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Abstract
We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for
the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows
us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.
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1. Model andmain result
1.1 Definitions and some notation
Let n≥ 1 be an integer. A meandric system of size n is a collection of non-crossing loops in the
plane that intersect the horizontal axis exactly at the points [2n] := {1, . . . , 2n}. We call these
points the vertices of the meandric system; two meandric systems that differ only by a continuous
deformation of the plane that fixes the horizontal axis are regarded as the same. Meandric systems
were introduced, to our knowledge, by Di Francesco, Golinelli, and Guitter [1] and have recently
become again a topic of interest [2, 4, 6]. A meandric system can be regarded as a set of n non-
crossing arcs with endpoints [2n] in the upper half-plane and another such set in the lower half-
plane; a meandric system thus determines two non-crossing matchings (pair-partitions) of [2n],
one for each half-plane, and it is easily seen that this yields a bijection between meandric systems
of size n and pairs of two non-crossing matchings of [2n]. In particular, since the number of
non-crossing matchings of [2n] is the Catalan number,

Catn := (2n)!
n! (n+ 1)! , (1.1)

see, for example, [7, item 61], the number of meandric systems of size n is Cat2n.
Each connected component of a meandric system is a single loop, intersecting the horizontal

axis in a subset of [2n], say {i1 < . . . < i2k}, which we call the support of the loop. Note that neces-
sarily, there is an even number of vertices in the support and an even number of integers in each
gap (ij, ij+1), that is, ij+1 − ij is odd for 1≤ j< 2k. We say that two such loops have the same shape

Supported by the Knut and Alice Wallenberg Foundation.

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0963548324000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000117
https://orcid.org/0000-0002-9680-2790
mailto:paul.thevenin@univie.acat
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548324000117&domain=pdf
https://doi.org/10.1017/S0963548324000117


598 S. Janson and P. Thévenin

if they differ only by a translation. Thus, we may normalise each shape to have leftmost vertex 1
and make the following formal definition:

Definition 1.1. A shape is a (connected) non-crossing loop S whose support is a set of integers
{i1 = 1< i2 < · · · < i2k = 2�}, for some k, � ≥ 1, such that ij+1 − ij is odd for all 1≤ j≤ 2k− 1.

Let M be a meandric system and C be a connected component of M.We say that C has shape S
if C and S differ only by a translation.

Our main theorem is the following. We prove two special cases as Theorems 3.1 and 4.4
and prove the remaining, more difficult, case in Section 4.2. In the paper, (d)→ and P→ denote,
respectively, convergence in distribution and convergence in probability.

Theorem 1.2. Fix a shape S. Let Mn be a uniformly random meandric system of size n (i.e. on
[[1, 2n]]) and denote by XS,n the number of connected components of Mn with shape S. Then, XS,n
satisfies a central limit theorem: there exist μS, σS > 0 such that

XS,n − nμS
σS

√
n

(d)−→
n→∞ N (0, 1), (1.2)

whereN (0, 1) denotes the standard normal distribution.

Observe that the convergence XS,n
n

P→
n→∞ μS for some constant μS was already obtained in

ref. [4], with an explicit expression for μS.

2. Preliminaries
2.1 More notation
For integersm≤ n, [[m, n]] denotes the integer interval [m, n]∩Z. The size of [[m, n]] is its number
of points, that is, n−m+ 1. Note that [n]= [[1, n]].

For a component C of a meandric system, we denote by LC (RC), the leftmost (rightmost) point
in the support of C. Furthermore, we say that the base of C is the interval [[LC, RC]] and let �(C)
denote the half-length of C, defined as half the size of its base, that is, �(C) := 1

2 (RC − LC + 1).
(Note that �(C) always is an integer.) We use the same definitions for a shape S; then LS = 1, and
thus RS = 2�(S).

For integers N ≥ k≥ 0, we let

(N)k := N(N − 1) · · · (N − k+ 1)= N!
(N − k)! = k!

(
N
k

)
, (2.1)

the k-th descending factorial of N.
We use standard o and O notation. Furthermore, for two (positive) sequences an and bn,

an ∼ bn means an/bn → 1 as n→ ∞, that is, an = bn(1+ o(1)), and an = �(bn) means that there
exist constants c> 0 and C such that c≤ an/bn ≤ C for sufficiently large n. Note that, for exam-
ple, an,r ∼ bn,r for r =O(

√
n) means that this holds for every sequence r = r(n)=O(

√
n), which is

equivalent to an,r ∼ bn,r uniformly for r ≤ C
√
n, for any C < ∞; uniformity in r is thus automatic

in such cases. We write ‘uniformly for r =O(
√
n)’ for ‘uniformly for r ≤ C

√
n, for any C < ∞’.

