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Abstract
As the scale of cosmological surveys increases, so does the complexity in the analyses. This complexity can oftenmake it difficult to derive the
underlying principles, necessitating statistically rigorous testing to ensure the results of an analysis are consistent and reasonable. This is par-
ticularly important in multi-probe cosmological analyses like those used in the Dark Energy Survey (DES) and the upcoming Legacy Survey
of Space and Time, where accurate uncertainties are vital. In this paper, we present a statistically rigorous method to test the consistency of
contours produced in these analyses and apply this method to the Pippin cosmological pipeline used for type Ia supernova cosmology with
the DES. We make use of the Neyman construction, a frequentist methodology that leverages extensive simulations to calculate confidence
intervals, to perform this consistency check. A true Neyman construction is too computationally expensive for supernova cosmology, so
we develop a method for approximating a Neyman construction with far fewer simulations. We find that for a simulated dataset, the 68%
contour reported by the Pippin pipeline and the 68% confidence region produced by our approximate Neyman construction differ by less
than a percent near the input cosmology; however, they show more significant differences far from the input cosmology, with a maximal
difference of 0.05 in �M and 0.07 in w. This divergence is most impactful for analyses of cosmological tensions, but its impact is mitigated
when combining supernovae with other cross-cutting cosmological probes, such as the cosmic microwave background.
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1. Introduction

For much of the history of supernova cosmology, parameter esti-
mation was performed via Bayesian methods which maximise the
likelihood by minimising a χ 2 function between the observed dis-
tance modulus of type Ia supernovae (SNe Ia) and the distance
modulus predicted by cosmological theory.

This method of parameter estimation is shown in Equation
(4) of Riess et al. (1998) and Equation (4) of Perlmutter et al.
(1999), which detail the discovery of the accelerated expansion of
the Universe using type Ia supernovae (SNe Ia).

Since these early efforts, parameter estimation has expanded
in complexity to account for additional systematic uncertainties
(Conley et al. 2011) and to leverage large simulated datasets to
correct for the contamination of core-collapse supernovae (Kunz
et al. 2012) and observational biases (Kessler & Scolnic 2017).
This increased complexity is facilitated by cosmological pipelines
to perform accurate parameter estimation. Due to the complex
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structure ofmodern cosmological pipelines, it is no longer possible
to analytically define a likelihood function which describes the
analysis being performed by these pipelines. As such, it is diffi-
cult to rigorously test the final cosmological contours produced
by these cosmological pipelines and to validate that the reported
uncertainties are accurate.

There have been a number of attempts at developing alter-
native Bayesian frameworks which do not suffer from a non-
analytic likelihood function. One such example is Approximate
Bayesian Computation (ABC; Jennings, Wolf, & Sako 2016;
Jennings & Madigan 2017), which uses realistic simulations to
perform likelihood-free parameter inference, at the cost of dra-
matically increased computation time due to the large number of
simulations required. Another alternative Bayesian framework is
Bayesian hierarchical model (BHM), which was implemented for
supernova cosmology in Steve (Hinton et al. 2019), UNITY (Rubin
et al. 2015), and BayeSN (Mandel et al. 2021). BHMs utilise mul-
tiple layers of connected parameters, allowing for a more complex
analytical likelihood function to be defined.

Though these alternative frameworks have significant advan-
tages over the χ 2 minimisation methods, there has not been
widespread adoption of these techniques, and many modern cos-
mological analyses, such as the Dark Energy Survey (DES; Dark
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Energy SurveyCollaboration et al. 2016), PANTHEON+ (Brout
et al. 2022), and simulations of the upcoming Legacy Survey of
Space and Time (LSST; LSST Science Collaboration et al. 2009;
Sánchez et al. 2022; Mitra et al. 2022) still use the simpler χ 2

method.
As modern analyses still use cosmological pipelines which rely

on the χ 2 methodology, it is important to rigorously test these
cosmological pipelines. While each individual component of the
SN Ia analysis pipeline is well tested (Lasker et al. 2019; Kessler
et al. 2019b; Popovic et al. 2021; Toy et al. 2023; Taylor et al.
2023; Kelsey et al. 2023; Vincenzi et al. 2023), a complete end-to-
end consistency check is still necessary to understand the effects
and assumptions that propagate between each individual step
of the pipeline and account for any systematic issues that may
arise.

