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Abstract
The information deployment on social networks through word-of-mouth spreading by online users has contributed
well to forming opinions, social groups, and connections. This process of information deployment is known as infor-
mation diffusion. Its process and models play a significant role in social network analysis. Seeing this importance,
the present paper focuses on the process, model, deployment, and applications of information diffusion analysis.
First, this article discusses the background of the diffusion process, such as process, components, and models. Next,
information deployment in social networks and their application have been discussed. A comparative analysis of
literature corresponding to applications like influence maximization, link prediction, and community detection is
presented. A brief description of performative evaluation metrics is illustrated. Current research challenges and
the future direction of information diffusion analysis regarding social network applications have been discussed. In
addition, some open problems of information diffusion for social network analysis are also presented.

1. Introduction
In the digital era, social networks are gaining popularity and contributing to the information diffusion
process. Therefore, analyzing the importance of social networks in information diffusion (Granovetter,
1973) is one of the focused areas of research among researchers. Users are not the only receivers of
information these days; instead, they contribute largely to the evolution and propagation of informa-
tion. The behavior of the individuals plays an essential role in the diffusion process as they participate
in the exchange of information among peers and neighbors, defining their social relations and creating
networks. This social network gradually grows as the topological relations of the users are covered,
eventually leading to a large and complex network that can act as a medium for information diffusion.
Social influence can be explained as a sort of behavioral change that is induced in an individual by
another called an influencer. This change can be either knowingly/directly or unknowingly/indirectly
(Chen et al., 2014). Factors like network distance, the strength of relationships among the individuals,
characteristics of the individuals, timing, characteristics of the network, etc, are the factors that affect
the level of social influence. The rapid growth and emergence of technology have increased the pace of
information diffusion. Social media websites have contributed largely to the diffusion process as they are
handy tools for spreading information faster. This leads to the need to analyze the influence and diffusion
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process through the available frameworks as sometimes it creates public issues, especially in cases like
marketing and rumors related to emergencies (Razaque et al., 2019). The diffusion of information in
social platforms is like the spread of an infectious disease (Abdullah & Wu, 2011). The situation of dif-
fusion can be related to the rule of one percent, which highlights that mostly 1% of the users contribute
to the spread of the information largely, and the rest 99% of the users have a nominal contribution in the
propagation of the information (Hargittai & Walejko, 2008). Therefore, it is important to bring forth the
existing theories and analyze the advantages and disadvantages of the existing models. Along with this,
identify an apt social network information interaction design that can solve the problems induced by
the evolution and diffusion of information. The four stages that help in analyzing information diffusion
are: information diffusion process modeling (Varshney et al., 2014), influence evaluation (Varshney
et al., 2017), algorithm design of SNA problems, and identification of influential users (Sheshar
et al., 2021).

Digitalization has led to the generation of a tremendous amount of data through social networks
because of user participation. This data contains a variety of information. People share details about
the events happening in their daily lives, posting their opinions about breaking news, companies pro-
moting their products by hiring influential users, etc. This way, the information propagates through the
network and diffuses across the users (Chang et al., 2018). The connections of such users can further
re-share the posts, and the process of diffusion continues. Users who propagate the information and
users who adopt the information are called influencers and influenced, respectively. However, the infor-
mation diffusion mechanism is unknown but analyzing the process of diffusion is important from the
perspective of real-life applications like social recommendation (Elsweiler et al., 2007; Backstrom &
Leskovec, 2011; Xu et al., 2014), viral marketing (Richardson & Domingos, 2002; Kempe et al., 2003;
Leskovec, 2007), social recommendation (Elsweiler et al., 2007; Backstrom & Leskovec, 2011; Xu et al.,
2014), social behavior prediction (Xu et al., 2016; Zhao et al., 2016; Ma et al., 2017), and community
detection (Fortunato 2007, 2010). Therefore, studying information diffusion analysis for SNA is vital
for enhancing scholarly discourse in the field. A potential research gap could be explored, focusing on
developing a comprehensive framework that brings together different elements of information diffusion.
This framework would encompass the processes, models, deployment strategies, and practical applica-
tions of information diffusion. Despite the extensive research on information diffusion, there seems to be
a lack of a comprehensive approach that effectively addresses all the different components in a coherent
manner. This manuscript aims to bridge the gap by thoroughly exploring and synthesizing the elements
mentioned, providing valuable insights for both theoretical understanding and practical applications
in various contexts. This has attracted several researchers from sociology, computer science, etc., to
study the mechanism and propose models to simulate and describe the process. Some of these models
include the linear threshold (LT) model (Granovetter, 1978; Girvan & Newman, 2002; Richardson &
Domingos, 2002; Kempe et al., 2003; Leskovec, 2007; Fortunato, 2007, 2010; Xu et al., 2016; Zhao
et al. 2016; Ma et al., 2017), independent cascade (IC) model (GoldenbergJ, 2002), and epidemic mod-
els (Kermack & McKendrick, 1932). Most of the models assume that the diffusion of information starts
from a set of source nodes called seed nodes, and the other nodes can access the same through their
neighbors. The influencers control the spread of information across the network, leading to influence
maximization.

This article presents a review that studies about information diffusion analysis and its applications
in various fields. The organization and contribution of the paper are illustrated in Figure 1. The main
contribution of the study is given as follows.

1. A brief discussion of information diffusion, component, and deployment is presented.
2. The comparative analysis of classical diffusion models, along with their vulnerabilities, are

discussed.
3. Discussion of information diffusion analysis methods corresponding to different applications

like community detection, influence maximization, and link prediction is presented.
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Figure 1. The information diffusion analysis survey overview

4. The performance evaluation measures, along with research challenges and future prospects
regarding different applications, are detailed.

5. The open problems are discussed, corresponding to information diffusion analysis.

1.1. Difference from existing surveys
Several surveys exist in the literature that deal with influence maximization, diffusion models, link
prediction approaches, etc. Each such survey focuses on some key points.

• The authors in Das and Biswas (2021b) mainly focus on how information diffusion can be uti-
lized for community detection. Different aspects have been covered in this survey like how the
social facets and network properties are affected by the information flow, where the information
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is generated and how it is propagated in the network has been explored, how the different com-
munity detection algorithms are impacted by the network parameters and the social facets
has been studied and also the evaluation metrics for quality and accuracy measurement of
communities has been discussed.

• In Kumar et al. (2020), a survey has been presented that explores the link prediction aspect
of complex social networks. Several models have been discussed, including fuzzy models,
network embedding methods, probabilistic methods, deep learning models, clustering-based
models, etc. In this work, the aspect of different types of networks has also been considered
like heterogeneous, temporal, and bipartite networks, and experimental results on real-world
datasets have been discussed.

• The authors of Azaouzi et al. (2021), presented a survey on influence maximization and their
contributions include the exploration of influence maximization models based on node topo-
logic technique, the impact of privacy preservation and security on these models have been
studied, a survey has been done for the group-based models, and finally the open challenges
and future directions have been depicted to lay down the foundation for further research.

• Information diffusion models have been extensively studied and classified based on character-
istics, and pertinent vulnerabilities, as well as threats, have been elaborated in Razaque et al.
(2019). Applications and limitations of the models have been discussed, and recommendations
have been provided for future improvement.

• In Sheshar et al. (2021), authors have presented a survey of information diffusion models as well
as influence maximization algorithms for single/multiple networks. In present survey covers
the theoretical analysis of influence maximization techniques and their respective frameworks.
It also covers the context-aware influence maximization approaches and performance metrics
related to the influence maximization algorithms; their comparison and challenges have also
been explored and depicted.

• The authors of Singh et al. (2024, 2023) present surveys on social network analysis with respect
to language information analysis, privacy, tools, SNA process, and application. They have also
discussed the advantages and limitations of SNA techniques.

In this survey, Section 2 focuses on the information diffusion process, how it propagates through
the network, affects the various parameters like network topology, social facets, etc., and impacts the
various applications and users in the social networks. Section 3 discusses different types and aspects
of the information diffusion models. Section 4 presents various research verticals such as influence
maximization, community detection, and link prediction of SNA with respect to information diffusion.
Section 5 discusses the evaluation metrics of SNA corresponding to various research verticals. Section 6
discusses research challenges and future directions, while Section 7 discusses open problems. Finally,
Section 8 presents concluding remarks.

2. Information diffusion process
Gaining a deep understanding of how information spreads is crucial in our modern, interconnected
world. The rapid dissemination of information has a profound impact on shaping opinions, influencing
behaviors, and driving societal trends. Nevertheless, despite its importance, there is a noticeable lack of
research in fully examining the complexities of the information diffusion process. The manuscript seeks
to explore the complex aspects of information diffusion. This manuscript aims to explain the fundamental
processes that facilitate the spread of information across different platforms and networks. This research
aims to provide valuable insights for scholars, practitioners, and policymakers by identifying key fac-
tors that influence the diffusion process, including network structure, content characteristics, and user
behavior. In addition, the manuscript aims to provide practical applications and deployment strategies to
bridge the gap between theoretical understanding and real-world implementation. This will help facili-
tate more effective information dissemination strategies in various contexts. The information diffusion
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Figure 2. The information diffusion process components (Razaque et al., 2019)

process on social networks is affected by several factors. These factors can be analyzed considering three
broad dimensions, namely cognitive dimension, structural dimension, and relational dimension:

• Cognitive Dimension. The emphasis of this dimension is on common vision and understanding
among the receivers of information, similar preferences of the users, etc. These commonalities
affect the thought process of the entire circle of connections and lead to the spread of infor-
mation as well as the establishment of interpersonal relations. This gives a chance to the user
to judge and assess the value of the information and accordingly consume it (Bhattacherjee &
Sanford, 2006).

• Organizational Dimension. It consists of the network connections of an individual, flow of
information, and resource pipeline access. It allows the users to access the information of their
choice (Kim & Galliers, 2004).

• Relational Dimension. It considers the details of the stable and long-lived connections that can
lead to shorter paths for effective acquisition of information and further assure quality diffusion
of information (Rajamma et al., 2011).

Further, concerning each of these dimensions, there are several components that affect the informa-
tion diffusion and should be considered in the analysis of the process (Razaque et al., 2019) as shown
in Figure 2.

• Message Access. It consists of a platform that allows the users to access diffused messages,
and this platform further forwards the messages that are received to the neighbors. Later, the
message is received by all the nodes in the network, which increases the overhead of some
needless messages but leads to a very vigorous distribution of the information (Khelil et al.,
2002).

• Trust, Reciprocity and Cooperation. In a social network, both the receiver and the disseminator
are connected based on trust; sharing and reciprocation of information happens based on the
status of personal relations, and sometimes, the users choose to cooperate among themselves
to gain access to more messages and gather more information (Manapat & Rand, 2012).

• Value. In a network, the existence of multiple connections leads to excellent quality and a large
amount of knowledge dissemination through information circulation. The recipients can further
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evaluate the information based on the value and usage of information that solely depends on
the needs, choices, and experiences of the users (Guille et al., 2013).

• Network Link. The links in the networks allow the users to share their views, make the level
of knowledge and values more balanced so that the information can be popularized, and the
breadth of diffusion can be expanded so that more and more receivers can get access to it.

• User Information. It can be obtained from YouTube, social sites, blogs, etc. This information
highlights the role of social connections in information gathering and how information diffusion
impacts the choice of one user based on the preferences of other connections (Susarla et al.,
2012).