Unspecified limits are as n→ ∞.

2.2 The key tool: Gao andWormald’s theorem
Our proof relies on a theorem due to Gao and Wormald [5], stating that we can deduce a central
limit theorem for a sequence of variables from the asymptotic behaviour of their high (factorial)
moments. Let us recall this result.
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Theorem 2.1 (Gao &Wormald [5]). Let μnsn > −1 and set σn :=
√

μn + μ2
nsn, where 0< μn →

∞. Suppose that σn = o(μn),μn = o(σ 3
n ), and that a sequence {Xn} of nonnegative random variables

satisfies as n→ ∞:

E [(Xn)r]∼ μr
n exp

(
r2sn
2

)
. (2.2)

uniformly for all integers r in the range cμn/σn ≤ r ≤ Cμn/σn, for some constants C > c> 0. Then
(Xn − μn)/σn converges in distribution to a standard normal variable as n→ ∞.

In other words, if high factorial moments of a variable asymptotically match those of a normal
distribution, then convergence to the normal distribution holds.

2.3 Some lemmas
We state some simple lemmas that will be used later. The first is a well-known estimate that we
often will use in the sequel.

Lemma 2.2.

1. If 0≤ k≤ n/2, then

(n)k = nk exp
(
− k2

2n
+O

( k3
n2

+ k
n

))
. (2.3)

2. In particular, if k=O(
√
n), then

(n)k = nk exp
(
− k2

2n
+ o(1)

)
∼ nk exp

(
− k2

2n

)
. (2.4)

3. More generally, if 0≤ k≤m with m=O(
√
n), then

(n−m+ k)k ∼ nk exp
(
−m2 − (m− k)2

2n

)
= nk exp

(
−k(2m− k)

2n

)
. (2.5)

Proof. (i), (ii): This follows easily from a Taylor expansion of log (1− i/n) for 0≤ i< k; we omit
the details.

(iii): This follows from (ii) and (n−m+ k)k = (n)m/(n)m−k. �
As one consequence, we obtain the following asymptotics.

Lemma 2.3. Let n→ ∞ and 0≤ r =O(
√
n). Then
Catn−r
Catn

∼ 2−2r. (2.6)

Proof. The definition (1.1) and Lemma 2.2 yield

Catn−r
Catn

= (n)r(n+ 1)r
(2n)2r

∼ (n)2r
(2n)2r

= n2r

(2n)2r
exp
(
−2

r2

2n
+ (2r)2

4n
+ o(1)

)
∼ 2−2r . (2.7)

�
We end this section with another elementary and well-known result.

Lemma 2.4. Let m, n, k≥ 1. The number of unordered k-tuples of disjoint intervals of size m in [n]
is given by (

n− k(m− 1)
k

)
. (2.8)
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Proof. By deleting all points except the leftmost in each chosen interval, we obtain a bijec-
tion between the set of such k-tuples of intervals and the set of k-tuples of distinct points in
[n− k(m− 1)]. �

3. The first example: components of half-length 1
As a warm-up, we consider first the simple case where S is the loop of half-length 1. For any
i ∈ [2n], we let Yi be the indicator that the following holds:

i i + 1

Then,

XS,n =
2n−1∑
i=1

Yi (3.1)

and thus, for every r ≥ 1, summing over 1≤ i1 < . . . < ir < 2n,

E [(XS,n)r]=E

[
r!
∑

i1<...<ir

Yi1 · · · Yir

]
= r!

∑
i1<...<ir

E
[
Yi1 · · · Yir

]
. (3.2)

The expectation in the last sum is non-zero if and only if the r subintervals [[ij, ij + 1]] of [[1, 2n]]
are disjoint, so by Lemma 2.4, there are

(2n−r
r
)
non-zero terms. Each of the non-zero terms is

1/Cat2n times the number of meandric systems of size n that contain r given loops of half-length 1;
by deleting these loops (and the vertices in them), we obtain a bijection between such mean-
dric systems and the meandric systems of size n− r, and hence the number of them is Cat2n−r .
Consequently, (3.2) yields

E [(XS,n)r]= (2n− r)r
Cat2n−r
Cat2n

= (2n)2r
(2n)r

· Cat
2
n−r

Cat2n
. (3.3)

In particular, using Lemmas 2.2 and 2.3, if r =O(
√
n), then

E [(XS,n)r]∼ (2n)2r−r exp
(
−4r2

4n
+ r2

4n

)
2−4r =

(n
8

)r
exp

(
−3r2

4n

)
. (3.4)

In other words, (2.2) holds (uniformly) for 0≤ r ≤ C
√
n, for any fixed C < ∞, with

μn := n
8
, (3.5)

sn := − 3
2n

. (3.6)

