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This work tackles a significant challenge in dynamo theory: the possibility of long-term
amplification and maintenance of an axisymmetric magnetic field. We introduce a novel
model that allows for non-trivial axially symmetric steady-state solutions for the mag-
netic field, particularly when the dynamo operates primarily within a ‘nearly spherical’
toroidal volume inside a fluid shell surrounding a solid core. In this model, Ohm’s law is
generalised to include the dissipative force, arising from electron collisions, that tends to
align the velocity of the shell with the rotational speed of the inner core and outer mantle.
Our findings reveal that, in this context, Cowling’s theorem and the neutral point argu-
ment are modified, leading to magnetic energy growth for a suitable choice of toroidal
flow. The global equilibrium magnetic field that emerges from our model exhibits a dipo-
lar character. The central insight of the model developed here is that if an additional force
is incorporated into Ohm’s law, symmetric dynamos become possible.

Key words: Astrophysical plasmas

1. Introduction

Dynamo theory posits that planetary and stellar magnetic fields are generated by
converting kinetic energy into magnetic energy via Faraday’s law of induction in
a magnetohydrodynamic (MHD) fluid (e.g. Moffatt 1978; Desjardins et al. 2007;
Tobias 2021). The mechanism behind the long-term amplification and maintenance
of these fields, particularly axisymmetric magnetic fields, remains a longstanding
theoretical problem. This inquiry dates back to Larmor (1919), who hypothesised
that a flow of ionised gas (as in the Sun) occurring in a magnetic field aligned with
an axis would induce a toroidal electric current circulating about the axis, thereby
sequentially enhancing the magnetic field. However, Cowling’s neutral point argu-
ment (Cowling 1933) established the well-known antidynamo theorem, stating that
an axisymmetric magnetic field cannot be sustained by dynamo action. This finding
laid the groundwork for mean-field theory (e.g. Krause & Rädler 1980) and nearly
axisymmetric dynamos (Braginsky 1976), while kinematic approaches explored
magnetic field enhancement through predefined velocity fields (e.g. Backus 1958;
Ponomarenko 1973). Meanwhile, theoretical efforts aimed to generalise Cowling’s
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theorem by removing the restrictions noted in his original proof and possibly
finding ways to circumvent it (see detailed discussions in Ivers & James (1984),
Núñez (1996) and Kaiser & Tilgner (2014)). Allowing anisotropy in conductivity
emerged as a potential solution to support symmetric field configurations (Lortz
1989; Plunian & Alboussière 2020). Interestingly, modelling compressibility and/or
variable conductivity in gaseous planets, spherical MHD dynamo simulations exhib-
ited quasi-equilibrium fields that were almost-axisymmetric and dipole-dominated
(Nishikawa & Kusano 2008; Yadav, Cao & Bloxham 2022).

In this study, we revisit the fundamental question of whether axisymmetric
dynamos can be theoretically realised within the framework of kinematic dynamo
theory. Here, an axisymmetric dynamo refers to the spontaneous generation of a
magnetic field that exhibits axial symmetry. Our hypothesis is that the dissipative
force arising from electron–electron collisions – commonly neglected in standard
MHD – may play a role in geophysical and astrophysical dynamos. We highlight
that this MHD regime serves as a simplified model for certain planetary or stellar
interiors, as such systems – whether consisting of fully ionised plasma or liquid metal
– can be effectively modelled as a two-fluid system of ions and electrons interacting
through electromagnetic forces. The dissipative force due to electron–electron col-
lisions becomes particularly significant when the turbulence scale of the fluid flow
in planetary/stellar interiors is sufficiently small, thereby requiring a modification
to Ohm’s law. Indeed, the constitutive relation connecting the electric field to the
magnetic field and velocity field depends on the forces acting on the electron fluid
(Freidberg 2014). To explore this idea, we propose two simplified models for the
dissipative force: a restoring friction force model and a viscous dissipation model.
Importantly, the emphasis of this work lies in the underlying physical principle: if an
additional force is incorporated into Ohm’s law, symmetric dynamos become possible.

In fusion plasma physics, stable equilibrium magnetic fields are crucial for devel-
oping magnetic confinement fusion reactors (Wesson 2004; Helander 2014). A key
property of fusion reactors is that they must be toroidal rather than spherical, due
to the impossibility of accommodating a non-vanishing magnetic field on a spheri-
cal surface (hairy ball theorem; Eisenberg & Guy 1979). This work builds on these
principles by modelling a planetary/stellar dynamo-active region, situated between
an inner core and an outer mantle, as a ‘nearly spherical’ thick toroidal volume
enclosed within a spherical fluid shell. This volume resembles the shape formed
when attempting to fit a torus into a hollow sphere (see § 2 and figure 1). Applying
the modified Ohm’s law that accounts for the dissipative force caused by electron
collisions, we show that the resulting dynamo model successfully generates an axi-
ally symmetric dipolar magnetic field driven by an ion flow aligned with the steady
electric current density. We also uncover that, at equilibrium, the ideal convective
(Lorentz) forces and the dissipative (Ohmic resistance and friction/viscosity) forces
balance independently. This regime aligns with the kinetic theory of plasmas (e.g.
Sato & Morrison 2024), from which MHD originates.

