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Abstract

An orthogonality relation is an abstract relation on a group having properties similar to
the relation on a /-group given by x _[_ y if JC | A \y \ = 0. A group G with an orthogonality
relation J_ is isomorphically represented as a subgroup of the group r of continuous global sections
of a sheaf of groups. If the stalks of the sheaf are torsion-free and G has and element 1 satisfying
1 x = (0) then T can be ordered so that it is an /-group and x J_ y if and only if j x | A | y | = 0
in F. An /-group G is complemented if for all x, y eG there i s a n a e jf1" © x*"1" with y ea^*:
equivalent conditions are given for G to be complemented.

Introduction

A. I. Veksler (1967) introduced the concept of disjointness relation on a
linear space, as an abstraction of the relation _L on vector lattices defined by
xJLj; i f | x | A l ^ l = 0, and showed that for certain linear spaces E with a
disjointness relation _L it is possible to define a lattice-order on E such that
x JL y if and if and only if | x | A | y \ = 0. In this paper the concept of disjointness,
now called orthogonality, is extended to abelian groups. It is seen that every
group G with an orthogonality relation is (isomorphic with) a subgroup of a
group F of continous global sections of a sheaf of groups with a Boolean base
space. When the group G has an element 1 satisfying I 1 = (0) and the groups
comprising the stalks in the sheaf representation are torsion-free then these
stalks can be totally-ordered so that r is a lattice-ordered group and x_L y if and
only if | x | A | y | = 0.

Finally, verious characterizations are given of a class of /-groups that were
called "weakly projectable" by Spirason and Strzelecki (to appear).

1. Orthogonality relations

Throughout, let G be an abelian group. A relation i on G is a pre-ortho-
gonality relation if
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(1) x± y implies y± x
(2) 01 x for all xeG, where 0 is the identity of G
(3) x±x implies x = 0
(4) xL a, yL a implies x + yl. a.

For each non-empty subset A of G define 4X = {xeG: x±a)for all ae A},
A±x = (A^. If A = {x} is a singleton set then denote A\ AXL by x\ x±x.
An orthogonality relation on G is a pre-orthogonality relation _L for which
xL y is equivalent to x±± n / 1 = (0). Using Frink's axioms (1941) for a Boolean
algebra, it is readily seen that when ± is an orthogonality relation the class B(G)
of subsets of G of the form A\ ordered by inclusion, is a complete Boolean
algebra with f)xA

x = (U Ao)1- and A±x as the complement of A±.
The Stone space of B(G) (i.e., the set of prime ideals of B(G) equipped with

the hull-kernel topology) will be denoted by Q. For each t e Q a subset G, of G is
defined by Gt = {xeG: x±x e (}. It is readily seen that each G, is a subgroup of
G and C\,eQ G, = (0). Using the method of Dauns and Hoffman (1966) it can be
seen that there is a sheaf of groups with base space Q and stalks GIG,, teQ, and
an isomorphism ~ given by x(t) = x + G, mapping G into the group F of
continuous global sections of this sheaf, such that x_L y if and only if for each
teQ either x(t) = 0 or y(t) = 0. This sheaf representation is more special than
the obvious representation of G as a sub-direct product of the groups GjG, only
in that Q has a topology and the disjoint union of the groups G/Gt is given the
finest topology for which each x is continuous. F then consists of all choice
functions Q -* u GIG, that agree locally with some x. Since Q is compact
Hausdorff and has a base for the open sets consisting of the closed open sets
QA±= {teQ.: Ax$t], A^G, then for any aeT there is a finite closed-open
partition Q/t, •••, Q/n of Q, and xu • • •,xn e G such that a = 21(QA*',xi) where

A necessary and sufficient condition for G = {x: xeG} and F to be isomorphic
is G = A±®A±± for all AxeB(G).

2. Lattice-ordering F

It will be assumed in this section that _L is an orthogonality relation on
the abelian group G.

LEMMA 2.1. The quotient groups G/G, are all torsion-free if and only if
xx = (mx)1 for all x in G and all integers m > 1.

PROOF. Assume xx = (mx)± for all x in G and all m ^ 1. I mx e G, then
x x i = (mx)l i€ t so xeG, and G/G, is torsion free. If each GIG,is torsion-free
and yLmx then y$G, implies wxeG, so xeG, and thus yJ_x.
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PROPOSITION 2.2. Let G have an orthogonality relation ± satisfying
xL = (mx)x for all xeG, m ^ 1. For each teQ let P, be a positive set defining
a total order on GIG, compatible with the group structure. Define a partial
order on F by a Si 0 if o(t) e Q. Then F is lattice-ordered if for each xe G the
set Pos{x) = {teQ: x(i) > 0} is open in Q.