We have μnsn = −3/16> −1, and thus

σn :=
√

μn(1+ μnsn)=
√

13
128

n. (3.7)

We thus have σn = o(μn) and μn = o(σ 3
n ), and consequently Theorem 2.1 applies and yields:

Theorem 3.1. If S is a simple loop of half-length 1, then
XS,n − n/8√
13n/128

(d)−→
n→∞ N (0, 1). (3.8)

This is Theorem 1.2 for this particular choice of S, with μS = 1/8 and σ 2
S = 13/128.
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Figure 1. A component C with four bounded faces F1, F2, F3, F4. In this example, we have K(S)= Cat21Cat2Cat3 = 10,
c+(S)= 1, and c−(S)= 0, where S is the shape of C.

4. Extension to any fixed shape
Let us now show how we can extend this result to any fixed shape S. We now let Yi be the indicator
that there is a component C of shape S such that LC = i; note that (3.1) and (3.2) still hold.

Recall that �(S) is the half-length of S, so S has base [[1, 2�(S)]]. We also define here three other
constants K(S), c+(S), c−(S) depending on S. To avoid heavy notation, we will drop the argument
S in what follows and only denote them by K, c+, c−.
Definition 4.1. (See an example in Figure 1) Observe that a component C of shape S, taken along
with the horizontal axis, splits the plane into two unbounded faces, each belonging to one of the
half-planes, and a certain number of bounded faces. Let F+ denote the unbounded face in the upper
half-plane, F− the one in the lower half-plane, and F(C) the set of bounded faces. For a face F, let
ν(F) be the number of vertices in [[LC, RC]] that lie on the boundary of F but not on C, and observe
that necessarily ν(F) is even. We then set

K(S) :=
∏

F∈F (C)
Catν(F)/2, (4.1)

c+(S) := ν(F+)/2, (4.2)
c−(S) := ν(F−)/2. (4.3)

Note that these constants do not depend on the set of vertices on which C is defined, but only on
its shape S.

4.1 Strong shapes
We say that two components overlap if their bases overlap. Hence, if the components have the
same shape S, and the leftmost points in their supports are i and j, they overlap if |j− i| < 2�(S).

For simplicity, we study first the case when this cannot happen. We say that a shape S is strong
if two different components of a meandric system that both have shape S cannot overlap. Thus,
if S is strong, then YiYj = 0 when |j− i| < 2�(S). The simple loop in Section 3 and the loop in
Fig. 1 are examples of strong shapes. A shape that is not strong is called weak; an example is given
in Fig. 2.

Proposition 4.2. Let S be a strong shape of half-length �(S). Then, for all r ≥ 1, we have

E [(XS,n)r]=
(
2n− 2r�(S)+ r

)
r K

r Catn−r�(S)+rc+Catn−r�(S)+rc−
Cat2n

. (4.4)
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Figure 2. Two components of same shape overlapping. Here, E [Y1Y7]> 0, while 2�(S)= 10.

Proof. We argue as in Section 3. As noted above, (3.2) still holds, and since S is strong, we have
YiYj = 0 when |j− i| < 2�(S). Hence, the number of non-zero terms in (3.2) is

(2n−r(2�(S)−1)
r

)
by

Lemma 2.4. Again, all non-zero terms have the same value, which is 1/Cat2n times the number of
ways that r given disjoint loops of shape S can be completed to ameandric system of size n. We can
fill in the bounded faces of each component in K ways, and there are 2n− 2r�(S)+ 2rc± vertices
left in the upper and lower components, respectively, so they may be filled in Catn−r�(S)+rc± ways.
This yields (4.4). �

By Lemmas 2.2 and 2.3, it follows from (4.4) that, (uniformly) for r =O(
√
n), we have

E [(XS,n)r] ∼
n→∞

(
2nK

42�(S)−c+−c−

)r
exp

(
− r2

4n
[
(2�(S))2 − (2�(S)− 1)2

])
. (4.5)

This is (2.2) with

μn := 2nK
42�(S)−c+−c−

, (4.6)

sn := − (2�(S))2 − (2�(S)− 1)2)
2n

= −4�(S)− 1
2n

. (4.7)

In order to apply Theorem 2.1, we need to check that μnsn > −1, which boils down to the
following.