• Individual Behavior. Once the receiver gets access to the messages, they can filter out the useful
information that matches their requirements, preferences, and values.

• Feedback and Resource Sharing. The information diffusion process gives a fair chance to the
receiver to exchange views and feedback about the information with the disseminator and also
share other resources (Greenhalgh et al., 2008).

2.1. Information deployment
In social networks, communities’ formation and detection depend on several factors like network
attributes, temporal characteristics, and social attributes. The data stream in the organization influences
every one of these variables contrastingly at various levels. In this manner, it is fascinating to see what
the data stream means for local area recognition and informal communities. The elements influencing
the informal communities can be extensively delegated (Das & Biswas, 2021b):

1. Network Properties. Topological and structural characteristics of the network.

• Edge Strength Measures. These measures, like connection strength, value strength, and tie
strength, are used to assess the relationship between two vertices that share a common edge.
The strength, however, can be measured by computing the number and the type of vertices
impacted by the diffusion process.

• Belongingness Measures. For any vertex v, the belongingness in a specific local area c is
controlled by having a place degree or having a place factor. Thinking about the viewpoint
of data dissemination, the belongingness strength can be estimated by deciding the kind of
vertices impacted during dispersion.

• Centrality Measures. The increasing popularity of social networks has led to an increase
in the amount of information that is generated and made available to users. However, the
ideas absorbed by the individuals highly depend on certain influential entities that can acti-
vate the inactive vertices through their influence. Such entities control the propagation of
information in the network to a great extent and enhance the rate of diffusion. Some of the
measures for identifying influential entities include betweenness centrality, degree centrality,
and closeness centrality.

• Clustering Coefficient. During the time spent on data dissemination, the data is proliferated
across the organization through the innate vertices that are available in the base conceivable
length. Simultaneously, some topological properties of the organization are taken advantage
of during the dissemination interaction. One such property is the grouping coefficient, which
decides the degree to which the vertices bunch together and contribute fundamentally to local
area identification.

• Structural Equivalence. Part of data is accessible in interpersonal organizations nowadays,
yet while getting the data, the dependability of the data assumes a significant part for the
client. Here impact makes an effect, that is, the data spread directed by the impact is more
dependable and arrives at a bigger arrangement of vertices. Such an impact can be addressed
by data not really set in stone from client credits, client demands, and other pertinent
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elements. The features that can measure the information diffusion probability by utiliz-
ing appropriate similarity/dissimilarity evaluation techniques. Thus, these methods are used
to evaluate the structural equivalence. Structural equivalence measures include the Jaccard
coefficient, cosine similarity, and Euclidean distance.

• Boundary Vertex. Users in social networks connect with other users who are either similar or
known to them. Hence, the information propagation in the network is either controlled by the
similarity or by the topology. In terms of topology, the extent to which the neighboring nodes
tend to connect. Concerning similarity, it is the user’s attribute, interest, or characteristic
that controls the connections. The diffusion of information in the network sometimes affects
a pair of vertices differently as they may be exposed to two types of information that are
different from each other. Such neighboring vertices of a vertex are referred to as boundary
vertex.

2. Social Facets. It quantifies the various aspects of social interaction.

• Contagion. In social networks, following a particular trend, is a usual practice. Hence, any
activity of a user is affected by the neighbors’ actions. The inactive vertices get activated
by the neighboring vertices during the information diffusion process. This influence of
neighbors on the inactive vertex is called contagion. A higher degree of the vertex indi-
cates higher chances of getting affected by the information propagated by the neighbors and
vice versa.

• Common Neighbors. Formation of groups based on some similarity is a common character-
istic of social networks. These groups exchange information during the process of diffusion.
It is observed that there is a strong relationship among those users who have a huge num-
ber of common neighbors. Therefore, a dense sub-graph can depict the diffusion outcomes
in such cases, and the community detection algorithms can utilize this facet to recognize
inherent communities.

• Topic. Interest in the group and the dynamics of the diffusion network highly affect the speed
at which the diffusion of a topic happens in a social network. For example, a politically
inclined group will be affected more by a political campaign and will not be bothered about
the advertisement of trekking equipment. A high diffusion speed indicates a higher affinity
for that topic in the underlying network.

• Homophily. The users in social networks tend to connect with like-minded or similar users.
This similarity is termed homophily which is exploited during the information diffusion pro-
cess. The interaction pattern between similar users can be modeled through the independent
cascade model. It is assumed that the diffusion initiated based on homophily affects many
homophilic connections.

• Social Interaction Channels. Nowadays, users spend quite some time on social networks
to interact with their peers and friends. Much information exchange happens on social
networks, which opens up a kind of interaction channel through which people staying at
physically different locations can also interact. This enhances and broadens the information
diffusion process and increases the efficiency of the interaction channels.

• Influential Spreaders. Certain entities are popular enough and have one too many relations
in the network. Such users are referred to as influential spreaders as they can initiate infor-
mation diffusion in social networks by activating inactive users. However, the strength of
information propagation depends upon the data (whether it meets the user’s requirement)
and the popularity of the spreader in the network. The higher the impact of the influential
spreader, the higher the probability of diffusion.

https://doi.org/10.1017/S0269888924000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888924000109


8 Shashank Sheshar Singh et al.

3. Information diffusion models
This manuscript highlights the significance of information diffusion models in understanding SNA anal-
ysis. These models are extremely useful for researchers, allowing them to analyze how information
spreads across different platforms and communities. By understanding the inner workings and patterns
of information spread, these models help in creating better strategies for communication, marketing, and
policy-making. In addition, they enable individuals and organizations to navigate the intricacies of the
digital era, promoting well-informed decision-making and strengthening societal resilience. Therefore,
the investigation and improvement of information diffusion models are crucial pursuits that contribute to
a deeper comprehension of our information-driven world. Information diffusion models have an essen-
tial role in several real-life applications, including sociology, ethnography, and epidemiology. The main
components of the information diffusion model are disseminator, resource sharing, receiver, and opin-
ion formation (Sheshar et al., 2021). We have discussed the classical diffusion models in the following
section and summarized the characteristics in Table 1.

• Threshold Model (TM). In the TM, or then again set of edge esteems, is utilized to separate
scopes of qualities for the conduct anticipated by the model (Schelling, 2006). Straight limit
model (LTM) is the most famous edge dispersion The linear threshold model (LTM) is one of
the most popular threshold diffusion models where a node becomes active if the influence of
the neighbors is greater than a defined threshold. In LTM, the threshold always follows uniform
distribution over [0,1]. One of the modified TMs is a linear threshold with color that considers
the client’s involvement in an item and catches item reception instead of affecting (Bhagat
et al., 2012). Direct TM is additionally altered to deal with the assessment change of clients
and permits them to change among dynamic and latent states (Pathak et al., 2010).

• Cascade Model (CM). In CM, if a node becomes active at one point in time, it has the same
probability of activating its inactive neighbors at the next timestamp (Goldenberg et al., 2001).
As the cascading process continues, an already active node will never become inactive in the
future. The other variations of independent CM (ICM) are ICM with negative opinion (Chen
et al., 2011) or ICM with positive and negative opinion (Nazemian & Taghiyareh, 2012).

• Time-aware Model (TAM). In some engendering models, the spread of social impact has been
amplified explicitly to a decent time frame. These are known as TAM, where the intermingling
of proliferation relies upon the period rather than the number of cycles (Chen et al., 2012).
The model is acquainted with accomplishing time-basic interest. TM can be isolated into two
sub-classes which are a discrete-time model and a ceaseless time model (Rodriguez et al.,
2011).

• Triggering Model (TRM). TRM is the blend of TM and CM. In the TRM, every hub is related
to an edge esteem and an appropriation work. A selection of its neighbors is guided by the
characterized work with a similar likelihood (Kempe et al., 2003). This model freely chooses
an irregular subset of its neighbors in each occurrence of the dissemination interaction (Kempe
et al., 2005).

• Epidemic Model (EM). The decent individuals can be divided into three classes in an epidemic
model: helpless (S), irresistible (I), and recuperated(R). Three plague models are generally
utilized which incorporate defenseless irresistible recuperated (SIR) (Schütz et al., 2008), pow-
erless irresistible helpless (SIS) (Parshani et al., 2010), and vulnerable irresistible recuperated
defenseless (SIRS) (Magal & Ruan, 2014). This scourge model proliferates the data dependent
on the strength of the neighbors.

• Game Theory Model (GTM). In GTM, individual conduct systems are depicted in harmony
by examining the practices and advantages of every member (Easley et al., 2012; Jiang et al.,
2014). In this model, the players make a choice and pay off to every player dependent on the
choice made by all of the playing players (Muhuri et al., 2018).
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Table 1. The comparison of the diffusion models characteristics (Singh et al., 2019; Singh et al., 2021), where Ma=Multiple Activation, Ta=Time-
specific Activation, Di=Diminishing Returns, Mo=Monotone

Activation Submodular
lightgray Model Activation condition Ma Ta Di Mo Application
Cascade Model (CM)
Independent CM (Kempe et al., 2003)

∏k
i=1 (1 − Py(vi|S ∪ Mi))

= ∏k
i=1 (1 − Py(v

,
i|S ∪ M,

i))
� �

√ √
Viral Marketing,

Collective behavior
Opinion CM (Zhang et al., 2013)

∑
x∈Na(y) Wxy ≥ Ty

√ √
� � Political campaign

ICM-NO (Chen et al., 2011)
∏k
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Political campaign

Threshold Model (TM)
Linear TM (Kermack & McKendrick, 1927)
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control
Majority TM (Richardson & Domingos,
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2
D(y) �
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Distributed computing
Small TM (Eiselt & Laporte, 1989)

∑
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√ √
Unanimous TM (Richardson & Domingos,

2002)

∑
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vulnerability
Separated TM (Kermack & McKendrick,

1927)

∑
x∈Na(y)∩ϕt−1
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y � � � � Competitive marketing

Weighted-proportional TM (Kermack &
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Time-aware Model (TAM)
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–
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3.1. Information diffusion vulnerabilities
Information diffusion models can face many vulnerabilities if the common weaknesses are uncontrolled.
As with the consistent advancement of networks over organizations, social media, etc., online protection
has become a significant subject. Vulnerabilities of Information Diffusion mainly depend upon the model
applied for link prediction. Some of the common vulnerabilities of Information Diffusion models are
discussed below:

• Node Paralysis. A lot of exploration is directed at node paralysis of motion in various mod-
els proposed in state-of-the-art approaches (Razaque et al., 2019). A one-dimensional model
begins with a random initial state. The intermittent limit conditions are dependent on different
models. The likelihood of the resistance is 0.5, a big part of the endorsement and half resistance.
Under various boundaries, the likelihood of developing the last attractors of ferromagnetism is
likewise unique. The likelihood that the attractor gives up at a similar starting thickness fluctu-
ates with the collection file. Under a similar collection file, the more noteworthy the likelihood
of a similar beginning thickness keeps an eye on the attractor when the association likelihood
becomes bigger; the expansion of the association likelihood will make the framework bound to
look steady. When the accumulation record expands, something similar starting thickness will
generally be more noteworthy in the likelihood of the attractor (i.e., the framework is bound
to look reliable because of the expansion in the number of short-range associations). Such
different circumstances prompt Vulnerabilities.