In this paper, we present a new methodology to validate the
reported cosmological contours of current pipelines. For this
effort, we utilise Pippin (Hinton & Brout 2020), which auto-
mates a number of key components of the SuperNova ANAlysis
framework (SNANA; Kessler et al. 2009) used in DES, LSST’s
Dark Energy Survey Collaboration, and PANTHEON+. Pippin
and SNANA provide substantial functionality, including simula-
tions, light-curve fitting, photometric classification training and
evaluation, SNe Ia standardisation and bias corrections, and cos-
mological fitting.

Previous efforts to construct a confidence region include those
published in Brout et al. (2019a), who used 200 simulated samples
to demonstrate that the distribution of best fitting cosmologies
produced by their pipeline is consistent with the average of many
cosmological contours, which they took as an estimate of the con-
fidence region (CR). This estimate of the CR, while informative, is
not statistically rigorous.

To rigorously estimate the confidence region, we make use of
the Neyman construction (Neyman 1937), a Frequentist method-
ology that leverages simulations to produce a confidence region.
The Neyman construction does not assume the CR is Gaussian
or elliptical and is robust to small sample sizes. We compare the
Frequentist confidence region produced from the Neyman con-
struction with the Bayesian contour produced by our cosmological
pipeline in order to test for consistency. Producing a CR and com-
paring it to cosmological contours is a powerful, rigorous, and
independent method of evaluating the output of a cosmological
pipeline.

In Section 2, we describe the formalism employed by the
Pippin cosmological pipeline. Section 3 describes our Neyman
construction methodology. Finally, the results of applying our
methodology to the Pippin cosmological pipeline are presented in
Section 4.

2. Simulation and analysis with Pippin

Here, we briefly describe the simulation of realistic datasets of
spectroscopically confirmed SN Ia and the analysis procedure used
to produce a cosmological contour. Throughout this analysis, we
make use of SNANA for simulation and analysis, integrated into
the Pippin pipeline.

2.1. Simulating a supernova dataset

We use the SALT2 (Guy et al. 2007) framework within SNANA
for simulating SNe Ia. This framework models type Ia super-
novae with five parameters: redshift, day of peak rest-frame B-
band brightness, stretch, colour, and apparent peak brightness in

rest-frame B-band. SNANA produces simulated observed fluxes
by randomly selecting these model parameters from associated
probability distributions. SNANA also applies host-galaxy extinc-
tion, k-correction, and galactic extinction. For this analysis, we
use the SALT2 model produced by Taylor et al. (2021), which was
trained on a sample of 420 SNe Ia spanning a redshift range of
∼0.1 to ∼0.9 with improved zero-point calibration offsets and
Milky Way extinction compared to previous SALT2 models.

2.1.1. Bias correction simulations

In addition to data-like simulations, we also simulate much larger
datasets to correct observational biases. As part of this analysis, we
investigate the impact of the cosmology on these bias corrections.
Our principal analysis uses only a single bias correction simula-
tion with the input cosmology set to our nominal input cosmology
(�M = 0.3, w= −1.0), but we repeat our analysis using many bias
correction simulations, with input cosmologies equal to the input
cosmology of the dataset they are correcting, to see if this affects
the Neyman construction.

2.2. Analysis

The supernovae in each simulated dataset are fit to determine the
SALT2 parameters: amplitude (x0), stretch (x1), and colour (c).
From here, the distance modulus of each SN Ia can be computed
via the Tripp equation (Tripp 1998):

μ =mB + αx1 − βc+M− �μbias (1)

Here, α and β are global stretch and colour nuisance parame-
ters,M is a global offset, and �μbias = μ − μtrue is a distance bias
correction, where μtrue is the true distance modulus.