Lemma 4.3. We have

K(4�(S)− 1)< 42�(S)−c+−c− . (4.8)

Proof. Observe that we can bound K using the fact that Catn ≤ 4n
n+1 for all n. It is easy to see that

for given c±, out of all possible choices of components with these values of c±, K is largest if there
is only one bounded face in each half-plane, and thus,

K ≤Cat�(S)−c+−1Cat�(S)−c−−1 ≤ 42�(S)−c+−c−−2

(�(S)− c+)(�(S)− c−)
≤ 42�(S)−c+−c−−2

�(S)
, (4.9)

since c+ + c− ≤ �(S)− 1 (to see this, observe that a vertex cannot belong to both unbounded faces
of S and that at least two vertices belong to C). This yields (4.8) directly. �

It is clear that μn → ∞. Furthermore, we have just proved that 1+ μnsn is a positive constant.
Thus σn = �(√μn), and hence σn = o(μn) and μn = o(σ 3

n ). We can therefore apply Theorem 2.1
to obtain the central limit theorem in this case too:
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Theorem 4.4. Let S be a strong shape. Then
XS,n − nμS

σS
√
n

(d)→
n−→∞ N (0, 1), (4.10)

where

μS = 2K
42�(S)−c+−c− and σS =

√
2K

42�(S)−c+−c−

(
1− K(4�(S)− 1)

42�(S)−c+−c−

)
. (4.11)

This proves Theorem 1.2 in the case when S is a strong shape, with explicit formulas for μS
and σS.

4.2 Weak shapes
Finally, we study the case of a weak shape S. Thus, now there may be overlaps between two com-
ponents of shape S, that is, two indices i< j such that |j− i| < 2�(S) and YiYj = 1, where Yi is
defined as before. See Fig. 2 for an example.

Let Ar be the set of all r-tuples E := {i1, . . . , ir} with 1≤ i1 < · · · < ir ≤ 2n. For any such
r-tuple E, define an equivalence relation ∼E on {1, . . . , r} as the smallest one (for the inclusion of
the equivalence classes) satisfying: for all 1≤ k1, k2 ≤ r such that |ik1 − ik2 | < 2�(S), k1 ∼E k2. We
call the equivalence classes of ∼E blocks. Furthermore, for 1≤ j≤ r, we let Ar

j be the set of r-tuples
E ∈Ar that have exactly j blocks. Thus Ar =⊔r

j=1 Ar
j . Note that Ar

r is the set of r-tuples E such that
all blocks are singletons. An r-tuple E corresponds to a collection (Ck)r1 of loops of shape S, shifted
such that Ck has LCk = ik. In particular, E ∈Ar

r if and only if these loops are non-overlapping.
Define, for all 1≤ u≤ r:

Fu :=
(
2n− 2u�(S)+ u

u

)
Ku Catn−u�(S)+uc+Catn−u�(S)+uc−

Cat2n
. (4.12)

By the argument in the proof of Proposition 4.2, u! Fu is the contribution to E [(XS,n)u] from
u-tuples of non-overlapping components.

We have the following estimates:

Lemma 4.5. Let S be a weak shape.

(i) For all r ≥ 1,
E [(XS,n)r]≥ r!Fr . (4.13)

(ii) For all 1≤ u≤ r, ∑
E∈Ar

u

E

[∏
i∈E

Yi

]
≤
(
r − 1
u− 1

)
(2�(S))r−uFu. (4.14)

(iii) For each fixed M ≥ 0, uniformly for r =O(
√
n) with r ≥ 2M,∑

E∈Ar
r−M

E

[∏
i∈E

Yi

]
= �

(
rMFr−M

)
(4.15)

and, if also r → ∞, ∑
E∈Ar

r−M(1,2)

E

[∏
i∈E

Yi

]
= (1− o(1))

∑
E∈Ar

r−M

E

[∏
i∈E

Yi

]
, (4.16)

where Ar
r−M(1, 2) is the subset of Ar

r−M made only of blocks of sizes 1 or 2.
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Proof of Lemma 4.5. (i): We rewrite (3.2) as

E
[
(XS,n)r

]= r!
∑
E∈Ar

E

[∏
i∈E

Yi

]
= r!

r∑
u=1

∑
E∈Ar

u

E

[∏
i∈E

Yi

]
. (4.17)

The term with u= r yields the contribution from r-tuples of non-overlapping components, which
as noted after (4.12) is r!Fr .

(ii): For each r-tuple E ∈Ar
u, keep in the product only the leftmost point of each block, observ-

ing that, for any sets A⊆ B⊆ [[1, 2n]], we have E
[∏

i∈B Yi
]≤E

[∏
i∈A Yi

]
. Note that this set of

leftmost points belongs to Au
u. If the size of the i-th leftmost block is ji, then for each set of left-

most points, the number of possible positions of the other ji − 1 points in the block is at most
(2�(S))ji−1, since each point after the first is within 2�(S) of the preceding one. Hence,

∑
E∈Ar

u

E

[∏
i∈E

Yi

]
≤

∑
j1+...+ju=r
j1,...,ju≥1

u∏
i=1

(2�(S))ji−1 ·
∑
E′∈Au

u

E

⎡⎣∏
i∈E′

Yi

⎤⎦=
∑

j1+...+ju=r
j1,...,ju≥1

u∏
i=1

(2�(S))ji−1 · Fu.

