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ABSTRACT

We prove by the Hilbert—-Mumford criterion that a slope stable polarized weighted
pointed nodal curve is Chow asymptotic stable. This generalizes the result of Caporaso
on stability of polarized nodal curves and of Hassett on weighted pointed stable curves
polarized by the weighted dualizing sheaves. It also solves a question raised by Mumford
and Gieseker, to prove the Chow asymptotic stability of stable nodal curves by the

Hilbert—Mumford criterion.
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HILBERT-MUMFORD CRITERION FOR NODAL CURVES

In this paper, we will prove the Chow asymptotic stability of weighted pointed nodal curves
by verifying the Hilbert—Mumford criterion directly. As an application, we provide a GIT
construction of the moduli of weighted pointed stable curves. An interesting consequence of
this construction is that the GIT closure of the moduli of weighted pointed smooth curves, using
Chow asymptotic stability, is identical to Hassett’s coarse moduli of weighted pointed stable
curves, while its universal family includes strictly semistable weighted pointed nodal curves.

Another application of our stability study is to show that a polarized nodal curve is K-stable
(cf. §7) if and only if the polarization is numerically proportional to the dualizing sheaf. This
generalizes a theorem of Odaka that a stable nodal curve polarized with a dualizing sheaf is
K-stable.

The primary goal of this work is towards understanding the GIT compactification of moduli
of canonically polarized varieties. The recent works on the relation between various notions of
K-stabilities and the existence of constant scalar curvature Kdhler (cscK) metrics suggest that
some deep and interesting geometry is yet to be uncovered in this area. We hope this study will
help us understand the stability of high-dimensional singular varieties.

We briefly outline the results proved in this paper. In this paper, we work over a characteristic
zero algebraically closed field k. A curve is a proper, reduced pure one-dimensional scheme.

DEFINITION 1.1 [Has03]. A weighted pointed nodal curve (X, x,a) is a connected nodal curve X
coupled with n ordered (not necessarily distinct) weighted smooth points

x = (z1,...,2,) € X" of weights a = (a1,...,ay,) 6@?”

such that the total weight at any point is no more than one (i.e. for any p € X, >
It is polarized if it comes with a very ample line bundle Ox (1) of degree d.

T;=p a; < 1).

In this paper, we will use (X, Ox(1),x,a) to denote a polarized weighted pointed nodal curve.
As Ox(1) is very ample, we form its tautological embedding

1 X S PW, W= H%0x(1))" (1.1)
and the Chow point
Chow(X,x) = (Chow(X),x) € = := Div*[(PWV)?] x (PW)", (1.2)

where Div*?[(PW")?] is the space of bi-degree (d,d) hypersurfaces in (PW")?; Chow(X) €
Div®4[(PWV)?] is the Chow point of (X,¢) consisting of the set of (Vi,Va) € (PW")? such that
VinVana(X) # 0.

The stability of the Chow point is tested by the positivity of the a-weight of any one-
parameter subgroup A : G,, — SL(W). (A one-parameter subgroup, abbreviated to 1-PS, is
always non-trivial.) Since Div*[(PW")?] is a projective space, it has a canonical polarization
O(1). We let

05(1, a)

be the Q-ample line bundle on = that has degree 1 on Div*¢[(PW")?] and has degree a; on the
ith copy of the PW in (PW)™. The group SL(WW) acts on E, and an integral multiple of O=(1, a)
is canonically linearized by SL(W).

DEFINITION 1.2. Given (X, 0x(1),x,a), and a 1-PS X of SL(W), we let { = lim;_,g A(t)-Chow (X,
x) € E and define the a-A-weight wa(A) of Chow(X,x) € Z to be the weight of the A-action on
the fiber O=(1,a)|c. We define the A\-weight w()\) of Chow(X) € Div*¢[(PW")?] similarly with
Chow (X, x) (respectively O=(1,a)) replaced by Chow(X) (respectively O(1)).
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DEFINITION 1.3. We say that (X,0x(1),x,a) is stable (respectively semistable) if for any 1-PS
A of SL(WW), the a-A-weight wa(A) of Chow (X, x) is positive (respectively non-negative).

To make an analogy with the slope stability of vector bundles, we introduce the notion of
slope stable by testing on proper closed subcurves Y C X. First, with Ox (1) understood, for
subcurve Y C X we define deg Y = deg Ox (1)|y. For any proper subcurve Y C X, we define the
number of linking nodes of Y to be

by =|Ly|, Ly=YnYt yl=Xx\Y. (1.3)

For simplicity, we abbreviate

ay = E A,

;€Y

and thus ax = Y | a;. We say that (X,0x(1)) is non-special if h'(Ox (1)) = 0. We call a
subcurve Y C X of (X,0x(1),x) an exceptional component if Y 2P Y Nx = @, fy = 2 and
degy Ox(1) = 1.

DEFINITION 1.4. We say (X, O0x(1),x,a) is slope semistable if (X, Ox (1)) is non-special and for
any proper subcurve Y C X we have

degY + by /24 ay /2 < deg X +ax/2
hO(0y (1)) = hO(0x(1))

(1.4)

We say that it is stable if it is semistable and the strict inequality (1.4) holds except when YT is
a disjoint union of exceptional components of (X, 0x(1),x).

In this paper, we will prove by verifying the Hilbert—Mumford criterion the following theorem.
For the weight a and ¢g(X) = g, we define

Xag :=¢g— 1+ %aX and  Xag(X) = Xa,g(X)- (1.5)

THEOREM 1.5. Given g and a such that xa4 > 0, there is an M = M(g,n,a) such that a genus
g polarized weighed pointed nodal curve (X,0x(1),x,a) having deg X > M is (semi)stable if
and only if it is slope (semi)stable.

By a straightforward extension of [Cap94, Proposition 3.1], Theorem 1.5 can be reformulated
(cf. Proposition 5.4) as follows.

THEOREM 1.6. Given g and a such that xaq > 0, there is an M = M (g,n,a) so that a genus g
polarized weighed pointed nodal curve (X,0x(1),x,a) having deg X > M is semistable if and
only if for any proper subcurve Y C X, we have

a; degy wx(a- x) " a; ly

degY L) - =X 2T T deg X <= 1.6

‘(eg +Z 2) degwx(a - x) 8 +,22 2 (16)
;€Y j=1

It is stable if it is semistable (i.e. (1.6) holds) and the strict inequality holds except when Y or

YT is a disjoint union of exceptional components of (X, 0x(1),x).
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We remark that the constant M in the theorem can be estimated effectively depending on
g,n and a. However, as our approach is unlikely to produce a near optimal bound M, we made
no efforts in this paper to trace the dependence of M on g and a. It is certainly an interesting
and important question to optimize M, and it is known (cf. [BFMV14]) that the optimal M is
4(2g — 2) + € (with 0 < ¢ < 1) when a = 0.

The case x = ) is a theorem of Caporaso [Cap94] on the stability of polarized nodal curves.
The case of the asymptotic Hilbert stability of smooth weighted pointed curves is a theorem of
Swinarski [Swil2] (see also [Mor09]).

We now sketch the main ingredients of our proof. Our starting point is a theorem of Mumford
that expresses the a-A-weight of Chow (X, x) in terms of the leading coefficient of the Hilbert—
Samuel polynomial of an ideal J C Oxy 1 (1) (cf. Proposition 2.1). Our observation is that this
leading coefficient can be evaluated by the leading coefficient of the Hilber—Samuel polynomial of
the pullback J of J to the normalization X of X. This transforms the evaluation of the a-A-weight
to the calculation of the areas of a class of Newton polygons associated to the pullback sheaf 7.
We then obtain an effective bound of the areas of these Newton polygons and thus a bound of
the a-A\-weight of Chow (X, x). Since this bound is linear in the weights of A\, we can apply linear
programing to complete a proof of Theorem 1.5.

Our GIT construction of the moduli of weighted pointed stable curves goes as follows. We
form the Hilbert scheme H of pointed one-dimensional subschemes of P of fixed degree. Let
Y : H — C be the equivariant Hilbert—-Chow morphism (map) to the Chow variety of pointed
one-dimensional cycles in P of the same degree. Applying our main theorem, we conclude
that in the case where the degree is sufficiently large, the preimage under ¢ of the set C* C C
of GIT-semistable points is the set of semistable polarized weighted pointed nodal curves. Let
K C H be the subset of canonically polarized weighted pointed smooth curves. We prove that
the GIT-quotient of the closure K is isomorphic to Hassett’s moduli of weighted pointed stable
curves. An interesting observation is that the complement K — K contains polarized semistable
but not canonically polarized weighted pointed nodal curves. Thus though GIT gives the same
compactification as that of Hassett of the moduli of canonically polarized weighted pointed
smooth curves, the geometric objects added to obtain the compactification in the mentioned two
constructions are different. It is worth pursuing to see how this extends in the high-dimensional
case.

In the end, using a result of Stoppa and the fact that the Donaldson—Futaki invariants can
be expressed as the limit of normalized Chow weights under a 1-PS, we apply our main theorem
to prove that a polarized nodal curve (X, Ox (1)) is K-stable if and only if Ox (1) is numerically
proportional to wy (cf. Theorem 7.1). This implies that GIT compactification is same as the
compactification of smooth curves using K-stability.

The paper is organized as follows. In § 2, we show that the weights can be evaluated via the
leading coefficients of the Hilbert-Samuel polynomial of a sheaf on the normalization X. In § 3,
we reduce our study to a particular class of 1-PS: the staircase 1-PS. We will derive a sharp
bound for each irreducible component in §4. We complete the proof of our main theorems in § 5.
The last two sections include the applications of our stability study to constructing moduli of
weighted pointed nodal curves and to study the K-stability of polarized curves.
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List of notation

I(N); TN (tPs0,...) C Oxya(1); similarly defined on X (2.3)

e(I(N); e(9) n.l.c. x(Ox a1 (k)/I(N)F); similarly defined on X (2.4); after (2.6)
e(@)q; e(Ta) contribution of e(J) at ¢ € X; along X, (2.12)

w(A) A-Chow weight Proposition 2.1
v(84,q) the vanishing order of §; at ¢ (2.8)

h(q) max{i | v(3;, q) # oo} (2.9)

I min;{i | §;{g =0, for j >i+1} (2.16)

Ay Newton polygon supported at ¢ € X Definition 2.7
& =&\ (Siy Sit1s---3Sm) C Ox(1) (3.1)

Aa(N); A(N) {g€ Xa|sn,(q) =0} AN) =U,_; Aa(N) Definition 3.1
(54, p) length(&;/&i41)p or =0 Definition 3.2
incy (8;) > pex., 0(3i,p)p and inc(8;) = 3, inca(8;) Definition 3.1
0a(5i); 0(5:) > pex,, 0(5ip); 0(5:) = 32 0a(5i) Definition 3.1
w(&i,p); wa(€;) length(O ¢ (1 )/&; )p; wa (&) = Zpef( w(&;,p) Definition 3.2
I, = Ia(N) {i €T|inc(3;) N Xy # 0 ori=hy} (3.3)

Ly; Lo; Ly; Loy YNYY Ly 7 Y(Ly)NY; Lx, (1.3) and (3.9)
Ny; Na; No 7' (Ny)NY; Nx,; Nx, (3.8)

ba; Lo g; Lo |Lal; [ Xa mXB" —|Lal (3.9); (6.10)
e {i € Iy | wa(Eip1) < deg Xo — 29(Xa) — Lo — 1} Definition 3.10
ES(p) upper bound of e(J), (4.3)

Wi = W;(\) {veW |si(v)=-=spv)=0 CW (5.8)

wa(A) w(A) + pa(A) (5.11)

. H—->C Hilbert—Chow map before Proposition 6.2
K,KCH slice polarized by wy /3 (a - x) before (6.5)
5(L) degree class for the line bundle £ after (6.9)

2. Chow stability, Chow weight and Newton polygon

In this section, we first recall some basic facts from [Mum77] on stability of a polarized curve;
we then localize the calculation of the weight of Chow(X) to a divisor on the normalization of X
and interpret the contribution from each point of the divisor as the area of a generalized Newton
polytope.

Let (X, O0x(1)) be a polarized connected nodal curve, together with its associated embedding
1: X — PW (cf. (1.1)) and its Chow point Chow(X). We will reserve the symbol A for a 1-PS
of SL(W); for such A\, we diagonalize its action by choosing

s = {s0,...,5n} a basis of W" (2.1)
so that under its dual bases the action A is given by
A(t) == diag[tF°,... tPm] - t7P po=p1 = = pm =0, (2.2)

and pave = (1/(m+ 1)) >_ p;. We will call s a diagonalizing basis of \.
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In [Mum?77], Mumford introduced a subsheaf
IJ(N) = (t°s0, ..., tP™sm) C Oxyp (1) := p5x0O0x(1) (2.3)

generated by the sections in the parentheses, where py : X x Al — X is the projection.
Let e(J(\)) be the normalized leading coefficient (abbreviated to n.l.c.) of the Hilbert—Samuel

polynomial:
2
X(Oxsar (k) /INF) = 6(3()\))% + lower order terms. (2.4)

PrOPOSITION 2.1 (Mumford). The A-weight of Chow(X) is

In the following, when the 1-PS A and its diagonalizing basis s are understood, we will drop
A from J(\) and abbreviate J(\) to J. Our first step is to lift the calculation of e(J) (= e(J(N)))
to the normalization

m: X — X.
We let
§i=m"s; € 0x(1) :=0x(1) ®o, 0% (2.5)
and let J be the pullback of J:
J = (t"30,...,t"5m) C Og, (1) =05(1) ®o, Og,p- (2.6)

We define e(J) = n.l.c.x(OXxAl(k)/jk). We have the following special case of [Mum?77,

Lemma 5.6] which enables us to lift the evaluation of e(J) to X. As [Mum?77, Lemma 5.6] was
not proved in [Mum77], we give a proof here shortly.

PROPOSITION 2.2. We have e(J) = e(J).

Our next step is to localize the evaluation of e(j) to individual ¢ € X. Let z be a uniformizing
parameter of X at ¢; let ¢ be the standard coordinates of Al. We denote by O X4 the formal

completion of the local ring O g its maximal ideal. We fix an isomorphism of 0 % q—modules
(the first isomorphism below):

g 0x(1)®o, O3, =05 =Kk[z], (2.7)

where the second isomorphism is induced by the choice of z.

DEFINITION 2.3. Let §; € H%(O (1)) be as in (2.5). We define
v(8;, q) = the vanishing order of §; at ¢; (2.8)
in the case §; = 0 near ¢, we define v(3;,q) = co. We set

h(q) = max{i | v(3;,q) # o0} and w(J,q) = V(319> 9)- (2.9)
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The quantity w(j, q) is the width of the polygon A, associated to J (at ¢) to be defined later.
We now look at the image of J under Of(xAl(l) — OXxAl (00)" We let

I, = (z0GoDpo | p0Gm-1,0ppm—t H0GEma)pm) ¢ R = K[z,1], (2.10)

agreeing z°° = 0. By construction, ¢, induces an isomorphism

(O pn (k) /T* ) ®og, Ogym (0.0) = ~ R/I}. (2.11)

Notice that the right-hand side is not a finite module when f(q) < m. Since for all i we have
tPi - ,(3;) € (tPM@) C R, the induced homomorphism (¥*n( )/Ik — R/Ik is injective, and
(tk'pﬁ(@)/If is a finite module. We define

e(9)q = nle. dim((tF7@) /IF) + 20 - w(3, q). (2.12)

We have the following formula, independently obtained by Swinarski; a special case can be
found in [Sch91, p. 300].

LEMMA 2.4. We have the summation formula e(J) = > gex €Tq-

Proof of Proposition 2.2. Let p1,...,p; be the nodes of X; let £ =7 X 1 : X x Al > X x Al
be the projection. Tensoring the exact sequence

l

0— Oxupr — &Og 0 — @oijAl — 0
j=1

with Oy, a1(k)/J*, we obtain an exact sequence
Oxxar(k )/j (OXXAl( )/Jk) @0y u &O0gm — @(OXXAl (k)/jk)|pj><A1 — 0.
a=1

By projection formula, we have

(O, (B)/T) = £u(€"(Oxm (k) /T%)) = (Ox s () /9%) @0,y EO 5 -

Thus
e(J) = nlc. X(6(O g, () /7%)) = nle x((Ox o () /7%) @0 1 €05, ),

which equals

l
n.Le. (X(Oxxu (k)/9F) — dimker fi + )~ x((Oxn (£)/9%)],x))-
i=1
We claim that both
X((Ox o p1 (k) /TF) ®0y, 0 Op;xar) and  dimker fi (2.13)

are linear in k. This will prove the Proposition.
We begin with the first claim. We let ¢ be one of the nodes of X; let ¢* and ¢~ be
the preimages 7 !(q) C X, and let z and y be uniformizing parameters of X at ¢* and ¢,
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respectively. Then, after fixing an isomorphism Ox (1) ®9, Ox4 = Ox 4 near ¢ and defining
R =k[z,y]/(zy), we have the isomorphism

(Oxa (k) /%) @0 i Ogunr = (R[t]/T*) @ gy RIt)/ (2, y), (2.14)

where I C RJ[t] is the ideal generated by t”is;, i = 0,...,m, and §; are formal germs of s; at ¢
as elements in R. Since for some i the value s;(q) # 0, i, = max{i | s;(¢) # 0} is finite. Thus the
right-hand side of (2.14) is isomorphic to R[t]/(I*,z,y) = k[t]/(t*%) whose dimension is linear
in k. This proves the first claim.

For the second claim, since the kernel of f; consists of torsion elements supported on the
union of p; x A, ..., p; x Al. Hence, to prove the claim, we only need to study the kernel of an
analogous homomorphism

fio : R/T* — (R[t)/T*) @ pyy (k[2][t] © KIy][t]),

where [ is as in the previous paragraph and R[t] — k[z][{] ® k[y[[t] is the normalization
homomorphism g(xly,t) — (g(z,0,t),9(0,y,t)). Since the domain and the target of fj are
t-graded rings and f, is a homomorphism of graded rings, as vector spaces,

ker fi, = @ ker{(fp); : ¥ R/(I* N¥R) - (' R/(I* N¥R)) ©r (k[z] © K[y])}-

i>1

Because R = k[z,y]/(xy), as R-modules, each t/ R/(I* Nt R) is isomorphic to R/J for J being
one of the ideals in the list:

R, (0)7 (:L‘e)a (ye)a (xe’ y6/)7 (336 + ye/) where e, e eN.