Pippin makes use of the BEAMS with Bias Correction (BBC;
Kessler & Scolnic 2017) framework to produce a Hubble Diagram
(HD) that has been corrected for both selection effects and
contamination. BBC uses the detailed simulations described in
Section 2.1.1 alongside the BEAMS (Kunz et al. 2012) method
to correct for both distance biases, contamination, and selection
effects (Kessler et al. 2019a). It then uses a cosmology-independent
method (Marriner et al. 2011, SALT2mu;) to fit for global nuisance
parameters and standardise the SNe Ia magnitudes.

In order to fit α, β , and M, BBC adopts the likelihood L=∏N
i=1 Li where

Li = PIa,iDIa,i + (1− PIa,i)DCC,i (2)

Here PIa,i is the photometric classification probability for the ith
supernova to be an SN Ia. This is usually calculated via a photo-
metric classifier such as SuperNNova (Möller&de Boissière 2020),
or Scone (Qu et al. 2021); however, for our analysis, we do not
simulate contamination, so PIa,i = 1. DIa,i encodes the influence of
SNe Ia on the likelihood, including corrections for observational
biases in the dataset. Details of DIa,i are presented in Kessler &
Scolnic (2017). The DCC,i component encodes the effects of con-
taminants; however, since our simulations are contaminant-free,
it is unimportant for this analysis.

The end result of the BBC framework is a redshift-binned HD.
BBC can also provide an unbinned HD which Brout, Hinton, &
Scolnic (2021) shows can result in smaller systematic uncertain-
ties but is more computationally expensive. Since our analysis only
includes statistical uncertainties, we gain no benefit from using an
unbinned HD; therefore, we only use the default, binned HD.

This binned HD is passed to a cosmological fitter to produce
the final cosmological contours. In this analysis, we make use
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Figure 1. The redshift distribution of the simulated DES sample and simulated low-z
sample.

of WFit, which measures a χ 2 likelihood over a grid within the
parameter space.WFit has the advantage of beingmuch faster than
other methods, although is only suitable for simple test cases such
as the one used in this paper, and not necessarily suitable for final
survey cosmological analysis. We allow the parameter space of�M
to vary below 0, something which is not usual for cosmological
analyses, as our analysis requires WFit to explore large sections
of the �M , w parameter space, and we do not wish to artificially
truncate the likelihood surface we produce.

2.3. Producing an experiment dataset

Ourmethodology can be used to validate the contour produced by
any cosmological pipeline and is not dependent on the details of
the dataset investigated by the cosmological pipeline. As such, we
test our methodology on a simple, simulated dataset whichmimics
the 3-yr DES dataset (Brout et al. 2019b), including the cadence,
spectroscopic selection, and observational noise (D’Andrea et al.
2018) of this dataset. We assume a flat, cold dark matter (wCDM)
cosmology with H0 = 70 km s−1 Mpc−1, �M = 0.3, and w= −1.0.
The DES 3-yr dataset includes a previously released low-z sample
from several sources. We simplify the low-z simulation by gener-
ating a DES-like sample for 0.0≤ z ≤ 0.08 with the same statistics
as the low-z sample. Additionally, we only simulate SNe Ia and
do not consider contamination from core-collapse supernovae so
that we can keep our analysis as simple as possible. The true DES
dataset includes data from a variety of telescopes, as well as mis-
classified core-collapse SNe, so if our methodology were to be used
to test the DES analysis, and these details will need to be included
in all simulations. The redshift distribution of our DES and low-z
simulated sample is presented in Fig. 1. An example of a simulated
lightcurve is presented in Fig. 2.

We analyse this simulated dataset with Pippin in order to pro-
duce the cosmological contour that we aim to validate (shown in
Fig. 3), and to calculate the best fitting cosmology:

�best
M = 0.32+0.054

−0.075

wbest = −1.00± 0.16 (3)

Figure 2. An example of a simulated lightcurve in our simulated sample which lies at
z= 0.4.

Figure 3. The cosmological contour produced by Pippin for our simulated dataset.
The aim of our methodology is to test the consistency of this contour. The central
panel shows the 2-D 68% and 95% contours, whilst the top and right panel show
the marginalised, 1-D contour for�M and w, respectively. Here,�best

M = 0.320+0.054
−0.075 and

wbest = −1.00± 0.16

3. Methods

Here, we describe our methodology for estimating the confidence
region of a cosmological dataset using Neyman construction. To
aid the reader, a glossary of terms used throughout is provided in
Table 1.