(4.18)

Finally, this yields (4.14), since the number of allowed sequences (j1, . . . , ju) is
(r−1
u−1
)
and∏u

i=1 (2�(S))ji−1 = (2�(S))r−u for all of them.
(iii): We partition the set Ar

r−M as follows. Consider an (r −M)-tuple T := (T1, . . . , Tr−M) of
integers≥ 1, of sum r, and consider also a function J which, to each 1≤ i≤ r −M, associates a Ti-
tuple Ji of integers 1 =: ji,1 < ji,2 < . . . < ji,Ti such that, for all 1≤ k≤ Ti − 1, ji,k+1 − ji,k < 2�(S),
and, furthermore, the Ti loops of shape S that start at the vertices ji,k (k= 1, . . . , Ti) are disjoint
so that they may occur together as components in a meandric system. (We call such pairs (T, J)
admissible.) Denote by AT,J the subset of Ar

r−M made of r-tuples E such that the i-th leftmost
block of E has size Ti, and if this block is

{
a1i , . . . , a

Ti
i

}
, then we have ak+1

i − aki = ji,k+1 − ji,k for
all 1≤ k≤ Ti − 1. In other words, AT,J accounts for all r-tuples of components with r −M blocks,
where the sizes of the blocks are given, as well as the intervals between the starting points of each
component of shape S in each block. Hence, Ar

r−M is the union
⋃

AT,J over all admissible pairs
(T, J).

Since we only consider (r −M)-tuples T such that

r =
r−M∑
i=1

Ti = r −M +
r−M∑
i=1

(Ti − 1), (4.19)

there at mostM indices i with Ti > 1 and thus at least r − 2M indices with Ti = 1. Note also that if
Ti = 1, then trivially, Ji = (1). Given an admissible pair (T, J), we define the reduced pair (T̂, Ĵ) by
deleting all Ti and Ji such that Ti = 1 from T and J; thus T̂ := (Ti : 1≤ i≤ r −M and Ti > 1) and
similarly for Ĵ. Consequently, T̂ and Ĵ are both sequences of (the same) length ≤M. Since (4.19)
implies that their entries are bounded (for a fixedM), there is only a finite set T of reduced pairs
(T̂, Ĵ), where T depends onM and S but not on r.

Conversely, given an admissible reduced pair (T̂, Ĵ), with T̂ = (T̂1, . . . , T̂k), we can obtain (T̂, Ĵ)
from

(r−M
k
)
different (admissible) pairs (T, J). Note that here, by (4.19), since each T̂i ≥ 2,

k≤
k∑

i=1
(T̂i − 1)=

r−M∑
i=1

(Ti − 1)=M, (4.20)

with equality if and only if T̂i = 2 for all i≤ k.
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We now want to understand the behaviour of
∑

E∈AT,J
E
[∏

i∈E Yi
]
for an admissible pair

(T, J). In a way similar to Proposition 4.2 (using an extension of Lemma 2.4 to intervals of different
lengths), we obtain∑

E∈AT,J

E

[∏
i∈E

Yi

]
=
(
2n− 2�̃ + (r −M)

r −M

)
K̃

Catn−d+Catn−d−
Cat2n

, (4.21)

where, for any E ∈AT,J , �̃ is the sum of the half-lengths of the blocks, K̃ accounts for the
bounded faces defined by the horizontal axis and the loops defined by E, and d+, d− for the
unbounded faces. (Note that these constants are the same for all E ∈AT,J , so they depend only onT
and J.) Moreover, since at least r − 2M of these blocks are singletons, and the remaining blocks
are determined by T̂ and Ĵ, we can write

K̃ =Kr−2MK ′, (4.22)

for some K ′ > 0 depending only on (T̂, Ĵ). Similarly,
�̃ = (r −M)�(S)+ �′, (4.23)

d+ = (r −M)(�(S)− c+)+ e+, (4.24)
d− = (r −M)(�(S)− c−)+ e− (4.25)

for some �′, e+, e− depending only on (T̂, Ĵ). In particular, for a fixed M, it follows that
K ′, �′, e+, e− can only take a fixed number of values independently of n and r.