• Continuously Changing.: The organization is in an implicit, persistent way. The method
involved with adding additional associations proceeds until the number of huge distance affil-
iations and the number of short distance affiliations (i.e., affiliation probability) shows up at a
particular worth. Like this, the typical neighbor number of each center point in the little world
organization is 4(1 + x). At the point when the amassing record (T) reaches 0, the theory of
the little world organization has transformed into a little world association. Regardless, with
T1, there are incredibly close center points. Such extraordinary minimal world associations are
relative to standard associations. At the point when 0 ≤T ≤ 3, because of the characteristics
of extra-critical distance affiliations, this reach has rich characteristics. In any case, it creates a
shortcoming that can be the justification for the attack (Razaque et al., 2019).

• Instability. Instability in the model significantly reduces the efficiency and performance of
the model. Given the Instability of network geography, deciding the impact of joining and
leaving the host is essential, particularly in a P2P organization. To more readily comprehend
the effect of entering and leaving on the transmission of dynamic worms, the proportion of the
pestilence and irresistible infection boundaries ought to be utilized. The aftereffects of several
models show that the expansion and flight of hosts significantly affect the notoriety and spread
execution of the topology-aware dynamic worms (Razaque et al., 2019).

• Harder Node Evaluation. To control the diffusion of viruses, certain models combine the min-
imum traffic with the time Markov chain features. One such model is the SIR model, wherein the
infection and its removal can be described through this vulnerability. The traffic flow is affected
in the congestion and free flow phases by the viral transmission, and to assess its dynamics,
models like SIR may be used. The goal is to identify the effect on the traffic conditions and
dynamics of the system due to virus diffusion, that is, in the congestion and free flow stages
(Razaque et al., 2019).

• Limited Size. In social networks, limited size is one of the vulnerabilities. It can be studied
considering the network construction. The complex process of the experimental methods leads
to large size. Also, the data sets that are compiled are of varying and considerable sizes. The data
that is obtained from multiple sources have sufficient subjective biases which is not compatible
with existing social network size. However, this issue can be tackled by using the affiliation
network as performed in the SIR model to study the state of the nodes in the network.
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• Data Reduction. In Serban et al. (2016), the authors have suggested that, in general, the dis-
tance between the source of every estimator and its closest tree network is constant. The number
of sources can be estimated using the proposed algorithm, even if the real and existing sources
are unknown. Collisions between the wireless intermediate nodes and transmission signals lead
to a reduction in the throughput of end-to-end data transmission. Therefore, in certain models
like SIR, there are increased chances of inviting vulnerabilities due to this reduction.

• Abhorrent Types. It is difficult to assess the authenticity and truth value of the information
flowing through social networks. When the information arrives at a node, it is the choice of
the netizen whether he/she wants to forward it or not. Similarly, sending real or distorted infor-
mation to the disseminator is also the choice of the netizen. The multi-agent and game theory
concepts can well describe both situations, and it is utilized in the background to study the infor-
mation dissemination in the networks. The model of Anshuman et al. (Chhabra et al., 2017) can
be explored to identify the communication behavior of online users connected through social
networks.

• Independence of Values. Based on the user’s awareness of security, their behavior is affected.
The quantifying factors for these behavioral changes have been analyzed by studying the
propagation mechanism of the worms in the social networks (Seddiki & Frikha, 2012). The
information transmission for multi-layer online networks follows the mechanism of informa-
tion dissemination in social networks. This model is based on the idea of the evolutionary
game model that is used in the information diffusion process established between government
bodies and netizens. For example, the strategies executed by the government to control the
harmful network group events that negatively impact the social order have been proven to be
very effective.

4. Information diffusion deployment and application
Online engagement and interaction of users over social networks have attracted researchers to solve
real-world problems such as rumor control, viral marketing, recruitment, and social recommendation
by utilizing information flow analysis. The topological information and social facets have been used to
analyze the information flow over the network. Therefore, researchers in recent years have shifted focus
to information diffusion analysis for finding solutions for influence maximization, community detection,
and link prediction. This section is devoted to analyzing the role of information dissemination for link
prediction, influence maximization, and community detection problem-solving.

4.1. Influence maximization
Identification of influential word-of-mouth promoters is a challenge in influence maximization (IM),
which aims to increase product uptake. Kempe et al. (2003) was the first to present an optimization
model for the IM problem under the linear threshold and independent cascade models of classical
diffusion. They have proposed a simulation-based greedy solution to identify seed users with an approx-
imation guarantee 1 − 1/e − ε. The greedy algorithm utilizes the information diffusion capacity of each
individual in the network to evaluate the user’s influence spread. The algorithm finds influential seeds
iteratively to avoid overlapping avoidance. The main limitation of the greedy solution is its time effi-
ciency due to the time-consuming Monte Carlo (MC) simulation. It is because of the stochastic nature
of the diffusion process that a new set of users is activated at each iteration. The influence maximiza-
tion algorithms have been categorized based on the context of the product, and network (Singh et al.,
2021) as shown in Table 2. The basic framework of an influence maximization algorithm is depicted
in Figure 3 (Arora et al., 2017; Singh et al., 2021). The first component experimental setup of the
IM framework configures the diffusion process with influence and activation probabilities. The seed
selection process identifies the seed users corresponding to the seeding strategy and diffusion model.
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Table 2. Illustration of information diffusion analysis over different applications (Kumar et al., 2020; Singh et al., 2021; Das & Biswas, 2021b)

Application Categories Problem solving perspective Representative
Information

diffusion
analysis

Influence
maximization

Classical Simulation-based Leskovec et al. (2007), Goyal et al. (2011a)

Heuristic-based Freeman (1978), Page et al. (1999), Liu et al. (2014)
Mixed approaches Chen et al. (2009), Cheng et al. (2013)

IM2 Simulation-based Saito et al. (2012), Zhang (2015), Zhang et al. (2016)
Heuristic-based Erlandsson et al. (2017), Wang et al. (2016), Zhang

(2015)
Mixed Approaches Wang et al. (2016)

MIM Simulation-based Sun et al. (2016)
MIM2 Heuristic-based Singh et al. (2019b )
Context-aware Spatial Li et al. (2014), Zhou et al. (2015)

Topical Singh et al. (2019a)
Time Chen et al. (2012), Lee et al. (2012), Liu et al. (2014)
Competitive Carnes et al. (2007), Bharathi et al. (2007), Borodin

et al. (2010)
Dynamic Aggarwal et al. (2012), Zhuang et al. (2013), Ohsaka

et al. (2016), Meng et al. (2019)
Profit

maximization
OSN Providers Tang et al. (2018), Lu & Lakshmanan (2012), Tang

et al. (2017)
Revenue

maximization
Discounting Han et al. (2018), Khan et al. (2016)

Link prediction Similarity based Local similarity indices Kumar et al. (2020), Li et al. (2018), Yao et al. (2018),
Divakaran & Mohan (2020)
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Table 2. (Continued)

Application Categories Problem solving perspective Representative
Global similarity indices Chen et al. (2018), Bliss et al. (2014)

Probabilistic and Hierarchical structure model Clauset et al. (2008)
Maximum

likelihood
Stochastic block model Wang et al. (2015), Stanley et al. (2019)

Parametric model Kashima & Abe (2006)
Non-parametric model Williamson (2016)
Factor graph model Loeliger et al. (2007)

Dimensionality Embedding-based link prediction Cao et al. (2018)
Reduction Matrix

factorization/decomposition
based

Koren et al. (2009)

Information
diffusion

Independent Cascade Saito et al. (2008)

Threshold Model Braun (1995)
Time-Aware Model Daneshmand et al. (2015)

Community
detection

Classical
community
detection

Network structure Shen et al. (2010), Das and Biswas (2021a)

Similarity among nodes Liu and Wang (2016)
Decentralized Chen (2011), Yang et al. (2013), Bhattacharya &

Sarkar (2021)
Network centrality Centrality measures Wang et al. (2015), Bo et al. (2014), Wu et al. (2015)

Network decomposition Li et al. (2015), Devi & Tripathi (2020)
Overlapping Cascade He et al. (2021), Sun et al. (2018), Wang et al. (2021)
Community Topological Sun et al. (2020), Ramezani et al. (2018), Alvari et al.

(2014)
Stochastic Neighbourhood selection Hajibagheri et al. (2012); Hajibagheri et al. (2013)
Optimization Community optimization Obregon et al. (2019), Mozafari & Hamzeh (2015),

Kalantari et al. (2020)

https://doi.org/10.1017/S0269888924000109 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269888924000109


14 Shashank Sheshar Singh et al.

Seed Selection

Insights

Seeding Strategy

Overlapping Avoidance

Influence Spread

Running Time

Memory Footprints

Robustness

Diffusion Capacity

Framework Design

Ex
pe

rim
en

ta
l S

et
up

Configuration

Input Dataset

Algorithm

Diffusion Model

Contextual Info

Seed Identification

Performance Evaluation

Figure 3. The influence maximization framework under information diffusion model (Singh et al., 2021)

Finally, the algorithm’s performance is evaluated regarding influence spread and efficiency. The
characteristic summary of the influence maximization method is present in Table 2.

4.1.1. Classical influence maximization
The authors of Sviridenko (2004) modified the IM problem by introducing individual node price
constraints, which was unitary in Kempe et al. (2003). The greedy solution is not scalable and compu-
tationally efficient for large-scale networks. Therefore, much research is devoted to computing effective
and efficient solutions for the IM problem. Three types of solutions exist in literature to tackle classi-
cal IM problems; simulation-based, heuristics, and mixed approaches. The heuristic-based methods do
not guarantee approximation while simulation and mixed approaches have. By utilizing the submodu-
lar property to reduce the amount of MC simulations on the greedy algorithm, Leskovec et al. (2007)
offer a simulation-based method known as cost-effective lazy forward (CELF). The influence evaluation
function under IC and LT models is submodular as proved by Kempe et al. (2003). Therefore, Leskovec
et al. applied submodularity to the greedy algorithm for iterative computation of seed nodes based on
individual influence, significantly decreasing the number of MC simulations. The CELF is almost 700
times more efficient than the greedy method. The further optimization of the CELF method is presented
by Goyal et al. (2011a) and is known as CELF++. CELF++ utilizes the marginal influence gain of
each individual in previous and current iterations to avoid unnecessary MC simulations. This method
also uses traditional diffusion models LT and IC to estimate the marginal influence gain of an individual.
CELF++ is 30–50% faster than CELF.

Some works focused on improving the time complexity of MC simulations rather than reducing MC
simulations. The authors of Wang et al. (2010) present a community-inspired greedy solution known as
CGA. This algorithm divides the network into subnetworks to identify seed users without overlapping
influence. Therefore, it significantly reduces the search space, which improves the time complexity of
MC simulations. However, because of the complexity associated with community identification, CGA
is not ideal for large-scale networks. Because there are more MC simulations, it has been shown that
simulation-based methods are not practical for large-scale networks. By giving each person an approx-
imative score, certain heuristic approaches have been developed to increase scalability. This scoring or
ranking is done by features like information diffusion, centrality, topological information, etc., to iden-
tify seed nodes. There are some efforts (Page et al., 1999; Jung et al., 2012; Liu et al., 2014) have been
made in this direction.
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Table 3. The comparison of influence maximization algorithm based on information dissemination model (Singh et al., 2021)

Diffusion models Approximation Solving perspective
Algorithm LT IC TRM TAM Ratio Time complexity Simulation Heuristic Mixed
Greedy (Kempe et al. 2003)

√ √ √ √
1 − 1/e − ε O(kNMI)

√
� �

Knapsack Greedy
(Sviridenko 2004)

√ √ √ √
1 − 1/e − ε O(N5)

√
� �

Diffusion Degree (Kundu
et al. 2011)

�
√

� � NA O(N + M) �
√

�

CELF (Leskovec et al. 2007)
√ √ √ √

1 − 1/e − ε O(kNMI)
√

� �
NewGreedy (Chen et al.