One can check that for J of the first five kinds, ker(fk)j = 0; for J of the last kind, ker(fk)j = k.
Thus we always have dimker(f;); < 1. On the other hand, since s;,(q) # 0, t”« € I and thPia ¢ IF,
Thus ker(f); = 0 for j > ki,. This proves that dim ker fj, is at most linear in k. This proves the
proposition. O

Because of this proposition, we will work over the normalization X of X subsequently. To
avoid possible confusion, we will reserve ¢~ ’ to denote the associated objects lifted to X. For
instance, we will denote by Xi,...,X, the irreducible components of X and denote by Xj,

..,Xr their respective normalizations. For the sections tfis; in J, tPi5; are their lifts in J =
J Q0y O g, - For consistency, we reserve subindices 4 for the sections s; and reserve the Greek
« for the indices of the irreducible components { X, }1<a<r-

Proof of Lemma 2.4. Letting Jo = j|)?axA1 C Ox_yu (1), then
e() => nlex(Og, puk)/T5) =" e(da). (2.15)
a=1

a=1

For q € X,, we define e(J,), = €(J),. Thus to prove the lemma we only need to show that

e(Ja) = Y e(Ja)q

g€ Xa
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To proceed, we first note that hi(q) (cf. (2.9)) is locally constant on X and hence constant on
each individual component X, C X. We let h, = h(q) for some ¢ € X,. Then we have

o = max{z | 815, =0,for j >i+1}. (2.16)

We claim tPre divides t*i§; for all i. Indeed, the case ¢ > h, follows from §;| %, =0; the case
t < hy follows from p; > pp.,. We let p; = p; — pp,,, and introduce the ideal

Ro = (750,751, ..., 173y, ) C Og (1)
This way, Jo = tPiaR, C tPha S (1)
We let (tFPra) = thPra %.xa1 (K); it belongs to the exact sequence
0 —> (tFPra) /T8 — 05 0 (k)/TE — 05 (k) /(FPre) — 0.

Since (thPne) /T = thPna ( XQXN(/@)/.‘?{Q) and (‘)XaxAl(k:)/jlg is finite, we have

X(O gy (B)/35) = x(O g a (k) /RE) + x(O gy o (k) / (£7Pe)).

Taking the n.l.c. of individual terms, and using

X(Og. o (B)/(t*P)) = k pp, - x(O 5 (k)) = K pp,, - deg Xo + O(),

we obtain
e(ja) =nlc. x(Og, u(k )/IJ ) =n.lc. X(OXQXAl(k)/UNQI;) + 2pp,, - deg Xq. (2.17)

Next, let {q1,...,q} be the support of (55, = 0) N X,,. Following the convention in (2.11),
we have an isomorphism

l
Oy (k) /RE— @ thPna R/ (1,, N tPha R)F,

induced by restricting to germs at ¢, after multiplying by th'rra . Adding that deg X, =
dim O g (1)/(3r,) = Sh_1 w(3,qa), (2.17) gives us

l
e(Jo) = _(nlc. dim(tF P R/(I,, N tPe R)F) + 205, - w(T,qa)) = Y e(T)q-
a=1 a€Xa

This proves the lemma. O

Ezample 2.5. Let A be a 1-PS with diagonalizing basis {s;} and weights po =1 > p; = -+ =
pm = 0. Suppose (s1 = -++ = s, = 0) is a reduced point ¢ € X. Then e(J(A)) =1 and w(\) =
(2deg X)/(m + 1) — 1 (respectively e(J(A)) = 2 and w(\) = (2deg X)/(m + 1) — 2) when ¢ is a
smooth point (respectively nodal point) of X.

We give a useful geometric interpretation of the quantity e(J),. Let I C k[z1,29] be a
monomial ideal and let I' be the set of exponents of monomials in I; namely, I is the linear
span of the monomials {27 | v € T'}, and thus

I'c (NU{0})? C RZ; = (Rx0)? C R%

2084

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

HILBERT-MUMFORD CRITERION FOR NODAL CURVES

We then form the closed conver hull Conv(RZ,+T') C R? of R2(+T and let I' = Conv(R%+I')N
N2; then the integral closure I of I is the ideal generated by {x | v € T'} (cf. [Eis95, Exercise 4.23,
p. 141]).

We let A(I) be the Newton polygon of I:

A(I) =R%) — Conv(RZ, +I') C RZ,,.
LEMMA 2.6. Let |A(I)| be the area of the A(I). Then
dimk[z1, 20]/I% = |A(D)| - k2 + O(k).

Proof. Since I is the integral closure of I, by the Briancon-Skoda theorem [Laz04,
Theorem 9.6.26], I¥ c I* c I*~! for k sufficiently large. Since dim I*~1/I* is bounded from
above by a linear function in k, dimk[zy, 20]/1¥ = dimk[z1, 2] /T* + O(k).

Further, dim k|21, 2o]/I* is precisely the number of lattice points in kA(I) = kA(I). From the
work of Kantor and Khovanskii [KK93, Don02], the number of lattice points inside the polygon
is given by |A(I)| - k2 + O(1). This proves the lemma. O

We now come back to the 1-PS A and its diagonalizing basis s = {s;}.

DEFINITION 2.7. For any ¢ € X, we define
Lg = {(v(31,0),p:) | = 0,...,m;v(5i, pi) < 00} € (NU{0})*;
we define the Newton polygon (of I = J())) at ¢ to be
Aq(N) = (R — Conv(RZy +Ty)) N ([0,w(J, q)] x Rxp).

We will abbreviate Ay(A\) to A, when the choice of the basis s is understood. Let |A,| be

the area of A,. We state a formula useful for estimating the quantity e(J) = e(J).

COROLLARY 2.8. We have e(J)q = 2|Ag[; hence, e(J) =23 ¢ [Aq].

Proof. Since A, is the union of A, N[0, w(J, q)] x [Ph(g)> 00) With [0, w(J, q)] x [0, prg)]s by (2.4),
(2.12) and Lemma 2.6,

e(j)q =2 |Aq N [O,U}(j,Q)] X [pﬁ(q)voo)‘ +2- Pr(q) * w(jv Q) =2 |Aq|

The second identity follows from Lemma 2.4. O

3. Staircase one-parameter subgroups

We begin with some conventions attached to a fixed 1-PS X\ and its diagonalizing basis {s, ...,
Sm }. For simplicity, we define
I={0,1,...,m}.

For each 7 € I, we introduce subsheaves
81' = 8()\)z = (si,si+1,...,sm) C Ox(1>; (3.1)
they form a decreasing sequence of subsheaves. Similarly, we introduce O g-submodules

& = é()\)i i= (8, 841, -5 Sm) C Ox(1).
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DEFINITION 3.1. We call i € I a base indez if i = h, (cf. (2.16)) for some irreducible component
X, For each X, we define Ao (\) = {¢ € Xo | sp,(q) = 0}; define A(N) = Uy—; Aa(N); define
Aa(N) = {p € X, | 31, (p) = 0}, and define A = A(\) = U7, A ().

In the following, for any sheaf of O g-modules F and p € X, we define Fp:=F®o,; 0% » the
localization of F at p. We remark that for any p € X,, h(p) = hy is the largest index i so that

(éi)p # 0.
DEFINITION 3.2. For a closed point p € X, C X, we define

(35, p) = length(&;/&;11), Wheni < fig —1=h(p) —1; 8(5;,p) = 0 otherwise.
We define the increments of §; along X, and X be the 0-cycles

incy(5;) E d(5;,p)p and inc(§;) = E incy (5:);

pEXa o

we define their degrees to be 64(5;) =3 5
ofél- athXa andatf(a for ¢ < h, to be

w(&i,p) :=length(0¢(1)/€:), and wa(E) = Y w(&,p). (3.2)

pEXa

§(8;,p) and 6(5;) = >, da(5;). We define the width

We remark that for p € Xo, i 4+ 1 < hi(p) is equivalent to (E;11), # 0.

DEFINITION 3.3. For any irreducible component X, C X we introduce
To, = To(\) = {i € T | inc(3;) N Xo # @ or i = Ky }; (3.3)

for mq + 1 = |1/, the order of I, we introduce a reindexing map

ind, : I, —> [0,m4] NZ order preserving and bijective. (3.4)
Similarly, for p € X, we introduce

I, ={iel|peinc(s)}.

For m, + 1 = |I,|, we similarly define

ind, : I, — [0,mp] NZ order preserving and bijective.
DEFINITION 3.4. We call a 1-PS A a semi-staircase at index i if

Ei2&12--2&y

We call A a semi-staircase when A is a semi-staircase after index 1.

PROPOSITION 3.5. Given a 1-PS ), there is a semi-staircase 1-PS X' with p, = p; for all i so that
w(A) = w(N).

Proof. Suppose A is a semi-staircase at index i but not at ¢ — 1; then

€02 2&22& 1= 284122 &Em. (3.5)

=
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Therefore, there is a point p € X such that, if we denote by 5; € Q) x,p(1) the formal germ of s;
at p, then as Ox j,-modules,

Oxp(1) D (Bists s 8m) = (8is s 8m) 2 (Bitts - s 5m)- (3.6)

By the middle equality, we can find ¢; € O Xx,p such that §,_1 = S

j—i ¢j8;. We now construct a
new basis 8. Let ¢ = ¢;(p) € k. We define

sy =s; forj#i,i—1; si=si1—csi; i =S5 (3.7)

Clearly, s’ = {s}} is a basis of H%(Ox(1)). Let €} be the &; in (3.1) with s; replaced by si.
For j # i, because the linear spans of {sj,...,sm} and of {s;-, ..., 80} are identical, we have
&= 8;-. For i, we claim that & C &;. The inclusion &, C &; follows from &, C &,_; = &;. For
the inequality, we claim that

A~

(gi—l - c‘§’i7‘§i+17 H 7§m) 7é (§i7§i+1) e "Sm)'

Suppose instead the equality holds, then there are constants a; € k such that

m m
§i = ai(§i_1 — Céi) + Z ajéj = <a,~(§i_1 — éz§z) + Z (1j§j> + (Ii(éi - C)§i.

j=i+1 j=i+1
Combined with §;_1 = Z;n:z ¢85, we conclude that §; € (8;41,...,8,)+ §m, where m C éX,p is
the maximal ideal. By Nakayama’s lemma, $; € (8j+1,. .., 8m), contradicting (3.6). This proves

the claim (cf. Figure 2).

Finally, we claim that if we define \’ be the 1-PS with diagonalizing basis s’ and associated
weights p, = p;, then w(\') < w(A). By Mumford’s formula (cf. Proposition 2.1), this is equivalent
to e(J(N)) = e(I(N)). By our construction, &, C &; for all i € I; hence since p;—1 = p;, I(N) C I(N).
Thus O a1 (k)/I(N)* surjects onto Oy a1 (k)/I(A)¥. This proves e(J(N)) = e(I(N)).

In conclusion, for any A that is not a semi-staircase (cf. the black part in Figure 1), we
have constructed a new A" whose associated filtration of subsheaves &) satisfying &) = &; for
j#i,i—1,and

€p2 D& 9 28& 1 2E2E, 228,

If & = &, (cf. the grey part (blue online) in Figure 1), we repeat this process at i + 1. Since
we always have &,,_1 2 &, after finitely many steps, we obtain a A’ that is a semi-staircase at
i — 1. An induction on i proves the proposition. O

DEFINITION 3.6. We call a semi-staircase 1-PS \ a staircase if for any p € A, v(5;,p) < v(3i41,D)
for all ¢ (cf. Definition 2.3).

PROPOSITION 3.7. Given a 1-PS )\, there is a staircase 1-PS X' with p, = p; for all i so that
w(A) = w(N).

Proof. By Proposition 2.1, the A\-weight w(\) (of Chow(X)) depends only the sheaf J(A) and the
weights {p;}. Thus, for any 1-PS X with J(A) = J(\’) and having weights {p} identical to those
of A\, we have w(\) = w(X\).

Given any 1-PS, we let A be the corresponding semi-staircase constructed in Proposition 3.5.
Let A and {si} be the associated objects of A. Since A is a finite set, if we replace s; by s, =
s; + Zj>i cijs; for a general choice of ¢;; € k, the new 1-PS with the same {p;} but new basis
{si} will be the desired staircase 1-PS (cf. Figure 3). O
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3N

Pi—1¢

(codegé, p;)

Pi ¢ (codegé&;,p;)

(codeg€it1,pit1)
(codeg€;2,pit2)

Pit1le
P29

codegé;=codegé,;_1 codeg

FIGURE 1. (Color online) The figure shows how the lattice points, from which the Newton
polytope is constructed, vary in the process of constructing a semi-staircase. Here codeg(&;) =
length(Oy (1)/&;]y) +deg Oyc(1), with Y = Supp(€&;) and y® = X\Y. In particular, one notices
that it is possible that after one step a semi-staircase at index i becomes a semi-staircase at
index ¢ + 1 instead of ¢ — 1.

o (V(s1, D), P1) ¢——e (v(s1,P), P1)
staircase semistaircase

(v(s2,p), p2)

(v(s3,p), P3)

=
N6
w e

FIGURE 2. (Color online) The figure shows how vanishing order v(s;, p) varies under the general
perturbation of the section s; when one creates a staircase from a semi-staircase.

Pig(p)

Pii(p) o

Pig(p) ¢

Phe

1 2 o w(Eng, p)

_ Pig(»)
‘Ap|—402L+P7:1(p)+P1‘2(p)+“‘

F1GURE 3. (Color online) The shape for a typical Newton polygon and its area.
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LEMMA 3.8. Suppose \ is a staircase 1-PS; then for any p € X, and i < ha, w(&i, p) = v(5i,p),
and 6(Si—1,p) = v(8i,p) — v(3i-1,p).

Proof. As i < hq, both §; and §;_1 are restricted non-trivially to f(a. The identity is a direct
consequence of the definition of staircase 1-PS. O

As we will see, if A is a staircase 1-PS then for most of 4, §(5;) = 1. For those ¢ with §(8;) > 1,
we will give a detailed characterization (cf. Proposition 3.9). To this purpose, for any subcurve
Y C X, we let Ny = Xj0de N'Y be the set of nodes of X in Y. We let (recall Ly :=Y N y?t
cf. (1.3))

Ny = TI'_I(Ny) NY and f/y = 7T_1(Ly) ny C Ny. (38)

As « is reserved for the index of the components X, we abbreviate

N, :=Nx,, N,:= NXM L, :=Lx,, Lo = I:Xa, Lo = |Lg|. (3.9)

PROPOSITION 3.9. Suppose A\ is a staircase 1-PS. Let ¢ € 1, be a non-base index
(cf. Definition 3.1) and p € inc(8;) N X,o. Suppose 6(8;) > 2 and that either deg X, = 1 or

wo (&) +1 < deg X — 29(Xo) — Lo, (3.10)
then ¢ = m(p) € X is a node of X, indy(i) = 0 and 6(5;,p) = 1. In this case, let {p,p'} =7~ L(q)

and let X5 be a component satisfying p’ € inc(5;) N Xg (possibly X, = Xg) assuming deg Xg > 1
and wg(E;) + 1 < deg X — 29(Xp) — L3, then inc(3;) = p + p'.

Proof. We adopt the following convention. Since X, is smooth, we can view a zero-subscheme
of X, as a divisor as well. This way, the union of two effective divisors is the union as zero-
subschemes, and the sum is as sum of divisors. For example, (3 n,p) U (D>_n,p) = > max{n,,

nptp and (35 npp) + (3 nyp) = >(np + ny)p.

We will prove each part of the statement by repeatedly applying the following strategy.
Suppose i satisfies (3.10) and 6(3;) > 2; we will construct a section ¢ € H(Ox(1)) so that the
Ox-modules F; = (¢, s;,...,5m) fit into a strict filtration

F022Fi2Fin1 281 2 2&m #0. (3.11)

Since &; and F; are generated by global sections of H?(Ox (1)), this implies h%(Ox (1)) = m +2,
a contradiction.

We first assume deg X, > 1. Then wl(él) satisfies (3.10). We recall an easy consequence of
a vanishing result. Let B C X, be a closed zero-subscheme satisfying

deg B < deg X, — 29(Xq) — lo + 1; (3.12)
let N, be as defined in (3.9). We claim that the v in the exact sequence
HO(0g (1) 2> H(05, (1)) — H'(0x (1)(~Na U B)) (3.13)

is surjective. Indeed, this follows from deg N, = 2¢9(X4) — 29(Xa) + €4 and (3.12), which gives
deg OXa(l)(—Na U B) > 2¢(X,) — 1, and thus the last term in (3.13) vanishes.

The section ¢ mentioned before (3.11) will be chosen by picking an appropriate B and
v E HO(ONauB(l)) so that any element (, € 7! (v) descends to a section in H(Ox, (1)) which
glues with ;1| Xt to form the desired section (.

2089

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

J. L1 AND X. WANG

We let . . .
Zoj = (8=-=58,=0)NX, CX,. (3.14)

Since p € inc(3;) N X,, 6a(5;) > 1. In the case 64(5;) = 1, we choose B = Z,; + p, which is a
subscheme of Za,ijq. In the case 0,(5;) > 2 and §(3;,p) = 1, there exists ap’ #p € X, such that
p+p <inc(3;) N Xa, (which is equivalent to Za; +p+p' C Zyiy1). In the case §(3;,p) = 2, we
choose p’ = p. Combined, we let B = Za,i +p+p.

We then let

v = §i+1’Na € HO(ONa(l)) and vy 7é 0e HO(OB(l)) s.t. ’UQ‘B_p =0.

We claim that when p & N,, or ind, (i) > 1, or 6(5;,p) > 2, then both vl‘NamB and UQ‘NamB are
zero.