We compare (4.21) and Fr−M given by (4.12). First, by Lemma 2.2(iii),(2n−2�̃+(r−M)
r−M

)(2n−2(r−M)�(S)+(r−M)
r−M

) =
(
2n− 2�̃ + (r −M)

)
r−M(

2n− 2(r −M)�(S)+ (r −M)
)
r−M

(4.26)

∼ exp
(
− r −M

4n
(
(4�̃ − r +M)− (4(r −M)�(S)− r +M)

))= exp
(
o(1)

)
,

since �̃ = r�(S)+O(1) by (4.23) and r = o(n). Similarly, as a consequence of Lemma 2.3 and
(4.24)–(4.25),

Catn−d±
Catn−(r−M)(�(S)−c±)

∼ 4−d±+(r−M)(�(S)−c±) = 4−e± . (4.27)

Consequently, using also (4.22), we obtain from (4.21) and (4.12),∑
E∈AT,J

E
[∏

i∈E Yi
]

Fr−M
= CT,J(1+ o(1)), (4.28)

where CT,J > 0 only depends on (T̂, Ĵ) and therefore only takes a finite number of values. In
particular, ∑

E∈AT,J

E

[∏
i∈E

Yi

]
= �

(
Fr−M

)
, (4.29)

and this holds uniformly for r =O(
√
n) and all admissible (T, J).

By (4.20) and the discussion before it, there are
(r−M

k
)= �(rk) admissible pairs (T, J) for each

(T̂, Ĵ), where k≤M, with equality when all T̂i = 2. Note that since we assume that the shape S is
weak, there exists at least one such admissible (T̂, Ĵ) with T̂ = (2, . . . , 2). Hence, summing (4.29)
over all (T, J) yields (4.15).

Moreover, Ar
r−M \Ar

r−M(1, 2) is the union
⋃ ′AT,J where we only sum over admissible pairs

(T, J) with some Ti ≥ 3; these correspond to reduced pairs (T̂, Ĵ) with some T̂i ≥ 3, and we see
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from (4.20) that each such reduced pair has length ≤M − 1 and thus corresponds to O(rM−1)
admissible pairs. Consequently, summing (4.29) over all (T, J) of this type yields∑

E∈Ar
r−M\Ar

r−M(1,2)

E

[∏
i∈E

Yi

]
=O

(
rM−1Fr−M

)= o
(
rMFr−M

)
, (4.30)

which yields (4.16) by (4.15). �
The next proposition shows that, in order to get the asymptotic behaviour of E [(XS,n)r], we

only need to take into account the configurations whose number of blocks that are not singletons
is a given constant.

Proposition 4.6. Fix a weak shape S. Then, there exists η > 0 such that, for any ε > 0, there exists
M > 0 such that we have, uniformly for r ≤ η

√
n,∑

u≤r−M

∑
E∈Ar

u

E

[∏
i∈E

Yi

]
≤ εFr ≤ ε

1
r! E [(XS,n)r]. (4.31)

Remark 4.7. For convenience, we assume here that r/
√
n is small. In fact, Proposition 4.6 can easily

be extended to r ≤ C
√
n for any C (with M depending on C and ε), but we do not need for this.

To prove this, we start with a lemma:

Lemma 4.8. There exists Q> 0 depending only on the shape S such that, for n large enough, for all
u≤ √

n:
Fu+1
Fu

≥Q
n
u
. (4.32)

Proof. We just compute the ratio term by term, recalling (4.12). We have Ku+1

Ku =K. The ratio
of the ratios of Catalan numbers converges uniformly to a positive constant. Finally, the ratio of
binomial coefficients is, using Lemma 2.2(ii),

u!
(u+ 1)! ·

(
2n− (u+ 1)(2�(S)− 1)

)
u+1(

2n− u(2�(S)− 1)
)
u

= 1
u+ 1

· (2n)
u+1

(2n)u
exp
(
O(1)

)≥ c
n
u

(4.33)

for some c> 0 and all large n and u≤ √
n. The result follows. �

Proof of Proposition 4.6. Using Lemma 4.5(ii), we have for allM ≥ 0:∑
u≤r−M

∑
E∈Ar

u

E

[∏
i∈E

Yi

]
≤

r−M∑
u=1

(
r − 1
u− 1

)
(2�(S))r−uFu. (4.34)

Letting

Br,u :=
(
r − 1
u− 1

)
(2�(S))r−uFu, (4.35)

we get from Lemma 4.8 that, for r ≤ √
n and any u≤ r − 1:

Br,u+1
Br,u

= 1
2�(S)

r − u
u

Fu+1
Fu

≥ Q
2�(S)

n(r − u)
u2

≥ Q
2�(S)

n
u2

. (4.36)

Hence, there exists η > 0 small enough such that, for all u< r ≤ η
√
n, we have Br,u+1 ≥ 2Br,u, and

thus by backward induction,

Br,u ≤ 2−(r−u)Br,r. (4.37)
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Then, for r ≤ η
√
n, (4.34) yields

∑
u≤r−M

∑
E∈Ar

u

E

[∏
i∈E

Yi

]
≤

r−M∑
u=1

Br,u ≤ 21−MBr,r = 21−MFr . (4.38)

This yields (4.31) if we chooseM such that 21−M ≤ ε, since r! Fr ≤E [(XS,n)r] by Lemma 4.5(i).�
Proposition 4.6 shows that we only need to understand the asymptotic behaviour of the con-

figurations with a number of blocks r −M for givenM ≥ 0, and Lemma 4.5(iii) that we can focus
on configurations with blocks of size 1 or 2. To actually prove our final result, we need to refine
Lemma 4.5(iii) and obtain the explicit constants that appear. We define another set of constants,
which will account for the cases with blocks of size 2, that is, cases when two components of shape
S overlap.