2009)
�

√
� � 1 − 1/e − ε(r) O(kIM) � �

√

MIA/PMIA Chen et al.
(2010)

√ √ √ √
1 − 1/e O(Ntiθ + knoθniθ (niθ +

log N))
�

√
�

LDAG (Chen et al. 2010)
√

� � � NA O(Ntθ + knθmθ (mθ +
log N))

�
√

�

CELF++ (Goyal et al.
2011a)

√ √ √ √
1 − 1/e − ε O(kNMI)

√
� �

SA (Jiang et al. 2011) �
√

� � NA O(TIM)
√

� �
SIMPATH (Goyal et al.

2011b)

√
� � � NA O(klNPθ ) �

√
�

IPA (Kim et al. 2013)
√

� � � NA O( NOvnvu
c

+ k2( Ovnvu
c

+
(c − 1)))

√
� �

StaticGreedy (Cheng et al.
2013)

�
√

� � 1 − 1/e − ε O(
kMN2 log (N

k)
ε2 ) � �

√

PRUNEDMC (Ohsaka et al.
2014)

�
√

� � 1 − 1/e − ε O(
kMN2 log (N

k)
ε2 ) � �

√

GROUP-PR (Liu et al. 2014) �
√

� � NA O(kMN) �
√

�

RIS (Borgs et al. 2014)
√ √ √ √

1 − 1/e − ε O( k(N+M) log2 N)
ε2 � �

√
IMRANK Cheng et al. (2014) �

√
� � NA O(NTdmax log dmax) �

√
�

SKIM(Cohen et al. 2014) �
√

� � 1 − 1/e − ε O(
kN2Mlog(N

k))

ε2 ) � �
√

IMM (Tang et al. 2015)
√ √ √ √

1 − 1/e − ε O( (k+l)(N+M) log N)
ε2 � �

√
UBLF (Zhou et al. 2015)

√ √
� � 1 − 1/e − ε(I) O(kINM)

√
� �

TIM (Tang et al. 2014)
√ √ √

� 1 − 1/e − ε O( k(M+N) log N
ε2 ) � �

√
Degree Discount (Chen et al.

2009)

√ √ √ √
NA O(k log N + M) �

√
�
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Table 3. (Continued)

Diffusion models Approximation Solving perspective
Algorithm LT IC TRM TAM Ratio Time complexity Simulation Heuristic Mixed
EASYIM (Galhotra et al.

2016)

√ √
� � NA O(kD(N + M)) �

√
�

SSA/D-SSA (Nguyen et al.
2016)

√ √ √ √
NA – � �

√

BKRIS (Wang et al. 2017)
√ √

� � 1 − 1
e
− ε − ε ′ O(

NM( log N+log (N
k))

ε2 ) � �
√

SP1M (Kimura & Saito 2006) �
√

� � 1 − 1/e O(kNM) �
√

�

DPSO (Gong et al. 2016;
Wang et al. 2017)

√ √ √ √
NA O(k2 log knD̄2) � �

√

IRIE (Jung et al. 2012) �
√

� � NA O(k(noθk + M)) �
√

�
LAIM (Ge et al. 2017)

√ √ √ √
1 − 1/e − ε − √

� �
TW Greedy (Wang & Feng

2009)

√ √ √ √
1 − 1/e − ε O(kNMI)

√
� �

Cost-Degree (Yang et al.
2018)

�
√

� � NA O(M) �
√

�

LAPSO-IM (Singh et al.
2019b)

√ √ √ √
NA O(Ink( log k + D̄2) +

nkN)
� �

√

CGA (Wang et al. 2010) �
√

� � 1 − e−1/(1+δC ) O(M + IMC(N(Z − C) +
k(C + NC)))

√
� �

IM-SSO (Singh et al. 2020)
√ √ √ √

NA O(n(kD̄2 + n) + n log n)) � �
√

ACO-IM (Singh et al. 2019a)
√ √ √ √

NA O(Imax|RG||V| +
|V| log |V|)

� �
√

LCI (Zhang et al. 2016)
√ √

� � NA O((N + M)N.d)
√

� �
MPMN-SIMPATH (Zhang

2015)

√
� � � NA O(klNPθ ) �

√
�

ASMTC (Wang et al. 2016) �
√

� � NA O(|Vs|2 + |Vs|) � �
√

MIM-Greedy (Sun et al.
2016)

√ √
� � 1 − 1/e O(kmNMI)

√
� �

MIM2 (Singh et al. 2019b )
√ √ √ √

NA O((l + m)(N + M) +
(k + m)(N log N + M))

�
√

�

C2IM Singh et al. (2019a)
√ √

� � NA – � �
√
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4.1.2. Influence maximization across multiple networks (IM2)
The classical IM methods consider a single type of relationship and networks to estimate users’ influ-
ence while avoiding a scenario where users engage in multiple networks simultaneously. Considering
simultaneous engagement of users across networks leads to a new framework of IM known as influence
maximization across multiple networks (IM2). The authors of Zhang (2015) introduce a multi-phase
multilayer network-based framework to identify influential users by utilizing SIMPATH (Goyal et al.,
2011b) and CELF++ (Goyal et al., 2011a) algorithms. Zhang et al. adopt traditional diffusion models
IC and LT to propagate influence across layers with different influence probability assignments. A new
modified greedy algorithm is presented for the IM2 framework by utilizing lossless and lossy coupling
strategies (Nguyen et al. 2013; Zhang et al., 2016). The authors of Wang et al. (2016) introduced an IM
algorithm known as agent selection problem (ASP) under IM2 and distributed settings. ASP considers
a multilayer framework for seed selection in mobile ad-hoc networks.

4.1.3. Multiple Influence Maximization (MIM)
Most of the literature focuses on the IM scenario with only one product for marketing. However, some
work considers competitive product marketing but not for non-competitive distinct product adoption.
Based on the presumption that people have the purchasing power to accept many products at once, Sun
et al. (2016) have presented a MIM greedy algorithm. They improved the time efficiency of greedy
under the IC diffusion model by using the influence evaluation function’s submodular characteristic.
MIM framework first constructs different product diffusion graphs by the IC model. Then it identifies
influential users for each product corresponding to product diffusion graphs. Finally, select seed nodes
across diffusion graphs iteratively. The MIM greedy ensures (1 − 1

e
) approximation guarantee.

4.1.4. Multiple Influence Maximization across multiple networks (MIM2)
The MIM2 framework considers multiple non-competitive products and multiple relationship networks
simultaneously to maximize product adoption. Therefore, the product diffusion graph construction and
network coupling will be the key functionality under this framework. Singh et al. (2019b) were the first
to introduce a heuristic-based MIM2 algorithm to identify seed nodes by back-propagation. MIM2 first
performs network coupling based on overlapping users and topological structures. Then it creates prod-
uct diffusion graphs corresponding to each product from the coupled multiplex network. The following
influential users are identified for each diffusion graph. Finally, seed nodes are selected across different
products to maximize product adoption under traditional diffusion models.

4.1.5. Context-aware influence maximization
Most of the conventional IM approaches focus on the topological information of the network and avoid
some critical factors like product information, target audience, contextual and semantic information, and
geographical information. It was observed that conventional IM approaches are ineffective in real-world
scenarios. Therefore, some researchers started focusing on context-aware IM solutions in recent years to
improve the effectiveness of seed users. Some of the topic-relevant approaches such as LGA/ELGA (Guo
et al., 2013), IMIP/IMAX (Lee & Chung, 2015), CTVM (Nguyen et al., 2016), MFIP (Li et al., 2020)
focus on the users interest to a different topic for the diffusion process. This will help to identify seed
users from product-specific audiences. The authors of Singh et al. (2019a) proposed a context-aware
community-based influence maximization (C2IM) algorithm that utilizes the topic-dependent contextual
diffusion models to propagate influence. C2IM considers community and topical information to improve
the efficiency and effectiveness of the seeding strategy. The seed strategy under C2IM estimates the
diffusion degree by back-propagation of influence from non-desirable nodes. The diffusion degree works
as a ranking method for seed selection.
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Figure 4. The link prediction framework under information diffusion model (Kumar et al., 2020)

4.1.6. Profit maximization
Profit maximization (PM) extends the classical IM problem, which considers actual product adoption
rather than social influence. Profit maximization integrates the costs of advertisers and network service
providers. There are some efforts (Lu & Lakshmanan, 2012; Tang et al., 2017; Li et al. 2017; Tang et al.,
2018; Weersink & Fulton, 2020) have been made in this direction. The authors of Lu and Lakshmanan
(2012) utilize the extension of traditional diffusion models to estimate actual product adoption over
social influence. The traditional diffusion models IC and LT are modified by adopting new states and
active and inactive states. These states help to compute actual product adoption, which drives profit
and revenue computation. The authors also proved that the profit function is submodular under these
diffusion models.

4.2. Link prediction
Link prediction (LP) (Singh et al., 2022; Mishra et al., 2022; Singh et al., 2024) licenses to gather
absent or future associations in an organization are termed Link Prediction. The organization association
characterizes how data spreads through the hubs. Thus, the spreading might actuate changes in the asso-
ciations and accelerate the organization’s development. The development of web-based media has drawn
little consideration from specialists and organizations. New stages are ceaselessly arising, for example,
Facebook and Flickr (2004), YouTube (2005), Twitter (2006), and Miniature blog (2009), among oth-
ers. Given the significance of various spaces and regions, research points, for example, Connection
Prediction (LP). Furthermore, data diffusion has gotten considerable consideration in perplexing social
network regions during the last few years. Notwithstanding, they are points, for the most part, exam-
ined in isolation, even though their outcomes are applied in comparative areas, such as viral promoting,
political missions, and business process displaying.

The issue of suggesting joins has a few applications, such as recommending absent and likely associa-
tions in cloud data or, on the other hand, robust hub identification. Specifically, the expectation of future
connections is helpful in comprehending the organization and correspondence evolution. For instance,
in web-based media stages, promising associations that do not exist yet can advance commitment and
collaboration among users, influencing the organization structure. Thus, the organizational structure
impacts the correspondence or the spread of data. The link prediction working framework is shown in
Figure 4.

