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ON THE SPLITTING AND AGGREGATING OF HAWKES PROCESSES

BO LI,∗ Nankai University
GUODONG PANG,∗∗ Rice University

Abstract

We consider the random splitting and aggregating of Hawkes processes. We present the
random splitting schemes using the direct approach for counting processes, as well as
the immigration–birth branching representations of Hawkes processes. From the second
scheme, it is shown that random split Hawkes processes are again Hawkes. We discuss
functional central limit theorems (FCLTs) for the scaled split processes from the dif-
ferent schemes. On the other hand, aggregating multivariate Hawkes processes may not
necessarily be Hawkes. We identify a necessary and sufficient condition for the aggre-
gated process to be Hawkes. We prove an FCLT for a multivariate Hawkes process under
a random splitting and then aggregating scheme (under certain conditions, transforming
into a Hawkes process of a different dimension).

Keywords: Hawes process; random splitting/sampling; aggregating/superposition; func-
tional central limit theorem; Brownian motion
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1. Introduction

Hawkes processes were first introduced in [9, 10] as an extension of the Poisson process,
which has the so-called self-exciting effect; that is, the occurrence of an event will increase
the probability of future events. Hawkes processes have been widely used to model various
applications, for example, in finance [2, 11] and internet traffic and queueing [4, 6, 7, 14].
There are extensive studies of Hawkes processes, including the exact distributional properties
[12, 16] for exponential-type kernel functions, and limit theorems in both conventional scaling
[1, 2, 4, 13] and large-intensity scaling [7, 8, 15].

In this paper, we investigate the random splitting/sampling and aggregating/superposition
of Hawkes processes. The random splitting/sampling of point processes has been an important
topic in stochastic models. For example, one arrival stream of customers may require different
types of services, and the same packet in a communication network may be sent out simulta-
neously on several outgoing links. Similarly, input into a service or communication system can
come from aggregating several sources [17, 18]. See further discussions in [21, Chapter 9].
Splitting and aggregating of standard point processes are well understood in the literature
[19, 20, 21].
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The Poisson branching representation [12], also known as the immigration–birth represen-
tation, has been a fundamental tool in the analysis of Hawkes processes. This representation
says that for each individual (generation), the number of individuals (children) produced by
this individual over time, called the next generation, is a simple and conditional Poisson
process with an intensity that is a functional of the counting process of the individual’s gener-
ation. It is known that random splitting/sampling of Poisson processes results in independent
Poisson processes, each component with a rate equal to that of the original process multiplied
by the splitting probability. By contrast, each sub-counting process resulting from the ran-
dom splitting/sampling of a Hawkes process cannot be regarded as a Hawkes process itself,
despite the conditional Poisson property for each generation. Intuitively, the jumping inten-
sity of a sub-counting process depends on the history of the original Hawkes process, which
requires information strictly greater than that provided by the sub-counting process. However,
we show that the vector-valued splitting Hawkes process is a multidimensional Hawkes process
(Propositions 3.2 and 5.1). It is also clear that the split processes are no longer independent,
but their dependence structure is not at all obvious.

We thus aim to understand the split processes of a Hawkes process and their dependence
structure. We provide two representations of the (scaled) split processes, one directly using
the original Hawkes process, and the other using the non-homogeneous conditional Poisson
processes in each generation from the Poisson branching representation. For ease of exposi-
tion, we start with the splitting of a one-dimensional Hawkes process; we discuss how the
splitting schemes work and show the equivalence of the limits in the functional central limit
theorems (FCLTs) derived from them, which rely on the existing results in Chapter 9.5 of
Whitt [21] and in [1]. (See the discussions in Section 3.) We next aim to understand the aggre-
gation/superposition of a multivariate Hawkes process and show when the aggregated process
can still be a Hawkes process (Section 4).

We then consider the scheme of first splitting and then aggregating a multivariate Hawkes
process, which may transform it into a point process of a different dimension (Section 5).
We identify conditions under which the transformed process is again Hawkes. We prove an
FCLT for the transformed process, which is a Brownian motion limit with a surprisingly simple
covariance function. We also discuss how that relates to the known result in the special case of
a Hawkes process.

1.1. Notation

All random variables and processes are defined in a common complete probability space(
�,F , {Ft}t≥0, P

)
. Throughout the paper, N denotes the set of natural numbers; R(R+)

denotes the space of real (nonnegative) numbers. Let D=D(R+,R) denote the R-valued func-
tion space of all càdlàg functions on R+. The expression (D, J1) denotes the space D equipped
with the Skorokhod J1 topology (see [3]), which is complete and separable. Dn denotes an
n-dimensional vector-valued càdlàg process endowed with the weak Skorokhod J1 topology
[21], for which we write (Dn, J1). L2(P) denotes the space of random variables with finite
second moment. For an integrable function f : R→R, its L1 norm is denoted by ‖f ‖1. The
symbols → and ⇒ mean convergence of real numbers and convergence in distribution, respec-
tively. For a matrix M = (Mij)i,j, we denote by entijM = Mij its (i,j)th entry, while rowkM and
colmM denote its kth row vector and the mth column vector, respectively. MT denotes the trans-
pose of M; I denotes the identity matrix; e denotes the column vector of 1s with associated
dimension. For a vector a, diag(a) denotes the diagonal matrix with the elements of the vector
a on the main diagonal. The expression f ∗ g(t) := ∫ t

0 f (t − s)g(s)ds denotes the convolution of
f and g on R+. Additional notation is introduced in the paper whenever necessary.
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2. Preliminaries on Hawkes processes

A d-dimensional Hawkes process, N = {N(t), t ≥ 0} with N = (
Nk

)
k=1,...,d, is formally

defined as an N
d-valued simple counting process with conditional intensity

λk(t) = λk0 +
d∑

k′=1

Nk′ (t)∑
j=1

Hkk′ (t − τkj) = λk0 +
d∑

k′=1

∫ t

0
Hkk′ (t − s)Nk′(ds), t ≥ 0, (2.1)

for every k = 1, · · · , d, where τkj is the jth event time of Nk; λk0 ≥ 0 is a constant called the
baseline intensity of the kth subprocess; and Hkk′ : R+ →R+ is called the mutually exciting
function or the kernel function, also known as the cross-exciting function for k �= k′ and the
self-exciting function for k = k′.