Definition 4.9. Let S be a shape. There is a finite set of integers i≥ 1 such that E [Y1Yi]> 0 and
i− 1< 2�(S). Let I(S) be this set and i1, . . . , ik its elements. For i ∈ I(S), let �i, Ki, c+(i), and c−(i)
be the equivalents of �(S),K, c+, c− in this case of two components C, C′ that overlap and start at
positions 1 and i (replacing in the definition the component by the union of the two components). In
particular, �i = �(S)+ (i− 1)/2 is the total half-length of the block made of two components of shape
S started at positions 1 and i. Furthermore, C and C′ together with the horizontal axis define two
unbounded faces (F+ in the upper half-plane and F− in the lower half-plane) and several bounded
faces; let F(C, C′) be the set of bounded faces. For each face F, let ν(F) be the number of integers in
[[L(C), R(C)]]∪ [[L(C′), R(C′)]]= [[L(C), R(C′)]] that are incident to F but do not belong to C nor to
C′. We set Ki := ∏

F∈F (C,C′) Catν(F)/2. Finally, we define c±(i) := ν(F±)/2. Observe again that all
these constants only depend on S and i.

Note that i ∈ I(S) may be even; in this case 2�i, ν(F+) and ν(F−) are odd, and thus �i and c±(i) are
half-integers.

Lemma 4.10. Let r =O(
√
n) with r → ∞. Then, for every fixed M ≥ 0,

∑
E∈Ar

r−M

E

[∏
i∈E

Yi

]
∼

n→∞ Fr
∑

gi≥0,i∈I(S)∑
i gi=M

∏
i∈I(S)

(
bi r

2

2n
)gi

gi! , (4.39)

where

bi := 44�(S)−2�i+c+(i)−2c++c−(i)−2c− Ki
K2 . (4.40)

Note that bi measures (in a specific way) howmuch two overlapping components of shape S differ
from two non-overlapping ones.

Proof. For each I(S)-tuple G= (gi)i∈I(S) of integers with sumM, let Ar
r−M,G be the set of r-tuples

1≤ i1 < . . . < ir ≤ 2n with r − 2M blocks of size 1 and M blocks of size 2, such that for each
i ∈ I(S), there are gi blocks of type

{
ik, ik+1 = ik + i− 1

}
with k< r. Then Ar

r−M,G is the union of
some classes AT,J from the proof of Lemma 4.5, with all Ti ∈ {1, 2} and a specified number gi of k
such that Jk = (1, i). Hence, we obtain from (4.21), where the multinomial coefficient in (4.41) is
the number of (T, J) that is included in Ar

r−M,G,

∑
E∈Ar

r−M,G

E

[∏
i∈E

Yi

]
=
(

r −M
gi1 , . . . , gik , r − 2M

)(
2n− 2�̃ + (r −M)

r −M

)
K̃

Catn−d+Catn−d−
Cat2n

, (4.41)
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where, by (4.22)–(4.25) and the argument yielding them:

K̃ =Kr−2M
∏
i∈I(S)

Kgi
i , (4.42)

�̃ = (r − 2M)�(S)+
∑
i∈I(S)

gi�i, (4.43)

d± = �̃ − (r − 2M)c± −
∑
i∈I(S)

gic±(i). (4.44)

We now argue similarly as in the proof of Lemma 4.5, but this time, we compare to Fr . We have(
r −M

g1, . . . , gk, r − 2M

)
∼ rM

∏
i∈I(S)

1
gi! , (4.45)

(2n−2�̃+(r−M)
r−M

)(2n−2r�(S)+r
r

) = r!
(r −M)! ·

(
2n− 2�̃ + (r −M)

)
r−M(

2n− 2r�(S)+ r
)
r

(4.46)

∼ rM(2n)−M exp
(
− 1
4n
(
(r −M)(4�̃ − r +M)− r(4r�(S)− r)

))∼ rM(2n)−M ,

K̃
Kr =K−2M

∏
i∈I(S)

Kgi
i , (4.47)

