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Abstract

Objectives: During the COVID-19 pandemic, free on-demand testing was promoted in the
US. This study was undertaken to support or refute the hypothesis that negative SARS-CoV-2
tests led to travel that exposed travelers to the virus in US states.
Methods: Data on daily trips outside households based on cell phone movement were matched
by date to negative tests, positive tests, subsequent COVID-19 cases, and deaths lagged at various
intervals in 49 US states during the first 16 months of the pandemic. Least-squares regression of
weekly trips as a function of prior trips, negative tests, and cases was examined. Cases 10-14 days
after negative tests and deaths 20-25 days later as a function of previous trips and positive tests
were also assessed by least squares regression.
Results: Increases in negative tests predicted increases in trips but trips declined as cases
increased. Changes in trips predicted short-term changes in cases and deaths. The data closely
fit the models.
Conclusions: Surges in cases and deaths from COVID-19 were likely a partial result of
on-demand testing, without sufficient contact tracing and quarantine, which misled those
who tested negative into thinking that it was safe to travel.

During the years 2020-2023 of the COVID-19 pandemic, when tests for the SARS-CoV-2 virus
became available, the United States (US) government promoted free on-demand testing. The
government sent billions of dollars to states and local governments for tests and personnel to
administer them.When home tests became available, free test kits were mailed directly to people
who requested them. This policy was based on the knowledge that SARS-CoV-2 was spread easily
in breathed aerosols and particles from the asymptomatic and presymptomatic in addition to the
symptomatic. At first, people were urged to be tested and self-quarantine if they tested positive.
Later testing was promoted as a path to normal activities. Testing advocates assumed that tracing
the contacts of those who test positive, testing the contacts, and urging all who test positive to
isolate themselves for 14 days would reduce the spread of the virus. Many jurisdictions also used
the proportion positive of those tested to adjust recommendations or requirements for face
coverings, and the size of gatherings. To the extent that people sought tests to decide whether to
visit others rather than because of symptoms or suspected exposure, the tests were more likely to
be negative, inflate the total tested, and therefore reduce the proportion positive.

In early 2021, a research report indicated that increases in negative tests predicted surges in
hospitalizations 14 days after the tests when on-demand testing was promoted in 23 countries
and among US states in 2020. Negative tests were not associated with increased hospitalizations
when tests were limited to the symptomatic and people with conditions making them more
vulnerable to severe outcomes.1 When on-demand testing was available, it appeared that people
who received negative test results were traveling and coming in contact with the infected,
resulting in increased infections. After an abrupt decline in road traffic when the health
emergency was declared, duringMarch-July 2020, about 335 kilometers of road travel on average
was accumulated in the week following each negative test.2 In theUS during 2020-2022, cases and
deaths surged periodically, especially during the summer vacation periods and the late fall and
winter holidays.3 People move about on foot and conveyances such as bicycles, mass transit, and
airplanes, in addition to road vehicles, increasing the risk of exposure to the virus. This
communication reports a study that tests the hypothesis that negative COVID-19 tests are
associated with subsequent trips outside the home and increased COVID-19 infections.

The 14-day lag time between changes in test results and cases used in previous research1,2 is
open to question. The average time from infection to symptom onset has been estimated at 5-7
days, but in 1 study, symptoms did not appear for more than 12 days in 5% of cases.4 A literature
search found no study of time from symptom onset to seeking a diagnosis, but it is likely that
many people with mild symptoms delayed or avoided diagnosis. The count of deaths from the
disease is indicative of severe cases but the delay between infection and death is likely more varied
than the delay between infection and diagnosis. One study found an average lag of 18 days from
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diagnosis to death, with 10% of cases dying 33 or more days after
diagnosis.5 To examine the sensitivity of variation in the results due
to lag times, this study compares several in a plausible range.

