space and joint one. For the task-joint kinematics, a mutual transformation between rotational joints’
angles and end effector’s posture is necessary.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001048
Downloaded from https://www.cambridge.org/core. IP address: 3.133.155.15, on 13 Jan 2025 at 17:29:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core


2680 Dong Zhang et al.

Table II. Product of exponential parameters of
cable-driven manipulator.

Index i ωi qi

1 [0, 0, 1]T [0, 0, 0]T

2 [0, −1, 0]T [0, 0, 0]T

3 [0, −1, 0]T [dl, 0, 0]T

4 [0, 0, 1]T [dl, 0, 0]T

...
...

...

15 [0, −1, 0]T [7dl, 0, 0]T

16 [0, 0, 1]T [7dl, 0, 0]T

As defined in our previous work [29], f1 and f −1
1 are the forward and inverse kinematics between task

space and joint space, respectively. We have:

f1 = TS,E = TS,B(dB)TB,E(θ1, θ2, θ3, . . . , θ16). (1)

The twist ξ̂i can be obtained from:

ξ̂i =
[

ω̂i νi

0 0

]
∈ SE(3), (2)

where ω̂i is a skew symmetric matrix of ωi, ξi = [νT
i , ωT

i ]T , νi = −ωi × qi, ωi and qi are set as Table II.

In a POE formula method, a rotation motion of CDM can be described in the form of an exponential
product as:

eξ̂ θ =
[

R ρ

0 1

]
∈ SE(3), (3)

where R = I + sin θω̂ + (1 − cos θ )ω̂2, ρ = (Iθ + (1 − cos θ )ω̂ + (θ − sin θ )ω̂2)ν and I ∈ R3×3 is an
identity matrix. The posture of the end effector is:

TB,E(θ1, θ2, . . . , θ16) = eξ̂1θ1 eξ̂2θ2 . . . eξ̂16θ16 TB,E(0), (4)

where TB,E(0) is an initial end posture of CDM.

2.2. Kinematics analysis of a joint
As shown in Fig. 1(c), position and orientation of each section are determined by rotation of its joints.
Rotation angles are controlled by corresponding three cables. To analyze the relationship between cable
lengths and rotation angles of joints, a geometric model of a joint is simplified as shown in Fig. 1(d).
In the schematic diagram of the first universal joint, i = 1, the transformation relationship between
coordinate systems is:

M
O T = Trans (0, 0, h) Rot (X, θ2), (5)

O
NT = Rot (Y , θ1) Trans (0, 0, h). (6)

The transformation relationship between {M} and {N} is:

N
MT =O

N TM
O T =

⎡
⎢⎢⎣

Cβi Sαi Sβi Cαi Sβi 2Sβi h
0 Cαi −Sαi 0

−Sβi Cβi Sαi Cαi Cβi 2Cβi h
0 0 0 1

⎤
⎥⎥⎦. (7)
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In addition, coordinates of cables’ holes in the corresponding disk can be computed.
The driven cables of the first joint can be computed as:

Lc,j =

⎡
⎢⎢⎢⎢⎣

2hSθ1 − rCϕ+(j−1) 2π
3

+ rCϕ+(j−1) 2π
3

Cθ1 + rSθ2 Sθ1 Sϕ+(j−1) 2π
3

rCθ2 Sϕ+(j−1) 2π
3

− rSϕ+(j−1) 2π
3

2hCθ1 − rCϕ+(j−1) 2π
3

Sθ1 + rCθ1 Sθ2 Sϕ+(j−1) 2π
3

0

⎤
⎥⎥⎥⎥⎦ , j = 1, 2, 3. (8)

Their lengths are:

|Lc,j| = ((rCϕ+(j−1) 2π
3

(Cθ1 − 1) + 2hSθ1 Cθ2 + rSϕ+(j−1) 2π
3

Sθ1 Sθ2 )2

+ (2h(Cθ1 Cθ2 + 1) − rCϕ+(j−1) 2π
3

Sθ1 + rSϕ+(j−1) 2π
3

Cθ1 Sθ2 )2 j = 1, 2, 3.

+ (rSϕ+(j−1) 2π
3

(Cθ2 − 1) − 2hSθ2 )2)1/2 (9)

where r is radius of the circle where the holes are distributed on the disk.
Using above kinematics model, desired motion of other section can be realized with given pitch and

yaw angles θ2i−1 and θ2i.