For a given input cosmology, the Neyman construction pro-
vides a prescription for using simulations to calculate the per-
centile contour, or the boundary of a confidence region that input
cosmology lies on. By calculating these percentile contours for a
grid of input cosmologies, the confidence region can be estimated
as the set of input cosmologies which lie on percentile contours less
than or equal to the desired confidence level. The extensive com-
pute time of supernova simulations makes it difficult to densely
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Table 1. A glossary of terms used in our methodology, which are defined
throughout the text.

Parameter Description

�best
M ,wbest The best-fitting output cosmology for our experiment dataset.

Described in Section 2.3

�M
′,w’ A strategically selected input cosmology fromwhich 150

realisations will be drawn. Described in Section 3.1
��M, �w A distribution of 150 best-fitting cosmologies, produced by

processing the 150 realisations of�M
′,w’ with Pippin.

Described in Section 3.1

w∗(�M) A one dimensional function that approximates ��M, �w. Found by
fitting a Gaussian process through ��M, �w. Described in
Section 3.1.1

sample the parameter space, so we instead create an approximate
Neyman construction by strategically choosing a small number of
input cosmologies at representative locations on the 68% contour.

In Section 3.1, we describe how to calculate the percentile con-
tour for a single cosmological input. In Section 3.2, we describe
how we find cosmological inputs which lie on the 68% percentile
contour and how we estimate the confidence region.

3.1. Calculating the percentile contour

To calculate the percentile contour at any given cosmology (�M
′,

w’, which as noted above is chosen to lie at representative locations
of the 68% contour), we simulate 150 SNe Ia datasets with �M

′,
w’ as the true cosmological input, using the procedure described
in Section 2.3. Each dataset is produced with a different random
seed, allowing for statistical fluctuations between realisations. We
analyse each of these datasets with Pippin to produce a distribu-
tion of best-fitting cosmologies ( ��M , �w) in the space of measured
�M and w. The Neyman construction predicts that the percentile
contour for�M

′,w’ is the percentage of these best-fitting cosmolo-
gies encompassed by a coverage ellipse of this distribution. The
coverage ellipse is defined to be centred on �M

′, w’ and to inter-
sect �best

M , wbest , which were calculated in Section 2.3, Equation
(3). This ellipse represents the probability of a dataset with true
cosmology �M

′, w’ having a best fitting cosmology equal to �best
M ,

wbest . Fig. 4 shows an example of this calculation for �M
′ = 0.188,

w′ = −0.783, which lies at one extreme end of the 68% contour we
are testing. Fig. 5 presents an example HD for both �best

M , wbest and
�M

′, w’.

3.1.1. Fitting the coverage ellipse

The distribution of best-fitting cosmologies about �M
′, w’ usually

follows the ‘banana’ distribution that is typical of supernova cos-
mology and is due to the inherent degeneracy between �M and
w. This contour shape makes it difficult to determine an accurate
coverage ellipse around this distribution. To determine a coverage
ellipse, we first fit a Gaussian Process (GP) through ��M , �w to pro-
duce the one-dimensional function w∗(�M), which approximates
w as a function of �M in the plane of ��M , �w. Next, we subtract
w∗( ��M) from �w to transform the distribution of best fitting cos-
mologies into a more elliptical distribution. We fit a coverage
ellipse to this transformed distribution which is centred on �M

′,
w’ and intersects �best

M , wbest .
The percentile contour for �M

′, w’ is then the percentage
of the best fitting cosmologies covered by this coverage ellipse.
Fig. 6 shows an example of this transformation and ellipse fitting

Figure 4. An example of using simulations to calculate the percentile contour for�M
′,

w’, where�best
M ,wbest represent the best fitting cosmology for our test dataset. We sim-

ulate 150 datasets using �M
′, w’ as the input, and process each dataset with Pippin

to find the best fitting cosmology. The coverage ellipse is defined to intersect �best
M ,

wbest . The percentile contour for �M
′, w’ is the percentage of best fitting cosmologies

contained within this coverage ellipse.