Assumption A1. For all k, k′ = 1, · · · , d, we have
∫ ∞

0
Hkk′ (t)dt < ∞, (2.2)

and the spectral radius ρ(‖H‖1) of the matrix

‖H‖1 :=
( ∫ ∞

0
Hkk′ (t)dt

)
k,k′

satisfies ρ(‖H‖1) < 1.

The condition in (2.2) is also called the non-explosion criterion in [1, 5]. It is easy to
calculate the mean of N(t):

E[N(t)] =E

[ ∫ t

0
λ(s)ds

]
=

( ∫ t

0

(
I + ϕ ∗ I(s)

)
ds

)
· λ0, t ≥ 0 . (2.3)

Here λ0 = (
λk0

)
k is the constant vector baseline intensity in (2.1), ϕ ∗ I(s) is a matrix with

ϕkk′ ∗ 1(s) = ∫ s
0 ϕkk′(s − u) du at its (k, k′)th entry (we abuse notation to let 1( · ) indicate a

constant function equal to one), and ϕ is a d × d matrix defined as an L1(dt) limit of the
following series:

ϕ(t) = H(t) + H ∗ H(t) + H ∗ H ∗ H(t) + · · · , (2.4)

where F ∗ G is defined as the matrix having as each entry

entij(F ∗ G(t)) =
∑

k

Fik ∗ Gkj(t) =
∑

k

∫ t

0
Fik(t − s)Gjk(s) ds

for matrix-valued functions F, G; see e.g. [1, Theorem 2]. The function ϕ can also be under-
stood as the renewal density of the function H and satisfies the (matrix) renewal equation

ϕ(t) = H(t) +
∫ t

0
H(t − s)ϕ(s)ds.

In addition, under Assumption A1,

I + ‖ϕ‖1 = (I − ‖H‖1)−1. (2.5)
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The functional law of large numbers for the Hawkes process N reads as follows
[1, Theorem 1]: under Assumption A1,

sup
t∈[0,1]

∥∥∥N̄T (t) − (I − ‖H‖1)−1 · λ0t
∥∥∥ → 0 as T → ∞, (2.6)

almost surely and in L2(P), where N̄T (t) := T−1N(Tt). The FCLT for the Hawkes process N is
stated as follows [1, Theorem 2]: under Assumption A1,

N̂T (t) := √
T
(
N̄T (t) −E[N̄T (t)]

) ⇒ N̂(t) in (Dd, J1), (2.7)

as T → ∞, where
N̂(t) := (I − ‖H‖1)−1 · �1/2 · W, (2.8)

W is a d-dimensional standard Brownian motion, and

� = diag
(
(I − ‖H‖1)−1 · λ0

)
. (2.9)

3. Splitting of a one-dimensional Hawkes process

We now describe the random splitting mechanism of Hawkes processes. We first focus on
the splitting of a one-dimensional Hawkes process for the sake of exposition. The splitting of
a d-dimensional Hawkes process can be derived similarly and will be discussed in Section 5
together with aggregation. We provide two representations of the split processes: the first using
the method in Chapter 9.5 of Whitt [21], and the second using the immigration–birth branching
representation. Note that for the case d = 1, Assumption A1 reduces to ‖H‖1 ∈ (0, 1).

3.1. The first representation

Let N be the Hawkes process in (2.1) with d = 1 and self-exciting function H : R+ →R+.
Denoting by {ξj, j ≥ 1} the splitting variables, whenever ξj = m, the jth individual occurring at
τj is assigned to the mth split process. Under this standard splitting, the process N splits into n
sub-counting processes, denoted by N(m):

N(m)(t) =
N(t)∑
j=1

1(ξj = m) for every m = 1, 2, · · · , n, and t ≥ 0. (3.1)

We assume that {ξj, j ≥ 1} is a sequence of independent and identically distributed (i.i.d.)
variables, independent of N, with

P
(
ξj = m

) = p(m) and
n∑

m=1

p(m) = 1. (3.2)

By the independence between N and {ξj}j, it is easy to see that

E[N(m)(t)] = p(m)
E[N(t)] = λ0 p(m)

∫ t

0

(
1 + ϕ ∗ 1(s)

)
ds. (3.3)

(Here ϕ is an R+-valued function.)
We consider the scaled process indexed by T , and all the variables are marked with an

additional subscript T; that is, NT is a Hawkes process with intensity process λT ( · ) whose
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baseline intensity in (2.1) is λ0,T , and the kernel function H stays the same. The splitting
variables are denoted by {ξj,T , j ≥ 1} with distribution {p(m)

T }m.

Assumption A2. Assume that, for some λ0, p(m) > 0 with
∑n

m=1 p(m) = 1,

λ0,T → λ0 and p(m)
T → p(m) as T → ∞.