Indeed, since N,NB C Za’ijq and §i+1’Z~a,i+1 =0, we have U1|NamB = §i+1’]\7aﬂB = 0. For o,
we prove case by case. Suppose p € N, then N,NB = N, N (B — p); therefore, since va|p—p, =0,
”2’NamB = 0. Now suppose p € N,. Since v2|p—p = 0, v2(p) = 0 for all p € (No N B) — {p}. It
remains to show that va(p) = 0. We write B = 22:0 nEpk, P distinct, as an effective divisor.
Since p € B, we can arrange pp = p. In the case ind,(i) > 1, we have ny > 2; in the case
d(8i,p) = 2, since p’ = p, we still have ng > 2. Thus p € B — p and ve(p) = 0. This proves
that v; and vy have identical images in H%(O ~.np(1). Consequently, (v1,v2) lifts to a section
v E HO(ONaug(l)) using the exact sequence

H(0,05(1) — H(0, (1) ® H(05(1)) — H" (O, 5(1)).

Since deg B < wq(&;) + 2 and i satisfies (3.10), (by the assumption that deg X, > 1), deg B
satisfies the inequality (3.12). Therefore, the ~ in (3.13) is surjective. We let {, € v 1(v) C
HO(OXa(l)) be any lift. Because it is a lift of vy, C~Q\Na = §i+1‘Na. This implies that Ea descends
to a section ¢, € H°(Ox, (1)), and the descent ¢, glues with si+1]X3 to form a new section
¢ € H(0x(1)).

We now prove the first part of the proposition. We let Z, ; C X, be the subscheme Z, ; =
(sj ="+ =sm =0)N X, We decompose Z, ; into the disjoint union Z, ; = R; U R;- so that R;
is supported at ¢ = 7(p) and R;- is disjoint from q. We let Z, = (( = 841 = --- = 8, = 0) N X4
and decompose Z, = RU R’ accordingly.

Suppose ¢ is a smooth point of X. Then R; and R are divisors and can be written as
R; = n;q and R = nq. In the case §,(5;) = 1, the choice of B ensures that n; = n = n;11 — 1
and R, C R' C R} . Thus,

A
(Si, - ,Sm) Koy OXaD(C, Sitlye-- ,Sm) R0y OXQQ(SZ’—H; - ,Sm) Koy OXQ-
Further, since §(3;) > 2 and (| y¢ = sit+1|yc, we have

(SZ',.. . ,Sm) Rox OXEQ(C’Si+17“' ,Sm) R0y OXED(SZ'+1"' . ,Sm) Ry OXE.

Thus, we have
Ei2TFiy12€i41. (3.15)

In the case §,(5;) > 2, the choice of B ensures that R; C R C R;y1. Thus,

(Sia oo 75m) ®ox OXaQ(Ca Sit1y--- 75m) ®ox OXQ2(8i+17 ce ,Sm) ®ox OXa'
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This implies (3.15) as well. In summary, by the argument at the beginning of the proof, (3.15)
leads to a contradiction which proves that ¢ must be a node of X.

It remains to study when ¢ is a node of X. A careful case by case study shows that when
either ind,(i) > 1 or 6(3;,p) = 2, then Zs; € Zo € Zai+1. Thus (3.15) holds, which leads to a
contradiction. This proves that when ¢ is a node, ind, (i) = 0 and §(8;,p) = 1.

We complete the proof of the first part by looking at the case deg X, = 1. In this case
ind, (i) = 0 and 6(8;,p) = 1, since otherwise deg X, = 1 implies that ¢ = A, contradicting the
assumption that ¢ is not a base index. We next show that p € L,. But this is parallel to the proof
of the case deg X, > 1 by letting B = p because 0,(8;) = 1. This completes the proof of the
first part.

We now prove the second part. Let 77 1(q) = {p,p'} with p’ € inc(5;) N X[g so that the
assumption on Xg holds. Then by the first part of the proposition, we have ind, (i) = ind,y (i) = 0;
hence s;(q) # 0. Thus, for Z; = (sj =--- = s, =0) C X, we have p € Z; and Z; ;1 = pUS, where
S is a zero-subscheme disjoint from p. Since Z; C Z; 41 and p &€ Z;, we have Z; C S. In the case
Z; = 8, the second part of the proposition holds. Suppose Z; C S; then, repeating the proof of
the first part of the proposition, we can find a section ¢ € H°(Ox (1)) such that p ¢ (¢ = 0) and
S C (¢ =0). This way, we will have (3.15) again, which leads to a contradiction. This proves the
second part of the proposition. O

The proposition above motivates the following definition.

DEFINITION 3.10. For deg X, > 1, we define the primary indices of X, to be
P = {i € Iy | wa(Eip1) < deg Xo — 29(Xa) — Lo — 1};

for deg X, = 1, we define 12" = ind;'(0) C Io. We say i € I, is primary at p € inc(5;) N X, if
i € IN"; otherwise we say it is secondary. We define 7, := max{i | i € I5'}.

Note that, in the proof above, the assumption 6(5;) > 2 is used only to show that (3.11) is
strict. If i = A, for some «, then length(&;/€;+1) = co. This time we choose ( so that &;/F;11 is
finite. Since €;/&;4+1 is infinite, (3.11) remains strict. Hence we have the following proposition.

PROPOSITION 3.11. Let i be a base index (cf. Definition 3.1), and let p € inc(s;) N X,. Suppose
either 6(5;) > 1 and deg X, = 1 or w,(&;) satisfies the inequality (3.10). Then indy(i) = 0,
6(3i,p) = 1, and ¢ = 7(p) € X, Is a linking node of X,. Further, let {p,p'} = Wﬁl(q);fhen i
must be secondary at p' (cf. Definition 3.10), and there is a component Xz so that p’ € Xg and
i = hg.
Proof. The proof is parallel to the proof of the previous proposition. We will omit it here. O
COROLLARY 3.12. Defining w®" := wa(éjaJrl), suppose X, C X; then

0 < deg Xo — wP < 2(g(Xy) + Lo + 1). (3.16)

Proof. The first inequality is trivial. We now prove the second one. If degX, = 1 we
obtain deg X, — wh = 0, from which the second inequality follows. So from now on we assume
deg X, > 1. We let i € I, be the index succeeding j,; namely, 7 is the smallest index > j, so
that 6,(5;) > 1. In particular, this implies that

0a(37,) = -+ =0a(55_1) = 0. (3.17)
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Since 7 ¢ 1",
W = wa(E5,41) = wa(€; 1) — 6a(5;) > deg Xo — 29(Xa) — la — 1 — 0a(5;). (3.18)

Thus, when d,(5;) < 2, the second inequality follows from £, > 1 ( since Xo C X ).

Suppose 04 (5;) > 2. By our assumption, 7 is the index in ]Ia immediately succeeding J,, and
thus we have wq(&5) = wa (€5, +1) because of (3.17). By Definition 3.10, we (&) satisfies (3.10).
So we can apply Proposition 3.9 to the index i to conclude that every p € inc(§;) N X, lies in
N, and has §(3;,p) = 1.

We claim that inc(3;) N X, C L. Indeed, let p € inc(3;) N (N,\Lq); then the second part
of Proposition 3.9 implies that inc(§ ) =p+ p and 6(8;) = 2, contradicting the assumption
0a(3;) > 2. This proves that inc(3;) N X, C L,. Adding that §(3 Z,p) =1 for p € inc(3;) N Xq, we
conclude that 6,(8;) < £,. These and (3.18) prove the second inequality in (3.16). O

4. Main estimate for irreducible curves

Throughout this section, we fix a staircase 1-PS A and an irreducible X,. We will derive an
estimate of e(J, (X)) for the X, C X.
We let g, be the genus of X,; we define the set of special points

So = (m7Hx) N Xo) UN, C X, (4.1)
where x = (xl, ...,xy) C X is the set of weighted points. We continue to write p; = p; — pp,, -
For each p € A,, we define the initial index

io(p) :=min{i | i € I,}. (4.2)

Given a fixed € > 0, we define

2¢ S 2¢ _
Falo) = (2 * degXa) Z SalSi)pi - <1 * deg X > Z Pio(a) T 2deg Xa - pr (4.3)

e q€SaNAa
for deg X, > 1; for deg X, = 1, we define
E5(p) = 6a(3ig)Pio + 2 pro;  io = ind; " (0). (4.4)

It is clear that in both cases ES(p) is linear in p € RTH. Our main result of this section is the
following theorem.

THEOREM 4.1. For any 1 > € > 0 there is a constant M; = Mi(ga, la,n,€), which is a rational
function of g4, %, n and €, such that either when deg X, > My or when deg X, = 1 we have

e(Ja(N)) < ES(p).

Note that the theorem implies that we can bound e(J())) in terms of the primary p; only,
with an additional margin related to the markings and nodes. This extra margin will be crucial
to study the stability of curves with nodes and markings.

We begin with a useful bound on the area of A,

LEMMA 4.2. Let 1-PS X be a staircase. Then for any p € A, we have

p.
|Ap| = ph - w(Enasp) <D 6(56,0)pi 102(”). (4.5)
i€llp
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Proof. Let 0 <1 < k < hgj let imin := min(I, N [[, k]) and imax := max(I, N [l, k]); we prove

1A, O ([w(&, p), w(€r,p)] X R)| = pp, - (w(Eg, p) — w(E,p))

~ — (ﬁimin + ﬁimax )
< Z 5(8¢,p)pi - (p) 5 (p) )
i€l,N(1,k]

(4.6)

Note that by letting [ = 0 and k = h,, we obtain the lemma.

We prove (4.6). As it is invariant when varying py,,, without loss of generality we assume
P = 0; hence p; = p;. Let T, := {(w(&i,p), pi) }ocicom w(E: p)oos it follows from Definitions 2.7
and 3.6 that }

A, = (B2 — Conv(E2 +T,)) 1 ([0.w(.p)] x R). (47)

Fixing an indexing
I, = {io(p),...,%a(p)} C L, 4;(p) increasing and d + 1 = I, (4.8)

we let T be the continuous piecewise linear function on [0, w(J, p)] defined by linearly interpolating
the points

{(Omgio)? R (’w(é@'k,p), pik)? SERE) (w(éiwp)a pﬁa)} - RQa

and we let At be the polygon bounded on two sides by x = 0 and =z = w(ék, p), from below by
y = 0 and from above by the graph of y = T. By the convexity of A,, we have

Ay N ([w(€,p), w(Eg,p)] x R) € A N ([w(&,p), w(E,p)] x R) C R2,
By Lemma 3.8, w(éi,p) = Z;;B d(55,p); hence

185 N ([w(€r,p), w(Ex, p)] X R)| < |Ar N ([w(Er, p), w(Er, p)] x R)|
1

= Z 8(34,p)pi — §(P¢min(p) + Pimax(p))-
iel,N[L,k]
This proves (4.6), and the lemma. O

The idea of the proof of the theorem is as follows: when |A4| (cf. Definition 3.1) is large,
applying Lemma 4.2, we gain a sizable multiple of % Pio(p) (cf. (4.5) and Figure 5) in the estimate

of Ay; these extra gains will take care of the contributions from the non-primary p;. When |A,|
is small, one large A, (cf. Figure 4) is sufficient to cancel the contribution from the non-primary

Pi- . .
We need a few more notions. For any p € Ay, we let I)" :=I53" NI, and define

Jp=max{i € B}, wP(p) == w(&;,+1,p) and w(p) :=w(d,p) (cf. (2.9)). (4.9)

Note that w(p) is the base-width of the Newton polygon A,. Using 7,, we truncate the Newton
polygon A, by intersecting it with the strip [0, wP™(p)] x R:

AP = AL [0, 0P (p)] X R.

Our next lemma says that if one A, is big enough, the contribution from the non-primary
p; can be absorbed by the difference between Ef(p) and e(Jn(p)). Recall that wh™ is defined in
Corollary 3.12.
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Ap
Pc o r\

I ‘ © (w“(p),”;)\

1 w(p) w(p)

)
[\J‘n

FIGURE 4. (Color online) A big Newton polygon at point p.

A

Pig(p1) Pig(po)

P p;
|Ap, | = Zofp1) .. |Ap, | = Zi0Pe)

FIGURE 5. Newton polygons supported at many points gain us a lot of p;; /2.

LEMMA 4.3. For any 1 > € > 0, there is an M = M(gqa,{q,€) such that whenever w(p) > M

(cf. (4.9)),

. . € : 1 €

AP 4 9(deg Xo — wP)p5, < (14 —— 5(3:, )i () = (= + — ) i -
|APT] + 2(deg Xo — wh™)p7., ( +w(p)) ‘Zﬁ (3, 0)pi + py - WP () <2+w(p)>p10(p)
ielp

Proof. We make a simple simplification. Similarly to the proof of Lemma 4.2, we assume
pr, = 0; hence p; = p;. Our proof is based on studying the proximity of 9TA, (8+A~p is the
boundary component of A, lying in the (open) first quadrant) with the lattice points (w(&;, p), pi)
(cf. (3.2)). In the case where they differ slightly, the term (e/w(p)) Zieﬂgri 0(8i, p)pi is sufficient to

absorb the term 2(deg X, — wgri) pj. in the inequality (note p; = p;, by assumption). Otherwise,
the difference between Zieﬂprim[cj ] (83, p)pi (for some c that will be specified below) and |A,)|
4 'Jp

is sufficient to imply the desired estimate.
We assume M > 4; then w(p) — \/w(p) > 2 whenever w(p) > M. We introduce

(w(éi,p), p;) €A, C RQ}

and let we(p) := w(&c,p) and A5 = A, N[0, w(p)] X R.
We divide our study into two cases. The first is when w(p) — w(p) < \/w(p), which implies
w(p) — 1 > w(p) — Vw(p) — 1 = (w(p) — Vw(p))/2. We let © be the trapezoid that is bounded

c= max{i € ]Ig“

2094

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

HILBERT-MUMFORD CRITERION FOR NODAL CURVES

on two sides by z = 1 and z = w®(p), from below by y = 0 and from above by the line passing
through (w(p),0) and (w®(p),pc/2). Since the length of its two vertical edges are p./2 and

((w(p) = 1)/ (w(p) — w(p))) - (pc/2), a Simple estimate gives

w(p) w(p) = V@) pe _ wp)?? pe
> ——+1 > 7.
©] < 2 + > 4 32
Since the piecewise linear 9T A,, is convex, © lies inside A,, and hence
Piop) w(p)?/?
Ayl — S )
Ay] - 20 > o > I,

By the definition of Agri, the difference between the base-width of Agri and that of A, is bounded
by w(p) — wP"(p); therefore by Lemma 4.2 we have

wp)®?  Pip)

| AP+ 2(deg Xo — wB™)pr, > [ADT| + (w(p) — wP™(p))pg, = |Ap] = 35 Pet
Since pj;, < pe, this implies
) , 3/2 :
|A£r1| _ p'Lo2(p) > (w(];; _ 2(deg X, — wgr1)>pc. (410)

We now choose M so that M3/2 > 28(go+£,+1). By Corollary 3.12, we have deg X, —w?" <

2(ga + Lo + 1). Therefore, when w(p) > M, we have
w(p)*?
64

Plugging this into (4.10), we obtain p. < (26/w(p)*/2)(|AR"] - ps, (p)/2). Hence

2(deg Xo — wB™) < 4(go + Lo + 1) <

: : 26(de X wh™)
2(deg Xo — wh™)p, < 2(deg Xo — wh)pe < (deg SEE <\ pri| — o )
) > M

So if we further assume M > 2'4(g, + £ +1)% /€2, then Whenever w(p we have 26(degX -

wiMw(p) =2 < e/w(p); thus

ri 1 ri € ri pio(p)
|AD"| — 2 Piol p) +2(deg Xo — wh™)pz, <1+w(p)><‘A£ \—T

(v (S )

]Iprl

where the last inequality follows from Lemma 4.2. Thus this case is settled.
The other case is when w(p) —w®(p) > \/w(p). By the definition of ¢, for j € J:=1,N (¢, Jal,
(w(&;,p),pj/2) ¢ Ap. Since Ot A,, is convex, by Lemma 4.2, we have

> 8 p)o — AENAS > Y 8(3,p)pi /2.
1€] 1€]
Since deg Xo — wi" > w(p) — wP"(p) and w(p) — we(p) > y/w(p) by our assumption, we have
> 3(5ip) = wlp) — w(p) — (w(p) — W (p)) > Vulp) — (deg Xo — wh).
i€]
We choose .
M > 10%(ga + Lo +1)? = 5(deg X, — wi)?
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and require w(p) > M; then Y, ;0(5;,p) > 4(deg X, — wB™). This implies
> " 6(50p)pi — |APNASY =D 6(55,p)pi/2 > 2(deg Xo — wh)py,,,
1€] 1€]
and, combining this with Lemma 4.2, we obtain
AP + 2(deg Xa — wB™)pz,
< A5 + AP AF + 2(des Xo — wE )y,
< AFT+IAPNAT] = > 6(3ip)pi + ) 6(3i,p)pi + 2(deg Xa — wl)py,

€] €]
p
< A<C| _1_25 Sl,p Pz < Z 5 Sl,p _ 102(17)
i€l —
pi pi
< < >(Z5SH o 102<p>)+ i),

Hprl

In the end, since € < 1, we choose M := 2'(g, + £, + 1)2/€2. Then for w(p) > M, (4.3) holds.
This proves the lemma. g

Proof of Theorem 4.1. First, for the same reason, we can assume p;, = 0 and p; = p;. Also, when
deg X, = 1, then the statement is a direct consequence of Lemma 4.2. So from now on we assume
that deg Xo > M; > 2. Let 1 > ¢ > 0 be any constant. Since € < 1, we have €¢/(deg X,) < 1/2.
We define o to be the number of Newton polytopes supported on X,. We divide our study into
two cases.