Methods

Data on daily trips outside households in each US state, measured by
cell phone movement, were downloaded from the US Bureau of
Transportation Statistics. A cell phone movement was considered
away from home if the phone moved 300 or more meters at a speed
of 1.4 meters per second within 5 minutes. The data have been
subjected to procedures indicative of validity.6 Daily COVID-19 cases
and deaths and daily reported positive and negative tests in the states
were downloaded fromcovidactnow.org.7 The datawere gleaned from
a variety of sources. The included daily counts were from late March
2020-June 5, 2021, after which the trip data were unavailable. Data on
testingweremissing fromWashington state,whichwas excluded.Data
were available for 20 256 state days, an average of 413 days per state.

Merged by state and date, the data were fitted to 3 least-square
regression models, 1 for trips and 1 each for cases and deaths.
Where t = time in days from the first tests in a given state and t-7 =
data 7 days before, the form of the model for predictors of trips
during the week after is:

Log averagedaily tripst
� �¼ aþb1 log averagedaily tripst�7

� �

þ b2 log average dailynegative testst�7

� �

þ b3 log averagedaily casest�7

� �þb4 tð Þ:

The model for cases is:

Log averagedaily casest
� �¼ aþb1 log averagedaily casest�14

� �

þ b2 log average dailypositive testst�14

� �

þ b3 log averagedaily tripst�14

� �þb4 tð Þ

The lag time in the second equation was incremented from 10-14
days in separate examinations of fit to the model for cases. The
equation for deaths was the same as for cases except the time lag was
incremented from t-20 to t-25 days. Trips, cases, and deaths in
previous weeks as predictors of their frequency in the subsequent
period were included to control statistically for the phase of the
pandemic at a given time in each state. Logarithms of the data were
employed to reduce skew in the frequency distributions. The daily

fluctuation of test and case reporting, as well as weekday variation
in trips, was reduced by computing 7-day moving averages.

To assess the possibility of on-demand testing producing bias in
positivity, a graph of percent positive by negative tests per popula-
tion is presented.

Results

The regression coefficients and confidence intervals for predictors
of average daily trips are in Table 1. Trips increased during the week
following an increase in SARS-CoV-2 negative tests and declined as
cases increased but there was no overall trend in time. The negative
coefficient for cases suggests that higher case counts reduced the
tendency to travel. The lack of prediction by time trend indicates
that the predictions are specific to the other variables and not an
artifact of parallel time trends. TheR2 indicates a good fit of the data
to the model (Table 1).

The results for COVID-19 cases at different lag times are in
Table 2. Cases surged after trips increased in prior weeks. The trip
coefficient increased as lag time increased, suggesting a greater lag
for those who contracted the virus on trips. The coefficients on
positive tests were also higher with a longer lag time. The cases
predicted from prior cases declined as lag time increased. The
association of cases to time was minimal, indicative of no trend
unrelated to the predictive variables (Table 2).

The association of the predictor variables and deaths (Table 3) is
similar to those noted for cases, but with longer lag times. The
regression coefficients on log(trips) and log(positive tests) increased
as lag time increased and the coefficient on prior deaths decreased.
The near-perfect goodness of fit (R2 > .95) is substantially higher in

Table 1. Negative tests and COVID-19 cases as predictors of average daily trips
in the following week, US states March 2020-May 2021

Predictor Regression coefficient 95% confidence

log(tripst–7) 0.763 0.759, 0.767

Log(negative testst–7) 0.036 0.032, 0.040

Log(casest–7) –0.020 –0.023, –0.017

Time trend 0.000 0.000, 0.000

Intercept 3.942

R2 0.933

Table 2. Regression coefficients and 95% confidence intervals of predictors of log(COVID-19 daily cases) in specified lag times, US states March 2020‒May 2021

Predictor Lag 14 days Lag 13 days Lag 12 days Lag 11 days Lag 10 days

Log(cases before) .445 .469 .497 .523 .552
(.427, .463) (.451, .487) (.479, .515) (.505, .541) (.534, .569)

Log(positive tests before) .292 .287 .280 .278 .271
(.273, .311) (.269, .305) (.262, .298) (.260, 296) (.254, .288)

Log(trips before) .307 .284 .260 .233 .207
(.294, .322) (.271, .297) (.247, .273) (.220, .246) (.194, .220)

Time trend ‒.001 ‒.001 ‒.001 ‒.001 ‒.001
(‒.001, ‒.001) (‒.001, ‒.001) (‒.001, ‒.001) (‒.001, ‒.001) (‒.001, ‒.001)

Intercept –5.128 –4.887 –4.624 –4.337 –3.942

R2 .771 .780 .793 .801 .816
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the analysis of deaths compared to cases, perhaps because the diag-
noses are more definitive (Table 3).