For every m = 1, 2, · · · , d, define

N̄(m)
T (t) := 1

T
N(m)

T (Tt) = 1

T

NT (Tt)∑
j=1

1(ξj,T = m)

and the diffusion-scaled processes

N̂(m)
T (t) := √

T
(

N̄(m)
T (t) −E

[
N̄(m)

T (t)
])

and Ŝ(m)
T (t) := 1√

T

�Tt
∑
j=1

(
1(ξj,T = m) − p(m)

T

)
,

(3.4)
where �t
 represents the largest integer no larger than t ∈R+. Then we have the first
representation

N̂(m)
T (t) = Ŝ(m)

T (N̄T (t)) + p(m)
T N̂T (t). (3.5)

Note that in the representation (3.5), the process N̂(m)
T consists of two components: Ŝ(m)

T repre-

sents the oscillation from the splitting scheme, and p(m)
T N̂T is the oscillation inherited from the

original counting process and proportional to the splitting probability. Note that the processes
Ŝ(m)

T and N̂T are independent, and in the limit we see that the two components Ŝ(m)
T ◦ N̄T and

p(m)
T N̂T converge to two independent processes as T → ∞.

By applying [21, Theorem 9.5.1], under Assumptions A1 and A2, provided with the limit
for N̄T in (2.6) and the limit for N̂T in (2.8), we obtain the following.

Proposition 3.1. Let (N̂(m)
T )m be the diffusion-scaled process in (3.4). Assume that ‖H‖1 ∈

(0, 1) and Assumption A2 hold. We have

(
N̂(m)

T

)
m ⇒ (

N̂(m))
m in (Dn, J1) as T → ∞,

with

N̂(m) = λ
1/2
0

(1 − ‖H‖1)1/2
Ŝ(m) + p(m) λ

1/2
0

(1 − ‖H‖1)3/2
W, (3.6)

where (Ŝ(m))m is an n-dimensional Brownian motion with covariance function

cov
(
Ŝ(m)(t), Ŝ(m′)(s)

) = (−p(m)p(m′) + p(m)δmm′
)
(t ∧ s),

and W is a standard Brownian motion, independent of (Ŝ(m))m.
Therefore, the limit

(
N̂(m)

)
m is an n-dimensional Brownian motion with covariance

cov
(
N̂(m)(t), N̂(m′)(s)

) = (t ∧ s)

(
λ0p(m)(δmm′ − p(m′))

1 − ‖H‖1
+ λ0p(m)p(m′)

(1 − ‖H‖1)3

)
. (3.7)
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3.2. The second representation

Recall the immigration–birth branching representation with chronological levels for the
Hawkes process N described in (2.1), which generalizes the one proposed by [12]. Basically,
the points from N are categorized virtually into those from an exogenous arrival process, which
are called migrants and/or the first generation, and those generated from existing points, which
are called children, and whose chronological levels are obviously defined. Thus we rewrite

N(t) =
∑
l≥1

Nl(t), (3.8)

where N1(t) = sup{j ≥ 1, τ1j ≤ t} is a Poisson process with parameter λ0 representing the
arrival rate of the immigrants, and τ1j denotes the arrival time of the jth immigrant. For
l ≥ 1, Nl+1(t) = sup{j ≥ 1, τ(l+1)j ≤ t}, representing the individuals of (l + 1)th generation, is
an inhomogeneous Poisson process with intensity, by conditioning on Fl(t), as follows:

λl(t) =
Nl(t)∑
j=1

H(t − τlj) =
∫ t

0
H(t − s)Nl(ds) ∈ Gl(t), (3.9)

where Gl(t) = σ {Nl(s), s ≤ t} and Fl(t) = ∨
1≤l′≤l Gl′(t), and where τlj denotes the birth time

of the jth child of the lth generation, which is produced by some individual in the (l − 1)th gen-
eration. Here Gl(t) represents the information produced by the lth generation, Fl(t) represents
the information up to the lth generation, and F∞(t) = ∨

l≥1 Fl(t) collects the information of
all the generations up to time t, which includes not only the occurrence times of events but also
the virtually defined generation information and hence is strictly larger than the information
generated by N itself. Under the non-explosion assumption (2.2), λl and Nl are finite-valued
and can be constructed pathwise. By conditioning and the additive property of the intensity for
the independent counting processes, N in (3.8) is a simple counting process with conditional
intensity in (2.1).

To describe the split processes with the branching generations, we further let {ξlj, j ≥ 1}
be the i.i.d. splitting variables for the individuals from Nl, which have the same distributional
properties as {ξj, j ≥ 1} in (3.1). Recall p(m) in (3.2). Let

N(m)
l (t) :=

Nl(t)∑
j=1

1(ξlj = m), for every m = 1, 2, · · · , n. (3.10)

Then N(m) = ∑
l≥1 N(m)

l .

Proposition 3.2.
(
N(m)

)
m is an n-dimensional Hawkes process, where the baseline intensity

vector is
(
p(m)λ0

)
m and the mutual exciting matrix at the (m, m′) entry is p(m)H; that is, its

intensity is given by

λ(m)(t) = p(m)λ(t) = p(m)λ0 +
n∑

m′=1

∫ t

0

(
p(m)H(t − s)

)
N(m′)(ds), (3.11)

for every m = 1, 2, · · · , n, where λ is the intensity for N in (2.1).