Figure 5. Top Panel: Hubble Diagram for �best
M = 0.3, wbest = −1.0 and �M

′ = 0.188,
w′ = −0.783. This includes both simulated distance moduli and the analytic distance
moduli based on the input cosmology. Bottom Panel: Difference between the analytic
distance moduli of�best

M ,wbest and�M
′,w’.

technique for �M
′ = 0.188, w′ = −0.783, the same cosmology as

shown in Fig. 4.
The uncertainty in the computed percentage is estimated by

performing 1000 bootstrap resamples of the distribution of best
fitting cosmologies and typically results in an uncertainty in the
percentile contour of ±4%.

3.2. Estimating the confidence region

We now have a statistically rigorous method of calculating the per-
centile contour over the cosmological parameter space. Using this
method, we could compute a Neyman construction by computing
the percentile contour across a grid that covers the cosmologi-
cal parameter space and from this determine a confidence region.
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Table 2. The input �M and w values for the experiment and
approximateNeyman construction input cosmologies, aswell as
the percentile contour each cosmological input lies on.

Cosmology Input Input Percentile

input �M w contour

Experiment 0.3 −1.0 –

1a 0.188 −0.783 46%± 4%

1b 0.38 −1.25 74%± 4%

1c 0.307 −0.977 47%± 4%

1d 0.292 −1.02 62%± 4%

2a 0.145 −0.725 65%± 4%

2b 0.37 −1.204 66%± 4%

2c 0.3075 −0.9765 67%± 4%

2d 0.2917 −1.0205 70%± 4%

Figure 6. Top panel: A GP fit (w∗( ��M)) to the best fitting output cosmologies of the 150
realisationswith input cosmology:�M

′ = 0.188,w′ = −0.783.Bottompanel: The same
distribution of maximum likelihood output cosmologies, transformed by subtracting
w∗( ��M) from �w. This transformed distribution is more elliptical than the original dis-
tribution and is more appropriate for fitting coverage ellipses. We show one such
coverage ellipse in the bottom panel, scaled to intersect with the experiment cosmol-
ogy input. In this example, 46% of the simulations are covered by the ellipse, so this
�M

′,w’ lies on the 46% percentile contour.

However, each evaluation of the percentile contour requires 150
simulated datasets, which is computationally expensive. To more
efficiently determine a confidence region, we develop an approx-
imate Neyman construction method which requires far fewer
simulations. Instead of evaluating the percentile contour over the
entire cosmological parameter space, we use the bisection method
to iteratively find the input cosmologies that lie on the 68% per-
centile contour. These cosmologies define the edge of the 68%
confidence region.

We first calculate the percentile contour for cosmologies at sev-
eral representative locations on the 68% contour. We select two
input cosmologies which are at the furthest extent of the 68% con-
tour, and two input cosmologies which are at the closest region of
the 68% contour to�best

M ,wbest . This enables us to probe the consis-
tency of the 68% contour across its entire span. The cosmological
inputs used in defining the approximate Neyman construction,
and the percentile contour for each input are shown in Fig. 7, and
detailed in Table 2. Inputs 1a, 1b, 1c, and 1d were chosen to lie on
the 68% contour of the original experiment cosmology posterior.

Figure 7. The input�M and w values for the experiment (�best
M , wbest) and the approxi-

mate Neyman construction (�M
′,w′).

Figure 8. Example of finding the edge of the 68% confidence region. �M
′, w’ 1a was

defined with an input cosmology on the extreme end of the Pippin 68% contour and
was found to lie on the 46%± 4% percentile contour.�M

′, w’ 2a was found iteratively
and lies on the 65%± 4% percentile contour. Linearly extrapolating from these two
cosmological inputs gives us 68%�M

′,w’.

A second set of inputs (2a, 2b, 2c, and 2d) were chosen to compen-
sate for how far the previous set of coverage ellipses differed from
68% coverage, as described below.

