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Abstract

An orthogonality relation is an abstract relation on a group having properties similar to
the relation on a /-group given by x | y if |x) A |y|=0. A group G with an orthogonality
relation | isisomorphically represented as a subgroup of the group I' of continuous global sections
of a sheaf of groups. If the stalks of the sheaf are torsion-free and G has and element 1 satisfying
1* = (0) then I can be ordered so that it is an /-group and x | y if and only if [x| A|y]| =0
in . An l-group G is complemented if for all x, ye G thereisanae x* @ x** withyea**:
equivalent conditions are given for G to be complemented.

Introduction

A. 1. Veksler (1967) introduced the concept of disjointness relation on a
linear space, as an abstraction of the relation L on vector lattices defined by
x1yif |x| A | y| = 0, and showed that for certain linear spaces E with a
disjointness relation L it is possible to define a lattice-order on E such that
x L yif and if and only if [ X | A ] y I = 0. In this paper the concept of disjointness,
now called orthogonality, is extended to abelian groups. It is seen that every
group G with an orthogonality relation is (isomorphic with) a subgroup of a
group I' of continous global sections of a sheaf of groups with a Boolean base
space. When the group G has an element 1 satisfying 1* = (0) and the groups
comprising the stalks in the sheaf representation are torsion-free then these
stalks can be totally-ordered so that I"is a lattice-ordered group and x L y if and
only if |x|A|y|=0.

Finally, verious characterizations are given of a class of I-groups that were
called ““weakly projectable’” by Spirason and Strzelecki (to appear).

1. Orthogonality relations

Throughout, let G be an abelian group. A relation L on G is a pre-ortho-
gonality relation if
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(1) xLly implies y 1 x

(2) 0Ll x for all xe G, where 0 is the identity of G
(3) xLlximpliesx =0

(4 xla, ylaimplies x + yla.

For each non-empty subset 4 of G define 4* = {xe G: x L a)for all ae 4},
AMt = (AY*' If A = {x} is a singleton set then denote A*, 4** by x*, x'*
An orthogonality relation on G is a pre-orthogonality relation 1. for which
xL y is equivalent to x** N y** = (0). Using Frink’s axioms (1941) for a Boolean
algebra, it is readily seen that when 1 is an orthogonality relation the class B(G)
of subsets of G of the form A+, ordered by inclusion, is a complete Boolean
algebra with (N, 4; = (U Ax)* and A** as the complement of A™.

The Stone space of B(G) (i.e., the set of prime ideals of B(G) equipped with
the hull-kernel topology) will be denoted by Q. For each t € Q a subset G, of Gis
defined by G, = {xe G: x**et}.It is readily seen that each G, is a subgroup of
G and N, G, = (0). Using the method of Dauns and Hoffman (1966) it can be
seen that there is a sheaf of groups with base space Q and stalks G/G,,t€ Q, and
an isomorphism ~ given by %(f) = x + G, mapping G into the group I' of
continuous global sections of this sheaf, such that x 1 y if and only if for each
te Q either £(t) = 0 or j(t) = 0. This sheaf representation is more special than
the obvious representation of G as a sub-direct product of the groups G/G, only
in that Q has a topology and the disjoint union of the groups G/G, is given the
finest topology for which each £ is continuous. I' then consists of all choice
functions Q — U G/G, that agree locally with some x. Since Q is compact
Hausdorff and has a base for the open sets consisting of the closed open sets
Q4= {teQ: A*¢1}, A< G, then for any ceT there is a finite closed-open
partition Q43,---,Q,> of Q, and x,,--,x,€ G such that 6 = X I(Q,*;x;) where

Q=)@ = [ 4® 1 o ou

A necessary and sufficient condition for G = {£: xe G} and T to be isomorphic
is G=A"®A** for all 4*eB(G).

2. Lattice-ordering I
It will be assumed in this section that L is an orthogonality relation on
the abelian group G.

LeMMA 2.1. The quotient groups G/G, are all torsion-free if and only if
xt = (mx)* for all x in G and all integers m > 1.

PROOF. Assume x* = (mx)* for all x in G and all m = 1. [ mxeG, then
x**t = (mx)**et so xe G, and G/G, is torsion free. If each G/G, is torsion-free
and yl mx then y¢ G, implies mxe G, so xe G, and thus yl x.
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PROPOSITION 2.2. Let G have an orthogonality relation L satisfying
x* = (mx)" for all xe G, m 2 1. For each te Q let P, bea positive set defining
a total order on G/G, compatible with the group structure. Define a partial
order on T by 0 20 if 6(t)e Q. Then T is lattice-ordered if for each xe G the
set Pos(x) = {teQ: %) >0} is open in Q.