3. Path planning based on DDPG
Path planning is important for CDMs to move in complex environments with multiple obstacles.
Objectives of CDM path planning can be presented as:

• Followed ability: The curvature of a planned path should be within the limitation of CDM joints.
• Path performances: The planned path should be shorter and smoother.
• Efficiency: Passable paths should be planned rapidly in different environments.

For the path planning of CDMs, the states of CDMs at a certain moment only depend on the previous
states and actions. They are independent of the previous states and actions. Due to this feature, path
planning of CDM can be modeled as a Markov decision problem. RL is particularly suitable for solving
MDPs due to its advantages, such as model independence, exploration-exploitation balance, dynamic
decision-making ability and reward-driven learning. Compared with other DRL algorithms, DDPG per-
forms better in processing continuous action spaces, expressing deep learning, as well as algorithm
stability and convergence, making it suitable for solving MDPs. In this work, a DDPG-based method is
investigated to solve path planning of CDM.

3.1. DDPG
DDPG is a model-free algorithm that can learn competitive policies for many tasks by using same hyper-
parameters and network structures [30]. It is illustrated in Fig. 2 and realized in Algorithm 1.

DDPG maintains a parameterized actor function μ(s | θμ) that specifies the current policy by deter-
ministically mapping states to a specific action. A critic Q(s, a) is learned by using a Bellman equation.
An actor is updated by using a chain rule to an expected return from a start distribution J according to
parameters of the actor:

∇θμ
J ≈Est∼ρβ [∇θμQ(s, a | θQ)) |s=st ,a=μ(st |θμ) ]

=Est∼ρβ [∇aQ(s, a | θQ) |s=st ,a=μ(st) ∇θμ
μ(s | θμ) | s = st]. (10)

To accelerate the convergence of DDPG, weights of the network are updated by a back propaga-
tion algorithm based on an experience replay technology. Transitions are sampled from environments
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Algorithm 1: The DDPG Algorithm.

Initialize target network Q′ and μ′ with parameters θQ ← θQ, θμ ← θμ;
Initialize target network Q′ and μ′ with parameters; θQ ← θQ, θμ ← θμ;
Initialize the replay buffer.
for episode = 1,. . .,M do

Initialize a random process N for action exploration;
Observe s1;
for t = 1, 2, . . . , T do

Obtain at = μ(st | θμ) + Nt;
Execute at, observe rt;
Observe st+1.
R ← (st, at, rt, st+1);
Sample a random minibatch of Nt transitions (si, ai, ri, si+1) from R.
Set yi = ri + γQ′

′

(si+1, μ
′(si+1 | θμ′

) | θQ′
);

L = 1
N i(yi − Q(si, ai | θQ))2;

Update the actor policy according to the sampled policy gradient:
∇θµJ ≈ 1

N
i

∇aQ(s, a | θQ) |s=si,a=μ(si) ∇θµμ(s|θμ)|si
,

θQ ← τθQ + (1 − τ)θQ′ ,
θμ′ ← τθμ + (1 − τ)θμ′ .

end
end

′

′

′

′

Figure 2. The deep deterministic policy gradient path-planning algorithm.

according to the exploration policy and a tuple (st, at, rt, st+1) is stored in a replay buffer R. The oldest
samples are discarded when R is full. The actor and critic networks are updated by sampling a mini-
batch uniformly from R at each timestep. Since DDPG is an off-line policy algorithm, R should be large
enough to improve its benefit.

3.2. Reward function
A proper reward function is key to a successful reinforcement learning algorithm. This work proposes
the following reward function to plan a safe path toward the target for the CDM, i.e.,
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Table III. Parameters of deep deterministic policy gradient.

Symbol Value
The maximum iteration count Mmax 5000
The maximum step count Tmax 200
Discount factor γ 0.99
Update factor τ 0.005
Learning rate η 0.0001
Noise � Ornstein − Uhlenbeck
Exploration noise 0.025
Weights of reward function c1, c2 c1 = 1000, c2 = 60
δ 0.1
p 8
dref 0.2

R =
⎧⎨
⎩

500, case 1
c1R1 + c2R2, case 2
−50, case 3

(11)

where case1 is the robot arrives at the target, case2 is the robot moves toward the target, case3 is the
robot collides with obstacles, R1 is the distance reward between the end effector and the target, R2 is a
distance reward between the end effector and the obstacle and c1 and c2 are weights that decide priority
during training. The distance reward R1 is computed by using a Huber-Loss function:

R1 =
{

1
2
d2, |d| < δ

δ(|d| − 1
2
δ), otherwise

, (12)

where d is the Euclidean distance between CDM’s end effector and the target and δ is a parameter that
determines the smoothness. The second reward R2 relates to the distance between the robot and the
nearest obstacle. It is computed as:

R2 =
(

do

ď + do

)p

, (13)

where do is set as a constant to ensure R2 ∈ (0, 1), ď is the minimum distance between the end effector
and the obstacle and p is an exponential decay of the negative reward. Parameters of DDPG used in this
work are listed in Table III.