If the input cosmologies lie at a percentile contour of < 68%
confidence, we select a new cosmology further from �best

M , wbest ,
and conversely select a cosmology closer to �best

M , wbest if the ini-
tial percentile contour is > 68% confidence. This allows us to find
an input cosmology which lies on a percentile contour within one
standard deviation of 68%, as measured by bootstrap resampling.
Though the iterative method typically converges to a percentile
contour within one standard deviation of 68% within two or
three iterations, converging to exactly 68%would take significantly
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Figure 9. Coverage ellipses fit to the maximum likelihood distribution of each Neyman input cosmology, transformed to
{
�m,w−w∗(�M)

}
. The coverage ellipse is defined to be

centred on theNeyman input, scaled such that it contains the experiment cosmology input. The title of each plot shows the percentage ofmaximum likelihood output cosmologies
covered by the ellipse, and this is our numerical estimate of likelihood. The uncertainty in this estimate is calculated via 1000 bootstrap resamples and is 4%.

more iterations. As such, once we are within one standard devia-
tion of 68%, we linearly interpolate or extrapolate to find an input
cosmology which lies exactly on the 68% percentile contour.

Fig. 8 shows this approximate Neyman construction tech-
nique for �M

′ = 0.188, w′ = −0.783, the same cosmology shown
in Figs. 4 and 6. This cosmology was found to lie on the 46%± 4%
percentile contour, and after iteration the cosmology�M

′ = 0.145,
w′ = −0.725 was found to lie on the 65%± 4% percentile contour,
which is within one standard deviation of 68%.We linearly extrap-
olated from these two input cosmologies to find that �M

′ = 0.138,
w′ = −0.716 lay on the 68% percentile contour. Fig. 9 shows the
coverage ellipses fit to each cosmological input.

4. Results

In the previous section, we describe howwe computed the location
of the 68% confidence region at four strategically selected cosmo-
logical inputs in the �M −w plane using an approximate Neyman
construction. The results are presented in Table 3 and shown in
Fig. 10.

We see the largest difference between the experiment cosmol-
ogy 68% contour and the 68% confidence region in the first input

cosmology, which lies in the top left quadrant of the cosmologi-
cal contour. We find a shift of ∼0.05 in �M and a shift of ∼0.07
in w. The second input cosmology, which lies in the bottom right
quadrant has a shift of ∼0.007 in �M and ∼0.03 in w. These input
cosmologies lie at the furthest extent of the 68% cosmological con-
tour from �best

M and wbest . In contrast, the third and fourth input
cosmologies, which lie much closer to the experiment input cos-
mology, have a shift of �0.001 in both �M and w. The increase in
discrepancy as we probe parameter space that is further from the
experiment input cosmology is expected, as the BBC bias correc-
tion is only performed at a single point in cosmological parameter
space, the best-fitting cosmology. The bias correction depends on
the input cosmology; thus, the BBC bias correction produces a
contour which is accurate close to the best-fitting cosmology but
induces an offset in the contour at parameter space further from
the best-fitting cosmology. By contrast, our Neyman construction
method applies this bias correction in a cosmologically dependent
manner across the entire parameter space, removing this offset.

This offset is important to consider, especially when combin-
ing supernova contours with other cosmological probes such as
the cosmic microwave background. Fortunately, it is the region of
posterior space close to the input cosmology which overlaps with
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Table 3. Comparison between the 68% confidence region determined from our
approximate Neyman construction, and the 68% contour of the experiment cos-
mology. The absolute difference is the difference between the cosmologies at the
edge of the 68% contour produced by Pippin, and the cosmologies at the edge of
the 68% confidence region produced by our approximate Neyman construction.

Cosmology �M
′ w’ �M absolute w absolute

input difference difference

1 0.138 −0.716 0.05 0.07

2 0.373 −1.216 0.007 0.03

3 0.308 −0.976 0.001 0.001

4 0.2918 −1.02 0.0002 0.0

Figure 10. Comparison between the 68% confidence region determined from our
approximateNeyman construction and the 68%contour of the experiment cosmology.
The confidence region is consistent with the contour close to the input cosmology but
displays an offset at the extreme ends of the contour. This offset is likely due to the bias
correction method used by BBC, which is most accurate close to the input cosmology.

the contours of other cross-cutting probes. As such this offset is
unlikely to significantly affect multi-probe cosmological analyses.