LP techniques gauge the new edges as indicated by some association systems, similar to the distance
and briefest ways among hubs, the triangles or Triassic conclusion, and the likeness with shared neigh-
bors, among others. These primary components are fundamental in deciphering network development.
For instance, renowned and persuasive clients will generally acquire associations, making traffic-based
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Table 4. The comparison of link prediction algorithm based on information dissemination model (Kumar et al., 2020)

Diffusion models Social facets
Algorithm LT IC TRM TAM Time complexity Solving perspective Local Global Quasi
Similarity based link prediction
Common neighbors (Yao et al.,

2016)
– – – – O(N(k)5) Time-varied weight

√
� �

Adamic adar (Aleta et al., 2020) – – – – O(N(k)5) Single & multiplex
√

� �
Jaccard coefficient (Ayoub et al.,

2020)
– – – – O(N(k)5) Path depth

√
� �

Random selection (Nasiri et al.,
2021)

– – – – O(1) Biased random-walk
√

� �

SimRank (Dey et al., 2020) – – – – O(N3) Scale-free simrank
√

� �
Rooted pagerank (Scholz et al., 2013) – – – – O(N3) Resource allocation

√
� �

Probabilistic and maximum likelihood based link prediction
Stochastic Block Models (SBM)

(Stanley et al., 2019)
�

√
� � Exponential Continuous attributes � �

√

Dimensionality reduction based link prediction
PCA (Singh et al., 2019) – – – – Exponential Supervised �

√
�

Forward feature selection based
(Pecli et al., 2015)

– – – – Exponential Supervised �
√

�

Information diffusion based link prediction
CLP-ID (Singh et al., 2020) �

√
� � O(Davg(M +

τN + l2Cavg))
Community-based

√
� �

Hierarchical Structure Model (HSM)
(Singh et al., 2020)

�
√

� � Exponential Hierarchical structure �
√

�

Structure-based personalized link
prediction model (Yin et al., 2011)

�
√

� � Exponential Ego-centric
framework

√
� �

Proximity topological and aggregated
features (Al Hasan et al., 2006)

√ √
� � Exponential Classification problem � �

√

Local probabilistic model (Li et al.,
2016)

� � �
√

Exponential Markov random field
√

� �

Logistic regression model (Leskovec
et al., 2010)

� �
√

� Exponential Signed link prediction �
√

�
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alternate ways and working on the productivity of data spreading on the network. Thus, investigating
the dispersion interaction can assist with understanding the effect of clients’ cooperation, for example,
what re-posting a message means for the spread of images, recordings, or fake news (bits of hearsay)
on the networks. Clients in web-based interpersonal organizations make new companions and look for
and share data. When a client shares a message, his/her contacts can be affected to re-post that data,
driven by the homophily property that creates a diffusion cycle. Link Prediction Approaches are broadly
categorized into:

• Similarity-based Approaches
• Probabilistic and Maximum Likelihood-based Approaches
• Dimensionality Reduction-based Approaches
• Information Diffusion-based Link Prediction

4.2.1. Similarity-based approaches
Interface expectation relies on similarity-based measurements, in which a comparability score S(x,y) i is
calculated for each pair x and y. The score S(x,y) can be calculated by considering the underlying or hub
properties of the thought-about pair. The joins that are not noticed (i.e., U − ET) are assigned scores
based on their similarity. Centers with a higher score are more likely to have the expected association.
The resemblance measures between each pair are still up in the air using a couple of properties of the
association, one of which is an essential property. Scores subject to this property can be assembled in a
couple of classes like area and around the world, center ward and way dependent, limit ward and limit
free, and so forth.

1. Local Similarity Indices. Nearby records are, for the most part, determined utilizing data about
normal neighbors and hub degrees. These files think about quick neighbors of a hub. Instances
of such files contain normal neighbors, special connections, Adamic/Adar, asset distribution,
etc (Lü et al., 2009). A few of the popular local similarity approaches are discussed in the
following section:

• Common Neighbors (CN). In a given association or graph, the size of common neighbors
for a given pair of center points x and still up in the pair as the size of the combination of
the two center regions.

• Preferential Attachment (PA). The possibility of a particular connection is applied to create a
developing sans-scale network. The term developing addresses the steady idea of hubs over
the long run in the organization. The probability augmenting new association related with a
hub x corresponds to k_x, the level of the hub.

• CAR based Common Neighbor Index (CAR). Car setup documents are presented based on
the assumption that the interface presence between two center points is additionally plausible
in the event that their ordinary neighbors are people from a close by (neighborhood (LCP)
speculation).

• Local Naive Bayes-based Common Neighbors (LNBCN). This strategy depends on the
Guileless Bayes’s hypothesis and contentions that diverse ordinary neighbors assume a dis-
tinctive part in the organization and contribute contrastingly to the score work processed for
non-noticed hub sets.

• Node Clustering Coefficient (CCLP). This record is also based on the organization’s group-
ing coefficient property, which registers and adds the bunching coefficients of a seed hub
pair’s relative abundance of normal neighbors to determine the pair’s most recent closeness
score.

2. Global Similarity Indices. Global files are processed utilizing the whole topological data
of an organization. The computational intricacies of such techniques are termed global
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similarity indices. These have higher time complexity and appear to be infeasible for enor-
mous organizations. Some of the common Global Similarity Indices approaches are discussed
below

• Katz Index. it can be considered as a variation of the briefest way metric. It straightforwardly
totals over each of the ways among x and y and dumps dramatically for longer ways to punish
them (Katz, 1953).

• Leicht–Holme–Newman Global Index (LHNG). This overall record relies upon the standard
that two centers are similar if the two of them have a speedy neighbor, which resembles the
other center point. This is a recursive importance of closeness where an end condition is
required. The end condition is introduced similarly to self-closeness, that is, a center is such
as itself (Leicht et al., 2006).

• Matrix Forest Index (MF). This matrix depends on the idea of spreading over a tree which
is characterized as the sub-graph that traverses complete hubs without shaping any cycle.
The crossing tree might contain an out or less number of connections when contrasted
with the first chart. The network forests hypothesis expresses that the quantity of traversing
the tree in a chart is equivalent to the co-factor of any section of the Laplacian lattice of the
diagram. Here, the term forest addresses the association of all established disjoints spreading
over trees.

4.2.2. Probabilistic and maximum Likelihood-based approaches
For a given organization G(V , E), the probabilistic model upgrades a genuine capacity to set up a model
that is made out of a few boundaries. Noticed information of the given organization can be assessed
by this model pleasantly. By then, the probability of the presence of a non-existing connection (i,j)
is assessed utilizing restrictive likelihood P(Aij = 1|θ ). A few probabilistic models and the greatest
probability models have been proposed in writing to gather missing joins in the organizations. The
probabilistic models require more data like a hub or edge quality information, notwithstanding primary
data. Removing these trait data is difficult; in addition, boundary tuning is likewise no joking matter
in such models that limit their materialness. The greatest probability strategies are mind-boggling and
tedious, so these models are not reasonable for the genuinely enormous organization (Clauset et al.,
2008).

4.2.3. Dimensionality reduction based approaches
Dimensionality Reduction depends on network implanting and lattice decay. A portion of the
procedures utilized for dimensionality decrease are Embedded connection expectation, Matrix
factorization/disintegration-based connection forecast, and so on. Connection forecast is utilized when
any association establishment is considered as a dimensionality decline system in which higher D lay-
ered centers (vertices) are intended to a lower (d << D) dimensional portrayal (implanting) space by
protecting the hub area structures. All in all, find the implanting of hubs to a lower d-aspects with the
end goal that comparable hubs (in the first organization) have comparative implanting (in the portrayal
space) (Fukumizu et al., 2004).

Matrix factorization has been used extensively in a number of publications based on connect expec-
tation and recommendation frameworks over the past ten years. Typically, the inactive elements are
extracted, and each vertex in the inactive space is addressed using these elements. In a controlled or
solitary organization, these depictions are utilized to connect expectations. To improve the anticipated
findings, additional hub/connect or characteristic data may be used. Non-negative grid factorization and
single-value decomposition have also been applied in the majority of the works.
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4.2.4. Information diffusion based link prediction
In web-based interpersonal organizations, when a client sees that his neighbors share or re-post a snippet
of data, the client will be affected to think about whether to share or re-post the data, which prompts
data diffusion. Data dissemination permits clients to get or notice data that is past the extent of their
social cycles. Besides, this peculiarity will impact the production of new connections. Prediction of this
network information diffusion-based link prediction. Link Prediction licenses to derive absent or future
associations in an organization. The organization association characterizes how data spreads through the
hubs. Thus, the spreading might initiate changes in the associations and accelerate the organization’s
advancement. LP calculations depend on various dispersion processes—Epidemics, Information, Rumor
models, and so forth. Every one of these rare occasions of data dissemination-based connection link
prediction techniques (Mack, 1985).

Organizations likewise powerfully develop designs in which associations might show up or vanish
every once in a while. In this unique situation, interface forecast (LP) targets expecting future affilia-
tions and different applications straightforwardly advantage from such forecasts, for example, kinship
investigation in friendly organizations, affiliations and observing of suspects in psychological oppressor
organizations, protein affiliations, suggestion frameworks in internet business, and applicable future joint
efforts in participating organizations. Given an organization, we approach the two nearby and worldwide
constructions, like the neighborhood of a hub, the distance among hubs, and the hubs’ local area struc-
ture. LP strategies target finding likely connections with primary impact dependent on a neighborhood or
worldwide view, which can prompt distinctive expectation results. Normally, the nearby measurements
are conventional and clear, while worldwide strategies need generous handling time and can’t deal with
huge and thick organizations. Because of the networks’ intricate design and commotion nature, it is hard
to anticipate future connections. Displaying data dispersion in web-based informal communities is a dif-
ficult issue, and different analysts contributed to the cycle to this end. In the LP research region, a few
systems think about an irregular stroll in an organization, for example, DeepWalk (Perozzi et al., 2014),
which has been proposed to look through logical edges utilizing uniform arbitrary strolls, and Node2vec
(Grover & Leskovec, 2016), which investigates network areas through lopsided arbitrary strolls.

In the dissemination processes, Ally et al. (Ally & Zhang, 2018) proposed two overhauling models
and thought about the impacts on data spreading in scale-free and little-world organizations. Be that as
it may, the creators didn’t think about adding new edges or the impacts on the organizations’ design. In
Li et al. (2016), the authors have tended to Sina Weibo and identified a significant component from the
data dissemination process, which advanced LP execution. Wu et al. (2019) proposed a system called
compelling hubs ID LP (INILP) to evaluate the significance of a hub in an organization by appointing
every hub a positioning score. The impact of a hub addresses its capacity to spread data to different
hubs. Be that as it may, the proposed measurements are primary hub rankings of centrality measures,
not an appropriate persuasive spreading model, like pandemics, bits of gossip, or data proliferation. As
of late, Wang et al. (2020) proposed a neighborhood antagonistic LP technique. However, they ignored
the nearby impact of the dispersion elements on the connection development.

4.3. Community detection
Several community detection (Kumar et al. 2024; Mishra et al. 2024) algorithms already exist concern-
ing the information diffusion procedure. We can broadly divide these procedures into four categories
which are classical techniques, based on network centrality, overlapping in nature, and depending on
stochastic optimization. Figure 5 illustrates the framework of community detection algorithms. In the
following subsections, we have discussed all of them in detail.

4.3.1. Classical community detection
Some of the classical community detection methods are utilized for information diffusion techniques.
The techniques typically rely on network structure, node similarity, and community structures. It is
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Figure 5. The community detection framework under information diffusion model (Das & Biswas,
2021b)

suggested to use a hierarchical diffusion method to identify the community structure in Shen et al.
(2010). The information is diffused from one community to another community in a hierarchical man-
ner based on their placement in the network. In another work, Das and Biswas (2021a), the similarities
in the network structure are considered for the information diffusion-based community detection (CSID)
approach. The method has utilized the topology of the networks and considered only the importance of
the central nodes. Information propagation with raw trajectory data is constructed for the diffusion pro-
cess based on multiple similarity metrics in Liu and Wang (2016). A decentralized community detection
algorithm based on the information diffusion method is proposed in Chen (2011). Ruan et al. (2013)
have defined an edge strength measuring technique to find out communities utilizing edge-based data
diffusion information. In another work, Yang et al. (2013) have employed several common metrics
and traits along with edge strength measures between communities to define the structural boundaries.
Some recent work (Bhattacharya & Sarkar, 2021) has demonstrated contagion and homophily-based
information diffusion framework. These methods, however, have not taken into account the centrality
considerations; instead, they may have uncovered communities based on network forms and structure.