3.3. Path following of CDMs
To control CDM to move along a planned path, a tip-following method as shown in Fig. 3 is adopted.
Joints and links of CDM should be matched with the planned path. The planned path is discretized into
some waypoints. As shown in Fig. 3(a), ki is a key point located at the center of mass of universal joint i,
the pedestal is fixed with k1 and Mi is the i-th mark point located on the path. In this work, a set of points
denoted as M are generated by discretizing the path. The length of a curve between adjacent points is
set as a constant sd.

When k1 is located at a discrete point of the path, the point is defined as pk1 . Other key points pki need
satisfy the constraint:

min |−−−→pki pki−1 | − dl, ki ∈ (ki−1, n × p), (14)

where n × p is the number of all discretization points.
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Figure 3. The tip-following method of cable-driven manipulators. (a) Iteration of links. (b) The
interpolation algorithm.

To find pki , this work adopts an iteratively sequential searching method proposed in refs. [19, 20]. As
shown in Fig. 3(a), ptki is the nearest mark point to the key point ki at time t. In the next time step, key
points move forward along the direction of discrete points:

t+1ki −t+1 ki−1 ≈t ki −t ki−1 = �k, (15)

where �k = dl/sd. Index t+1ki can be predicted.

Algorithm 2: The Key Point Searching Algorithm.
Δk = dl/sd,
t+1k̄i =t+1 ki−1 + Δk.
Flag= 0,
Ll =

−−−−−−−−−−−→|pt+1ki
Mt+1ki−1|,

Lm =
−−−−−−−−−→|pt+1ki

Mt+1ki
|,

Lr =
−−−−−−−−−−−→|pt+1ki

Mt+1ki+1|.
Dl = ||Ll − dl||, Dm = ||Lm − dl||, Dr = ||Lr − dl||.
Dmin = min(Dl, Dm, Dr)
while ∼ Flag do

case 1,
Dmin = Dm,
pt+1ki

= Mt+1ki
,

Flag= 1.
case 2,
Dmin = Dl,
Lr = Lm, Lm = Ll, Ll =

−−−−−−−−−−−→|pt+1ki
Mt+1ki−2|.

case 3,
Dmin = Dr,
Ll = Lm, Lm = Lr, Lr =

−−−−−−−−−−−→|pt+1ki
Mt+1ki+1|.

end
Return pt+1ki

.

With these predictions, the points pt+1ki corresponding to t+1ki need to be verified whether satisfy (14)
by using Algorithm 2. Although ptki is the nearest mark point to the key point ki, the distance between
ptki and pt+1ki−1 is unequal to the link’s length. A point certifies Equation (14) needs to be found around
ki. As shown in Fig. 3(b), Mt+1ki

is the predicted pt+1ki , Mt+1ki−1
and Mt+1ki+1

are its adjacent mark points.
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Figure 4. Simulations of path planning by using the proposed deep deterministic policy gradient
algorithm. (a) The planned path. (b) The reward converges to a stable state.

The expected pt+1ki locates the blue arc. The center and the radius of the arc are pt+1ki−1 and dl, respectively.
The expected pt+1ki can be computed by using the geometric relationships. Positions of all joints can be
computed based on the planned path after this iteration.

4. Evaluation
To test the proposed DDPG-based path-planning method, we have conducted a group of simulations and
experiments. In these experiments, the end effector of the CDM is required to move from a start point
(130, 0, 0) to a target position (235, 0, 0) while avoiding six cylinders with a radius of 5 cm and a height
of 20 cm. Their coordinates are (160,-4,0), (160,0,0), (160,4,0), (185,-2,0), (185,2,0) and (210,0,0),
respectively. The initial pitch and yaw angles of all joints of the CDM are 0 degrees. Through multiple
experiments, parameters of DDPG are compared and selected as shown in Table III.

4.1. Simulations
In our simulations, Simulink, CoppeliaSim and Pycharm are used. Communication among different
platforms is implemented through a remote API. Two groups of simulation are conducted in Simulink
and CoppeliaSim, respectively. In Simulink and CoppeliaSim, a virtual robot is built according to the
size of our prototype and a multi-obstacle environment is conducted.