Where this offset could be significant is in the investigation
of cosmological tensions, where accurate uncertainties of the tails
are vital to successfully assess the significance of the tension. In
these cases, it may be useful to use a method like our approximate
Neyman construction to produce more accurate and statistically
rigorous measure of the uncertainty in a cosmological fit.

4.1. Effect of bias correction input cosmology

We repeat our analysis with bias correction simulations that use
a cosmology that is nearer to the dataset they are attempting to
correct, rather than a single bias correction shared amongst all
realisations. Fig. 11 and Table 4 show the results of this repeat anal-
ysis. Our results are very similar to the case when we shared the
bias correction simulation amongst all realisations, with the first
and second cosmological input deviating the most. Overall, these
results reinforce our suggestion that the offset present between
the cosmological contour and confidence region is caused by the
BBC bias correction; however, the choice of bias correction does

Table 4. As for Table 3, but varying the bias correction simulation to match the
input cosmology.

Cosmology �M
′ w’ �M absolute w absolute

input difference difference

1 0.125 −0.698 0.063 0.085

2 0.371 −1.21 0.009 0.004

3 0.308 −0.977 0.001 0.0

4 0.292 −1.02 0.0 0.0

Figure 11. As per Fig. 10, but varying the bias correction simulation tomatch the input
cosmology. Very similar results are found, indicating that the cosmology used for the
bias correction is not significantly impacting the results.

not significantly affect our consistency test. If computational cost
is a concern, using only one bias correction simulation shared
amongst all realisations will significantly reduce the computa-
tional cost of our approximate Neyman construction method,
without significantly reducing the quality of the consistency test.

5. Conclusions

In this paper, we present a statistically rigorous method for check-
ing the consistency of contours produced in a cosmological anal-
ysis. To achieve this, we implement an approximate Neyman
construction which requires far less computation than a true
Neyman construction. This approximate Neyman construction is
then used to define the 68% confidence region for a single cos-
mological realisation. We use this confidence region to test the
consistency of the 68% contour produced by the BBC framework,
as integrated in Pippin, although this method can be used to test
the consistency of any cosmological parameter estimationmethod.
This represents the first time the BBC framework has been tested
with a statistically rigorous methodology.

Our analysis showed that, for a DES-3YR like dataset, Pippin is
producing reasonable, consistent parameter estimates. There was
some discrepancy between the CR and the cosmological contour
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when considering the farthest extent of the 68% contour. This dis-
crepancy was, atmaximum, a shift of∼0.05 in�M , and∼0.07 inw,
and was likely due to the accuracy of BBC’s bias correction being
best when close to the input cosmology and degrading in regions
of parameter space which are far from the input cosmology. It is
also important to recognise that this does not correspond to an
equivalent error in the reported maximum posterior cosmological
parameters. When considering cosmological inputs close to the
experiment cosmology input, the confidence region and cosmo-
logical contour had near perfect agreement. As such any overall
discrepancy is unlikely to significantly effect the results of a cos-
mological analysis, especially when multiple cross-cutting probes
are combined. However, this shift is important when considering
analyses concerned with assessing cosmological tensions - where
the precise shape and size of the contour are vitally important to
the analysis.

We see very similar results when each realisation had its own
bias correction simulation, rather than sharing one bias correc-
tion simulation amongst all realisations, indicating that a sensible
choice of bias correction is not likely to significantly effect our
consistency checks.

Overall, we believe our method for consistency checking cos-
mological contours with an approximate Neyman construction
represents an important improvement in the statistical rigour
applied to cosmological analyses and should become a standard
step in all cosmological analyses. Our methodology can also be
used to rigorously test cosmological contours for other cosmolog-
ical probes, which have similarly complex pipelines. We believe
this method will be particularly useful for future analyses, such
as the DES 5-yr supernova analysis, and the upcoming LSST sur-
vey. We plan to repeat this analysis using simulations that match
the DES 5-yr supernova analysis to test the consistency of those
results.
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