To assess the potential for distortion of the regression coeffi-
cients due to collinearity among predictor variables, the correl-
ations in Table 4 were examined. Although the counts of positive
and negative tests were strongly correlated, they were not used in
the same equations. The other correlations were low enough that
distortion is unlikely (Table 4).

The association of percent positive and negative tests per popu-
lation is displayed in Figure 1. Although low positivity occurred on
many days when negative tests were low, positivity was generally
lower when negative tests per population were relatively high
(Figure 1).

Limitations

Although definitive conclusions about individual decisions and
behavior cannot be reached from correlations in aggregated data,
the time sequences and plausibility support the noted inferences. If
testing were a response to an increase in cases and deaths, it would

increase after surges in cases and deaths, not precede them, and
would not become increasingly correlated asmore time passed. The
type of tests used at public, on-demand testing sites varied in place
and time. The Food and Drug Administration did not approve
rapid antigen tests until December 2020, before which the tests were
mainly PCR. Although the reliability of tests varies by type, it is the
result that the recipient receives that likely influenced travel. A false
negative that promoted travel could spread the virus by the recipi-
ent while a true negative could promote travel that increased the
risk of exposure.

Discussion

These results support the hypothesis that on-demand testing con-
tributed to the spread of the pandemic coronavirus. Increases in
negative tests were associated with increased subsequent trips away
from home and the trips were associated with subsequent increased
cases and deaths. The results are plausible given that news outlets
were quoting testing advocates urging people to get free tests
provided by the government at pharmacies and drive-thru
sites,8-10 saying that a negative test would allow people to return
to normal activities.11 Mutually agreed-upon testing before gath-
erings of small groups may be beneficial, but a negative test does
nothing to protect the tested person who is subsequently exposed to
infected strangers while shopping or attending larger gatherings.

The cases and deaths in this study preceded the delta and
omicron mutations that were more easily transmitted. The surge
in cases in the fall of 2020 was higher than when the delta variant
was prevalent in the following year. The more intense fall-winter
surge in 2022when the omicron variant was prevalent was likely the
result of increased transmissibility, but one cannot be infected
without being exposed and the data in this study suggest that

Table 3. Regression coefficients and 95% confidence intervals of predictors of log(COVID-19 daily deaths) in specified lag times, US states March 2020–May 2021

Predictor Lag 25 days Lag 24 days Lag 23 days Lag 22 days Lag 21 days Lag 20 days

Log(deaths before) .616 .630 .644 .657 .672 .689
(.611, .621) (.626, .634) (.640, ,648) (.653, .661) (668, .676) (.685, .693)

Log(positive tests before) .094 .090 .085 .081 .076 .072
(.089, .099) (.085, .095) (.081, .089) (.077, .085) (.071, .080) (.068, .076)

Log(trips before) .398 .383 .371 .358 .344 .327
(.390, .406) (.375, .391) (.363, .379) (.351, .365) (.338, .350) (.321, .333)

Time .001 .001 .001 .001 .001 .001
(.001, .001) (.001, .001) (.001, .001) (.001, .001) (.001, .001) (.001, .001)

Intercept –4.522 –4.354 –4.214 –4.066 –3.904 –3.710

R2 .959 .963 .965 .968 .970 .973

Figure 1. Percent positive of daily tests by negative tests per 1000 population, US States March 2020-May 2021.

Table 4. Correlation coefficients among predictor variables

Log
(negative
tests)

Log
(positive
tests) Log(cases)

Time
trend

Log(trips) 0.32 0.26 0.52 .08

Log(negative tests) 0.94 0.33 .46

Log(positive tests) 0.50 .06

Log(cases) .43
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exposure was partly a function of travel by people who tested
negative.