The first case is when ¢ > 10(gq 4 fo + 1) + |Sa|. Since Corollary 3.12 implies

‘{pej\aﬂga | io(p) > Ja}| < Z a(8;) < (deg X, wgri) < 2(ga + Lo + 1),
il \IR"

the number of p € A\ S, satisfying Pio(p) = Pjo 18 at least 8(ga +£n +1). By Lemma 4.2, for each

p € Ay we gain an extra Pio(p)/2 on the right-hand side in the estimate A, in terms of {p;}i%.
This implies

‘ 1
Y alE)p < (deg Xa — wlMps, S 2ga+Lla+ Vi <7 D Pinty) (4.11)

’LGHQ\HE“ p€/~\a\5~'a

So we obtain, using Lemma 4.2 and summing over p € A,

) ORTED DRACI DRI SEPNES P S g
pE]\a p€~

S ieﬂa\npri
( Z (S pi degX Z i Pio(p) — Z Pig p))
ze]lgrl PEALNSy pGAaﬂSa

io ( Vel \IB

1
Z 0a(8i)pi + gX Z~ Pig(p) — ) Z pio(?))' (4.12)

’LGH \Hp“ pEAa mSOL . p€1~\a\~§'o¢
io(p)€la\IR"
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Using (4.11) and

~ 1
degeXa Z Pio(p) S Z 5a(81)pi<1 Z Pio(p)>

pehanSa i€la \IE" pea\Sa
io(p)€la\IB"

the sum in the line of (4.12) is non-positive. Therefore, for any 0 < € < 1 we have

1
Z |Ap| < Z 6a(Si)pi — degX Z Piop) ~ 5 Z Pio(p)
PEAL

S pehanSa peAanSa
io(p)Ela \IN"
€ _ Eilp)
g( degX)Z(S 5@,01_( +degX> Z~ Pig(p) = 5
ngl pEAaﬂSa

since

degX > Pt degX > bal3)pi-

pEALNSa et
zo(p)eﬂp“

This verifies the theorem in this case.
The other case is when o < 10(gq + o + 1) + ]S |. By the pigeonhole principle, there exists
at least one py € A, such that

~ deg X, deg X,
w(d,po) > TE > ki (4.13)
a 10(ga + Lo + 1) + [ S|
By Corollary 2.8, we have
) _ 5 1yl
pEAG
Our assumption € < 1,1/degX < 1/2 and Corollary 3.12 imply
1 € i
S+ Y b S DL P < (deg Xo — wh)ps,. (4.14)
2 deg X, e —
pESania pESania
io(p)€la\I&" io(p) €l \IB"

So we obtain

ex, (J(N)) Pio(p)
) 2
PESaNAs

i ri ri i Pi
= AR+ A AR+ DT (AT +a\ART) — YT =
po#pEha peSania

By Lemma 4.2 and the first inequality of (4.11), we have

Ap\ART + D [ANART = > ANAPT] < (deg Xo — wB)ps,,.
Po#EPEA pEAa
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So

ex.(IA) 3 Pio(p)

2 " 2
pPESaNAa

Ti r1 Ti piO(P)
Ap X, p Ap
< AR+ (deg Xo —wiMpg, + D AP = 3, =
po#£pEAa PESaNAq
< | AP 4 2(deg Xo — wh™)pz, — Piol pO)\{p S+ D> |AN
Po#pEAq

Pio(p) 1 €
B Z 2 <2 + degXa> Z Pio(p) (4.15)

Po#£PESanAa pESanAa
io(p)El \IN"

where we have used (4.14) in (4.15). By definition, |S,| < n 4 £y + go- Let

€ €
< —.
11(9a + Lo+ 1) +n ~ 10(ga + o + 1) + |Sa

€0 =

By (4.13) we obtain
€0 < € < €
w(d,po)  wI,po)(10(ge + Lo + 1) + |Ss])  deg Xa'

(4.16)

If we let M = M(gq,a,€0) be the constant fixed in Lemma 4.3 for € = ¢y and choose
Mi(gasla,n,€) = (11(ga + la + 1) + n)M = (10(ga + la + 1) + [Sa|) M

then deg X, > M, implies w(J,pg) > M. In particular, we have ig(po) € %", The whole term
after (4.15) is

ri ri Pi Q ri
= AR + 2(deg Xo — wl)pz, — =S {po} N Sal + Y AR

pO#peAa
Pio(p) €
- X M (hgs) T e
poipesam{xa pesamAa .
io(p)€le” io(p)€la\I&™"

Applying Lemma 4.2 to the term |AR| + 2(deg X, — w5')p;,, Lemma 4.3 to the term

> pospein | AT — ZpoqépesaﬁAa,z’o(p)eHE“ (Pig(p)/2) in the above identity and using (4.16), we

obtain

exo(JA) _ 3 Pio(p)

2 e 2
PESaNAq
pi .
< (1 > <Z 9(5i,p0)p pio(po)) + loép[)) (1= Hpo} N Sal)
Hpn

5 ¢ Piop)
Y Y- X ) (rmy) X

po#pela i} Po#PESania 7 peSania

io(p)ela” io(p) €l \IR"
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< (1 degX )(Z PIRICNITENY Pz‘o(p)>

pEAL ze]Ip“ peSHNAy
- (1 degX >(Z (Epi= D pmp))
e pESaNAq
_ E&(p) Pio(p)
SRR Dl o
PESaNAq
This proves the theorem. O

5. Stability of weighted pointed nodal curve

In this section we will prove Theorems 1.5 and 1.6. For any subcurve Y C X, we continue to
write ay = ineY a;.
LEMMA 5.1. Let (X,0x(1),x,a) be a polarized weighted pointed nodal curve. Suppose (X,

Ox (1)) is non-special. Then it satisties (1.6) for all subcurves Y C X if and only if it satisfies
(1.4) for all subcurves Y C X.

Proof. Let Y € X be a subcurve. Since (X, Ox (1)) is non-special, we have vanishing h!(Oy (1)) =
h'(0y¢(1)) = 0. Following the proof of [Cap94, Proposition 3.1], we see that (1.4) holding for
Y C X is equivalent to

ay dng wX(a . X) ax fy
degV + — )| — =X 22 T ldeg X + = | > ——, 1
< gt + 2 ) degwx(a - x) gt 2 2 (5:1)

and (1.4) holding for Y* C X is equivalent to

ay degy wx (a . X) ax EY
degy + — | - ——F———|deg X + — | < —. 2
< gr + 2 ) degwx(a- x) g+ 2 2 (52)

So (1.4) holding for any subcurve Y C X implies (1.6) holding for any subcurve Y C X.
The other direction is trivial, since (1.6) is equivalent to both (5.1) and (5.2). This proves
the lemma. O

LEMMA 5.2. Given g, n and a € Q'} satisfying Xa,y > 0 (cf. (1.5)), there are positive constants
My = Ms(g,n,a) and C = C(g,n,a) such that for any genus g polarized weighted pointed nodal
curve (X,0x(1),x,a) satisfying (1.6) and deg X > My, any connected subcurve Y C X either
has degY > C'deg X and degy wx > 0 or is an exceptional component.

Proof. Suppose degy wyxy = 2g(Y) — 2+ ¢y > 1; since a; > 0, (1.6) implies

degY +ay/2
gY)—=14ay/2+ ty/2
deg X +ax/2 ly /2 < deg X +ax/2
T g—1+ax/2 gY)-l+ay/2+4y/2  g—1+ax/2

deg X
dng}( °8 —6>—n.
2Xa,g 2

This inequality implies
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Therefore, by choosing C' = 1/4xa,q and My > 4xa 4(6 + n/2), we obtain
degY > (leahq)*1 deg X =C -deg X

provided deg X > Mo.
Now suppose degy wx = 2¢g(Y) — 2 + ¢y < 0. Since X is connected, ¢y > 1 and g(Y) > 0.
Thus ¢g(Y) = 0 and ¢y < 2. In this case, (1.6) becomes

deg X 2 (
dogy + @ _ deg X +ax/2 (—1 %;—+£§>'<1.

2 g—1l+ax/2 (5:3)

Let A:=—1+4+ay/2+ ¢y /2. In the case A <0, we have degY =1, ay = 0 and ¢y = 2. Because
Ox(1) is ample, Y must be irreducible and thus isomorphic to P'. Thus Y C X is an exceptional
component.

In the case A > 0, we let

Ay = mi Zai/2+k/2

= 11 {
Ic{1,...,n},k>0 el

> ai/2+k/2 >o}, (5.4)

el
which is positive by the finiteness of {a;}. Then A > Ay and

deg X

Xa,g

X 2
S degXtax/2 ,, | ar

degY
eg >

A07
Xa,g

when deg X > My > xag4(l —ay/2)/Ag. Combined, we have proved the lemma by choosing
My := max{xa,g(1l — ay/2)/Ao;4Xa,g(6 +n/2)} and C' = min{1/4xa,4 Ao/Xag} O

COROLLARY 5.3. Let the situation and the constant C' be as in Lemma 5.2. Then for any genus g
polarized weighted pointed nodal curve (X, 0x(1),x,a) (with Ox (1) only assumed to be ample)
satisfying deg X > Ms = Ms3(g,n,a) := max{Ms, (99 + n)/C} and the inequality (1.6), we have
that Ox (1) is very ample, h'(Ox (1)) = 0, and the number of nodes of X is bounded from above
by 6(g +n).

Proof. First, we notice that h'(Ox (1)) = 0if h*(Oy (1)(—Ly)) = 0 for any irreducible component
Y C X. In the case Y = P! with £y = 2, this follows from the fact that Oy (1) is ample. Otherwise,
Y is not an exceptional component, and then, by the previous lemma, deg Oy (1) > C deg X >
CMs;. As X has genus g, we have g(Y) < g and ¢y < g + n + 1. Therefore, by our choice of M3
we obtain

degY —ly 2 8¢(Y) -1 (5.5)

from which we deduce that h!(Oy (1)(—Ly)) = 0 for all irreducible components of X and Ox(1)|y
is very ample. This proves the non-speciality of (X, 0x(1)).

By (1.6), we conclude that any chain of exceptional components consists of a single
component. Thus the number of nodes of X is no more than twice the number of the nodes
of the stabilization (cf. (6.6)) of (X,x) which is less than 3g — 3 +n < 3(g +n),! and the stated
bound follows.

1 One can see this by induction. Notice that adding one marked point will introduce at most one node when P!
with 3 marked points is bubbled off. On the other hand, increasing the genus by 1 will increase the nodes at most
by 3 when a nodal rational curve is connected to the main component through a P* with 3 marked points.
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Finally, we prove that Ox(1) is very ample. First, one notices that for each irreducible
component Y C X, the inequality (5.5) implies the very ampleness of Ox(1)|y and the exact
sequence

H(0x(V)]y(~Ly)) = H*(Ox(Dly) = H*(Ox(D)|z,) = H (Ox(Dly(~Ly)) =0  (5.6)

from which we conclude that for any non-exceptional irreducible component X, C X, there is a
section s € H*(Ox(1)|x,) taking any given boundary value on L.

For any two points p, € X, a = 1,2, we claim that there is a section s € H°(Ox(1)) such
that s(p1) = 0 and s(p2) # 0. Without loss of generality, we assume p, lies in the irreducible
component X,, o = 1,2. If X; = X5 then our claim follows from the very ampleness of O x(1)]|x, -
From now on, we assume X; # X5. We first consider the case where both X; and X, are
exceptional, which is the most involved case. Since X; is an exceptional component, there is
a section 0 # s1 € HY(Ox(1)|x,) satisfying s1(p1) = 0. Since X3 is also exceptional, we have
X1N X5 =@, by (1.6), which allows us to choose a section sa € H*(Ox (1)|x,) with sa(p2) # 0. To
construct the global section s € H?(Ox (1)), we first let s be 51 and so on X7 and Xs, respectively;
we let it be the zero section on the exceptional components of X different from X; and X5. We
next extend it to non-exceptional components, one at a time.

Suppose we have extended it to a section sg on a component Xz C X; we then apply (5.6)
to construct a section sgi 1 € HO(OX(1)|XBH) satisfying the boundary value prescribed by the
previous stage. By continuing this process, we obtain the section s that we want.

The other cases are similar and will be left to the readers. Because of the claim, we deduce
that the complete linear system WV = HY(Ox(1)) provides an embedding of X C PW. This
completes the proof. O

As a consequence, we have the following.

PROPOSITION 5.4. Given g, n and a € Q") satistying Xay > 0, then for any polarized weighted
pointed nodal curve (X,0x(1),x,a) (with Ox (1) only assumed to be ample) of deg X > Ms
(the constant in Corollary 5.3), the following two are equivalent:

(1) Ox(1) is very ample and (X,0x(1),x,a) is slope semistable (respectively, slope stable);
(2) (X,0x(1),x,a) satisfies (1.6) for all subcurves Y C X (respectively, and the strict (1.6)
holds except when'Y or YU is a disjoint union of exceptional components of (X, 0x(1),x)).

Proof. By the definition of slope semistability (Definition 1.4), (1) implies that (X,0x(1)) is
non-special. On the other hand, by Corollary 5.3, (X,0x (1)) is non-special and Ox (1) is very
ample if it satisfies (1.6) and deg X > Mj3. Hence in both cases we have h!'(X,0x(1)) = 0.
Applying Lemma 5.1, we conclude that in cases (1) and (2), (1.4) is equivalent to (1.6). This
proves the equivalence of (the non-respectively cases of) (1) and (2).

We now prove the case for slope stability. Suppose (1) holds for (X,0x(1),x,a) and the
latter is slope stable, but for a subcurve Y C X, (1.6) is an equality; then either (5.2) or (5.1)
is an equality. It follows from the proof of Lemma 5.1 that (1.4) becomes an equality for either
Y or YU By the slope stability assumption, either Y or Ylisa disjoint union of exceptional
components. This proves one direction for the ‘respectively’ case. The other case is similar and
we leave the proof to the readers. O

In order to prove Theorem 1.5 for the stable case, we also need the following lemma.
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LEMMA 5.5. Given g, n and a € Q'} satisfying Xay > 0, there is a constant My = My(g,n,a)
such that for any slope semistable polarized weighted pointed nodal curve (X,0x(1),x,a) of
deg X > My, a subcurve Y C X satisfies h°(Ox (1)]y) = h°(Ox (1)) if and only if YT is a disjoint
union of exceptional components. In particular, if we assume further that (X,0x(1),x,a) is
slope stable, then h%(Ox(1)|y) < h°(Ox (1)) implies that (1.4) is a strict inequality.

Proof. For any subcurve Y C X, let Wy = {v € W | s(v) = 0,Vs € H'(Ox(1) @ Jy)} C W
denote the linear subspace spanned by Y. By our slope semistability assumption, the embedding
X C PW is given by a complete non-special linear system, and hence dim Wy = h%(Ox(1)|y).
So to prove the lemma all we need to show is that for deg X sufficiently large, dim Wy = dim W
if and only if Ylisa disjoint union of exceptional components.

To achieve that, we notice that for any component X, C YD, we have

dim Wy yx, = dim Wy + dim Wx, — dim Wy N Wy, . (5.7)

We claim that there is an My = My(g,n,a) such that whenever deg X > My, we have dim Wy N
Wx, = |Xo NY|. This is trivially true when X, is exceptional. If X, is non-exceptional and
deg X > M, (the constant in Lemma 5.2), we have deg X, > Cdeg X by the semistability
assumption and Lemma 5.2. So as long as deg X > max{M’', My} with M’ satisfying

CM' > 2g — 2 + number of nodes in X >2g -2+ |X,NY]|,

where C' is given in Lemma 5.2, by the vanishing theorem we have the surjectivity of the
restriction maps

H(0x(1)|y) > H*(Ox(1)|x,ny) and H(Ox(1)|x,) = H(Ox(1)|x.nv),
from which we deduce the exact sequence
0— H(Ox(1)|x.uy) = HY(Ox(D)|y) & H(0x(1)|x,) = H(0x(1)|x.ny) — O.

This, together with the assumption of being non-special and (5.7), implies dim Wy N Wx,_, =
|Xo NY]. On the other hand, by Corollary 5.3, the number of nodes in X is bounded by 6(g+n)
provided deg X > M3. So our claim follows if we choose My > max{(2g —2+6(g+n))/C, Ms}.

Now let us define My = My(g,n,a) := max{8(g + n + 1)/C, M3} and assume deg X > Mj.
Then for any X, C Y" non-exceptional we have

dimWy, — |Xa NY| 2 deg Xo +1— g(Xa) — [XaNY|>CMy+1—g—6(g+n) > L.
Plugging the above inequality and dim Wy N Wx_ = | X, NY] into (5.7), we obtain
dim Wyux, = dim Wy + dim Wx, — dim Wy N Wx, 2 dim Wy + 1,

from which we deduce that Wy = W if and only if X, C ye s exceptional and | X, NY| = 2.
This proves the lemma. O

Let s be a diagonalizing basis of A:
A(t) == diag[tr°, ... tPm] - t7 P with pg = p1 = -+ = pm = 0.

The a-\-weight of Chow(X,x) is the sum of the contributions from Div®<[(PW")?] and (PW)™.
By Proposition 2.1, the contribution from Div¢[(PWV)?] is w(X).
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For the contribution from (PW)", we introduce subspaces
(Wi =) Wi(\) == {v e W | 5;(v) = --- = s,n(v) =0} C W = H(Ox(1))". (5.8)
They form a strictly increasing filtration of W. Also, for any closed subscheme ¥ C X, we denote
by
Wy :={veW |s(w)=0foralse HOx(1)@Is)} c W (5.9)
the linear subspace spanned by ¥ C X. For instance, for a marked point x;, W, is the line in W

spanned by z; € PW.
By [MFK94, Proposition 4.3], the a-A-weight of x = (x1,...,2,) € (PW)"

n Zm ) m—1
Ma(/\) = Z a; <Z=OpZ + Z (Pi+1 - pi) dim(ij N Wz—i—l()\))) (510)
=0

= m—+1

(Note that pa(A) implicitly depends on p;, which we fix for the moment.) Therefore, the a-\-
weight wa(A) of Chow (X, x) € = is

wa(h) = w(A) + a(A): (5.11)

We now argue that, for the staircase A’ constructed from A by applying Proposition 3.5, we
have
wa(A) = wa(N). (5.12)

Indeed, since w(A) > w(N), it suffices to show that pua(A) = pa(A). To see this, we first notice
that

dim(Wy,; N Wit1(A)) = #(z; N Supp(Ox(1)/E(N)it1))- (5.13)
(Here E(N); = (si, Sit1,--+,5m) C Ox(1).) On the other hand, by the proof of Proposition 3.5,
we conclude that
Supp(0x (1)/€(N);) C Supp(Ox(1)/E(N):).
This together with (5.13) proves

dim(W,, N Wip1 () < dim(W,, 0 Wi 1 (V).