Remark 3.1. We remark that although the split process
(
N(m)

)
m is a multivariate Hawkes

process, the cross-exciting function Hmm′ in the definition (2.1) takes a special form, p(m)H,
independent of m′ in (3.11).
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Proof. We show that
(
N(m)

)
m is a counting process with conditional jumping intensity(

λ(m)
)

m by evaluating its conditional jumping intensity.

For every l, notice that given {Fl(t)}t≥0,
(
N(m)

l+1

)
m is a Poisson process with intensity λ

(m)
l =

p(m)λl and independent among m. Therefore, conditioning on F∞(t), the jumping intensity of
N(m) at t is

λ(m)(t) :=
∑
l≥1

λ
(m)
l−1(t) = p(m)λ(t) = p(m)

(
λ0 +

∫ t

0
H(t − s)N(ds)

)

= p(m)λ0 +
d∑

m′=1

∫ t

0

(
p(m)H(t − s)

)
N(m′)(ds),

which is a process adapted to the natural filtration of (N(m))m. This proves Proposition 3.2. �

Recall N̂(m)
T defined in (3.4). By applying [1, Theorem 2] to Proposition 3.2, we obtain the

following result.

Proposition 3.3. Suppose that ‖H‖1 ∈ (0, 1) and Assumption A2 hold. We have

(
N̂(m)

T

)
m ⇒ (

N̂(m))
m in (Dn, J1) as T → ∞,

where
(
N̂(m)

)
m is a standard n-dimensional Brownian motion with covariance matrix

(
I − �̃

)−1 · �̃ · (I − �̃T)−1
, (3.12)

where �̃ = (
p(m)‖H‖1

)
mm′ and �̃ = diag(p)

λ0

1 − ‖H‖1
.

Proposition 3.4. The limits in Propositions 3.1 and 3.2 are equivalent in distribution.

Proof. To check the equivalence it suffices to show that the covariance functions in (3.7)
coincide with the matrix in (3.12).

By definition we have

�̃ = (
p(m)‖H‖1

)
mm′ = diag(p) · ones(n) · ‖H‖1,

where ones(n) denotes the n-dimensional square matrix with 1 for all its entries. Under
Assumption A1, the spectral radius of �̃ is ‖H‖1 ∈ (0, 1). Therefore,

�̃j = diag(p) · ones(n) · ‖H‖j
1,

where we use the fact
∑n

m=1 p(m) = 1 in the identity. Thus,

(
I − �̃

)−1 = I +
∑
j≥1

�̃j = I + diag(p) · ones(n) · ‖H‖1

1 − ‖H‖1
,

and from (2.8) and (2.9),

�̃ = diag
((

I − �̃
)−1(

p(m)λ0
)

m

)
= diag(p)

λ0

1 − ‖H‖1
.
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We then have (
I − �̃

)−1 · �̃ · (I − �̃T)−1

=
(

I + diag(p) · ones(n) · ‖H‖1

1 − ‖H‖1

)
diag

(
λ0p(m)

1 − ‖H‖1

)

×
(

I + ones(n) · ‖H‖1

1 − ‖H‖1
· diag(p)T

)

= λ0

1 − ‖H‖1
diag(p) + λ0

2‖H‖1 − ‖H‖2
1

(1 − ‖H‖1)3
p · pT,

which coincides with the matrix in (3.7). �

3.2.1. Another perspective via decomposed processes. We have from [1, Lemma 4] that

N(m)(t) −E
[
N(m)(t)

] = X(m)(t) + p(m)Y(t),

where X(m)(t) = N(m)(t) − ∫ t
0 λ(m)(s)ds and

X(t) =
n∑

m=1

X(m)(t) = N(t) −
∫ t

0
λ(s)ds, Y(t) =

∫ t

0
ϕ(t − s)X(s)ds.

In addition to the process N(m)
l in the proof of Proposition 3.2, we further define

X(m)
l (t) = N(m)

l (t) −
∫ t

0
λ

(m)
l−1(s)ds = N(m)

l (t) − p(m)
∫ t

0
λl−1(s)ds.

Then we also have X(m) = ∑
l≥1 X(m)

l . By the conditional independence of the X(m)
l for m =

1, . . . , n and zero covariance for different l and l′ by definition, we obtain immediately the
following covariance function of X(m): for m, m′ = 1, . . . , n and t, s ≥ 0,

cov
(

X(m)(t), X(m′)(s)
)

=E

[ ∑
l≥1

X(m)
l (t)

∑
l′≥1

X(m′)
l′ (s)

]

= δmm′
∑
l≥1

E

[
X(m)

l (t)X(m)
l (s)

]
= δmm′

∑
l≥1

E

[ ∫ t∧s

0
λ

(m)
l−1(u)du

]

= δmm′p(m)
∑
l≥1

∫ t∧s

0
H(l−1) ∗ λ0(u)du = δmm′p(m)λ0

∫ t∧s

0

(
1 + ϕ ∗ 1(u)

)
du,

where δmm′ = 1 if m = m′ and δmm′ = 0 if m �= m′. Notice that
(
X(m)

)
m is a martingale with

respect to the natural filtration
{
σ
{(

N(m)(s)
)

m, s ≤ t
}
, t ≥ 0

}
, and its subprocesses X(m)

l do not
jump at the same time.