The present model may thus serve as an illustrative example for understanding
the dynamo mechanism responsible for generating the dominant dipole component
of planetary and stellar magnetic fields, including the highly symmetric configu-
rations observed in Saturn and Mercury (e.g. Anderson et al. 2012; Cao et al.
2023). The nearly axisymmetric fields of the gas giant and the rocky planet have
been attributed to the influence of a stably stratified layer above the dynamo region
(Stevenson 1980; Christensen 2006). Our model suggests that this can naturally result

https://doi.org/10.1017/S002237782510038X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782510038X


Journal of Plasma Physics 3

FIGURE 1. (a) Schematic representation of a dynamo region in a planet. Note that the current
density J∞ responsible for the dipole magnetic field B∞ flows within a toroidal volume T
entirely contained within the fluid shell L . (b) Half-cut toroidal surface ∂T bounding the toroidal
dynamo region T . Note that the current density J∞ vanishes in the dark region surrounding the
vertical axis, which corresponds to the toroidal hole.

from dynamo action confined within a toroidal volume inside the spherical dynamo
region, influenced by the balance of resistive and friction/viscosity forces.

2. Modelling an internal dynamo region

In this section, we introduce a simplified model of the interior regions beneath the
surface of a planet with volume S ⊂R

3. Specifically, we model the dynamo-active
region T – the region where the electric current density responsible for dynamo
action is non-vanishing – as a toroidal volume T ⊂ S.

The choice of a toroidal volume is motivated by the nature of axially sym-
metric dipole magnetic fields generated by spontaneous dynamo action. In such
cases, the corresponding electric current density is toroidal and can be expressed as
J = α(r, z)∇ϕ, where (r, ϕ, z) are cylindrical coordinates, and α(r, z) is a function of
r and z. Due to the singularity of |∇ϕ| = 1/r at r = 0, and the fact that the direction
of ∇ϕ is not uniquely defined at r = 0, the current density J must vanish along the
planetary axis (r = 0). Consequently, a dynamo-active region sustaining such an an
axially symmetric magnetic field cannot have a spherical topology. Instead, it can be
appropriately modelled as a toroidal volume T ⊂ S embedded within the planetary
volume S ⊂R

3.
This observation is closely related to the Poincaré–Hopf and hairy ball theorems

(Eisenberg & Guy 1979), which state that a non-vanishing continuous vector field
cannot exist tangent to a spherical surface. For a sphere to accommodate a toroidal
current, there must be regions where the current vanishes. Practically, this implies
the absence of significant macroscopic currents near the planet’s poles, supporting
the choice of a topologically toroidal dynamo-active region.

We further assume that the magnetic axis aligns approximately with the planet’s
rotational axis and that T exhibits rotational symmetry around the vertical axis
connecting the poles. The planetary structure is modelled with a solid core C , sur-
rounded by a fluid shell L , which lies beneath the mantle M . Here, C is a spherical
volume, while L and M are hollow spherical shells. Both the solid core and fluid
shell may be electrically conducting; however, the solid nature of the core suggests

https://doi.org/10.1017/S002237782510038X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782510038X


4 N. Sato and K. Hori

that convective currents sustaining the planet’s magnetic field are confined to the
fluid shell. Hence, T ⊂ L.

Additionally, we assume that the toroidal volume T nearly fills the fluid shell L ,
resulting in a ‘nearly spherical’ yet topologically toroidal region (see figure 1). For
the purposes of this study, we focus on T and the exterior region O =R

3 \ T̄ , where
T̄ denotes the closure of T .

A schematic representation of this model is shown in figure 1. In this figure,
J∞(x) = μ−1

0 ,× B∞(x) and B∞(x) denote the long-term current density and mag-
netic field, respectively, representing the final equilibrium fields resulting from
dynamo action. Here, μ0 is the vacuum permeability.

3. Modified Ohm’s law incorporating electron collisions

In the following, we adopt a simplified model of the electrically conducting fluid
responsible for dynamo action, described as an ion–electron two-fluid system. This
simplified approach is not intended for making quantitative predictions about the
magnetic properties of specific planets or stars. Instead, it provides a concep-
tual framework that highlights the core physical principle: if an additional force is
incorporated into Ohm’s law, symmetric dynamos become possible.