The inequality fia(A) > pa(N') then follows from the facts p; > pip1 and p; = p). Therefore, to
prove Theorem 1.5, it suffices to show that wa(A) > 0 for all staircase 1-PS A. From now on we
assume A is a staircase. For simplicity, we define W; = W;(\).

To state the estimate of this section, we define ES (X, p) := > _; ES(p). Since ) is a staircase

1-PS, U, Io = {0,...,m}, where I, is the index set of the component X, defined in (3.3).
This allows us to define the shifted weights {p;} by

pi = moin{pi — pro, |1 €1y} = 0. (5.14)
We caution that the p; are only defined for staircase 1-PS, and possibly they are non-monotone.

PROPOSITION 5.6. Given g, n,ac Q" and 0 < € < 1 satisfying xa,y > 0, suppose (X, 0x(1),x, a)
is a genus g slope semistable polarized weighted pointed nodal curve of deg X > My, the constant
given in Lemma 5.5. Then for any staircase 1-PS X\, we have

Byl Ap Z > p“’q)+z<degX + = a—1>'pna 207 ZO

qESreg

(5.15)
where S’re =) _ (r Yx)N Xa N A) and C > 0 is the constant given in Lemma 5.2.
g

a=1
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Proof. By the definition of ES(p) (cf. (4.3)), ES (N, p) = >0 1 ES(p) is linear in p = (p;). By
linear programming, (5.15) holds on

R = {(po, - pm) €ER™ [ pg = p1 >+ = pm = 0}

if and only if it holds on every edge of RTH; these edges are spanned by the vectors

—
p=1(1,...,1,0,...,0), 0<my<m. (5.16)

We now fix a 0 < mg < m. By possibly reindexing the irreducible components of X, we can
assume that for some 7 < r, iy < -+ < by < mp < hry1 < -+ < Ay In other words,

pr=-=pp =1 and pp ., = =pp =0. (5.17)

We let Y := |, Xqo; thus its complement YT = Uasr Xa-

We claim that YT is the maximal subcurve of X contained in the linear subspace PWi,
(cf. (5.8)). By definition, for any «, A, is the largest index 0 < ¢ < m for which s;|x, # 0. On
the other hand, because PW,,,, = {sm, = -+ = sm = 0}, X, C PW,,, if and only if s;|x, = 0 for
all ¢ > myg, which is equivalent to h, < mg. This proves the claim.

Let X, be a component in YL, Since pr, = 1, p; = 1 for ¢ € I,. Using the explicit expression
of ES (N, p)(ctf. (4.3)), we obtain ES (A, p) = 2deg X,. Thus

a>T

STEL(Ap) = 2deg Xo =2deg YT

a<r a<sr

We next look at Y. Following (1.3) and (3.8), Ly =74y nYY)NY. We claim that Ly C
Ay :=J,>7 Aa- Indeed, for any o > 7, there is an 7 > my such that s;|x, # 0. However, for any
B <7, > mg implies si|x, = 0. Thus Sz‘|XamXﬁ~= 0 ar~1d consequently 1 (X, N Xp) NX, C A,.
Summing over all & > 7 and § < 7, we obtain Ly C Ay. As a consequence,

> Piom) =Ly (5.18)

pELly

To simplify the notation, in the remaining part of this section, we will abbreviate

ZpiO(p) = Z Pio(p)>

peEY peSNA

with the understanding that for any closed subset ¥ C X, ZpGE only sums over p € ¥ N A.

SUBLEMMA 5.7. Let the notation be as before. Then

S B0 b

. 2 2
a>T
O-1¢ . Pi Pi
< <1+degX><Z Sa(3)Pi— Y Piow) — D 02(p)> - > 02@)'
a>r pELly pENy\Ly m(p)exny
’LEHE”
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Proof. We let X, C Y be an irreducible component; then a > 7 and p;, = 0. Since by our
assumption (X, 0x(1),x,a) is slope semistable and satisfies deg X > My > My, by Lemma 5.2,
there is a positive constant C such that either deg X, > Cdeg X or deg X, = 1 satisfying
xN X, =0. If deg X, > C'deg X, from the definition of ES(p) (cf. (4.3)) and pp, = 0, we have

ES (X, p) C~le _ 1 Cle
AP | Su(3i)pi — ( = o 5.19
2 ( + deg X Z a(3:)p 2 + deg X Z Piop) ( )
ielR” PESa
If deg Xo = 1, (5.19) still holds, since by (4. 4) and Definition 3.10 we have
E& A, p) ~ pmd
(2 = 0a(Sinaz 1) —% L+ pn, = Z O (
ielR™
C~le 1
< (1 504 ~7L 7 !
< +degX) Zp: (Silp < degX) Zpo(p
iEHarl

where S, N A contains only linking nodes since x N X, = @.
Next, we split

- Z Pig(p) = — Z Pio(p) — Z Pig(p) — Z Pio(p)

peSy pEw*l(x)ﬂf(a pENa\Zy peLlynXa

Then, using p; = 0, we get

1 Cle Pio(p) 1 C~le
_<2+degX>Zpi0(p)<_ Z 2 _(2+degX> Z Pio(p)

pESy per—H(x)NXqa peNa\ﬂy

Cle Pio(p)
(+os) & w2

peLynXq pelynXa

Pio(p) Cle Pio(p)
< — _
= 2. 2 (1 * degX> 2 2

pEﬂ—l(x)ﬂf(Q pENa\iy

C~ e Piy(p)
_(1+degX> Y ot Y P

peLyNXa peELyNXa

Putting them together, we obtain

ES(\, p) C~le N
—5 < (1 + M Z ba(Si)pi — Z Pio(p)

St peLynXa
Pio(p) Pio(p) Pio(p)
S ) » ey e
pEN\Ly pelynX, per—1(x)NXa
Summing over « and applying (5.18) proves the lemma. O

The following inequality is crucial for the proof of the proposition.

LEMMA 5.8. For 1 < k < mg, we have

ST aGei— Y s > DA < dim Wy 0 Wi — dim Wy ye 0 Wi,
a>r el eNy\L
i€lg " N[0,k) if(p)zk pio(;)\<ky

where Wy, y-¢ is the linear subspace in W spanned by Y N yC.
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Proof. We prove the lemma by induction on k. When k = 0, both sides of the inequality are
zero and the inequality follows. Suppose the lemma holds for some 0 < k < mg. Then the lemma
holds for k£ + 1 if, for the expressions

~ Pi
Ap1 = Z 6a(8k)prs Ak = Z Piop)r  Ak3 = Z 02(1’)

Oé>rizl peLY7 peNy\f/y,
kely) io(p)=k io(p)=k

and
By i=dim Wy N Wi —dim Wy N Wy,  Bya = dim Wy (e N Wiy — dim Wy 0 N Wy,
the following inequality holds:
Ag1 — Ap2 — Ak 3 < B — By (5.20)
To study the left-hand side of (5.20), we introduce the set
Ry={peY |keD} (5.21)
By Propositions 3.9 and 3.11, R can take three possibilities, according to
> GalEr), (5.22)
a>7 kel

taking values 0, 1 or > 2. Notice that if Ay ; =0, then Ay 1 — Ag 2 — Ay 3 < 0. The lemma holds
trivially in this case since the right-hand side of (5.20) is non-negative. So, from now on, we will
assume that Ay ; > 1; in particular, (5.22) is positive.

We first observe that since dim Wy, —dim Wy = 1, both By ; and By, > can only take values
0 or 1. We now investigate the case when By, 2 = 1.

CLAIM 5.9. Suppose (5.22) is positive and By o = 1. Then there is a p € Ry, (cf. (5.21)) such
that iy(p) = k and

q=7(p) €Y NYE N (PWyy1 — PWy). (5.23)

Proof. Suppose (5.22) is positive; then there is a p € inc(3;) N X, with o > 7 and k € I3
Let Zp = PW; N X be as defined after (5.9) and Wz, 1, 2 W be as defined in (5.9). Then
Wit1 = Wy 4q, since dim Wy = dim Wy, + 1. Suppose ¢ = 7(p) € Y N YC and k € I®; then,
by applying the argument parallel to Propositions 3.9 and 3.11, we deduce

Wzrq+ Wynyt 2 Wz, + Wiyt (5.24)
On the other hand, By 2 = 1 implies that
dim(Wy, + WYOYC) = dim Wy, + dim WYOYC —dim W, N WYQYU

= dim W11 + dim Wiaye — dim Wy1 N Wy qye
= dim(Wyy1 + Wynyeo),

which means Wy, + Wy, -y ¢ = Wiy + Wy ye, contradicting (5.24). So we must have ¢ € YN ve

By definition, ¢ € PWy4 (cf. (5.8)) implies that s;(q) = 0 for ¢ > k+1; ¢ € PW}, implies that
not all s;(q), k < i < m, are zero. Combined, we have si(q) # 0. This implies ip(q) = k. As an
easy consequence, this shows that By o = 1 forces Wy N W1 # Wy N Wy, and hence By, ; = 1.
In particular, the right-hand side of (5.20) is non-negative. This proves the claim. O
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We complete our proof of Lemma (5.8). When (5.22) takes value 1, then Ry, consists of a single
point, say p € Y. In the case where 7(p) € Y is a smooth point of X, Ay =1 and Ay = Aj 3 =0.
We claim that By, = 1 and B2 = 0. Indeed, if By = 0, then PWy NPW; 1 = PWy NPW,,
which is the same as Y N (s =+ =85, =0) =Y N (811 = -+ = S8 = 0) as subschemes of
Y. But this contradicts Z(DT keIRn da(8k) = 1. Thus By = 1. On the other hand, if By =1,

then Claim 5.9 shows that R;NY contains an element in Ly, contradicting our assumption that
Ry, = {p} lies over a smooth point of X.

In the case p € f)y, the previous paragraph shows that Ay, = By = 1, A3 = 0. For the
values of Ay o and By o, when ig(p) = k, then both Ay = By 2 = 1; when io(p) # k, then both
Ak,2 = By = 0. Therefore, (5.20) holds.

The last case is when p € Ny — Ly. In this case, since the point ' in Y N7~ (7(p)) other
than p is not contained in Ry, either ig(p) # k or ig(p) = io(p') = k and k ¢ Hpn In both cases,
A1 = Bi1 =1 and By 2 = 0; the inequality (5.20) holds.

Lastly, when (5.22) is bigger than 1, by Propositions 3.9 and 3.11, either Ry, = {p_, p+} such
that m(p_) = m(py) is a node of Y, i.e. p+ € Ny, and ig(p_) = io(py) = k, or R = {p1,..., 01}
such that ig(p;) = k and {m(p;) }1<i<s are distinct nodes of X. In the case Ry = {p_,p4+}, since
P+ € Ny\iy, Ag1 =2, Ap2 = By =0and Ay 3 = By 1 = 1. The inequality (5.20) holds in this
case.

The other case is when Ry = {p1,... ,pl} By reindexing, we may assume pi,...,p, are in
Ny\Ly and Diy41,-- -, D are in Ly. We let P € Y be such that 7= (n(p;)) = {pi,p;} for i <1y.
Then iy(p}) = k as well, but k ¢ Hg i“ because of Propositions 3.9 and 3.11. This in particular

implies that the interior linking nodes Ny\iy contribute once in Ay, ; but twice in Ay 3; namely,
only p;,(p,) appears in Ag 1, but both p; () and Pio(p,) aPpear in Ay 3. Therefore, A1 = I,
Apo=1—1; and Ay 3 = 211 /2 = l;. Hence the left-hand side of (5.20) is 0. This proves (5.20) in
this case; hence for all cases. This proves the lemma. O

We continue our proof of Proposition 5.6. We apply Lemmas 5.7 and 5.8 with k£ = my.
Noticing p;,(p) = 0 for dg(p) > mo, we obtain

Ey (A p) ~ I >‘ Eavp) &y
— = Z -
a=r+1
C~le . 1
< <1 + degX) <d1m Wy N Wiy — €Y> 5 Z Pio(p)
n(p)exnm(A)NY
C~le . 1 R
<1+ g ) (dim Wy Wy — £y ) = 5 > o) (5.25)
pegreg

Here we used that for all p’ € 7(Sreg) — X N7(A)NY, piy(p') = 0. And the last inequality holds
since by the definition of Sieg and p; (cf. (5.14)), we have 37 5 piy(g) < Zﬂ(p)éxﬂw(A)ﬂY Pio(p)-

reg

Using deg X — g = m (hence 2/(m + 1) > 1/deg X) and Ey¢(), p) = 2deg YT, we obtain

C gy 20_16 . 1
<<degy +2>+<1+m+1 mot1—dimWys ) =5 3 Py

PESyeg
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Here the last inequality follows from

dim Wy, > dim(WmO NWy + Wpe N Wyc)
=dim Wi,y N Wy + dim Wi, N Wye — dim Wiy 0N Wy N Wye
= dim Wine N Wy + dim WYC —ly.

Now we consider the right-hand side of (5.15) for p chosen as in (5.16), which gives ;" ; p; =
mg + 1. Since, by our assumption, the embedding X C PW is given by a non-special complete
linear system of a very ample line bundle Ox (1) (cf. Corollary 5.3), using our choice of weights
pi (cf. (5.17)) and the proof of Lemma 5.5, we obtain

,
Lo, l .
Z(degXa + 5 — Mo — 1)  Phy = dngC + EY — dim Wy.

a=1

We claim that > ;" p; = mo + 1 — dim Wy¢. Indeed, from our choice of p and the definition
of p (cf. (5.14)), for any 0 < i < m, p; = 1 or 0, and it is 0 if and only if either ¢ > mg or there
is an X, with 7 € I, (cf. (3.3)) such that pp, =1, that is, i € Iyc = Uy, yt La. This proves
Yitopi=mo+ 1 — |Iyel.

Our claim will follow once we prove ]]IY[;| = dim Wy, but this follows from the following
criterion.

Criterion: i € Iyc if and only if dim Wiy N Wy, —dimW; N Wx, =1 for some X, C ye.

To justify this criterion, we notice that dim W;11 N Wx,, = dim W; N Wy, for all X, C v is
equivalent to ven {si=-=5,=0}= yen {8i+1 =+ = s$;m = 0} as subschemes of YE; that
is, inc(s;) N YT = @. Since X is a staircase,

i g1, forall X, C YTif and only if inc(s;) N vl=9¢ (cf. (3.3)).

This proves the criterion.

With those in hand, we obtain

B gyt ) o (200 )

2 2 2 2
¢, by 20" - Pio(a)
<<dng +2>+<1+m+1 mo + 1 — dim Wyq —6%:2
q reg
Iaio(‘Z) c, &y : 20" "e i
< _ Y _
<mo—+1 Z 5 +<dng + 5 dim Wyc +m+1 mo + 1 —dim Wyc
qesrcg
m ~ T —1 m
_ A Pig(q) Lo 2C e N
=3 30 S (e Xk 1)+ et S
i=0 GESreg a=1 i=0
So the proof of proposition is completed. O
Let
2deg X ~—
o(A) = (N, p) = i — ES (A p). 5.26
o) =60 p) = ST = B O (5.26)

We now state and prove the main result of this section.
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THEOREM 5.10. Given g, n and a € Q"} such that xa4 > 0, we let C' be the constant given
in Lemma 5.2. Suppose 1 > € > 0 such that (20! + 1)e < Xagy. Then there exists a constant
Ms = Ms(g,n,a,¢€) such that for any slope stable (respectively semistable) weighted pointed
nodal curve (X,0x(1),x,a) of genus g and deg X > Mj5, and for any staircase 1-PS X\, we have

m
€ Z -
1=0

Proof. We will give a proof of the stable case, from which the semistable case follows easily.