Again we use the same scaling for the processes and quantities indexed by T . With the
representations in the proposition, we can define

(
N(m)

T

)
m and write

N̂(m)
T (t) := 1√

T

(
N(m)

T (Tt) −E
[
N(m)

T (Tt)
]) = X̂(m)

T (t) + p(m)
T ŶT (t), t ≥ 0, (3.13)
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where for every m = 1, 2, · · · , n and l ≥ 1

X̂(m)
l,T (t) = 1√

T
X(m)

l,T (Tt) = 1√
T

(
N(m)

l,T (t) −
∫ t

0
λ

(m)
l−1,T (s)ds

)
,

with

X̂(m)
T (t) =

∑
l≥1

X̂(m)
l,T (t), X̂T (t) =

n∑
m=1

X̂(m)
l,T (t), ŶT (t) =

∫ t

0
Tϕ(T(t − s))X̂T (s)ds. (3.14)

Then we have from the immigration–birth representation that

E

[
N̄(m)

T (t)
]
= λ0,Tp(m)

T ·
∫ t

0

(
1 + ϕ ∗ 1(Ts)

)
ds, (3.15)

cov
(

X̂(m)
T (t), X̂(m′)

T (s)
)

= δmm′λ0,Tp(m)
T ·

∫ t∧s

0

(
1 + ϕ ∗ 1(Tu)

)
du. (3.16)

It is clear that given ‖H‖1 ∈ (0, 1) and Assumption A2, by (2.5), we obtain that this covariance
converges as T → ∞ to

δmm′λ0p(m)(1 + ‖ϕ‖1)(t ∧ s) = δmm′λ0p(m)(1 − ‖H‖1)−1(t ∧ s).

We observe that the two components in the expression for N̂(m)
T in (3.13) are intrinsically

correlated, so that it appears to be more complicated than the first expression in (3.5); how-
ever, the martingale convergence method as in [1] can be applied and results in the following
proposition (proof details are omitted for brevity).

Proposition 3.5. Under the conditions of ‖H‖1 ∈ (0, 1) and Assumption A2,
(
X̂(m)

T

)
m ⇒(

X̂(m)
)

m in (Dn, J1) as T → ∞, where
(
X̂(m)

)
m is an n-dimensional Brownian motion with

covariance function

cov
(

X̂(m)(t), X̂(m′)(s)
)

= (t ∧ s) · δmm′
λ0p(m)

1 − ‖H‖1
.

Thus, ŶT ⇒ Ŷ in (D, J1) as T → ∞, where

Ŷ = ‖H‖1

1 − ‖H‖1
X̂ = ‖H‖1

1 − ‖H‖1

n∑
m=1

X̂(m).

As a consequence, the process
(
N̂(m)

)
m can also be represented as

N̂(m) = λ
1/2
0

(1 − ‖H‖1)1/2

(√
p(m)W(m)

)
+ p(m) λ

1/2
0 ‖H‖1

(1 − ‖H‖1)3/2
W, (3.17)

where
(
W(m)

)
m is a standard n-dimensional Brownian motion, and W = ∑n

m=1

√
p(m)W(m).

Remark 3.2. We observe that we can rewrite the expression for the limit N̂(m) in (3.17) as

N̂(m) = λ
1/2
0

(1 − ‖H‖1)1/2
Ŝ(m) + p(m) λ

1/2
0

(1 − ‖H‖1)3/2
W, (3.18)
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where Ŝ(m) := √
p(m)W(m) − p(m)W. It can be checked by direct calculations that the two com-

ponents (Ŝ(m))m and W in the second expression in (3.18) are independent. Moreover, for every
m and m′,

cov
(
Ŝ(m)(t), Ŝ(m′)(s)

)

=
√

p(m)p(m′)E
[
W(m)(t)W(m′)(s)

] − p(m)p(m′)
E

[
W(m)(t)W(m)(s)

]

− p(m)p(m′)
E

[
W(m′)(t)W(m′)(s)

] + p(m)p(m′)
E

[
W(t)W(s)

]

= p(m)(δmm′ − p(m′))(t ∧ s),

which is exactly the identity in (3.6). This also proves the equivalence of the limit in (3.17) and
that in Proposition 3.1, and thus, equivalence with that in Proposition 3.3.

4. Aggregating Hawkes processes

Splitting a Hawkes process results a multivariate Hawkes process with special exciting func-
tion. However, the aggregation of a multivariate Hawkes process is not necessarily a Hawkes
process. In the following, we identify a necessary and sufficient condition for the aggregated
multivariate Hawkes process to be a one-dimensional Hawkes process.

Let N = (Nk)k be a multivariate Hawkes process with conditional intensity in (2.1). The
associated aggregating process of N is denoted by

A(t) =
d∑

k=1

Nk(t). (4.1)

Then, similarly to the proof of Proposition 3.2, by conditioning on the natural filtration of
(Nk)k, the conditional jumping intensity is given by

λA(t) =
d∑

k=1

λk(t) =
d∑

k=1

λk0 +
d∑

k′=1

∫ t

0

( d∑
k=1

Hkk′ (t − s)
)

Nk′ (ds),

which is a process adapted to the natural filtration of
(
Nk

)
k. Note that the filtration generated

by the vector process N is strictly larger than that of A. Thus, to make λA above adapted to the
natural filtration of A, an immediate observation is the following property.