Catn−d±
Catn−r�(S)+rc±

∼ 4−d±+r(�(S)−c±) = 42M(�(S)−c±)−∑i∈I(S) (�i−c±(i))gi . (4.48)

and thus, from (4.41) and (4.12), recalling that
∑

i∈I(S) gi =M,∑
E∈Ar

r−M,G
E
[∏

i∈E Yi
]

Fr
(4.49)

∼
n→∞ r2M(2nK2)−M42(�(S)−c+)M−∑i∈I(S) (�i−c+(i))gi42(�(S)−c−)M−∑i∈I(S) (�i−c−(i))gi

∏
i∈I(S)

1
gi!K

gi
i

=
(
B
r2

2n

)M ∏
i∈I(S)

qgii
gi! =

∏
i∈I(S)

(
Bqi r

2

2n
)gi

gi! ,

where

B := 44�(S)−2c+−2c−

K2 , (4.50)

qi := 4−2�i+c+(i)+c−(i)Ki. (4.51)
The set Ar

r−M(1, 2) defined in Lemma 4.5(iii) is the union of Ar
r−M,G over all G with sum M.

Hence, (4.49) implies, noting that there is only a finite number of such G,∑
E∈Ar

r−M(1,2)

E

[∏
i∈E

Yi

]
∼

n→∞ Fr
∑

gi≥0,i∈I(S)∑
i gi=M

∏
i∈I(S)

(
Bqi r

2

2n
)gi

gi! . (4.52)

The result (4.39) now follows from (4.52) and (4.16), using Bqi = bi. �
Proof of Theorem 1.2 for weak shapes. Let r → ∞ with r ≤ η

√
n, where η is as in

Proposition 4.6.
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We may sum (4.39) over all M ≥ 0 (with Ar
r−M := ∅ for M > r), since Proposition 4.6 shows

that we may approximate the sum by a finite sum with a fixed number of terms. Consequently,
recalling (4.17),

E
[
(XS,n)r

]= r!
∞∑

M=0

∑
E∈Ar

r−M

E

[∏
i∈E

Yi

]
∼r! Fr

∞∑
M=0

∑
gi≥0,i∈I(S)∑

i gi=M

∏
i∈I(S)

(
bi r

2

2n
)gi

gi! (4.53)

= r! Fr
∏
i∈I(S)

exp
(
bi
r2

2n

)
.

By Lemmas 2.2 and 2.3, (4.12) implies (similarly to [4.5])

r! Fr ∼
(

2nK
42�(S)−c+−c−

)r
exp
(
− r2

4n
(
4�(S)− 1

))
. (4.54)

Finally, (4.53) and (4.54) yield, for r → ∞ with r ≤ η
√
n,

E
[
(XS,n)r

] ∼
n→∞

(
2nK

42�(S)−c+−c−

)r
exp

⎛⎝− r2

4n
(4�(S)− 1) + r2

2n
∑
i∈I(S)

bi

⎞⎠ . (4.55)

This is (2.2), with

μn := 2nK
42�(S)−c+−c−

, (4.56)

sn :=
−(4�(S)− 1)+ 2

∑
i∈I(S) bi

2n
. (4.57)

In particular, (2.2) thus holds for r = r(n) with η
2
√
n≤ r ≤ η

√
n; as noted in Section 2.1, it then

automatically holds uniformly in this range. Furthermore,

μnsn ≥ −K(4�(S)− 1)
42�(S)−c+−c−

> −1 (4.58)

by Lemma 4.3, and we have againμn = �(n) and σn = �(
√
n). It follows that Theorem 2.1 applies

in this case too, which yields (1.2). �
We obtain from (4.56)–(4.57)

σ 2
S = 2K

42�(S)−c+−c−

(
1+ K

42�(S)−c+−c−

(
1− 4�(S)+ 2

∑
i∈I(S)

bi
))

, (4.59)

with bi given by (4.40). Note that this formula holds also for strong shapes (when I(S)= ∅) by
(4.11).

5. Open problems
We list here some open problems concerning possible extensions of our results.

1. It seems possible to extend the arguments above to joint factorial moments
E
[
(XS1,n)r1 · · · (XSk,n)rk

]
(5.1)

for several shapes S1, . . . , Sk and then obtain a multivariate version of Theorem 1.2 using
a multivariate version of Gao and Wormald’s theorem [3], [8]. However, we have not
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checked the details. Such a multivariate theorem would immediately imply, for example, a
central limit theorem for the number of components of a given half-length.

2. Considering shapes that are similar, can we obtain a central limit theorem for the number
of components that only cross the horizontal axis twice (i.e. the support has size 2, but the
half-length is arbitrary)?

3. Is is true, as Kargin [6] has conjectured, that the total number of components is asymptot-
ically normal?
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