4.3.2. Network centrality
To identify the core or influential node in any network, a number of network topology measurement
metrics are utilized, including degree centrality, closeness centrality, betweenness centrality, eigenvec-
tor centrality, page rank, and clustering coefficient. Wang et al. (2015) have utilized centrality measures
and structural holes to differentiate the important nodes from the dynamic networks utilizing individual
nodes’ influence. These detected nodes are employed to forecast the data diffusion hub in the network.
Bo et al. (2014) and Wu et al. (2015) have used edge strength measures and mutual information between
the nodes for defining information propagation strategy. Based on the shared characteristics of the ver-
tices, Li et al. (2015) have suggested a method for selecting seed vertices. In one of the recent works,
seed nodes are selected by using different centrality measures and the k-core decomposition method
(Devi & Tripathi, 2020). All the methods mentioned above have considered the structure of the network
but ignored the overlapping formations. In the next subsection, we have emphasized the overlapping
communities and network structures for information diffusion.

4.3.3. Overlapping community
Most social networks in real-life applications have shown overlapping parts within their structural forma-
tion. In recent times, a cascade information diffusion model has been proposed to simulate the evolution
of communities (He et al., 2021). The fitness function of nodes is updated based on node similarity and
uses a clustering methodology for discovering overlapping communities in dynamic networks. In another
work, the overlapping communities are discovered based on the communication and sharing informa-
tion of a node with its neighbors (Sun et al., 2018). A community-based seed selection method has
considered the role of overlapping communities based on the gain in the nodes with respect to informa-
tion diffusion (Wang et al., 2021). Kalantari et al. (2020) have proposed a node overlapping community
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detection technique based on node probing to distinguish the central nodes from the overlapping commu-
nities utilizing only the edge strength. Sun et al. (2020) have employed structural similarity measures to
define the overlapping parts. In Ramezani et al. (2018), cosine similarities are used to find the number of
cascades that belong among networks for discovering overlapping parts. One of the works (Alvari et al.,
2014) has utilized a game theory-based method to optimize the overlapping part. Though the method
has been revised, more efficient optimizing methods have been developed for community detection.

4.3.4. Stochastic optimization
There are several optimized community detection methods proposed for efficient information diffusion.
In one of the popular methods, Hajibagheri et al. (2012), each node of the network is considered an
agent. The interactions among the agents with their neighbors are optimized based on the proposed util-
ity function. In Hajibagheri et al. (2013), the particle swarms method is used in network neighborhoods
for optimizing objective functions. In another work, an approach is developed to discover information
diffusion processes from online social networks based on modularity maximization (Obregon et al.,
2019). Another technique based on a genetic algorithm is utilized in all types of networks for optimized
community formation (Mozafari & Hamzeh, 2015). Recently, a multi-objective optimization model uti-
lizing key node identification has been introduced (Kalantari et al., 2020). Through the study mentioned
above, we have shown that most of the diffusion techniques, irrespective of their discovering nature,
heavily depend on the network properties for high accuracy and efficiency.

In Table 5, we have compared all the community detection algorithms based on the information
dissemination model. Four diffusion models—the linear threshold (LT), independent cascade (IC),
threshold model (TM), and time-aware model (TAM)—have been taken into account. We have defined
the time complexity of each algorithm, solving perspective, social facets, and network properties indi-
vidually. The comparison mentioned above among the algorithms gives us a clear idea about the impact
of the techniques in this domain.

5. Evaluation metrics
Evaluation metrics are crucial for assessing the quality and impact of research innovations. These met-
rics provide objective measures for assessing the importance, originality, and impact of the research
on the field. Through the use of suitable evaluation metrics, researchers can assess the effectiveness of
information diffusion models, deployment strategies, and proposed applications in a quantitative man-
ner. In addition, these metrics allow for easy comparisons with other methodologies, making it easier to
identify strengths, weaknesses, and areas that can be improved. Ultimately, the careful use of evaluation
metrics ensures a high level of rigor and credibility in scholarly discourse, which leads to advance-
ments in understanding and implementing information diffusion processes. This section is devoted to
performance measures of different applications of information diffusion analysis. So we will discuss the
evaluation metrics of influence maximization, link prediction, and community detection as illustrated
in Table 6.

5.1. Influence maximization evaluation metrics
Four matrices quality, efficiency, memory footprint, and robustness analyze the performance of IM
algorithms.

1. Quality. The influence spread estimates the quality of an IM approach, that is, the number of
product adoption or users who a piece of information, news, idea, innovation, and product has
influenced. Most of the traditional approaches ignore the effectiveness of seed users. Therefore,
some of the recent works (Barbieri et al., 2012; Zhuang et al., 2013; Wang et al., 2017; Singh
et al., 2019a) focus on contextual features to improve the effectiveness of seed users.

https://doi.org/10.1017/S0269888924000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888924000109


The
K

nowledge
Engineering

Review
25

Table 5. The comparison of community detection algorithm based on information dissemination model (Das & Biswas, 2021b)

Diffusion models Solving
Algorithm LT IC TM TAM Time complexity perspective Social facets N/W properties
Hierarchical diffusion

algorithm (Shen et al.,
2010)

�
√

� � O(N + M) Disjoint
Community

Common
Neighbours

Complex, Small

Game theory (Alvari
et al., 2014)

� �
√

� O(N + M) Disjoint
Community

Mutual Information Complex, Small

Cascade label
propagation (Sattari &
Zamanifar, 2018)

√ √
� � O(N + M) Overlapping

Community
Information
Propagation

Belonging Factor

Information diffusion
(Ramezani et al.,
2018)

√
� �

√
O(N + M) Disjoint

Community
Number of Cascade Similarity among

Nodes

Information dynamics
(Sun et al., 2018)

√ √ √
� O(kN + LNk + cN) Overlapping

Community
Social Interaction Belonging Factor

Information diffusion
cascade (Zhang et al.,
2018)

√ √
� � O(Ic + kN) Disjoint

Community
Social Interaction Euclidean Distance

Information dynamics
(Sun et al., 2020)

√ √ √ √
O(LNk + M + Lnk) Disjoint

Community
Information Structural

equivalence
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Table 6. The comparison of evaluation attributes (Kumar et al., 2020; Singh et al., 2021; Das & Biswas, 2021b)

Attribute type Attribute Computation of metric Representative
Influence maximization
Quality Influence spread Number of product adoption, VA(S) Singh et al. (2021), Arora et al.

(2017)
Efficiency Running time Seed nodes identification time Singh et al. (2021), Arora et al.

(2017)
Memory footprint Memory space Memory consumption to run the seeding

algorithm
Singh et al. (2021), Arora et al.

(2017)
Robustness Rate of change Measuring stochastic behaviour of solution Singh et al. (2021), Arora et al.

(2017)
Link prediction
Quality AUC Geometric mean of the area under the receiver

operator’s characteristic curve
Song & Meyer (2015)

AUPR Area under the precision-recall curve (AUPRC) Yang et al. (2015)
Avg precision Average of precision values Morstatter et al. (2016)

Accuracy Recall Fraction of relevant instances Morstatter et al. (2016)
F1-Score harmonic mean of the precision and recall
Balanced accuracy arithmetic mean of sensitivity and specificity Chicco et al. (2021)

Community detection
Quality Modularity Strength of division of a network into groups Kumar et al. (2020), Kumar et al.

(2019a)
f-Modularity Fuzzy measure of the strength of division of a

network into groups
Kumar et al. (2020), Kumar et al.

(2019a)
ANUI Strength of overlapping communities based on

mutual information
Kumar et al. (2020), Kumar et al.

(2019a)
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Table 6. (Continued)

Attribute type Attribute Computation of metric Representative
Conductance Counts the number of cliques in connected graph Kumar et al. (2019b)
Permanence Distribution of a vertex in internal and external community Kumar et al. (2020), Kumar

et al. (2019b)
Efficiency Purity Measure the similarity between detected and ground truth

communities
Kumar et al. (2019b)

NMI Define strength of communities based on mutual information Kumar et al. (2020), Kumar
et al. (2019b)

ONMI Measures similarity among communities without consider the
number of partitions

Kumar et al. (2020), Kumar
et al. (2019a)

F-Measure Measures the accuracy by considering precision and recall Kumar et al. (2020), Kumar
et al. (2019b)

F1-Score Measures the similarity between two overlapping communities Kumar et al. (2020), Kumar
et al. (2019a)

ENMI Find the strength of overlapping communities based on mutual
information

Kumar et al. (2019a)
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2. Efficiency. The efficiency of IM algorithms has been measured by the running time of algo-
rithms to produce the desired seed users. In general, running time will increase with the seed
size. However, there are some exceptions like TIM (Tang et al., 2014) and IMM (Tang et al.,
2015). The simulation-based approaches don’t have a better performance in terms of efficiency.
Therefore some heuristic-based (Singh et al., 2019b), meta-heuristics (Singh et al., 2019a;
Singh et al., 2019b) and sampling (Jiang et al., 2011; Goyal et al., 2011b) methods have been
introduced to overcome the limitations of simulation-based methods.

3. Memory Footprint. The memory footprint is also a factor in addition to the time efficiency
of an approach to measure the scalability of an algorithm. The memory footprint is evalu-
ated by analyzing the memory required to run a seeding strategy for seed identification. The
large size of the dataset leads to sampling methods (Jiang et al. 2011; Goyal et al. 2011b)
to take a sample of datasets for identifying seed users based on structural and topological
features.

4. Robustness. Most IM algorithms are not robust as a slight modification in diffusion mod-
els leads to major changes in inactivation results. These IM algorithms only focus on quality,
efficiency, and scalability while ignoring robustness. However, few works (Jung et al., 2012;
Galhotra et al., 2016; He & Kempe, 2016; Mehmood et al., 2016) have been presented in the
literature to ensure robustness on diffusion analysis.

5.2. Link prediction evaluation metrics
There are numerous conventional, straightforward, and fundamental connection expectation metrics
used to evaluate Link Prediction. Mainly, it can be divided into two major parts, which are quality
and accuracy as defined in Table 6.

5.2.1. Quality
Any link prediction quality calculation means the Precision of the calculation concerning the ground
truth. Likewise, it signifies the strength of the networks. The accompanying boundaries are utilized to
measure the nature of the local area discovery strategies. The metrics used to calculate the quality of
link prediction are (Kumar et al., 2019a; Kumar et al., 2019b; Kumar et al., 2020):

1. AUC (Area under the ROC Curve). A ROC (recipient working trademark bend) is a diagram
showing the presentation of a grouping model at all order limits. This ROC plots two bound-
aries: True Positive Rate (TPR) and False Positive Rate (FPR). A ROC plots TPR versus FPR
at various order edges. To register the focuses in an ROC, we could assess a calculated relapse
model ordinarily with different characterization limits, yet all the same, this would be wasteful.
Luckily, there’s a productive, arranging-based calculation that can give this data to us, called
AUC (Fawcett, 2006).