This study adds to the evidence that without sufficient tracing
and quarantine, on-demand testing exacerbated the spread of
SARS-CoV-2 and explains part of the large variation among and
within countries.2 To the author’s knowledge, the correlation of
negative tests with subsequent trips outside dwellings has not been
documented. Although aggregate data do not allow specification of
individual contacts during trips and subsequent infections, that
finding is a reasonable explanation for the correlation of increases
in negative tests with subsequent surges in cases, hospitalizations,
and deaths. Also, while positive tests predicted increases in cases
and deaths, the reduced positivity when negative tests per popula-
tion were relatively high suggests that low positivity could have
resulted in the reduction of countermeasures when needed most.

Testing can be effective when contact tracing and quarantine are
vigorously enforced.12 However, on most days in US states, there
were too few tracers and a lack of cooperation in identifying the
contacts by many of the infected. Of the 20 256 state days in this
study, the contact tracing effort was indicated as “comprehensive”
on only 16%.13 The degree to which the testing and tracing system
was overwhelmed is suggested by the number of cases relative to the
number of tracing personnel on a given day in each US state. Based
on the estimated time needed by tracers per case in a US Centers for
Disease Control and Prevention (CDC)manual, on about 7 of every
10 days, there were more cases than personnel had enough time to
interview the infected and their contacts.2

A CDC study of contact tracing in 13 health departments in 11
US states and an Indian Health Service unit found that less than 60
percent of people who tested positive were interviewed and only a
third of those named contacts. Of the contacts traced, less than half
agreed to follow up.14 That means that only a small minority of the
contacts of people with positive tests were traced and tested, much
less advised to quarantine. Without special quarantine facilities,
people of limited means living with others had no place to isolate
themselves.

Another team of researchers at the CDC studied data on contact
tracing in 23 jurisdictions for 60 days in the winter of 2020-2021.
Based on the results, they estimated that the procedure resulted
in 1.11-1.36 million fewer cases and 27 231-33 527 fewer hospital-
izations.15 However, persons who tested negative were not
included. There were about 7 negative tests for each positive test
that winter. While the study supports the conclusion that some
people complied with public health recommendations, to obtain
the overall net effect of testing and tracing, the consequences of
travel and subsequent infections after negative tests would have to
be subtracted from the estimate.

In the US, resistance to mandatory and voluntary public health
measures was politicized and exacerbated by disinformation dis-
proportionately among Trump voters.16-17 COVID-19 deaths were
more frequent per population in counties with higher percentages
of the vote for Trump in 2016, but that correlation was independent
of the correlation to negative tests.2 Various publications and a
Senate committee report on the US government and health care
system’s shortcomings in preparedness for and response to the
pandemic have uniformly ignored the role of on-demand testing
other than to infer that there was not enough testing.18-23 Failure to
recognize the unintended consequences of interventions to
improve health or other desirable outcomes is likely to lead to their
repetition.24-25

Testing is an essential tool for differential diagnosis and is useful
for screening in some settings. For example, testing caregivers in

nursing homes was associated with reduced mortality,26 and
reduced cases in “test-to-stay” programs allowed school attendance
to increase.27

On-demand testing for a highly infectious virus overwhelmed
the tracing system and likely misled those with negative tests to
believe that moving about was safe. Self-selection to be tested likely
contributed to misleading low positivity and loosening of counter-
measures. Individual testing is not necessary to inform public
health policy. Wastewater testing can be used to monitor preva-
lence in aircraft28 and communities.29 The omicron variant was
detected in wastewater more than a week before being found in a
case.30

Unanticipated public reactions to testing and other COVID-19
policies are not unique. Nor are failures of scientists to monitor for
and acknowledge unanticipated consequences in public health and
other attempts to change behavior.31 Close monitoring of whether
people adhere to recommendations and mandates, or behave in
unanticipated ways that increase risks, is essential to ensure that
policies are effective.
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