First, let us justify the first inequality. Given (2C~! + 1)e < Xa4, we define Ms = Mj;(g,
n,a, €) := max{My(g,n,a), M1(g,6(g +n),n,e)/C} > 0, where C' is the constant introduced in
Lemma 5.2. Then by the slope stability assumption and Lemma 5.2, whenever deg X > Ms5,
either X, is exceptional or

deg X, > CM;5 > Mi(g,6(g +n),n,€) > Mi1(9ga, la,n,€),

walX) = 0(A) + a(X) > B(N) + pa(N) > (respectively )

where the last inequality follows from g > g4,6(9+n) > £, (cf. Corollary 5.3) and the definition

of My in the proof of Theorem 4.1. Hence the assumption of Theorem 4.1 is satisfied. Applying

Theorem 4.1 to w(A) and using (2.15), we obtain w(\) > &(A). Thus the first inequality is proved.
By Proposition 5.6, it suffices to prove

;Pi_gpmz +Z<degx +£2 a—l)-pna+(20 T 1)e ;
= qESreg =
degX Z P “a (5.28)

By linear programming, we only need to prove the above estimate for p of the form (5.16). We
will break the verification into several inequalities. First, we have (defining ax = >77_; a;)

mo + 1
pa(\p) = ———ax— Y. a— > aj (5.29)

m+ 1
IjGYmPWmO ijYBﬁPWmO

Here x; runs through all marked points of the curve. We claim that

A NY NPW,, j
3 Pio(g) _ IxNm(A)NY N WOI2 3 4. (5.30)

- 2 2
qesreg Tj EYﬂ]P’WmO

To this purpose, we first show that
xNa(A)NY NPWy = xNY NPW,,,. (5.31)

Indeed, for any x; in x that lies in Y NPWy,, sk(x;) = 0 for & > mg. On the other hand, letting
rj € Xo C Y, since Yl is the largest subcurve of X contained in PW,,, for some k > my,
sk|x. # 0. Combined with sj(x;) = 0, we conclude x; € 7(A) (cf. Definition 3.1). In particular,
xNY NPW,,, C w(A). This proves (5.31).
Applying (5.31), and using that, for any colliding subset {z;,,...,z;,} (le. x;y = = z;,),
necessarily a;, +---+ a;, < 1, we obtain
a; |xNT(A)NY NPWp,| a;j |xNY NPWy,|
> 2= 5 = > 5 - 5 <0, (5.32)
;€Y NPWin, ;€Y NPWin,,

and hence (5.30).
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By putting (5.29) and (5.30) together, we obtain

- p'LO a )\ p) Mo +1 ax aj
) D DR (5.33)

2 S m+1 2
q€Sreg z; €Y CNPWin

On the other hand, for p of the form in (5.16), we have

Zpri—Z(degXa—i-%—ma—l)-pha (20 + Z
i=0 a=1

i=0
(20 "+ 1)e

ol (mo +1—dim WY[;). (5.34)

¢
—mg+1+ <dngE+ 7Y —dimWYc> +

Plugging (5.34) and (5.33) into (5.28), we obtain

_pa(hp) | Byx(Np) (207 Ve i

2 2 m—+1 e

o Uy 4 . mo+ lax
<m0+1+<dng +7+ Z 2—d1mWYc>—m+12
2;€EYCNPWin,

(2071 +1)e
e
_ deg Yooy /2+ D 0, €Y S ABW,, G2 dim W, mo+1ax
- dim Wyg YT T e

(2C~1 +1)e )

(mo +1—dim WYE)

Since dim Wy.¢ < mg < m, we have

deg YT +£Y/2+ijeyﬂm]pwmo a;/2 - deg X +ax/2
dim Wy m+1

by our stability assumption and Lemma 5.5. Hence we have

deg X +ax/2 .. (2C~ 1+ 1)e ) mo + 1 ax
LHS of (5.35) < ——————— dim W, 14— 1 —dimWy¢)— —
of (5.35) < 1 imWye + |1+ 1 (mo + im Wyc) 1 2
degX+aX/2 mo+ lax
\—m+1 (dim Wy¢ +mo + 1 — dim Wy¢) — 1o
deg X deg X
=1 moth= +1Zp
where we have used the assumption (2071 + 1)e < xa 4 to conclude
deg X 2 2071 +1
eg X +ax/ >1+(C +1)e
m+1 m+1
g

in the second inequality. This completes the proof.
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Proof of Theorem 1.5. We first prove that slope stable implies Chow stable. By our assumption
Xag > 0, we may choose an 0 < e¢ < 1 such that (2C~! + 1)e < xa,. Fixing such ¢, we let
Ms = Ms5(g,n,a, €) be the constant given in Theorem 5.10. Then by Theorem 5.10, whenever
deg X > M5 and (X,0x(1),x,a) is slope stable we have wa(A\) > (2¢/(m+1)) > ", pi = 0;
hence (X,0x(1),x,a) is stable by Definition 1.3. The proof for the semistable case is similar.
This proves the sufficient part.

We now prove the other direction: Chow stable implies slope stable. Let Y C X be any
proper subcurve, let Wy C W be the linear subspace spanned by Y, and let mg + 1 = dim Wy-.
We choose a 1-PS X = diag[t’,... tPm] - t~Pave such that the corresponding filtration {W;}",
satisfies Wiy,,+1 = Wy; we choose the weights {p;} as in (5.16). Then

. mo + 1 "
men(Gn) - 2

Tj cePWy

Thus, by the proof of [Mum?77, Proposition 5.5, p. 60], e(J(A))/2 > degY + ¢y /2; hence

W)+ ) Sl ‘
g frnd 1= d X_
0 2 mt+1 e 5 T

mo + 1 by mo+ lax a;
< -deg X — [ degY + — — —
eg <eg +2>+ Z 5

m+1 m-+1 2 2y Py

deg X +ax/2 dng+€y/2+ay/2>

(5.36)

= 1
(m0+ )< m—+1 mo + 1

which is equivalent to the slope semistability (cf. Definition 1.4) provided that (X,0x(1)) is
non-special, which will be proved in Proposition 6.2.

Finally, if we assume further that (X, Ox(1), x,a) is stable, then (5.36) becomes equality only
if mg = m. Since M5 > My by our choice, by Lemma 5.5, mg = m only when vlisa disjoint
union of exceptional components provided deg X > Mj. By choosing M (g, n, a) := max{Ms;, Mg}
with Mg being determined in Proposition 6.2, we complete the proof of the theorem. O

Proof of Theorem 1.6. By our choice that M > Ms > My, our claim follows from
Proposition 5.4. O

6. Re-construction of the moduli of weighted pointed curves

In this section, we use the GIT quotient of the Hilbert scheme to construct the moduli of
weighted pointed stable curves, first introduced and constructed by Hassett [Has03] using a
different method. First, following Caporaso [Cap94, §3.3], we introduce the following definition.

DEFINITION 6.1. A weighted pointed quasistable curve is a weighted pointed nodal curve (X, x, a)
such that:

(1) wx(a-x) is numerically non-negative;

(2) the total degree 2xa 4(X) = degwx(a - x) is positive;

(3) any connected subcurve E C X satisfying degwx (a-x)|p = 0 must have £ Nx = @ and
E = P! and is called an exceptional component.

We say (X, x,a) is weighted pointed stable if it is weighted pointed quasistable and does not
contain exceptional components.
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6.1 As a GIT quotient
We fix integers n, g and weights a € Q'} satisfying xa 4(X) > 0; for a large integer k such that
k-a; € Z for all i, we let d = (|a| + 29 — 2) - k, and form

Pt)=d-t+1—geZ[t] and m+1=P(1). (6.1)

We denote by HileI?m the Hilbert scheme of subschemes of P of Hilbert polynomial P; we define
H to be the fine moduli scheme of flat families of (X, ¢,x), where

[t: X - P € Hilbh, and x = (21,...,2,) € X™
Using that Hilbert schemes are projective, we see that H exists and is projective. We denote by
(m,0) : X — HXP", p:H—->X, i=1,...,n, (6.2)

the universal family of H.

We introduce a parallel space for the Chow variety. We let Chowﬁf)m be the Chow variety of
degree d dimension one effective cycles in P™. For any such cycle Z, we denote by Chow(Z) €
Div®4[(P™V)?] its associated Chow point (cf. §1). We define

C :={(Z,x) € Chowl,, x(P™)" | x = (x1,...,x,) € (Supp Z)"}.

By the Chow theorem, C is projective. Using the Chow coordinate, we obtain an injective
morphism

C -5 DivH[(P"™Y)?] x (P™)". (6.3)

As before (cf. §1), we endow it with the ample Q-line bundle O¢(1,a), which is canonically
linearized by the diagonal action of G := SL(m + 1) on C. We let C* C C be the (open) set of
semistable points with respect to the G linearization on O¢(1,a).

For any one-dimensional subscheme X C P™, we denote by [X] its associated one-dimensional
cycle. By sending (X,:,x) € H to ([X],x) € C, we obtain the G-equivariant Hilbert—Chow
morphism (cf. [MFK94, §5.4])

¢:H—C.

To characterize the members in ®~!(C*), we need the following proposition.

PROPOSITION 6.2. For g, n and a € Q! satisfying xa,y > 0, there is an integer Mg = Mg(g,n,a)
so that for d > Mg, a connected one-dimensional closed subscheme X C P™ satisfies (X, ¢,x)

~1(C*) if and only if the associated data (X, 1*Opm(1),%,a) is a slope semistable polarized
weighted pointed nodal curve.

The proof is a slight modification of the one given in [Mum?77, Proposition 3.1] by
incorporating the weighted points. To do that, we need the following.

LEMMA 6.3. Let A = diag[t, 1,...,1], N = diag[t*,#2,t,1,...,1] and z¢ := [1, 0,...,0] € P™. Then
the a-\-weight (respectively a-\'-weight) of x = (x1,...,2,) € (P™)" i
m- Zz]-:xo a (4771 3) ij:zo aj>

J ,
pa(A) = I R (respectwe]y pa(N) = o

In particular, pa(\), pa(N) < 0 as long as m > 1.

Proof. 1t directly follows from (5.10). O
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Proof. Let (X,1,x) € ®1(C%). We claim that when deg X/(m+1) < 8/7, then every irreducible
component of the cycle [X] has multiplicity one; X,eq is a nodal curve, and X differs from Xeq
by embedded points. First, if z € X has multiplicity at least 3, then we choose coordinates so
that x = [1,0,...,0] and A = diag[t,1,...,1]; in this case the weight

walN) = () + pa(n) = 29EX Lo 50y m%:laﬂ

m+1
< 2deg)(-§:2;0pi
= m+1

16 w—
—e(IN) < = ; —3<0.
e(J(N) 7;;;

Next, if x € X is a non-ordinary double point then, by choosing the coordinates in the proof
of [Mum77, Proposition 3.1] and A = diag[t*,#2,¢,1,...,1] accordingly, we obtain

2deg X Y1 (4m —3) -3, 00
A =wlA N\ = 2o £ei=0 _ g

2deg X - Y pi 16 «—
< = —e(I(\ e i — 16 = 0.
5 (I < ;p 6=0

e(O(A) —

Both cases contradict our assumption that (X,¢,x) € ®~1(C%). This proves the claim.

We now show that X = X,.q C P and is embedded by a complete non-special linear system.
Let X, C Xieq be an irreducible component, and write X,eq = XoUX g For Wx, C W the linear
subspace spanned by X,, we choose a basis {s;} so that Wx_, = {sm,+1 =+ = sm = 0}, and

define a 1-PS X by the rule
ma+1

A =diag[t,...,t,1,...,1].

Since Chow (X, ¢, x) € C**, by the same calculation as in the proof of Theorem 1.5 (cf. (5.36)) we

obtain
0 < el _ @)+ ()
2 2
Me + 1 by me +1ax i a;
< ~deg X — [degY + — = — —
m+1 8 <eg +2)+m—|—12 2. 3
.Z‘jEPWXa
— (4 1) deg X +ax/2 degXo+lx,/2+ax,/2 .
m—+1 Me + 1

Now we choose Mg > 8(g — 1) + n/2, and assume d = deg X > Mj; then

deg Xo +0x,/2+ax,/2 <degX+aX/2 <§' (6.4)
Me + 1 m+1 7

We claim that h'(Ox,_ (1)) = 0. Suppose not, then by Saint-Donat’s extension of Clifford’s
theorem [GM84, Lemma 9.1] we have h%(Ox, (1)) < 5 deg X, + 1 which, combined with (6.4),

implies

deg Xo < En%(0x, (1)) < & deg Xo + &,
Note that this is possible only if deg X, < 2, and then X, = P! and h!(X,,0x,(1)) =0, a
contradiction. This proves the claim.
We next claim that h'(Ox, (1)(—La)) = 0, where Ly = Xo N XE (cf. (3.9)). Indeed, by (6.4)
and using h'(Ox, (1)) = 0 just proved, we deduce
ax, Ix,

2+2

deg X, + < %(deg Xo+1-9(Xa)).
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Hence
deg(oXa(l)(_La)) = deg Xo — EX(X = 8(9(Xa) - 1) + %gXa + %aXa

which is greater than 2¢(X,) —2 unless either when g(X,) =1, £x, =0 and ax, /2 = 0, or when
9(Xa) =0, x, =1 or 2. The first case cannot happen, since L, # @ by our assumption on the
connectedness of X; in the second case, we have Ox_(1)(—Ly) = Opi(e) with e > —1. Thus for
both cases we have h!'(Ox,_(1)(—Ly)) = 0. This settles the claim.

Finally, we show that h'(X,0x (1)) = 0 and X = Xyeq. First, h1(Ox,(1)(=Ly)) = 0 for all
X, and that X,eq is a nodal curve implies that h'(O X,eq(1)) = 0. Since X differs from X,eq by
embedded points, we have h'(Ox (1)) = 0. This proves that (X, 9x(1)) is non-special.

It remains to show that X = Xyeq. As (X,t,x) € H, by the vanishing already proved, we
have m +1 = h%(X, Ox(1)). Suppose X,eq # X, then X,q lies in a hyperplane, say {s,, = 0} for
a basis {s;}. Let A = diag[t,...,t,1], then the A-weight for Chow(X,¢,x) (by letting ¥ = Xcq
in (5.36)) is

w()\)+ﬂa()\):m deg X +ax/2 degX +ax/2 <0
2 m+1 m ’

contradicting the fact that (X,:,x) € ®71(C%). So X = X,¢q is a nodal curve. This implies that
X C PW is non-degenerate and is embedded by a complete linear system.

Our next step is to show that (X, :*Opm(1),x,a) is a weighted pointed nodal curve. For this,
we need to verify that the weighted points are away from the nodes of X, and the total weight at
any point is no more than one. Let p € X be any point. We choose a 1-PS X as in Example 2.5;
the associated A-weight for Chow(X,¢,x) is

2deg X 1 2Xa,
w(/\)—i—ua()\):m—ep—i—m aX—Zaj:2—6p+migl—Zaj,

where €, = 2 if p is a node and 1 otherwise. Since Chow (X, ¢, x) is semistable, we must have
0 < w(A) + pa(A). Now we choose M so that M > g + 2xa,g/min{a;}; then 0 < w(A) + pa(A)
implies that the weighted points must be away from the nodes, and the total weight of marked
points at p does not exceed one.

In the end, Theorem 1.5 implies that such an (X, :*Opm(1),x,a) is slope semistable. This
proves that for the choice Mg(g,n,a) := max{g + 2Xaq/min{a;},8(g — 1) + n/2}, the lemma
holds. O

We define
H = <I>_1(CSS) C H.

COROLLARY 6.4. For d > M specified in Proposition 6.2, the restriction
PSS .— @‘Hss CHS s O
is injective and hence an isomorphism.

Proof. We only need to prove that ® is injective. Suppose not, and say there are (X, ¢,x) # (X',
J,x") € H*® such that ®(X,¢,x) = ®(X',/,x") € C*¥; then by Lemma 6.2, both X and X’
are nodal subcurves of P™. Since ®(X,:,x) = ®(X',/,x’) € C*, the cycles [X] = [X'] and
x = x’ C P™. Since both X and X’ are nodal, we must have X = X’; thus (X, ¢,x) = (X', /, %),
a contradiction. This proves that ®°° is injective. Finally, since C* is normal, we conclude that
@5 is an isomorphism by Zariski’s main theorem. |
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To construct the moduli of weighted pointed curves, taking the k specified before (6.1), we
form

K ={(X,1,x) € H | X smooth weighted pointed curves, :*Opm (1) = wx (a - x)%*}.

It is locally closed and is a smooth subscheme of H. (Note that H is smooth near K.) Since
X in (X,¢,x) € K are smooth, applying Theorem 1.5, we conclude that ®(K) C C*, and thus
K C H%. Let K C H® be the closure of K in H%. Because ®* is finite, and C is projective, the
GIT quotients H* /G — C* /G exist and the arrow is finite [Gie77, Lemma 4.6]; thus H* /G is
projective. Because K is closed in H*, the GIT quotient

q: K — K/)G (6.5)

exists and is projective.

There is a natural transformation from the category of flat families of pointed curves in IC
to the category of stable genus g, a-weighted pointed nodal curves. For any (X, t,x) € K, since
the associated weighted pointed nodal curve (X, x, a) is semistable, we can form a new weighted
pointed curve by contracting all of its exceptional components (cf. Definition 6.1). We denote
the resulting curve by

(X, x*, a), (6.6)

and call it the stabilization of (X,x,a). Since (X,¢,x) € H* and the marked points never lie
on the contracted components, by Lemma 5.2 the stabilization produces a weighted pointed
stable curve of the same genus. Furthermore, the stabilization applies to families of quasistable
weighted pointed curves. The mentioned transformation is obtained by applying this contraction
to the restriction to K of the universal family of #, resulting in a family of weighted pointed
stable curves on K.

Let Mg a be the coarse moduli space of stable genus g, a-weighted nodal curves constructed
by Hassett [Has03]. This transformation induces a morphism

U: K — Mga. (6.7)
As this morphism is G-equivariant with G acting trivially on M, ,, it descends to a morphism
V:KJG — Mga. (6.8)

THEOREM 6.5. The morphism 1 is an isomorphism.

It is worth mentioning that the two coarse moduli schemes K / G and M, , parameterize
different moduli objects. For g, a and sufficiently divisible &k, we define P C H via

P ={(X,1,x) € H | (X,x,a) weighted pointed stable curves, wy (a - x)®¥ = ,*Opm (1)}.

A direct check shows that P with reduced structure is a smooth, locally closed and G-invariant
subscheme of H. We let P C P be the open subset of (X, ¢,x) such that the X are smooth. By
definition, P = K. However, the following example shows that P ¢ H. The theorem states that
this change of moduli objects does not alter the resulting coarse moduli schemes.

Ezample 6.6. Let X be a nodal curve with one node and two smooth irreducible components
X1 and Xy, of genus g(X1) = g(X2) = 2. We assume that the marked points x are contained in
X9 with total weight ax = 6. For Y = X7, the left-hand side of the inequality (1.6) is

2115

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

J. L1 AND X. WANG

ax, degy, wx(a-x) ax
deg X — deg X + —
‘( gl 2 > degwx(a - x) gt 2

de de w
_ ‘(degXl n gx, WX  ax, gx, X)

2 2 2
degy, wx(a-x)
_ deo X X
degwx(a - x) gt 2 2 2
_‘ degy, wx degy wx(a-x) <_degwx>‘

degwx L 0x degwx>‘

— g —=— X X)-—1|=2si_ta
9~ T L)~ T Ta W T~ 1) = §> 5 =5

violating (1.6). Hence (X,wx(a - x)®* x,a) € P but not in #*. In particular, one notices that
this example is contrary to what was claimed in [Swil2, after Theorem 7.2]. The readers may
consult [WX14] for more general discussion of this.

We break the proof of the theorem into several steps.

6.2 Surjectivity

Let (X,x,a) be a weighted pointed stable curve. We endow it with the polarization Ox (1) =
wx (a-x)®* together with the embedding ¢ : X — PH?(Ox(1))¥. When X is smooth, (X,¢,x,a)
lies in /C; when X is singular, this may not necessarily hold. Our solution is to replace wx (a-x)®*
by its twist, to be defined momentarily.

Given (X,x), we choose a smoothing 7 : X — T over a pointed curve 0 € T such that X
is smooth and Ay = X x7 0 = X. By an étale base change of T, we can extend the n-marked
points of X to sections r; : T — X so that, defining ¢ = (r1,...,&n), the (X,r,a) form a flat
family of weighted pointed stable curves. Let Xi,..., X, be the irreducible components of X.
The following proposition gives the surjectivity of .