2. AUPR. It is the area under the precision-recall curve. It is a helpful metric to present imbalanced
information in an issue setting where very much attention is in tracking down the positive
models. The AUPRC is determined as the space under the PR bend. A PR bend shows the
compromise between accuracy and review across various choice limits. The x-pivot of a PR
bend is the review, and the y-hub is the accuracy. Rather than ROC bends, this is where the
y-pivot is the review, and the x-hub is FPR. Like plotted ROC bends, the choice edges are
verifiable in a plotted PR bend and are not displayed as a different hub. To compute AUPRC, we
ascertain the region under the PR bend. There are numerous techniques for computation space
under the PR bend, including the lower trapezoid assessor, the introduced middle assessor, and
the average Precision (Saito & Rehmsmeier, 2015).

3. Average Precision. It is the average precision values.
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5.2.2. Accuracy
For any link prediction tracking method, accuracy signifies the precision of the calculation in regard
to the calculation time. It relies a lot upon the size of the organization. A few boundaries are used to
measure the productivity of the link prediction over a social network (Kumar et al., 2019b; Kumar et al.,
2019a; Kumar et al., 2020).

1. Recall. It is a metric that evaluates the quantity of right sure link forecasts (true Positive) made
from all certain expectations (True Positive + False Negative) that might have been made in
the complete network.

recall = True Positive

True Positive + False Negative
(1)

2. FI-Score. It is the harmonic mean of precision and recall.

FI − Score = 2 × Precision × Recall

Precision + Recall
(2)

3. Balanced Accuracy. It is the arithmetic mean of Sensitivity (true positive rate or recall) and
specificity (true negative rate or 1 – false positive rate)

Balanced Accuracy = Sensitivity + Specificity

2
(3)

5.3. Community detection evaluation metrics
The evaluation metrics of community detection are used to define the quality of the detected commu-
nities. Mostly, it can be divided into two major parts, which are quality and efficiency as defined in
Table 6.

5.3.1. Quality
For any community detection algorithm, quality denotes the accuracy of the algorithm with respect to
the ground truth. Also, it denotes the strength of the communities. The following parameters are used
to measure the quality of the community detection techniques.

1. Modularity. Modularity (Muhuri & Mukhopadhyay, 2021) measures the robustness of the par-
titions in a network. Modularity finds the density of connections between the nodes of the same
community rest of the communities. The modularity Q of a graph with m number of edges can
be defined as

Q = 1

2m

∑
vw

[
Avw − kvkw

2m

]
δ(cv, cw) (4)

Avw represents the connectivity of node i and j, kv denotes the sum of the weights of the edges
incident with node v, cv is the community of node v, δ(cv, cw) is equals to 1 when v and w are
in the same community, 0 otherwise.

2. f-Modularity. It is a fuzzy measure that finds the mutual information among communities
(Guo et al., 2021). The value decreases with the contraction of the community structures. f-
modularity of a graph G can be denoted as

fmod(G) = maxD∈C

∑
u,v

(
σ f (Du,v)Fu,v − f ∗(σ f (Du,v))Ju,v

)
(5)

Here D distinguishes between frequency matrix F and random matrix J. C is a constraint set.
3. ANUI. Average normalized unifiability and isolability (ANUI) analyses both unifiability and

isolability to denote the quality of an overlapping community (Das & Biswas, 2021b). A graph
G with k communities, unifiability of community Ci to community Cj is denoted as
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unifiability(Ci) =
k∑

i=1

Unifiability(Ci, Cj) (6)

isolability(Ci) = (u, v)|u ∈ Ci(v)

(u, v);(u, w)|u ∈ Ci(v)&w /∈ Ci

(7)

ANUI is denoted as

ANUI(Ci) = unifiability(Ci) + isolability(Ci)

2
(8)

4. Conductance. It finds structural cohesiveness by incorporating external connections of the
communities. Conductance of forecast community C is denoted as

f (w) = Eout
w

2.Ein
w + Eout

w

(9)

where Eout
w and Ein

w denote the number of edges that are outside and inside of the community C,
respectively.

5. Permanence. Permanence (Chakraborty et al., 2014) is a measure to find the pull of the neigh-
borhood node on a particular node v. The internal clustering coefficient cin is also utilized to
find the permanence perm(v).

perm(v) = [
I(v)

Emax(v)
× 1

D(v)
] − [1 − cin(v)] (10)

where I(v) is internal connections, Emax(v) is the strength of internal community, and D(v) is
the degree of node v.

5.3.2. Efficiency
For any community finding technique, efficiency denotes the accuracy of the algorithm with respect
to the computation time. Also, it depends on the size of the network. Some parameters are utilized to
measure the efficiency of the community detection algorithms.

1. Purity. It assigns the detected community to the most frequent baseline (Lin et al., 2005).

Purity(
, C) = 1

N

∑
k

max
j

|ωk, cj| (11)

where 
 is the set of ground truth communities.
2. NMI. Normalized Mutual Information (NMI) finds the mutual dependence among the com-

munities (Xie et al., 2013). NMI detects the similarity and quality between two divisions. Let
the two communities are C and C ′. Then NMI can be represented as

NMI(C, C′) = 2I(C, C′)

H(C) + H(C′)
(12)

where H(.) represents entropy function and the mutual information I(C, C′) = H(C) + H(C′) −
H(C, C′). No similarity and maximum similarity of two communities are denoted as the NMI
value 0 and 1, respectively.

3. ONMI. Overlap-Normalized Mutual Information (ONMI) is proposed in Van Lierde et al.
(2019) for overlapping communities. The true and the predicted partitions are denoted by Cl

and Cl, respectively, where 1 ≤ l ≤ K, K. The number of true and predicted partitions are K and
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K, respectively. Then ONMI can be represented as:

ONMI(X, X) = 1 − 1

2
(H(X|X) + H(X|X)) (13)

where Xl = 1 denotes the event that a node belongs to Cl and Xl = 1 denotes the event that a
node belongs to Cl. Here normalized entropy of all Xk given all Xl is

H(X|X) = 1

k

∑
k

H(Xk|X)

H(Xk)
(14)

High ONMI value is expected for the overlapping communities.
4. F-Measure. it is the harmonic mean of both types of purity measures or between Precision and

recall (Chakraborty et al., 2017).

F − measure = 2.Purity(
, C).Purity(C, 
)

Purity(
, C) + Purity(C, 
)
(15)

5. F1-score. It measures the similarities between two overlapping communities (Chakraborty
et al., 2017).

F1 = 1

2
(

1

φ

∑
φi∈φ

F1(φi, Cg(i) + 1

C

∑
ci∈C

F1(φg, (i), ci))) (16)

It represents the average of the F1-score of the best-detected partition and ground truth
communities and the F1-score of the ground truth communities and best-detected partition.

6. ENMI. Extended normalized mutual information (ENMI) compares the partitions with the
baseline (Sun et al., 2018). ENMI is defined as

ENMI(X|Y) = 1 − [H(X|Y) + H(Y|X)]/2 (17)

where H(X|Y) is denoted as

H(X|Y) = 1 − 1

C′
∑ H(Xk|Y)

H(Xk)
(18)

where X and Y denotes the random variables connected with the communities C and C’,
respectively. H(X|Y) is the normalized entropy of community X given community Y .

6. Research challenges and future directions
The research challenges of information diffusion analysis have been categorized based on the applica-
tions. This section will discuss the challenges of information diffusion on influence maximization, link
prediction, and community detection. These challenges are stated below in future directions.

6.1. Influence maximization
The computation of approximate influence spread is dependent on the diffusion process, which is
stochastic. Therefore, it activates a different set of users in each diffusion round. Few efforts have been
made to tackle these uncertainties, illustrated as follows.

• Diffusion Process Modeling. The first challenge of information diffusion analysis correspond-
ing to the IM problem is how to adapt the diffusion process for viral marketing. It is hard
to accommodate user behavior about product adoption as the diffusion process is random.
Therefore, some efforts (Kempe et al., 2003; Guille et al., 2013) have been made to tackle the
adaption of the diffusion process for the IM problem by incorporating and extending traditional
diffusion models.
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Table 7. Illustration of information diffusion challenges over different spplications (Kumar et al.,
2020; Das & Biswas, 2021b; Singh et al., 2021)

Framework Challenges Representative
Research
challenges

Influence
maximization

Stability and robustness Jung et al. (2012)

Adjusting submodularity Galhotra et al. (2016)
Adopting conformity Li et al. (2011), Li et al.

(2013), Tang et al. (2013)
Overlapping users

identification
Buccafurri et al. (2012),

Suganya et al. (2017)
Network coupling Zhang et al. (2016), Wang

et al. (2016)
Incorporating heterogeneous

diffusion models
Li et al. (2012), Zhan et al.

(2015)
Budget fixing Sun et al. (2016), Singh et al.

(2019b )
Incorporating product

influence
Sun et al. (2016)

Adopting contextual features Su et al. (2018), Lee &
Chung (2015), Bozorgi
et al. (2017)

Incorporating uncertainty and
incompleteness

Lei et al. (2015), Tong et al.
(2017)

Link
prediction

Efficiency within link
prediction

Zhang et al. (2019)

Sparsity of data Beigi et al. (2019)
Trusted link prediction Golzardi et al. (2019)
Effectively breaking of

complex networks into
simple networks

Aslan et al. (2019)

Level-wise link prediction Kumar et al. (2019b)
Community

detection
Meaningful community Shen et al. (2010)

Optimizing running time Das and Biswas (2021a)
Noise removal Chen (2011)
Model generalization Li et al. (2015), Devi &

Tripathi (2020)
Sparse network Alvari et al. (2014)

• Complexity and Optimality. Kempe et al. (2003) have proved that the IM problem is NP-
hard under classical diffusion models. The influence spread computation under these models is
computationally complex. Due to this, most simulation-based IM algorithms are inefficient and
have some approximation guarantee to the optimal solution. However, heuristics and sampling
methods are more time-efficient but less optimal. It is tough to find a near-optimal scalable
solution. Therefore, most of the algorithms (Chen et al., 2010; Singh et al., 2019a; Singh et al.,
2019b) focus on the trade-off between optimality and scalability.

• Stochasticity of Diffusion Process. Most of the diffusion models are stochastic. Therefore,
IM algorithms produce a different set of active users in each iteration from seed users due
to the randomness of the diffusion process. So it is very tough to collect the final product
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adoption. However, some strategies like the mean and median of repeated iteration outcomes
are applied to tackle the IM problem. For example, simulation-based methods (Kempe et al.,
2003; Leskovec et al., 2007) perform r = 10 000 simulations while sampling methods (Cheng
et al., 2013; Ohsaka et al., 2014) iterate multiple times on different sample episodes.

• Stability and Robustness. Most of the IM methods are based on the assumption that the
network structure is fixed while the network structure keeps on changing in the real world.
Therefore, a slight change in the network can lead to a significant update in seed users. The
authors of He & Kempe (2014) also stated that noisy influence probabilities could generate the
inaccurate seed. Therefore some efforts (Jung et al., 2012; Galhotra et al., 2016; He & Kempe,
2016; Mehmood et al., 2016) have been made to find a robust solution for IM problem.

• Incorporating Group Norms. Most of the literature considers only individual influence
under the IC diffusion model and avoids group norms. However, people are also influenced
by acquaintances and group norms such as trust, conformity, and context. People who share
common interests, backgrounds, cultures, etc., are more inclined to each other’s thoughts.
Therefore, some efforts (Li et al., 2011; Tang et al., 2013; Zhang et al., 2014) have been made
to incorporate group norms with diffusion models. There are few possible future directions
with group norms that can consider user profile information with group characteristics such as
trust and conformity.