Proposition 4.1. A = {A(t), t ≥ 0} is a one-dimensional Hawkes process if and only if H̃ :=∑d
k=1 Hkk′ is a function independent of k′, under which the conditional intensity for A is

λA(t) =
d∑

k=1

λk0 +
∫ t

0
H̃(t − s)A(ds) = eT · λ0 +

∫ t

0
H̃(t − s)A(ds).

Remark 4.1. As a very special case, suppose that the Nk are independent one-dimensional
Hawkes processes with conditional intensity λk(t) = λk0 + ∫ t

0 Hk(t − s)Nk(ds). Then

λA(t) =
d∑

k=1

λk0 +
d∑

k=1

∫ t

0
Hk(t − s)Nk(ds).
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Thus, the aggregating process A is a Hawkes process with conditional intensity λA(t) = eT ·
λ0 + ∫ t

0 H(t − s)A(ds) only if Hk ≡ H.

Next we give another example to illustrate the property. Let N be a two-dimensional Hawkes
process with positive baseline intensities λ10, λ20 > 0 and with positive mutually exciting func-
tions (Hij)ij. Then the associated aggregating process A is a Hawkes process if and only if
H11 + H21 = H12 + H22.

Let ÂT be the scaled aggregating process of the Hawkes process N,

ÂT (t) = √
T
(
A(Tt) −E

[
A(Tt)

]) = eT · N̂T (t).

Proposition 4.2. Under Assumption A1, we have

ÂT ⇒ Â = eT · (I − ‖H‖1
)−1 · �1/2 · W, (4.2)

where W is a standard Brownian motion and � = diag
(
(I − ‖H‖1)−1λ0

)
is the diagonal matrix

in (2.9).
If, in addition, H̃ := ∑d

k=1 Hkk′ is a function independent of k′, then ‖H̃‖1 ∈ (0, 1) and Â

is a Brownian motion with diffusion coefficient
∑d

k=1 λk0
(
1 − ‖H̃‖1

)−3
.

Proof. The limit result for ÂT in (4.2) is a direct consequence of (2.7) for N̂T and the
continuous mapping theorem, which is a one-dimensional Brownian motion with diffusion
coefficient

eT · (I − ‖H‖1
)−1 · � · (I − ‖H‖T

1

)−1 · e.

For the special case that
∑

k Hkk′ is independent of k′, since it is a Hawkes process, we
can directly apply [1, Theorem 2] to the one-dimensional Hawkes process A with the second
expression for λA(t) in Proposition 4.1 and obtain the diffusion coefficient as stated. We next
verify that the expression can be also obtained from that in (4.2). We have eT · H(t) = eTH̃(t)
and

eT · ‖H‖1 = eT‖H̃‖1,

which shows that ‖H̃‖1 and eT are the left eigenvalue and the associated eigenvector of the
kernel matrix ‖H‖1. Therefore, ‖H̃‖1 ∈ (0, 1) by Assumption A1,

eT · ‖H‖j
1 = eT(‖H̃‖1

)j and eT · (I − ‖H‖1
)−1 = eT(

1 − ‖H̃‖1
)−1

,

and the diffusion coefficient for Â is

eT · (I − ‖H‖1)−1 · � · (I − ‖H‖T
1 )−1 · e = eT · � · e

(
1 − ‖H̃‖1

)−2

= eT · (I − ‖H‖1
)−1 · λ0

(
1 − ‖H̃‖1

)−2 = eT · λ0
(
1 − ‖H̃‖1

)−3.

Here we make use of the fact that diag(u) · e = u for a vector u. �

5. Splitting and aggregating multivariate Hawkes processes

Now we consider randomly splitting and aggregating a multivariate Hawkes process N =(
Nk

)
k in (2.1). Let {ξkj}k,j be the splitting variables: whenever ξkj = m, the jth individual of the
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kth component counting process Nk (occurring at τkj) is assigned to the mth sub-counting pro-

cess. Then the N
d-valued Hawkes process

(
Nk

)
k splits into an N

d×n-valued process
(
N(m)

k

)
k,m

and

N(m)
k (t) =

Nk(t)∑
j=1

1(ξkj = m) for every k, m,

where {ξkj}j are i.i.d. variables, independent of N, with distribution

P
(
ξkj = m

) = p(m)
k and

n∑
m=1

p(m)
k = 1 for every k, m.

We consider the following aggregated process:

A(m)(t) =
d∑

k=1

N(m)
k (t), t ≥ 0.

By the procedure of splitting and then aggregating, we have transformed a d-dimensional
Hawkes process into an n-dimensional counting process.

Before we proceed to study the properties of the split and aggregated processes, we dis-
cuss some potential applications. This often occurs when demands require re-categorization in
order for them to be processed. In an insurance company, demands may arrive as a bivariate
Hawkes process comprising home insurance and automobile insurance, each of which may be
split into claims and new personal/commercial services, which will be processed by the cor-
responding service departments. In a remanufacturing facility, different products may arrive
as a multivariate Hawkes process, then be split and aggregated, given the different component
reprocessing needs, in order to be reprocessed at the corresponding machines. Similarly, in a
data center, jobs may arrive as a multivariate Hawkes process, which must be regrouped in
order to be processed at separate parallel servers because of computational requirements or
constraints.

Similarly to Propositions 3.2 and 4.1, the Hawkes property is preserved for the splitting
process indexed by (k, m), and the aggregated process A(m) is a Hawkes process under certain
conditions.

Proposition 5.1. The following properties hold:

(i)
(
N(m)

k

)
k,m is an N

d×n-valued Hawkes process with conditional intensity

λ
(m)
k (t) = p(m)

k λk(t) = p(m)
k λk0 +

∑
k′,m′

∫ t

0

(
p(m)

k Hkk′ (t − s)
)

N(m′)
k′ (ds),

where (λk)k is the intensity for N in (2.1).