PROPOSITION 6.7. Given g, n and a € Q'} satisfying xa,y > 0, there is a constant K = K(g,n,a)
such that for a weighted pointed stable curve (X, x,a) and sufficiently divisible k > K, and for
(X,r,a) the constructed T-family, there are integers {b,}},_; independent of k such that after
letting

Ox(1) :wX/T(a's)fX)k ®o0, Ox <ZbaXa>, (6.9)

(X,0x(1),s,a) is a family of slope semistable weighted pointed nodal curves.

The proposition was essentially proved by Caporaso in [Cap94]. Since we need to use the
same technique to prove the injectivity, we outline its proof, following [Cap94].
For any line bundle £ on X, we define §,(£) = deg £|x,, and the numerical class of £ to be

5(L) := (61(L),...,6,(L)) € Z%7.
We next let
log=Lasg(X)=|XaNXs| ifa#B and log="Lloo(X)=—|Xoan X5 (6.10)
We define fy, = 0o (X) = (ba.1(X), La2(X),. .., lor(X)). Letting

Zy" = {17 VA
=1

then 7, € ZI" for every a. We define I'y C Z&" to be the subgroup generated by Zl, e ,E_;«.
0 0
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Remark 6.8. Let £ = wx(a-x)®*. Since X is smooth, for the invertible sheaf Oy (1) defined in
(6.9) depending on the integers by, ..., b,, we have

3(0x(1)]x) =d(£ +sz

This says that any two choices of Oy (1) restricted to the central fiber have equivalent
numerical classes modulo I'x.

We introduce one more piece of notation. For any vector @ = (vq,...,v,) € Z®" and any
subcurve Y C X, mimicking the notion of degree, we define

degy v = Z V-

XaCY

Let (X,x,a) be a weighted pointed nodal curve, and let d be a positive integer. For any
subcurve Y C X, we introduce the d-extremes of Y as

degy wx(a-x) ax ay AUy
MEE = 2OV XS T (g4 =) - 22 6.11
Y degwx(a-x) * 2 2 2 (6.11)
Then Proposition 5.4 can be reformulated as follows.

PROPOSITION 6.9. Given g, n and a € Q'} satisfying xagy > 0, let M3 = M3(g,n,a) be the
constant defined in Corollary 5.3. Then any polarized weighted pointed nodal curve (X, L, x,a)
of deg L = d > Mjy is slope semistable if and only if

degy £ € [Mé_, M§l;+] for any subcurve Y C X. (6.12)
Proof. This follows from Proposition 5.4 and the fact that (6.12) is equivalent to (1.6). O
Let Zﬁfg be those ¥ = (v;) € Z®" such that v; > 0. We define
%an = {v € ZZ | degx ¥ = d, ¥ satisfies (6.12) with degy £ replaced by degy 7}
Then we have the following proposition.

PROPOSITION 6.10. Let (X, x,a) be a weighted pointed quasistable (cf. Definition 6.1) curve.
Then for any ¢ € Z®" we have
(T+Tx) N B a # 9

Proof. Since the proof is completely parallel to [Cap94, Proposition 4.1], we will omit it. O

Proof of Proposition 6.7. By applying Proposition 6.10 to ¢ = g(wx(a - x)®k), one easily sees
that there are {b,} independent of k£ such that for the Ox(1) given in (6.9) and £ = Ox(1)|x,
5(L) e ZZ and satisfies (6.12). Since X has smooth fibers other than the central fiber, we
only need to show that the central fiber (X, £,x,a) is slope semistable. To achieve that, notice
that 6(£) satisfies (6.12) already, and by Proposition 6.9, to show that (X,£,x,a) is a slope
semistable polarized weighted pointed nodal curve all we need to show is that £ is ample and
degx £ = kXay = Ms. First, by our assumption, (X,x,a) is a weighted pointed stable curve
(cf. Definition 6.1), and hence wx(a - x) is ample. It follows from the proof of Lemma 5.2
that degy £ > Cdeg X > 0 for any Y C X as long as deg X > M3 > My; in particular, £ is
very ample, by Corollary 5.3. Now we define K(g,n,a) := M3(g,n,a)/xa,; then in the case
k > K = K(g,n,a), by Proposition 6.9, (X,£,x,a) is a polarized slope semistable weighted
pointed nodal curve with £ being very ample. O
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6.3 Injectivity
We use the separatedness of K /G to prove that ¢ in (6.8) is injective.

DEFINITION 6.11. For (X,%) and (X, x) two pointed nodal curves, we say the former is a blow-up
of the latter if there is a morphism 7 : X — X that is derived by contracting some exceptional
components of (X, X).

Since the restriction of ¢ to K//G is an isomorphism and /G is irreducible, v is a birational
morphism. By the deformation theory of pointed nodal curves, we see that Mg,a has only finite
quotient singularities, and thus is normal. By Zariski’s main theorem and the properness of /G,
the injectivity of v follows from the following lemma.

LEMMA 6.12. =1 ((€)) is zero-dimensional for each ¢ € K J/G.

Proof. Let £ € KJG\(K//G), and let z/)(f) =(X,x,a) € Mg a be the associated weighted pointed
stable curve. We describe the set ¢ = L= 1((¢))) C K, where q : K — KJ/G is the projection.

For any n = (X,¢,X) € ©¢ C K, there is a smooth affine curve ¢ : 0 € T — K such that
the pullback of the universal family of K, say 7 : (X, £,s) — T, contains (X, :*Opn (1),%) as its
central fiber, ¢(7\{0}) C K, and the total space X is smooth.

By Proposition 6.2, the central fiber (X, X, a) is weighted pointed quasistable (cf. Definition 6.1)
and is a blow-up of (X, x, a). Since X" is smooth, there are integers {b, } indexed by the irreducible
components X, of X such that if we view X, as divisor in X then

COpm (1) = wyp(a-x) (Zb X>

Since the collection of blow-ups of X coupled with integers {b,}"_, is a discrete set, the
choices of (X, £, %) are discrete. Thus {(X, :*Opm (1), %) | (X,t,X) € O¢} is discrete. Finally, any
two (X, ¢, %) with isomorphic (X, :*Opm(1),%) lie in the same G-orbit. Thus O consists of a
discrete collection of G-orbits. Hence v~ (1(€)) is discrete. O

6.4 The coarse moduli space
We prove that K /G is a coarse moduli space of weighted pointed stable curves, thus proving
that ¢ is an isomorphism.

PROPOSITION 6.13. Let T be any scheme and (X,r,a) be a T-family of weighted pointed stable
curves. Then there is a unique morphism f : T — K /G, canonical under base changes, such
that for any closed point ¢ € T, the image ¥(f(c)) € My is the closed point associated to the
weighted pointed stable curve (X, a)|c.

We define a subscheme P C H:
P= {(X,1,x) € H| (X,x,a) weighted pointed stable curves, wx(a-x)®* 2 1*Opn(1)}.

A direct check shows that Pis a smooth, locally closed and G-invariant subscheme of H. We
let P C P be the open subset of (X,¢,x) such that the X are smooth. By definition, we have
P =K.

LEMMA 6.14. The composition F : P — K — K//G extends to a unique morphism F:P— K/G.
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Proof. Applying the deformation theory of nodal curves, we know that P is dense in P. Let
I' C P x K//G be the graph of the morphism F stated in the lemma; we let

TcPxK/)G

be the closure of I'. Let p : T — P be the projection. We claim that p is bijective. Indeed, given
&= (X,1,x) € P, welet (X¥,0x(1),r) be the family given by Proposition 6.7, which shows that
¢ € p(T). This proves that p is surjective. On the other hand, repeating the proof of Lemma 6.12,
we see that p is one-to-one. This proves that p is bijective.

Next, we claim that p is an isomorphism. Since P is smooth, P C 77 is dense and I is
isomorphic to P, we conclude that T is reduced. Then since p : I' — P is birational and a
homeomorphism and P is smooth, p must be étale. Thus p is an isomorphism. Finally, by
composing the isomorphism p~! with the projection to the second factor of P — K /G, we
obtain the desired extension F of F. O

Proof of Proposition 6.13. We cover T with a collection of affine open {7, }4eca. Let w4 : Xy — Ty
with sections rq; : T, — X, be the restriction of r; to T, of the family on 7. By fixing a

Rk ~ O@(erl)

trivialization (Wa)*an 1. (a - Ta) , we obtain morphisms fo 1Ty — P. Composed

with the morphism F constructed in the previous lemma, we obtain Fo fa T, — K/ G.
__Since the choice of the trivializations does not alter the morphism Fo fa, this collection
{F o fi}ac patches to a morphism 7' — K //G. This proves the first part of Proposition 6.13.
Finally, that ¢ (f(c)) is the point associated to the weighted pointed curve (X, a)|. follows
from the construction. g

Proof of Theorem 6.5. It follows from Propositions 6.7 and 6.13 and Lemma 6.12. O

We remark that, for convenience, in the proof given above we use the existence of the coarse
moduli space M, constructed by Hassett. A modification of the argument should give an
independent GIT construction of it.

For completeness, we give a complete description of polystable points in C°, generalizing the
case x = {J proved in [Cap94|. Let the exceptional set E(X) C X be the union of exceptional
components of (X, 0x(1),x,a).

DEFINITION 6.15 ([Cap94] when x = ¢). We say (X,0x(1),x,a) is extremal if each proper
subcurve Y C X satisfying dy (Ox (1)) = Mgl,’_ (cf. (6.12)) has Ly = Y NY® c B(X).

Recall that Chow(X, x) € C* is polystable if the G-orbit G - Chow(X, x) is closed in C*. Here
is an equivalent characterization of polystable points.

LEMMA 6.16. Let G be a reductive group and (Z,047(1)) be a G-polarized projective scheme.
Then a semistable point z € Z% is polystable if and only if for any 1-PS X either the A-weight
of z is > 0 or limy_gA(t) - 2 € G - .

Proof. Without loss of generality, we may assume that Z = PW for a k-vector space W. Let
A: Gy — G be any 1-PS, with W = @,., W; its weight decomposition such that A acts on W;
by multiplying by ¢*. Let z € PW, and let 0 # 2 € W be a lift of 2z, with associated decomposition
z2 =@, %, 2 € W;. Then the A-weight of 2 is wy(2) = max{—i | 2; # 0}.

Suppose z is polystable, then G - 2 is closed in WV (cf. [Gie98]). Suppose wy(2) = 0; we have
0+# 2 =limy_oA(t)-2€G-2=G-2 Thus 29 € G - 2, and this verifies one direction of the
lemma.
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Conversely, suppose z is semistable but not polystable. Then there are a 1-PS A and g € G
such that limy_.o A(t)-(g-2) = 20, 2o is polystable and zg € G- z. In particular, since A9 = g~ 1-\.g
fixes z, the A\9-weight of z is 0 while lim;—,g A9(¢) - z € G - z. This proves the lemma. O

We characterize curves having positive dimensional stabilizers.

LEMMA 6.17. Given g, n and a € Q' such that xagy > 0, let (X,0x(1),x,a) be a genus g
semistable polarized weighted pointed nodal curve such that (X,x) C PW is invariant under a
1-PS X\ and deg X > M, the constant given in Theorem 1.5. Suppose under its diagonalizing
basis, A has k weights. Then there are k mutually disjoint subcurves Y1,...,Y, C X such that:

(1) the complement (Uf:1 Y;)C is a union of exceptional components of X ; and
(2) each Y; has dy,(0x(1)) = Mfé?f, where d = deg X.

Proof. We let Y C X be the union of irreducible components of X that are fixed by \; we
let E =YL, As E C PW is A-invariant but not fixed, it is a union of P! components. Since
(X,0x(1),x,a) is semistable, by Theorem 1.5, Lemma 5.2 and the assumption deg X > M, E
is a union of exceptional components.

By the assumption that A has k weights, we have the weight decomposition W = @le W;.
We let YV; = Y NPW,”. Because Y is fixed by A, we have that ¥ = Ule Y; is a disjoint union.
Since X =Y U F is connected and since E is a union of exceptional components, the first part
of the lemma follows.

For the second part, for each Y; let A; be the 1-PS that acts on W; via multiplying ¢ and
fixes (J;,; Wj. Under such \;, (X,x) C PW is invariant, thus by semistability the A;-weight of

(X,0x(1),x,a) is 0, which is equivalent to gyl.(OX(l)) = Mféf. This proves the lemma. O

PROPOSITION 6.18. Given g, n and a € Q! such that xa4 > 0, a stable polarized weighted
pointed nodal curve (X,0x(1),x,a) of d > M (the constant given in Theorem 1.5) is polystable
if and only if it is extremal.

Proof. Suppose Chow(X,x) is polystable and ¥ C X such that oy (Ox (1)) = Mf,’_. We pick a
decomposition Wy & Wy = W = H°(X,0x(1)) such that Y = X N PW,, which is possible for
d > M. We pick a 1-PS A such that it acts on Wy (respectively Wi) via multiplication by ¢
(respectively by 1). Since dy (Ox (1)) = Mf;_, the A-weight of Chow(X,x) is 0. By Lemma 6.16,
(X', x") =limy— 0 A\(t)- (X, x) lies in the G-orbit of (X, x). Further, since A leaves (X', x’) invariant
and Chow(X’,x’) is semistable, by Lemma 6.17 we have Ly: C E(X'), which is equivalent to
Ly C E(X). This proves the sufficient part of the proposition.

Conversely, suppose ¢ is semistable but not polystable. Then there is a 1-PS A such that
limg g A(t) - € = ¢ is polystable. Let X — A! be the total space of this family of curves. Since
X xu (A —0) is a constant family, the special fiber will be a ‘blow-up’ of the general fibers.
Because &' = (X', 0x/(1),x/,a) is polystable and is invariant under A, we have the decomposition
X' = Ule Y/ U, Ejj, where Ej; is the union of exceptional components in (U, Yi’)c that
intersects with both Y} and Y}, given by Lemma 6.17. Since X is a ‘blow-down’ of X’, and A
does not fix (X,x) C PW, the blow-down map X’ — X must contract at least one exceptional
component, say, in E;;. Suppose j < j'. We let Y C X be the image of (J/_; ¥/ under X’ — X.
Then it can be checked directly that Y C X, dy (Ox(1)) = M%l/’_ and Ly ¢ E(X). This proves
the proposition. O
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7. K-stability of nodal curves

In this section, we apply Theorem 1.5 to study the K-stability of polarized nodal curves.

THEOREM 7.1. For a polarized connected nodal curve (X, Ox (1)) the following statements are
equivalent:

(1) (X,0x(1)) is K-stable;
(2) (X,0x(1)) is K-semistable;

(3) Ox(1) is numerically proportional to wx.

One direction of the theorem is proved by Odaka who in [Odal3b] proved that a nodal curve
X polarized by w?}k is K-stable for a k € N. He used birational geometry and a weight formula
proved by himself and by the second named author independently [Wan12]. He also informed us
that he can generalize his method to prove the stated theorem.

7.1 K-stability of curves
We recall the notion of K-stability of polarized curves. (See [RT07, § 3] and [Stol1] for the general
case.)

DEFINITION 7.2. A test configuration for a polarized curve (X,0x(1)) consists of a Gy,-
equivariant flat projective morphism 7 : X — Al and a G,,-linearized 7-relative very ample
line bundle £, where G,, acts on A! via multiplication, such that for any ¢ # 0 € Al, (X,
£) % {1} 2 (X, 0x(1).

For a closed subset ¥ C A, we call it a trivial configuration away from 3 if there is a closed
subset g C X such that there is a G,,-equivariant isomorphism X — 3 =2 X x Al — 3 x {0},
such that the line bundle £|y_yx is the pullback of a line bundle on X, and the G;,-action on
X x Al is the product action that acts trivially on X. When ¥ C X has codimension at least 2,
we say (X, L) is trivial in codimension 2.

Given a test configuration (X, L) for a polarized curve (X, O0x(1)) as above, we let w(l) be
the weight of the induced G,,-action on AP (7, L%g). By Riemann-Roch, w(l) = agl®+ a1l +ag
is quadratic in I (for [ > 1). We expand the following quotient in [~

w(l)
L-x(0x(1))

Using x(Ox (1)) = bil + by, the Donaldson-Futaki invariant of the test configuration (X, L) of
(X,0x(1)) is defined to be

—egt+e 7M.

bo—ai-b
DF(X,£) = ey = -1,
1

Remark 7.3. Let (X,L) be a test configuration for (X,0x(1)). Then the Gy,-linearization of
£ induces a G,,-linearization of £®!, which makes (X, £L®!) a test configuration for (X, Ox (1)),
with DF(X, L% = DF(X, £).

DEFINITION 7.4. A polarized nodal curve (X, Ox(1)) is K-stable (respectively K-semistable) if
DF(X, L) < 0 (respectively < 0) for any test configuration (X, £) of (X, Ox (1)) that is non-trivial
in codimension 2.

2121

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

J. L1 AND X. WANG

7.2 Proof of the main result

For (X,0x(1)) and integer k, we let W&,) = H%(Ox(k)) with X C PW(;, the tautological
embedding. Then, given any 1-PS subgroup A of AutPWy,, the Gy,-orbit of X in PW, x Al
via the diagonal action produces a test configuration of (X,Ox(k)); we denote such a test
configuration by (Xy,£y). Conversely, any test configuration of (X, Ox(k)) can be constructed
from a 1-PS of AutPW(;) (cf. [RT07, Proposition 3.7]). Thus, to prove the K-stability of
(X,0x(1)), it suffices to show that when (X}, £,) is non-trivial in codimension 2, the Donaldson—
Futaki invariant DF (X, L) < 0 for sufficiently large k and all 1-PS X of Aut PW(y,.