PROOF. Each G/G, is abelian and torsion-free by lemma 2.1 and therefore
admits a total order Pt. Suppose that Pos(x) is open for each xeG. Then the set
{teQ: x{t) ;> 0} = Q\Pos ( - x) is closed and contains Pos(x) yet if x(to)= 0
then there is a basic closed-open neighbourhood QA = {teQ: A^t} of t0 such
that x(t) = 0 for all teQ/so that g /OPos (x ) is void. Hence Pos(x) is closed
and therefore closed-open. The function xvO mapping Q into \JtSQ.GIGt)
according to 11-> max{x(0, 0} is the supremum of x and 0 in the ordered group
of all (not necessarily continuous) global sections. However, xvO = /(Pos(x); x
where

T/n , , w . I x(t) if t e Pos(x)/(Pos(x);x)(0= ( U ll

so x v O e F . For cr = E;I(QA*'- •*;)eF, where {QA1:} is a finite closed-open
partition of Q,

<rv0(0 = max{<r(0, 0}

is in F, so that F is lattice-ordered.

THEOREM: 2.3. / / G has an orthogonality relation _L satisfying xx = (rax)1

for all x in G, m 2: 1 and an element 1 satisfying l x = (0) then the group F can
be lattice-ordered so that al. x if and only if | a | A | T | = 0 for a, x in F.

PROOF. Since I1 = (0) then l$Gt for all teQ. For each f e g there is a
positive set in GjG, such that for each x e G the set Pos(x) = {teQ: x(t)>0
in GjG,} is open. Consider the positive sets {ml + Gt: m = 0,1,2, •••}: for x e G ,
Pos(x) = UnT=o{*e6: 3 C ^ M 1 ( 0 = 0} which, as a union of open sets, is open.
The class K of strings (Pt) such that each Pt is a positive set in GjGt containing
1 + G, and such that Pos(x) = {teQ: 0 # x + G,eP,} is open for each x e G
is inductive when ordered by (P,)teQ ^ (P / ) t £ Q if P, 2 P,'for all teQ, so that
maximal elements of K follow from the axiom of choice. Let (P,)( E Q be maximal
in K. For x e G the closure Pos(x) of Pos(x) is closed-open in Q. If t e Q define
P,' = {x + Gr: f e Pos(x)}. If x + G,eP't n ( - Pt') then f e Pos(x) nPos( - x)
which, however, is void since Pos(x), Pos( — x) are disjoint open sets with open
closures. For each teQ the set P't u {0} is therefore a positive set in G/G,
containing Pt. Furthermore, for x e G ,
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Pos'(x) = {teQ: x + G,eP',}

= {teQ: te Pos(x)} = Pos(x) is closed-open.

The maximality of (P,)(efi in K therefore gives that Pos(x) is closed-open for
each xeG. Now suppose that for some t0 e Q, P,o does not define an isolated
order on GjG,0, so there is an a -I- G,oeP,o and an integer w0 ^ 2 such that
m0a + GtoePl0.

Then, t0 e Pos(m0a) so there is an open neighbourhood Q^of t0 contained
in Pos(m0a). Also, t0 £ Pos(a) so there is an open neighbourhood QB* of f0
contained in g\Pos(a). Then for teQA* ng B % P, does not define an isolated
order on GIG,. Consider the string (P,')/sQ with

P', = "\ {ma + y + Gt: m = 0,1,2, -,y + G,eP,}

Each P't is a semigroup properly containing Pt. If P't is not a positive set for some
f e Q^4-n g ^ then n^a + y t + Gt = — n2a — y2 + G, for some integers nu

n2 ^ 1, and yt + G,,y2 + G,ePt. Then (n^ + n2)a + G, = -(yt + y2) + Gte
— P, and m^rii + n2)a + G,ePt (sinceTm0a{t) > Oifor te QA^ n QB*) so that
mo(n1 + n2)a + Gt = 0 which means aeG, since GIG, is torsion-free. This
contradicts the choice of a e G so that each P't is a positive set in G/Gt. For
x e G put Pos'(x) = {te Q: 0 # x + Gt e P/}. Suppose /t e Pos'(x). If tt e QA* r\QB-
then (t e Pos(x) so there is an open neighbourhood of tt contained in Pos(x)
and hence in Pos'(x). If f ^ g / n Qfl̂ then x(^) = mcT+'y(t]) # 0, so there
is an open neighbourhood Qc

x of 11 such that x(t) = ma + y(t) # 0 for t e Q£ .
Also, there is an open neighbourhood QD^ of tl such that y(t) > Ofor t e <2D".Thus
QC'^QD4^ 2 Pos'(x). The set Pos'(x) is therefore open for each xeG. This
contradicts the maximality of (P,)teQ in K so that each P, defines an isolated
order on G/Gt. Now suppose that for some teQ, P, does not define a total order
on GIG,, so that for some a e G, a + G, e P, u ( - P,). That is t e Pos(x) n Pos( -x )
which is an open set, so for tt in some open neighbourhood QA of (, P, does
not define a total order on GjGH. As before, consider the string (P/),eQ with