(ii)
(
A(m)

)
m is an n-dimensional Hawkes process if and only if H̃(m) := ∑d

k=1 p(m)
k Hkk′ is a

function independent of k′ ∈L(m) := {k, p(m)
k > 0}, under which the conditional intensity

of
(
A(m)

)
m is given by

λ
(m)
A (t) =

( d∑
k=1

p(m)
k λk0

)
+

n∑
m′=1

∫ t

0
H̃(m)(t − s)A(m′)(ds).
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Remark 5.1. For a d-dimensional Hawkes process, it is always assumed to be irreducible, that
is, E

(
Nk(∞)

)
> 0 for every k. The independence of H̃(m) in Proposition 4.1 is required for every

k′. However, in the splitting and aggregating case, P
(
N(m)

k (∞) = 0
) = 1 for those p(m)

k = 0 (that
is, k /∈L(m)); the necessity and sufficiency of the condition can be checked by evaluating the
intensity for the second occurrence time of A(m) in Proposition 5.1(i), which should remain
unchanged for different values of k′.

For example, let d = n and let {mk}k be a permutation of {1, 2, · · · , d} with p(mk)
k = 1. Then

we have from this assumption that N(m)
k (∞) = 0 for m �= mk and A(mk) = Nk for every k. This

means (A(m))m defines a rotated Hawkes process which switches the positions of individuals.
It is of course Hawkes; however,

d∑
k=1

p
(mk0 )
k Hkk′ = p

(mk0)

k0
Hk0k′ = Hk0k′

depends on k′ for every k0.
We consider the scaled process indexed by T , and all the variables are marked with addi-

tional subscripts T; that is, NT = (
Nk,T

)
k is a Hawkes process whose baseline intensity is

λ0,T = (λk0,T )k ∈R
d+, and the kernel matrix function H ∈R

d×d+ stays the same. The splitting

variables {(ξkj,T )k}j have subscripts T and distribution matrix (p(m)
k,T )k,m ∈R

d×n+ , which results

in the splitting process
(
N(m)

k,T

)
k,m. The average process and the diffusion-scaled process are

defined by

N̄T (t) =
( 1

T
N(m)

k,T (Tt)
)

k,m
and N̂T (t) =

(
N̂(m)

k,T (t)
)

k,m
= √

T
(

N̄T (t) −E
[
N̄T (t)

])
.

Assumption A3. Assume that for some λk0, p(m)
k ≥ 0 with

∑n
m=1 p(m)

k = 1 for every k,

λk0,T → λk0 and p(m)
k,T → p(m)

k as T → ∞.

We are interested in the FCLT of the aggregating process (A(m)
T )m, defined by

Â(m)
T =

d∑
k=1

N̂(m)
k,T .

Theorem 5.1. Suppose Assumptions A1 and A3 hold. We have

(
Â(m)

T

)
m ⇒ (

Â(m))
m in (Dn, J1),

where (Âm)m is an n-dimensional Brownian motion with covariance function

cov
(
Â(m)(t), Â(m′)(s)

) = (t ∧ s) ×
(

diag
(
pT · � · e

) − pT · � · p

+ pT · (I − ‖H‖1)−1 · � · (I − ‖H‖T
1 )−1 · p

)
,

where � = diag
(
(I − ‖H‖1)−1λ0

)
is the diagonal matrix in (2.8).
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Proof. Applying [1, Lemma 4] to
(
N(m)

k,T

)
k,m we have the representation

N̂(m)
k,T (t) = X̂(m)

k,T (t) + p(m)
k,T Ŷk,T (t) (5.1)

where

X̂(m)
k,T (t) = 1√

T

(
N(m)

k,T (Tt) −
∫ Tt

0
λ

(m)
k,T (s)ds

)
,

X̂T (t) = (
X̂k,T (t)

)
k =

n∑
m=1

(
X̂(m)

k,T (t)
)

k and Ŷk,T (t) =
∫ t

0
rowk

(
ϕ(T(t − s))

)
X̂T (s)ds,

and where ϕ is the matrix function defined in (2.4). Moreover, similarly to (3.15) and (3.16),

E
[
N̄(m)

k,T (t)
] = p(m)

k,T · entk
( ∫ t

0

(
I + ϕ ∗ 1(Ts)

)
ds · λ0,T

)
,

cov
(

X̂(m)
k,T (t), X̂(m′)

k′,T (s)
)

= δkk′δmm′p(m)
k,T · entk

( ∫ t

0

(
I + ϕ ∗ 1(Ts)

)
ds · λ0,T

)
.

Therefore, we have ((
X̂(m)

k,T

)
k,m,

(
Ŷk,T

)
k

)
⇒

((
X̂(m)

k

)
k,m,

(
Ŷk

)
k

)
,

where, for some standard Brownian motion (W(m)
k )k,m,

X̂(m)
k =

√
p(m)

k �kkW(m)
k , Ŷk = rowk

(‖ϕ‖1
) n∑

m=1

(
X̂(m)

k′
)

k′

and N̂(m)
k = X̂(m)

k + p(m)
k Ŷk.

A direct calculation shows that

cov
(

N̂(m)
k (t), N̂(m′)

k′ (s)
)

= (t ∧ s) ×
(
δkk′�kkp(m)

k

(
δmm′ − p(m′)

k′
)

+ p(m)
k p(m′)

k′ entkk′
(
(I − ‖H‖1)−1 · � · (I − ‖H‖T

1 )−1)).