The passable path is planned by DDPG algorithm and CDM is controlled by the tip-following method
to move toward the target. As shown in Fig. 4(a), DDPG algorithm can plan a passable path (black curve)
in a multi-obstacle environment. The reward can converge to a stable state as shown in Fig. 4(b). Angles
and positions of links are computed by using the tip-following method. As shown in Fig. 5(a) and (b), the
CDM can move along the planned path (black curve) without collision in Simulink and CoppeliaSim.
Joint angles are measured and saved to analyze the motion controlled by the proposed methods. As
shown in Fig. 5(c), all the angles are always less than 40 degrees while moving from the start point to
the target point. They are smooth enough and satisfy to mechanical constraints of the joints.

4.2. Physical experiments
Prototype experiences are used to test our path planning and following methods of CDMs. As shown
in Fig. 6(a), the robotic manipulator is connected by 8 sections. The platform is powered by a step-
per motor (57TB6600). Each section can rotate between [−45◦, +45◦]. Motors communicate with a
PC via an analyzer (Kvaser Leaf Light v2). Geometric parameters of our CDM are summarized in
Table IV.
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Table IV. Geometric parameters of cable-driven manipulator.

Parameter Value
Total length of the CDM (mm) 1500
Size of the robotic manipulator (mm) �100 × 1375
Displacement of the platform (mm) 1200
Number of sections 8
Size of the driving cable (mm) � 1
Number of motors 25
Number of DOFs 17

Figure 5. Simulations of path planning and following of a cable-driven manipulator by using the
proposed methods. (a) Simulations in Simulink. (b) Simulations in CoppeliaSim. (c) Joint angles.

To control CDM move toward the target along a desired path, a closed-loop control framework is
designed. Links and obstacles are wrapped by tapes to fix markers. To measure states of CDM accurately,
each link attached with 3 markers is defined as a rigid body. Positions of all markers can be measured
by a 3-D OptiTrack motion capture system. States of CDM can be computed by using these data and its
kinematics model. Passable paths are planned by using DDPG. Positions of all links are computed by the
tip-following method. Joint angles and cable lengths are computed according to multi-level relationships
among motors, joints and the end effector of the robot. As shown in Fig. 6(b), our CDM controlled by
the proposed methods can plan a possible path and move toward a target position smoothly without
collision in a multi-obstacle environment.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001048
Downloaded from https://www.cambridge.org/core. IP address: 3.133.155.15, on 13 Jan 2025 at 17:29:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core


Robotica 2687

Figure 6. The cable-driven manipulator (CDM) prototype and experiments. (a) The structure of CDM.
(b) Experiments of path planning and following of CDM by using the proposed methods.

5. Conclusion and future work
In this work, a specialized DDPG-based path-planning algorithm is designed for CDMs. A reward
function under constraint of CDMs’ features and multi obstacles is designed to train the DDPG
path-planning network. To control the robot moving along the planned path without collisions, a
tip-following method is used. Various simulations and experiments are conducted in CoppeliaSim
and Simulink to validate the effectiveness of the proposed algorithms. In order to demonstrate the
practicality of the motion control methods, they are verified on a 17-DOF CDM prototype through
simulations and experiments. The results validate the effectiveness of our path planning and following
methods.

The CDM designed in this work can only move in environments with prior static obstacles auto-
matically. However, in most real tasks, there are many dynamic obstacles. In future work, we will
improve its mechanisms using methods proposed in refs. [31, 32] and optimize its control by combining
environmental perception and understanding algorithms proposed in refs. [33, 34].

Author contributions. Dong Zhang, Renjie Ju and Zhengcai Cao conceived and designed the study and wrote the article.

Financial support. This work is supported by National Natural Science Foundation of China (52105005), the Beijing Natural
Science Foundation (L223019), Open Foundation of State Key Laboratory of High-end Compressor and System Technology
(SKL-YSJ202311) and Fundamental Research Funds for the Central Universities (ZY2415).

Competing interests. The authors declare no competing interests exist.