P, if teQs,

P't = j {ma + y + G,: m = 0,l,2,--,y + G,eP,}

if t e G /

Each P,' is a semigroup containing P, in G/G,. If P't is not a positive set for some
teQA^ then, as before, ma + G,e — P, for some m ^ 1. Since P, defines an
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isolated order on G/G, then a + G, e — P,, contrary to assumption. The maximality
of (JP(), 6 Q therefore gives that each Pt defines a total order on GIG,. The group
T is therefore lattice-ordered by a ^ 0 if a{t)ePt for all teQ. Since \o\(t)
= max{<r(f), - ff(0} in G/G, and a A T(0 = m\n{o(t\ x{t)} in GjGt, then

A I T = 0 if only if for each t e Q either o(i) = 0 or r(r) = 0.

3. Lattice-groups

In this section G will denote an abelian lattice-group. The relation defined
on G by x 1 y if | x | A y | = 0 is an orthogonality relation with

. v ^ n v ^ = (|x| A

and the subgroups G, are prime lattice-ideals. The results 3.1, 3.3 are due to
Spirason and Strzelecki (to appear).

P R O P O S I T I O N 3 . 1 . A s u b g r o u p I c G is of t h e form G, f o r s o m e t e Q if a n d
only if

(1) xl. y implies x e I or y e I
(2) xel implies xXL £ /
(3) xel implies xx # (0)

An immediate corollary to this is that every minimal prime lattice-ideal of G is
of the form Gr, for some teQ. Recall that a prime lattice-ideal M is minimal
prime if M is minimal in the class of prime lattice-ideals of G: a necessary and
sufficient condition for a prime lattice-ideal M to be minimal prime is that for
each x e M there is a y ^ M with x _L y.

DEFINITION 3.2. The lattice-group G is said to be complemented if for all
v, y e G there is an aex±±@x± such that y e a ".

THEOREM 3.3. G is complemented if and only if every subgroup G,^ G is
a minimal prime lattice-ideal.

The class of minimal prime lattice ideals of G will be denoted by M(G).
For x e G the class M(x) c M{G) is defined by M(x) = {MeM(G): x$M).
The set nG = {M(x): x e G } forms a closed-open base for the open sets fora
HausdorfT topology on M(G). In fact, for x, y E G,

M(x) n M(y) = M( | x | A | y |)

ind

M ( x ) U M ( y ) = M{ x V I v l )
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The class of subgroups G, ^ G is denoted by V(G). For xeG, the class V(x) is
defined by V(x) = {G, ± G: x$ G,}. For x,yeG,

V(x)nV(y) = V(\x\A\y\)

and

V(x) UF(v) = V(\x\y | v |) .

The set vG = {V(x): xeG} then forms a compact-open base for the open sets
for a topology on V(G), which is compact if and only if G has an element 1 satis-
fying l x = (0). Further it is readily seen that for x, yeG, V(x) = V(y) if and
only if x1- = >>x.

THEOREM 3.4. The following are equivalent:

(1) G is complemented
(2) V(G) = M(G)
(3) vG is relatively complemented
(4) V(G) is a Hausdorff space
(5) Each V(x)evG is closed in V(G).

PROOF. If every G, / G is minimal prime and G(i ^ G,2 i V(G) then there is
an xeG ( i such that .x:$ Gt2, and a y e G ^ such that x l y . Then GtteV(y),
Gl2 e K(x) and V(y) n F(x) is void. Conversely, if V(G) * M(G) then there is
a G, jt G that is not minimal prime. Then G, contains a minimal prime Gtl, and
G,, G,( cannot be Hausdorff-separated. Thus (2) is equivalent to (4). Suppose
that G is complemented. Take K(x)evG and V(y) s F(x) so that yx± ^ xx\
Then there exist aey\ be v x x such that x ^ £ (a + fo)±L = a

±J-\J b±J-. Then

( Ix I A | a ) x x £ x x x and ( | x | A \a ) x x V >'x± = (*x x A. « x x ) V >'xx

= ( x x x V . v x x ) A ( « x x V . r ; i ) = x1 1 .

Also, | x j A | a 11 y so that ( | x | A | a \) n V(y) is void, and V( | x | A | a |)
U V(y) = V(x). That is vG is relatively complemented. On the other hand if
vc is relatively complemented and x, yeG then V(x) s V( x | A | y |) so
there is an x ' e G such that x ' l x and (x')"1"" V * x x = x x x A yxx- Then
y e (x ' ) x x V x±± = (x' + x ) x x so that G is complemented. That is (1) is equivalent
to (3).

Suppose that each V(x) in vG is closed and G, j^ G. If x e G, then t e V(x)
so there is a basic open set V(y) with teV(y)^ F(G)\F(x). That is v±x
and y$Gt, so that G, is minimal prime. If each G, ^ G is minimal prime then
V(G) = M(G) so that each F(x) = M(x) is closed.
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