ProoF. Each G/G, is abelian and torsion-free by lemma 2.1 and therefore
admits a total order P,. Suppose that Pos(x) is open for each x € G. Then the set
{te Q: () = 0} = Q\Pos ( — x) is closed and contains Pos(x) yet if £(¢,)=0
then there is a basic closed-open neighbourhood Q. = {te Q: A¢t} of t, such
that £(¢) = 0 for all te @, so that QN Pos(x) is void. Hence Pos(x) is closed
and therefore closed-open. The function XvO0 mapping Q into |J,.oG/G,)
according to ¢ +» max{£(¢), 0} is the supremum of £ and 0 in the ordered group
of all (not necessarily continuous) global sections. However, £v0 = I(Pos(x); x
where
(1) if tePos(x)

I(Pos(x); x) (1) = 0 if t e Pos(x),
so £v0el. For ¢ = %, 1(Q4;: x) eI, where {QA;} is a finite closed-open
partition of Q,

6 v0(t) = max{e(?), 0}

= X I(Q.;N Pos(x;); X))

is in I, so that T is lattice-ordered.

THEOREM: 2.3. If G has an orthogonality relation L satisfying x™ = (mx)*
for all x in G, m = 1 and an element 1 satisfying 1* = (0) then the group T can
be lattice-ordered so that oLt if and only if Iol A ltl =0foro tinT.

PRrOOF. Since 1* = (0) then 1¢ G, for all te Q. For each teQ there is a
positive set in G/G, such that for each xe G the set Pos(x) = {teQ: () > 0
in G/G,} is open. Consider the positive sets {ml + G,: m = 0,1,2,---}: for xeG,
Pos(x) = Un>o{teQ: X — nl(t) = 0} which, as a union of open sets, is open.
The class K of strings (P,) such that each P, is a positive set in G/G, containing
1+ G, and such that Pos(x) = {teQ: 0+# x + G,eP,} is open for each xe G
is inductive when ordered by (P);cq = (P;),cq if P, 2 P/ for all teQ, so that
maximal elements of K follow from the axiom of choice. Let (P,),., be maximal
in K. For x e G the closure Pos(x) of Pos(x) is closed-open in Q.If te€Q define
P, = {x + G,: te Pos(x)}. If x+ G,eP; N(— P;) then te Pos(x) N\ Pos( — x)
which, however, is void since Pos(x), Pos( — x) are disjoint open sets with open
closures. For each teQ the set P, U {0} is therefore a positive set in G/G,

containing P, Furthermore, for xeG,
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Pos’(x) = {teQ: x + G,e P}
= {teQ: te Pos(x)} = Pos(x) is closed-open.

The maximality of (P,),.o in K therefore gives that Pos(x) is closed-open for
each xe G. Now suppose that for some t,€Q, P,  does not define an isolated
order on G/G,, so there is an a + G, € P,, and an integer m, = 2 such that
moa + G, €P,,.

Then, t, € Pos(mgya) so there is an open neighbourhood Q,+of t, contained
in Pos(mga). Also, 1y ¢ Pos(a) so there is an open neighbourhood Qg+ of ¢,
contained in Q\Pos(a). Then for te Q,- N Qg*, P, does not define an isolated
order on G/G,. Consider the string (P;),.o With

Pt ifteQA‘nQB‘.’
P"= {ma+y+G,:m=0.1,2,"',.V+Gtepr}

ifteQ, NQp*

Each P, is a semigroup properly containing P,. If P, is not a positive set for some
teQ,, NQg then nya+y, +G, = —nya —y,+ G, for some integers n,,
n, 21, and y; + G,y, + G,eP. Then (ny +ny)a+ G, = —(y; +y)) + G
— P, and mgy(n, + n,)a + G,€ P, (sinceTmqa(t) > Ozfor te @ ,~ N Qg*) so that
my(n; + ny)a + G, = 0 which means aeG, since G/G, is torsion-free. This
contradicts the choice of ae G so that each P is a positive set in G/G,. For
xe GputPos'(x) = {teQ:0 5 x + G, e P/}. Suppose t, € Pos’(x). If t; € Q ,* NQp*
then t, € Pos(x) so there is an open neighbourhood of ¢, contained in Pos(x)
and hence in Pos’(x). If t; € Q,* N Qp-then X(t,) = my(tl) # 0, so there
is an open neighbourhood Q.- of ¢, such that £(t) = ma + y(t)#0forteQg.
Also, there is an open neighbourhood Qp* of t; such that $(¢t) > Ofor ¢ e Q,*. Thus
Oct N Qp* 2 Pos’(x). The set Pos’(x) is therefore open for each xeG. This
contradicts the maximality of (P,),co in K so that each P, defines an isolated
order on G/G,. Now suppose that for some t € Q, P, does not define a total order
on G/G,, so that for some a € G, a + G,€ P, U ( — P,). Thatis t € Pos(x) N Pos(—x)
which is an open set, so for ¢; in some open neighbourhood Q,* of ¢, P, does
not define a total order on G/G,,. As before, consider the string (P;),.o With