Ethical approval. The authors declare none.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001048
Downloaded from https://www.cambridge.org/core. IP address: 3.133.155.15, on 13 Jan 2025 at 17:29:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core


2688 Dong Zhang et al.

References
[1] D. Li, B. Zhang, Y. Xiu, H. Deng, M. Zhang, W. Tong, R. Law, G. Zhu, E. Q. Wu and L. Zhu, “Snake robots play an

important role in social services and military needs,” Innovation 3(6), 100333 (2022).
[2] J. W. Robert and A. Bryan, “Design and kinematic modeling of constant curvature continuum robots: A review,” Int J Robot

Res 29(13), 1661–1683 (2010).
[3] T. Li, S. G. Ma, B. Li, M. H. Wang and Y. C. Wang, “Axiomatic design method to design a screw drive in-pipe robot passing

through varied curved pipes,” Sci China Technol Sci 59(2), 191–202 (2016).
[4] J. Peng, C. Zhang, D. Meng and B. Liang, “Trajectory optimization methods of a space hyper-redundant robot based on

effective arm-shape measurement,” IEEE Trans Instrum Meas 72(5017914), 1–14 (2023).
[5] I. D. Walker, H. Choset and G. S. Chirikjian, “Snake-Like and Continuum Robots,” In: Springer Handbook of Robotics (B.

Siciliano and O. Khatib, eds.) (Springer International Publishing, Berlin, Heidelberg, 2016) pp. 481–498.
[6] X. Dong, M. Raffles, S. Cobos-Guzman, D. Axinte and J. Kell, “A novel continuum robot using twin-pivot compliant joints:

Design, modeling, and validation,” J Mech Robot 8(2), 021010 (2015).
[7] H. Shigeo, C. Peter and G. Charles, Biologically Inspired Robots: Snake-Like Locomotors and Manipulators (Oxford

University Press, Oxford, 1993).
[8] R. Buckingham, V. Chitrakaran, R. Conkie, G. Ferguson, A. Graham, A. Lazell, M. Lichon, N. Parry, F. Pollard, A. Kayani,

M. Redman, M. Summers and B. Green, Snake-arm robots: A new approach to aircraft assembly, (2007). SAE technical
paper, 01–3870.

[9] R. Kang, Y. Guo, L. Chen, D. Branson and J. Dai, “Design of a pneumatic muscle based continuum robot with embedded
tendons,” IEEE/ASME Trans Mechatro 22(2), 751–761 (2017).

[10] C. Yang, S. Geng, I. Walker, D. T. Branson, J. Liu, J. S. Dai and R. Kang, “Geometric constraint-based modeling and analysis
of a novel continuum robot with shape memory alloy initiated variable stiffness,” Int J Robot Res 39(14), 1620–1634 (2020).
doi: 10.1177//0278364920913929.

[11] X. Dong, D. Axinte, D. Palmer, S. Cobos, M. Raffles, A. Rabani and J. Kell, “Development of a slender continuum robotic
system for on-wing inspection/repair of gas turbine engines,” Robot Comp Integ Manuf 44, 218–229 (2017).

[12] A. Mohammad, M. Russo, Y. Fang, X. Dong, D. Axinte and J. Kell, “An efficient follow-the-leader strategy for continuum
robot navigation and coiling,” IEEE Robot Automa Lett 6(4), 7493–7500 (2021).

[13] R. Buckingham and A. Graham, “Dexterous Manipulators for Nuclear Inspection and Maintenance; Case Study,” In: IEEE
International Conference on Applied Robotics for the Power Industry, (2010) pp. 1–6.

[14] X. Dong, M. Wang, A. Mohammad, W. Ba, M. Russo, A. Norton, J. Kell and D. Axinte, “Continuum robots collaborate
for safe manipulation of high-temperature flame to enable repairs in extreme environments,” IEEE/ASME Trans Mechatro
27(5), 4217–4220 (2022).

[15] D. Lau, D. Oetomo and S. K. Halgamuge, “Inverse dynamics of multilink cable-driven manipulators with the consideration
of joint interaction forces and moments,” IEEE Trans Robot 31(2), 479–488 (2015).

[16] L. Tang, L. Z. Ji, X. Zhu and G. Gu, “Path tracking of a cable-driven snake robot with a two-level motion planning method,”
IEEE/ASME Trans Mechatro 24(3), 935–946 (2019).