In the following, for notational simplicity, we replace (X,0x(1)) by (X,0x(k)), and say
that Ox (1) is sufficiently ample instead of saying k is sufficiently large. This way, we only need
to study test configuration (X, L)) for any 1-PS A of Aut PW, assuming Ox (1) is sufficiently
ample. To proceed, we first relate DF(&X), L)) to the Chow weights of (X,0x(l)). We pick
a A-diagonalizing basis s = {sq,...,sm} of WY and represent A\ as a 1-PS of GL(WV) of
the form

A(t) := diag[t™, ..., t"™], po=p1=>-2pn=0, p €L (7.1)

By Remark 7.3, replacing £ by £®! the test configuration (Xj,£) introduces a test
configuration (X, £L#!), which by [RT07, Proposition 3.7] is induced by a 1-PS \; of Aut PW ().
We now construct explicitly such );. Since Ox (1) is a sufficiently high multiple of an ample line
bundle, the tautological

¢ S'WY — Wi = H(0x(I)) (7.2)

is surjective. We fix our convention. For I = (ig,...,4,), we define s/ = 360 - sm which has
weight p(I) = 3_; p; - i; under the induced A action on STV,

We let &; be the set of monomials in S'WV. We order &, as follows: We define s! = s’
when either p(I) < p(I'), or p(I) = p(I') and there is a 0 < jo < m such that i; = i; for all
J > jo and ij, > i . Thus, the set {¢/s;} is ordered increasingly as t*so, ..., " sy,. Following

the definition, we see that s/ = s’ if and only if s7 - sT = s/ - s!" for any non-trivial monomial

s/

We pick a basis of W(\l/), which will be a diagonalizing basis for A;. Let m; + 1 = dim W(\l/)

and set s;,,, = sl with weight Ol,m; = |- pm. Suppose for an integer 0 < k < m; we have picked
Slk+1,---51m, and their weights g; j; let ©; ;11 be the linear span of {s;k4+1,...,51,m, } and let

s’k be the largest element in

{s' €&, | du(s") & u(Orps1)}-

We set s 1, = ¢1(s'¥) and define o1k = p(Ii) to be the weight of sr . Then s0,...,s;m, form a
basis of W(\l/). We let A; be the 1-PS of Aut PW(;) with diagonalizing basis {s1,0,---,S1,m, } and
weights

)\l(t) . Sl,k = th’kS“ﬂ. (73)

Note that for [ =1, 51 = tP*s, and Ay = A

LEMMA 7.5. Let (X)y,,£y,) be the test configuration of \;. Then we have an isomorphism of test
configurations (Xy,, £y,) = (X, L.

2122

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

HILBERT-MUMFORD CRITERION FOR NODAL CURVES

Proof. We let Ry be the k[t]-submodule of HY(Ox (kl)) ®k[t] generated by monomials of degree
k in elements in {t%is;;} and let R; = @k>0 Ry 1, where R = k|t]. Clearly, R; is a graded
k[t]-algebra and is generated by R; ;. Following [Mum?77, p. 28], we have

Xy, = Projyy Ri C PWj) x Al. (7.4)

For | =1, we have X\ = Projy; R1 C PW x Al

We claim that for any k& > 1, R = Ry C H°(Ox(kl)) ® k[t]. Indeed, by definition, we
have R;1 = Ry ;. Since Ry, is generated by R;; and Ry j; is generated by R;;, we conclude that
Ry = Ry as k[t]-submodules of H°(O x (kl))®k|[t]. Consequently, they induce a homomorphism
of graded k[t]-algebra R; — R;, which induces a G,,-equivariant isomorphism (X, L%Z) = (Xy,,
L,)- This proves the lemma. O

LEMMA 7.6. Let the notation be as before. Then

Jim It w(\) = byt DF(X), L)) < oo.

—00

Proof. Tt follows from Lemma 7.5 that w();) is the Chow weight for the test configuration
(X, £§Y). By [RT07, Theorem 3.9], we know that this Chow weight w();) is a linear function
of the form —bl_lDF(X)\, L) -l + constant. Dividing by [ and taking the limit, we complete the
proof of the lemma. O

Thus, to prove DF(X), L)) < 0, it suffices to show that
Jim 7w () > 0. (7.5)
Proof of Theorem 7.1. We will prove the theorem in the following order:
B)=1)=(2)=03).

Since the middle arrow trivially follows from Definition 7.4, we only need to establish the first
and third arrows.

Suppose X is a stable (nodal) curve and Ox (1) is numerically proportional to wx; then
(X,0x(1)) is slope stable. We will show in this case that for any 1-PS A C SL(W) we have
DF(X)y, L)) < 0 unless (&), L)) is trivial in codimension 2.

We divide the study into two cases. The first case is when e(J(\)) = 0. In this case, we claim
that there is some 0 < igp < m such that g;, = 0 and (;5; {sx = 0} = @. Indeed, let iy be the

smallest index such that p;, = 0. Suppose q € (-, {sk = 0} # @; then we have p; () > 0 and
Aq # ¥, and hence e(J(\)), > 0. By Corollary 2.8 and Lemma 2.4 we obtain e(J(A)) > 0, a
contradiction. Therefore we have (,; {sx = 0} # ¢, and then ip < m. This proves the claim. To
continue, we quote a result of Stoppa ([Sto09, pp. 1405-1406], [Stol1]) that in this case either
the test configuration (X, L)) of A is trivial in codimension 2 or DF(X), £y) < 0. This proves
the theorem in this case.

The other case is when e(J(\)) > 0. We let A} be the staircase constructed from \; using
Proposition 3.5 with weights QEJ = 01;- We let 9;; be the shifted weights according to the rule
(5.14) applied to Aj; namely, g;; = ming{or,;—on, () | @ € Ig(A))}. Since (X, 0x(1)) is slope stable,
applying Theorem 5.10 and Proposition 3.5, we can find an € > 0 such that for [ sufficiently large,

1 € T
heo) =1 wN) > D= 7.6

We state a sublemma which we will prove shortly.
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SUBLEMMA 7.7. Suppose e(J(\)) > 0. Then liminf,, o (1/1%) - Y"1 615 > 0.

Applying Sublemma 7.7, we obtain [=! - w();) > 0, which by Lemma 7.6 is equivalent to
DF(X), L)) < 0. Since X is arbitrary, we conclude that (X,Ox(1)) is K-stable. This proves one
direction of the theorem.

Conversely, suppose (X,0x(1)) is K-semistable. Since (X,0x(1)) being K-semistable is
equivalent to (X, Ox(k)) being K-stable for all large k (cf. Remark 7.3), without loss of generality
we assume that Ox (1) is sufficiently ample. In particular, this implies that X C PW contains no
line. We claim that (X, Ox (1)) satisfies (1.6) with a = 0. Suppose not; then there is a subcurve
Y C X destabilizing (X, 0x(1)), that is,

degy wx by
ey WX 1) — 1) - Xso. .
dog oy deg Ox (1) — deg Oy (1) 5 >0 (7.7)

Let Wy = H%(Oy(1))Y ¢ W = H°(Ox(1))V, which is the linear subspace spanned by Y let
mo+1 = dim H°(Oy (1)). We choose a two-weight 1-PS \ as in the proof of Theorem 1.5 (at the
end of §5) so that A\ acts with weight 1 on Wy C W and acts with weight 0 on a complement
W)% of Wy C W. Let (X, L)) be the test configuration associated to A. We now evaluate

DF (X, £ A 1 (2deg X i
DE(X LN _ i — W) ( leiX%ll ﬂgl —6(3()\1)))

To evaluate this term, we identify the central fiber (X))o of X). As Ox (1) is sufficiently ample,
X C PW contains no line. Further, as A is a two-weight 1-PS, and the weight one eigenspace is
Wy, we see that (X))o =Y UEUY’, derived by inserting fy-lines (whose union is E) into X at
the nodes Y NY?, and Y’ PW5 is isomorphic to vC ¢ X, because O x (1) is sufficiently ample.
Consequently,
HO(LS (20)0) = H(Oy (1) & HY(Op()(—(Y UY') N E)) @ H(Oy(1)),

and elements in H°(Ox(I)|y) (respectively H°(Og(l)(—(Y U Y’) N E)), and respectively
H°(Oy+(1))) have weights [ (respectively [ — 1,...,0, and respectively 0). Therefore

I(l-1 l l
Z o1i = h0 Oy (1) -1+ Ly - ( 5 ) = (deg Oy (1) + ;) AT <1 —g(Y) - ;) .
By Definition 2.4 and Lemma 7.5, Y17 0., = e(J(N)) - (1#/2) + O(l) is the weight of the
Gy-action on APP(HO(LY) /tHO(LSY)). Thus,
e(I(N)) = Pe(I(N)) = 21%(deg Y + £y /2).
Combining and simplifying by using degwx = g — 1, etc., we obtain

b1 -0 l -0 l

DF(X), L)) 1 (2ldeg X >N 01
(b1 :_zlféloz'< ZdegXHgg _6(3“1)0
 lim 1 2l2( —1)(degY + ly /2) — 12 degy wx
oo | ldeg X +1—g
91 (dng“X -degX—dng—gY>. (7.8)
deg X \ degwx 2

Since Y C X is destabilizing, by (7.7) we have DF(X), £)) >0, contradicting (X, Ox(1)) being
K-semistable. This proves that (X,0x(1)) satisfies (1.6) with a = 0. In particular, we obtain
that (X, 0x (1)) satisfies (1.6) for all large [ since (X, Ox(()) is also K-semistable for any [ > 0.
This forces Ox (1) to be numerically proportional to wy. This proves the other direction of the
theorem. O

2124

https://doi.org/10.1112/50010437X1500737X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500737X

HILBERT-MUMFORD CRITERION FOR NODAL CURVES

It remains to prove Sublemma 7.7. We introduce a few more pieces of notation. Following
the discussion in §2, we define (for ¢ € X and § 1k the lift of s;j to the normalization X of X)

ho(N) = min{i | 8;11]5. =0}, A(Ni, q) = max{i | v(314, q) # oo}, (7.9)
and
AaN) ={p € Xa | 3p0nP) =0} AN) = U Aa(N). (7.10)
a=1
(Here r is the number of irreducible components of X.) We claim that
AN) =AN) and  e(I(N)) = nle. x(Oxyu (k)/IN)F. (7.11)
Indeed, by our choice of the basis {s; 0, ..., Sim,}, we have Siha(N) = §lha and 75, (\) = lpn, for

all X, C X, from which we deduce

Aa(A) = (Bip ) 7H0) = (33,)7H(0) = Aa(N) € Xa

and hence A()\;) = A(\) by Definition 3.1. Also, by the construction of );, we have the middle
identity

(t20510, ..., t%misy ) = T(N) = IA) = (t7s0, ..., 1P s:,)" C Ox (1), (7.12)

where the first and the third are by the definition. This implies the second part of (7.11) and
hence our claim. Furthermore, (7.12), together with (2.11), (2.12) and Lemma 2.6, actually
implies A, (\;) =1-Ay(\) for each ¢ € A(N).

With those in hand, we conclude that for A}, the staircase 1-PS obtained from ); by applying
Proposition 3.5, we have (1) A()\;) = A()\)) and for each g € A()\), w(I(N),q) = w(j(/\g),q); and
(2) for each g € A(N), Ag(N) =1+ Ag(N) C Ag(N).

Proof of Sublemma 7.7. We first prove that the sublemma holds when pp_, = 0 for all irreducible
components X,. Indeed, applying [Mum?77, Proposition 2.11], we have

2

l
Z o1 =e(J(N)) - 3 +ai-l+ a2, a; depending only on A. (7.13)

Since all pp, = 0, we have g;; = 0;;. Therefore,

hmmf— ZQM = hmlnf Z 01i = ) > 0.

l—o00 12

We now prove the general case. We claim that there is an irreducible component Xz and a
g € Xz such that

12N = iy - w(I(N), q) > 0. (7.14)

Suppose not. Since the > for (7.14) always holds, we have p; = g, for every i € I,. Because of
the prior discussion, we must have an X, such that g, > 0. Since X is connected, we can find
a pair Xo # Xp such that Xo N Xg # @ and pp,x) > prgn) =0

Let 7 : X — X be the projection and let ¢ € Xﬁ N Y XN X3). We claim that the pair
(B, q) satisfies the inequality (7.14). Since 7(q) € X,, we have 5;(¢) = 0 for all j > ho()), and
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A

l,ig(q)

Qliy(q) @

Cliz(q) ¢

9/./1“,(/\;)

Qz,hﬂ(xi)

w(I (A1), q") 1 2 w(T(Ar), q)
Ay for ¢’ € Xo A, for g € XB

FIGURE 6. (Color online) The Newton polygon at ¢,¢’ € X when 7(q) = n(¢') € Xor N Xgis a
linking node.

hence ig(q) < ha(A). Since py, () > prg(n) = 0, we have pi ) = pp,(n) > 0, and thus [Ag(A)| > 0,
contradicting the assumption that (7.14) never holds and Phs(n) = 0. So a pair g € X 3 satisfying
(7.14) exists.

Let (B, q) be such a pair. We will show that

Z 0L =
i

(1A(AD] = 1m0 - w(I(N), @) — po - 1) (7.15)

| =

and

.1
timinf 7 - (1841 = o1, 0 - 0D, @) > 18] = a1 - 0T, ). (7.16)

The sublemma, follows after these two inequalities are established.

We prove (7.15). Following the notation introduced in § 4, we have >~ 0;; > Zz‘eﬂa(/\g) O1i =
> €1 () 01,i, where Ig()\)) is the set of indices for X3, and I§" (X)) is the set of primary indices
for ¢ € X, both with respect to the staircase \;.

By Propositions 3.9 and 3.11, we know that for ig(q) # i € I} (X)) we have g;; = 0Li = OLhs (-
(Note that it is possible that 0 ;q) = 01i0(q) — Oy (N < Qliolg) = ClLhg(N) for some o/ # 3
(cf. (5.14)) and Figure 6.)

By the proof of Lemma 4.2, we have

Z o = |AP(A) N (L, wP (g, A))] x R)| — Ohs(N]) ° (wP(g, A}) — 1).
i€y M)\ {io(q)}

Following (4.9), we continue to write 7,(\]) = max{i € ;" (\))} and wP" (¢, \]) = w(é]—q(/\g)ﬂ()\;),
q). By the boundedness result from Corollary 3.12, for sufficiently large [, since the number of
secondary indices is bounded by a uniform constant depend only on g and n (cf. Definition 3.10
and Corollary 5.3), the effects on the shape of Ay()\]) from the secondary indices I,(A\)\I§" (X))
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A
Q1,ig(q)
/

AN

L’z,hB(Ag) ’
T
Aq()‘l)
0, hg(N\)
1 2 . 1wV, @)

FIGURE 7. (Color online) Where T is triangle bounded by y = 0 5,(ny), © =1~ w(J()), q) and the
line joining (0, 0;o(q)) and (I - w(I(A), @), 015400))-

are marginal; thus for large [ we have

AT N ([1,wP (g, D] X R)| = uy o - (WP (g, A7) = 1)
(184D N ([Lw @A), @) = DI X R)| = 01,0x) - (w3, @) = 1)
(186D = ansp) - TN @) = GLig(g))-

On the other hand, by our construction, g;;,q) < 01,0 < po -l. Combining, and adding 0;,(,) > 0,
we obtain

> 1
2
1
2

ous > 28] = oy ) - W), @) — po - D).
1
i€l (M)

This proves (7.15).
Before we move to (7.16), we claim that

OuLnig(N) — QULhg(N)

Ap = limsup =0. (7.17)

l—o0 l
Suppose not. Say Ag > 0 (it is non-negative, by our construction of staircase in Proposition 3.5);
then for [ large, OLhs(X) — QLs(N) = % 1 Ag.
By examining the geometry of Ay(X\;) C Ay(N)) (cf. Figure 7), we obtain

(V) — 2-l-wj)\,q
8401 - 18,0 > 7] = § - o0 = s TR0

OLio(q) — QLhg(N)

1

2

, N

21.(%‘[) el oogyp s,
2 2 UPio(q) = Prs())

where we have used (p;,(q) — Phﬁ(A)) = OLio(q) — Ohg(x,) because of Lemma 7.11. Therefore,

T wN) = wN) + 171 (e(IN) = e(IN))) = 17 (e(I(N) — e(I(N)),  (7.18)

where we have used Theorem 1.5 to deduce w(X}) > 0.
By Corollary 2.8 and our construction of staircase using Proposition 3.5, we deduce

1 (eIN)) — e(I)) = 17 (1A, — 1A,(\))) > C - 43 -1
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This is impossible since Lemma 7.6 implies that the left-hand side of (7.18) remains bounded for
large [. This proves Ag = 0.
We now prove (7.16). Because Ag = 0, [Ag(A))| = |Aq(N)|, and by (2) after (7.12), we obtain

[AgND] = 0ums (1) -w(I(N), q)

= |Ag(ND| = @1ns00) - w(I(N), q) + OLns () - WA, @) = 01ns () - w(I(N),q)

> Ay = euns ) - W), @) + (eunsn) — eunsap) - (TN, q)

~ OLhg(N) — OLhg(N ~
= 2 (18] = o) - w(TN), @) + 12 SO0 (), ).

Taking liminf as | — oo, and using Ag = 0, we obtain (7.16).
Finally, by (7.13) and that 0 < ¢;; < 01,5, we conclude that the liminf in the statement of
the lemma is finite; thus the liminf is finite and positive by (7.14). This proves the lemma. O

Remark 7.8. It follows from the proof of Lemma 7.7 that w(X\;) = ¢- po -1 for [ large (cf. [Sto09]).
This can be viewed as a version of uniform Chow stability, an advantage of the GIT approach
compared with that of [Odal3a].

Remark 7.9. Theorem 7.1 implies that the Deligne-Mumford compactification ﬂg (for g > 2)
is a K-stable compactification of the moduli of smooth curves. As K-stability is an analytic
version of GIT stability via a CM-line bundle A*'2®§~! on the moduli of curves defined by Paul
and Tian [PT06], it is interesting to see this generalized to moduli of high-dimensional polarized
varieties. For recent progress, see Odaka [Odal2].

Remark 7.10. Theorem 7.1 can be easily generalized to the weighted pointed stable curve, that
is, although a weighted pointed stable curve in general is not asymptotic Chow stable with
respect to the polarization wyx (a-x)®*, it is log K -stable (cf. [0S11] for the definition). In other
words, the asymptotic of Chow instability behaves in a controlled manner.
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