Summing over k and k′ gives the covariance function for
(
Â(m)

)
m. �

Remark 5.2. From the proof, we have a second representation for
(
N̂(m)

k

)
k,m:

N̂(m)
k = �

1/2
kk Ŝ(m)

k + p(m)
k rowk

(
(I − ‖H‖1)−1)�1/2W, (5.2)

where
(
W(m)

k

)
k,m is the standard Brownian motion in the proof, and

Wk =
n∑

m=1

√
p(m)

k W(m)
k , Ŝ(m)

k =
√

p(m)
k W(m)

k − p(m)
k Wk, and W = (Wk)k ∈R

d.
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Then
(
Wk

)
is an n-dimensional standard Brownian motion;

{
(Ŝ(m)

k )m, k = 1, 2, · · · , d
}

is a
sequence of Brownian motions independent of (Wk)k and over k; and

cov
(
Ŝ(m)

k (t), Ŝ(m′)
k (s)

) = (t ∧ s) × p(m)
k

(
δmm′ − p(m′)

k

)
.

Under the conditions of Proposition 5.1(ii), (A(m)
T )m becomes a multivariate Hawkes process.

Thus, [1, Theorem 2] can be applied directly and we have a second representation for its
covariances.

Proposition 5.2. Suppose H̃(m)
T = ∑d

k=1 p(m)
k,THkk′ is independent of k′, and Assumptions A1

and A3 hold. Then the covariance function for Â = (
Â(m)

)
m in Theorem 5.1 can also be

represented as (
I − �̃

)−1 · diag
((

I − �̃
)−1 · pT · λ0

)
· (I − �̃T)−1

, (5.3)

where �̃ = pT · col1
(‖H‖1

) · eT
n , and en is the n-dimensional column vector of ones.

Proof. By assumption, (A(m)
T )m is a Hawkes process with conditional intensity

λ
(m)
A,T (t) =

( d∑
k=1

p(m)
k,Tλk0,T

)
+

n∑
m′=1

∫ t

0
H̃(m)

T (t − s)A(m′)
T (ds).

The representation for the covariance function in (5.3) follows from (2.7) by [1, Theorem 2]. In
the following, we show that (5.3) coincides with the covariance in Theorem 5.1 in this special
case.

Defining ν = pT · col1
(‖H‖1

)
and c0 = νT · en, we have

�̃ = ν · eT
n , pT · ‖H‖1 = ν · eT

d , and eT
d · ‖H‖1 = c0 · eT

d (5.4)

by the fact that p · en = ed. Thus, c0 and eT
d are the right eigenvalue and the associated

eigenvector of ‖H‖1, and c0 ∈ (0, 1) by Assumption A1. We further have, for �̃,

�̃j = ν · eT
n

(
eT

n · ν)j−1 = cj−1
0 · �̃ and

(
I − �̃

)−1 = I + 1

1 − c0
ν · eT

n ,

and (
I − �̃

)−1 · pT · λ0 = pT · λ0 + 1

1 − c0
ν · eT

n · pT · λ0 = pT · λ0 + eT
d · λ0

1 − c0
ν.

Therefore, we have

(
I − �̃

)−1 · diag
((

I − �̃
)−1 · pT · λ0

)
· (I − �̃T)−1

= diag
(

pT · λ0 + eT
d · λ0

1 − c0
ν
)

+ 1

(1 − c0)2
ν · eT

n ·
(

pT · λ0 · νT + eT
d · λ0

1 − c0
ν · νT

)

+ 1

1 − c0

(
pT · λ0 · νT + ν · λT · p + 2

eT
d · λ0

1 − c0
ν · νT

)
(5.5)
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= diag
(

pT · λ0 + eT
d · λ0

1 − c0
ν
)

+ 1

1 − c0

(
pT · λ0 · νT + ν · λT

0 · p
)

+ (
ν · νT)( 2eT

d · λ0

(1 − c0)2
+ eT

d · λ0

(1 − c0)3

)
,

where we make use of the fact that diag(u) · e = u for the vector u in the calculation.
On the other hand, for the covariance function in Theorem 5.1 in this special case, we have

pT · (I − ‖H‖1
)−1 = pT +

∑
j≥1

pT · ‖H‖j
1 = pT +

∑
j≥1

ν · eT
d · ‖H‖j−1

1

= pT + 1

1 − c0
ν · eT

d , (5.6)

where the fact from (5.4) is used. Thus, by the definition � · ed = (I − ‖H‖1)−1 · λ0, we have

pT · � · ed = pT · (I − ‖H‖1
)−1 · λ0 = pT · λ0 + ν

eT
d · λ0

1 − c0
,

pT · � · ed · νT = pT · λ0 · νT + eT
d · λ0

1 − c0

(
ν · νT)

,

eT
d · � · ed = eT

d · (I − ‖H‖1
)−1 · λ0 = eT

d · λ0

1 − c0
,

(5.7)

where the fact that eT
d · ‖H‖1 = c0 · eT

d is used.
Therefore, by applying the identities in (5.6) and (5.7), we obtain

diag
(
pT · � · e

) + pT · (I − ‖H‖1)−1 · � · (I − ‖H‖T
1 )−1 · p − pT · � · p

= diag
(
pT · � · e

) + 1

1 − c0

(
pT · � · ed · νT + ν · ed · � · p

)

+ 1

(1 − c0)2

(
ν · eT

d · � · ed · νT
)

= diag
(

pT · λ0 + ν
eT

d · λ0

1 − c0

)
+ 1

1 − c0

(
pT · λ0 · νT + ν · λT

0 · p + ν · νT 2eT
d · λ0

(1 − c0)

)

+ ν · νT
( eT

d · λ0

(1 − c0)3

)
.

Comparing with the expression in (5.5), we conclude the equivalence. �
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