• Adoption of Weaker Submodularity. The evaluation function is strict with the definition in
general submodularity of approximate influence. This reduces the number of MC simulations
under classical diffusion models for the IM problem. However, some of the advances (Li et al.,
2011; Gionis et al., 2013; Galhotra et al., 2016) in the IM problem states that strictness of sub-
modularity leads to no approximation guarantee of the solution. Because these advances are
based on opinion formation and change. Therefore, it is required to adopt weaker submodular-
ity in influence diffusion function to ensure some theoretical guarantee of the solution. There
are some efforts (Das & Kempe, 2011) have made to weaken the submodularity of influence
diffusion.

• Incorporating Heterogeneous Diffusion Process. Most of the algorithms under the IM2 and
MIM2 framework assume that every layer, relationship, or network has used the same diffu-
sion models. However, in reality, each network has its diffusion method. Therefore, one possible
future work can be the consideration of different diffusion processes across the layers and net-
works to achieve a more realistic scenario. However, some efforts (Zhan et al., 2015; Kuhnle
et al., 2018) have been made to ensure heterogeneity across layers for the IM problem.

• Considering Contextual Diffusion Models. Most of the classical IM algorithms ignore
context-aware diffusion models by incorporating conformity, semantics, location, etc., with
diffusion models for novel viral marketing applications. However, some efforts (Lee & Chung,
2015; Bozorgi et al., 2017; Su et al., 2018) have been made to consider contextual features with
diffusion models. Still, most of these contextual features are unexplored.

• Incorporating Conformity. Conformity is a crucial factor in how social influence spreads
throughout societies. It describes how people tend to conform to the attitudes, beliefs, and
behaviors of a majority group or societal norms. This phenomenon can occur through differ-
ent mechanisms, such as informational conformity, where individuals conform because they
believe others have relevant knowledge, or normative conformity, where individuals conform
to gain social approval or avoid rejection. It supports processes of influence diffusion, where
the adoption of certain behaviors or attitudes by a few individuals within a social network can
lead to their widespread acceptance and adoption by others. Gaining insight into conformity
is essential for understanding the development and evolution of social norms, as well as their
influence on individual and collective behavior. Thus, to enhance the efficiency of the seed
nodes, the authors in Li et al. (2011) made some attempts, yet many of these aspects remain
unexplored.
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6.2. Link prediction
This section discusses the challenges and efforts made to tackle these challenges, illustrated as follows.

• Efficiency with Link Prediction. Because of the huge measure of information in interpersonal
organizations, efficient and reliable link prediction addresses a critical test. To resolve this issue,
researchers have proposed two calculations for interface expectation. The proposed calculations
tackled the productivity issue by embracing low-rank factorization models while demonstrat-
ing extremely proficient contrasts with different techniques. This way, the review addresses a
huge advance forward in the test of fostering a productive connection forecast model. Another
significant issue that should be tended to worries the precision of connection forecast draws
near. The test discoveries uncovered that the proposed approach beat numerous different tech-
niques as far as exactness and versatility, and the related runtime were not exactly as seen in
past examinations. Be that as it may, albeit the proposed approach improved connection fore-
cast precision, it stays untested on large network information, which might see its proficiency
become sabotaged (Fire et al., 2014).

• Sparsity of Data. One more issue identified with interface forecast in marked SNs concerns the
sparsity of information. To reduce this issue, researchers have proposed some effective methods,
for instance, an imaginative methodology that is fit for investigating the client’s character utiliz-
ing web-based media. The acquired test results demonstrated an integral relationship between
the marked connection forecast issue and character data. An intriguing cutting-edge technique
for working with connect expectation is the utilization of worldly consistency in relational
correspondence to focus on weighted edges in network diagrams. Another approach used is
contrasted and different techniques, this strategy predicts interfaces regardless of whether there
is a shortage in the quantity of edges required for investigation. A differentiating similitude-
based connection expectation strategy is based on fuzzy connection significance. The technique
performed well, utilizing two methodologies to accomplish its targets. Initially, for the determi-
nation of the neighbor, the distance between hubs was utilized. Besides, the fluffy connection
significance was utilized to track down the pertinent connection. By utilizing these systems,
the technique has acquired sound outcomes. The challenge for a sparse network is now been
addressed but still needs a lot of attention as the network is getting sparse exponentially (Beigi
et al., 2019).

• Trusted Link Prediction. With the improvement of the Internet, an ever-increasing number of
people or associations will more often than not discuss and communicate on the organizational
stage. Through friendly stages, individuals can not just offer their sentiments about various
items yet, in addition, express their perspectives on others, which extraordinarily improves
individuals’ social exercises. Nonetheless, the fast improvement of social stages has filled them
with many futile or bogus data and records. To rapidly and effectively peruse the substance
for intrigued, clients as a rule add clients who have normal interests to the ‘trust list.’ simul-
taneously, to try not to peruse the substance not intrigued, clients generally add clients with
inverse interests to the ‘doubt list.’ For instance, and have comparative interests and have some
contention in a specific region. In this way, Twitter may follow and add to the boycott. We
can assemble a marked interpersonal organization by catching the trust and doubt connections
between clients. Through the trust/doubt connections in the marked informal community, we
can not just know which clients the objective client has social associations with yet addition-
ally know what sort of mentality the objective client embraces toward these clients. In any
case, the social connections in an interpersonal organization are excessively inadequate, which
truly upsets the extension of the client’s group of friends and further improves the social stage.
Thus, it has become important to assist clients with finding all the more new companions or
confided in clients. Luckily, clients have left a lot of verifiable conduct information (e.g., client’s
appraising and remarks) on friendly stages, which gives great conditions to assessing the trust
connections and comparability of inclinations between various clients. Notwithstanding, the
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way to deal with observing likely companions through shared interests actually faces many
difficulties (Fan et al., 2019).

• Level-wise Link Prediction. In complex networks, level-wise link prediction is used as it
breaks the network into smaller networks and then predicts the link for each small network.
The biggest challenge is dividing the complex network into smaller networks and then com-
bining the link prediction of all networks and concluding it. The networks are so dynamic, and
thus, predicting the link is a challenge! Trust, efficiency, and accuracy have to be maintained
at every level as the next level depends on the previous link prediction. Thus it becomes a very
challenging task (Kumar et al., 2020).

6.3. Community detection
There are several challenges associated with community detection concerning information diffusion.
The challenges are mostly divided into five categories discussed here in detail.

• Meaningful Communities. In an online social network, all the detected communities are not
meaningful at all. The community detection methods might create some partitions that have
no importance from the application point of view. In Shen et al. (2010), the problem has been
addressed.

• Running Time Optimization. Running time optimization is another important challenge in
community detection as discussed in Das and Biswas (2021b). Though game-theoretic meth-
ods have performed better theoretically, their computational complexity should be reduced to
achieve more efficiency.

• Noise Removal. All the community detection algorithms are sensitive to noise. Different noise
removal filters can be deployed to increase the technique’s accuracy. The problem has been
discussed in Chen (2011) concerning a decentralized network.

• Model Generalization. Researchers are very much focused on generalizing the model for
different types of complex networks, including the independent cascade, biological, linear
threshold, and epidemics models. In Li et al. (2015) and Devi and Tripathi (2020), authors
have discussed the issue for encouraging futuristic models.

• Sparse Network. If in a network, the number of 0 is greater than the number of 1, or the network
consists of a huge number of isolated vertex. The community detection algorithms have failed
to generate efficient communities as shown in Alvari et al. (2014). This challenge should be
addressed for the refinement of the existing algorithms.

7. Open problems
In this section, we have discussed the open problems associated with information diffusion analysis.

• How to aggregate information dissemination with reality? Most information dissemination
models are not much closer to reality as these are the extension of classical diffusion models
used across the domains. Therefore, it is necessary to strengthen these models to acquire actual
word-of-mouth effects. Apart from extension, some new diffusion models are introduced for
social network analysis. However, these models are more specific to applications and scenarios.
Validation and correctness are also a concern as it is based on feedback from the Internet.
Therefore, aggregating reality with information diffusion analysis is still much explored.

• How to attain equivalence between feasibility and generality? Some diffusion models, like the
competitive diffusion models, are not monotonic and submodular. So applicability of greedy-
based methods is limited under such models. However, the literature lists some directions to
handle these diffusion settings, such as nature-inspired optimization, deep learning, etc. The
generality of existing methods under these settings is still a problem to explore.
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• How to obtain stochasticity of information diffusion process? Some studies suggest that noisy
and inaccurate data for activation and influence probabilities can lead to incorrect adoption of
information diffusion behavior (He & Kempe, 2014). Therefore, it is necessary to adopt real
dynamics of information diffusion such as structural features, promotional impact, activation,
and influence behavior to achieve the stochasticity of diffusion models. However, it has attracted
the attention of researchers in recent years but is still much open to exploring this estimation.

• How to acquire real-world complexity with information diffusion analysis? Most of the infor-
mation diffusion analysis advances focuses on the topological structure and classical diffusion
process. Therefore, these models are not consistent with reality as they ignore social, political,
cultural, psychological, geographical, and environmental factors. So it is still an open prob-
lem to explore new possibilities of the information diffusion process to align with the complex
reality.

• How to deal with opinion change and negative influence in information dissemination? Most of
the literature does not consider the adverse effect and opinion change in information diffusion
analysis. These works consider positive impact only, and once a user is influenced by a piece
of information, always intact with the same. This is not the case with actual scenarios where
users are constantly changing and influenced by new information. Therefore, it is required to
adopt negative and opinion change with information diffusion analysis. However, some studies
(Li et al., 2014; Shen et al., 2015) are introduced regarding this but are still exploring.

• How to tackle multiple, complementary, and competing ideas with information diffusion?
In recent years, the applicability of information diffusion to some practical applications has
attracted researchers to focus on more realistic assumptions. For example, viral marketing
applications need to be more specific toward product and user characteristics rather than only
topological structure. Similarly, considering users’ influence in a single online social network
will ignore the user’s influence over other networks, leading to inaccurate estimation of influ-
ence. Therefore, incorporating multiple, complementary, and competitive ideas closer to reality
needs to be explored.

• How to assure ethical use of information propagated? The rapid growth of online social net-
works and their benefits leads to the urgency of users’ privacy protection. Users and network
service providers need to understand the importance of privacy-preserving and ethical use of
social media platforms. Ignoring the ethical use of platforms can have a severe effect on users
and service providers. Therefore, privacy-preserving and ethical use can be considered with
information-sharing perspective for exploring.

8. Concluding remarks
This paper surveyed the role, emergence, and significance of information dissemination for social net-
work analysis. Information diffusion plays a key role in developing and proposing new solutions for
social network applications. This study analyzed the various diffusion models with their vulnerabil-
ities. Primarily, a brief discussion about the diffusion process component is presented. An in-depth
information diffusion deployment and application is studied. A comparative analysis of the literature
corresponding to influence maximization, link prediction, and community detection algorithms is dis-
cussed keeping the viewpoint of information diffusion. The study reveals the performance evaluation
metrics for diffusion analysis applications. Finally, research gaps, challenges, and future prospects have
been discussed, along with some open problems. This study will provide naive researchers with the basic
and recent trends in information diffusion analysis with a better understanding and a good starting point
for their research.
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