[17] E. S. Conkur, “Path following algorithm for highly redundant manipulators,” Robot Auton Syst 45(1), 1–22 (2003).
[18] D. Palmer, S. Cobos-Guzman and D. Axinte, “Real-time method for tip following navigation of continuum snake arm

robots,” Robot Auton Syst 62(10), 1478–1485 (2014).
[19] J. Wang, L. Tang, G. Gu and X. Zhu, “Tip-following path planning and its performance analysis for hyper-redundant

manipulators,” J Mech Eng 54(3), 18–25 (2018).
[20] L. Tang, L. M. Zhu, X. Y. Zhu and G. Y. Gu, “Confined spaces path following for cable-driven snake robots with prediction

lookup and interpolation algorithms,” Sci China Technol Sci 63(2), 255–264 (2020).
[21] S. M. LaValle, Planning Algorithms (Cambridge University Press, 2006). doi: 10.1017/CBO9780511546877.
[22] M. Luo, E. Li, A. Zhang, M. Tan and Z. Liang, “A bioinspired coiled cable-driven manipulator: Mechatronic design and

kinematics planning with multiconstraints,” IEEE/ASME Trans Mechatro 28(6), 3155–3166 (2023).
[23] H. Wei, Y. Zheng and G. Gu, “RRT-Based Path Planning for Follow-the-Leader Motion of Hyper-Redundant Manipulators,”

In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2021) pp. 3198–3204.
[24] L. Jia, Y. Huang, T. Chen, Y. Guo, Y. Yin and J. Chen, “MDA+RRT: A general approach for resolving the problem of angle

constraint for hyper-redundant manipulator,” Exp Syst Appl 193, 116379 (2021).
[25] D. Zhang, Y. Gai, R. Ju, Z. Miao and J. Lao, “RRT-A∗ Path Planning Algorithm for Cable-Driven Manipulators,” In: IEEE

International Conference on Robotics and Biomimetics, (2022) pp. 451–456.
[26] H. Ji, H. Xie, C. Wang and H. Yang, “E-RRT∗: Path planning for hyper-redundant manipulators,” IEEE Robotics and Automa

Lett 8(12), 8128–8135 (2023).
[27] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara and M. Piastra, “Deep Reinforcement Learning for Collision

Avoidance of Robotic Manipulators,” In: European Control Conference, (2018) pp.2063–2068.
[28] X. Hua, G. Wang, J. Xu and K. Chen, “Reinforcement learning-based collision-free path planner for redundant robot in

narrow duct,” J Intell Manuf 32(2), 471–482 (2021).
[29] R. Ju, D. Zhang, J. Xu, H. Yuan, Z. Miao, M. Zhou and Z. Cao, “Design, modeling, and kinematics analysis of a modular

cable-driven manipulator,” J Mech Robot 14(6), 064501 (2022).
[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wierstra, Continuous Control with Deep

Reinforcement Learning, Computer Science, (2015).
[31] F. Aimedee, G. Gogu, J. S. Dai, C. Bouzgarrou and N. Bouton, “Systematization of morphing in reconfigurable mecha-

nisms,” Mech Mach Theory 96, 215–224 (2016).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001048
Downloaded from https://www.cambridge.org/core. IP address: 3.133.155.15, on 13 Jan 2025 at 17:29:17, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1177//0278364920913929
https://doi.org/10.1017/CBO9780511546877
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core


Robotica 2689

[32] M. Salerno, K. Zhang, A. Menciassi and J. S. Dai, “A novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-
Effector for Minimally Invasive Surgery,” In: 2014 IEEE Intemational Conference on Robotics and Automation, (2014)
pp. 2844–2849.

[33] Z. Cao, J. Li, D. Zhang, M. Zhou and A. Abusorrah, “A multi-object tracking algorithm with center-based feature extraction
and occlusion handling,” IEEE Trans Intell Transp 24(4), 4464–4473 (2023).

[34] H. Mu, G. Zhang, Z. Ma, M. Zhou and Z. Cao, “Dynamic obstacle avoidance system based on rapid instance segmentation
network,” IEEE Trans Intell Transp 25(5), 4578–4592 (2023). doi: 10.1109/TITS.2023.3323210.

Cite this article: D. Zhang, R. Ju and Z. Cao (2024). “DDPG-based path planning for cable-driven manipulators in multi-obstacle
environments”, Robotica 42, 2677–2689. https://doi.org/10.1017/S0263574724001048

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001048
Downloaded from https://www.cambridge.org/core. IP address: 3.133.155.15, on 13 Jan 2025 at 17:29:17, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1109/TITS.2023.3323210
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001048
https://www.cambridge.org/core

	DDPG-based path planning for cable-driven manipulators in multi-obstacle environments
	Introduction
	Design and mathematical model of CDM
	Kinematics analysis of CDM
	Kinematics analysis of a joint

	Path planning based on DDPG
	DDPG
	Reward function
	Path following of CDMs

	Evaluation
	Simulations
	Physical experiments

	Conclusion and future work