Pt iftEQA‘9
Pl=%{ma+y+G:m=0,1,2,-,y+ G,eP}
ifteQ,*

Each P, is a semigroup containing P, in G/G,. If P, is not a positive set for some
te Q4 then, as before, ma + G, — P, for some m = 1. Since P, defines an
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isolated order on G/G, then a + G, € — P,, contrary to assumption. The maximality
of (P,), ¢ therefore gives that each P, defines a total order on G/G,. The group
I' is therefore lattice-ordered by o = 0 if o(f)e P, for all te Q. Since |a|(t)
= max{a(1), — o(t)} in G/G, and ¢ A7(1) = min{a(), 7(t)} in G/G,, then
la| Alt| = 0if only if for each teQ either o(t) = 0 or (1) = 0.

3. Lattice-groups

In this section G will denote an abelian lattice-group. The relation defined
on G by x Lyif |x| A |y| = 0 is an orthogonality relation with

oot = (x| Ay DM

XL_L\/ yL_L :(lxl\/ 'yl)J.L,

and the subgroups G, are prime lattice-ideals. The results 3.1, 3.3 are due to
Spirason and Strzelecki (to appear).

PROPOSITION 3.1. A subgroup I < G is of the form G, for some te Q if and
only if

(1) xLyimpliesxeloryel

(2) xel implies x* <1

(3) xel implies x™ # (0)
An immediate corollary to this is that every minimal prime lattice-ideal of G is
of the form G,, for some te Q. Recall that a prime lattice-ideal M is minimal
prime if M is minimal in the class of prime lattice-ideals of G: a necessary and
sufficient condition for a prime lattice-ideal M to be minimal prime is that for
each xe M there is ayé M with x 1 v.

DEeriniTION 3.2, The lattice-group G is said to be complemented if for all
x, yeG there is an aex™"® x* such that yea .

THEOREM 3.3. G is complemented if and only if every subgroup G, # G is
a minimal prime lattice-ideal.

The class of minimal prime lattice ideals of G will be denoted by M(G).
For xe G the class M(x) = M(G) is defined by M(x) = {MeM(G): x¢ M}.
The set u; = {M(x): xe G} forms a closed-open base for the open sets for a
Hausdorff topology on M(G). In fact, for x,veGgG,

M(xy O M(y) = M(| x| Ay ])
and

M) UML) = M(|x‘ v/ |y})
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The class of subgroups G, # G is denoted by V(G). For xe G, the class V(x) is
defined by V(x) = {G, # G: x¢G,}. For x,yeG,

V) V) = V(x| Aly]
and

V(x) UV(y) = V(jx|V |y].

The set vg = {V(x): x e G} then forms a compact-open base for the open sets
for a topology on V(G), which is compact if and only if G has an element 1 satis-
fying 1* = (0). Further it is readily seen that for x, ye G, V(x) = V(y) if and
only if x* = y*.

THEOREM 3.4. The following are equivalent:

(1) G is complemented

(2) V(G) = M(G)

(3) vg is relatively complemented

(4) V(G) is a Hausdorff space

(5) Each V(x)evg; is closed in V(G).

PROOF. If every G, # G is minimal prime and G,, # G,, ¢ V(G) then there is
an xe G, such that x¢G,,, and a yeG, such that xLy. Then G, eV(y),
G,,€V(x) and V(y) N V(x) is void. Conversely, if V(G) # M(G) then there is
a G, # G that is not minimal prime. Then G, contains a minimal prime G, , and
G,, G,, cannot be Hausdorff-separated. Thus (2) is equivalent to (4). Suppose
that G is complemented. Take V(x)evg and V(y) € V(x) so that y**< xt*
Then there exist aey*, bey™* such that x** = (a + b)'* = a** v b**. Then

(lXI/\ItI')lLE.’(LLand('Xl /\’a’)_L,LvyLJ_ :(xL.L /\‘a_L.L)V),LJ.

- (x,L_L v/ yu) A (au. v/ '\'LL) = it

Also, |xl A [a |_Ly so that (|x[ A |a|)f\V(y) is void, and V(|x| /\lal)
U V(y) = V(x). That is v, is relatively complemented. On the other hand if
v is relatively complemented and x, ye G then V(x) < V(] X l A Iy |) S0
there is an x'eG such that x’Lx and (x)**V x** = x** A y**. Then
ye(x)Ytv xt = (x' 4+ x)**so that G is complemented. That is (1) is equivalent
to (3).

Suppose that each V(x) in v is closed and G, # G. If xe G, then teV(x)
so there is a basic open set V(y) with teV(y) < V(G)\V(x). That is ylx
and y ¢ G,, so that G, is minimal prime. If each G, # G is minimal prime then
V(G) = M(G) so that each V(x) = M(x) is closed.
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