Ohm’s law relates the electric field E(x, t) to the velocity field u(x, t), the mag-
netic field B(x, t) and the current density J(x, t) through the resistivity η > 0,
modelled as a constant, according to

E = B × u + η J . (3.1)

Equation (3.1) originates from the electron fluid momentum equation

mene
due

dt
= −ene(E + ue × B) − ∇ Pe + Re, (3.2)

where me, −e, ne(x, t), ue(x, t), Pe(x, t) and Re(x, t) denote the electron mass,
charge, number density, fluid velocity, pressure and resistive force resulting from
ion–electron collisions, respectively (Freidberg 2014). Recalling that the electron
fluid velocity ue is related to the current density J , the ion fluid velocity ui(x, t), the
ion number density ni(x, t) and the ion charge Ze according to J = e(Zni ui − neue),
(3.2) can be solved for E. Due to the smallness of the electron to ion mass ratio
δ = me/mi , the velocity of the centre of mass of the ion–electron two-fluid sys-
tem effectively corresponds to the ion fluid velocity, i.e. u = (ui + δue)/(1 + δ) ≈ ui .
Furthermore, assuming quasi-neutrality, we have n(x, t) = ni ≈ ne/Z , leading to

E = B × u + 1
Zen

J × B − 1
Zen

∇ Pe + Re

Zen
− me

e

due

dt
. (3.3)

The second term on the right-hand side is the Hall effect. In the regime of MHD,
both the Hall and electron pressure terms (3.3) scale with the ion-gyroradius, and
are therefore neglected on the larger spatial scale of the system. The last term on
the right-hand side of (3.3) is similarly neglected under the standard MHD assump-
tion (Freidberg 2014) that the small electron mass makes it smaller than all the
other terms, including the resistive term Re/Zen. If we further assume a linearity
relationship between Re and the current density J , i.e.

Re

Zen
= η J, (3.4)
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we arrive at Ohm’s law (3.1). For completeness, it is important to note that the
derivation of Ohm’s law presented previously aligns well with the classical Drude
model (Ashcroft & Mermin 1976), which describes electrons as following random
trajectories due to collisions with stationary ions. The emergence of a steady-state
characterised by a linear response to the applied electric field is intrinsically tied to
the small mass of the electron. This small mass enables an exceptionally fast response
time relative to the MHD time scale, thereby ensuring that the system quickly
reaches equilibrium where the current density is proportional to the electric field.

The standard form of Ohm’s law (3.1) is valid only within the parameter regime
of MHD. However, it is well established that Ohm’s law must be modified when
the assumptions underlying this regime no longer hold. For a detailed discussion
on the applicability of MHD, we refer to Freidberg (2014) and Fitzpatrick (2015).
Generalised forms of Ohm’s law, such as those in Hall MHD (Acheritogaray et al.
2011) and extended MHD (Abdelhamid, Kawazura & Yoshida 2015), have been
employed in applications to dynamo theory (Minnini, Gómez & Mahajan 2003;
Lingam & Mahajan 2015). The central idea of this study is that the dissipative force
arising from electron–electron collisions, which is typically neglected in standard
MHD, may play a significant role in geophysical and astrophysical dynamos. This
necessitates a corresponding modification of Ohm’s law (3.1). In the remainder of
this section, we develop a model for this modified form of Ohm’s law.

Now suppose that we move to a rotating reference frame with speed vR =
(1/2)Ωr 2∇ϕ, where Ω > 0 is a constant and (r, ϕ, z) is a cylindrical coordinate sys-
tem. In the rotating frame, the ion and electron fluid velocities become u′ = u − vR

and u′
e = ue − vR. It follows that

J = Zen (u − ue) = Zen(u′ − u′
e) = J ′, (3.5)

where the prime means that the quantity is evaluated in the rotating frame. Equations
(3.4) and (3.5) show that the resistive force Re cannot take into account dissipative
forces that cannot be expressed through the relative velocity u − ue. Indeed, the
force Re does not change in the presence of rotation vR due to the invariance of J
described by (3.5). However, the fluid shell surrounding the solid core cannot slide: it
is subject to friction forces that tend to make uniform the speed of the fluid with the
rotation speed vR of the inner core and the overlying mantle. Now imagine sliding
a condensed viscous fluid on a rough surface. It is then unlikely that these friction
forces can be neglected in the modelling of the fluid shell. The simplest model for
this type of friction is given by a restoring force Fγ acting on the electron fluid

Fγ = −Zeγ n(ue − vR) = −Zeγ n(u − vR) + γ J, (3.6)

where γ > 0 is a physical constant. The result is a modified Ohm’s law,

E = B × u + ηγ J − γ (u − vR), ηγ = η + (γ /Zen). (3.7)

Note that we introduced an effective resistivity ηγ . Remarkably, the restoring force
contains a toroidal component (u − vR) · ∇ϕ that can potentially balance a toroidal
current density J · ∇ϕ �= 0. Indeed, the difference u − ue between ion fluid velocity
and electron fluid velocity can have the same orientation as the difference ue − vR

between electron fluid velocity and rotation velocity, implying that the resistive force
η J can be balanced by the restoring force −γ (ue − vR). Physically, the fast moving
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ions attract the electron fluid in one direction, while rotation of the planet effectively
drags them in the other.

It is worth noting that the resistive force, which is proportional to u − ue, and the
frictional force, which is proportional to u − vR , share the same mathematical struc-
ture. In the case of the resistive force, this structure represents the linear response
to electron–ion collisions. Conversely, the frictional force models the linear response
to electron–electron collisions, which interact with the rotating inner core and outer
mantle as they collide with the boundary of the toroidal domain, propagating this
effect through subsequent collisions. We also remark that the friction force Fγ is
consistent with Galilean invariance, as the velocity differences u − vR and u − ue

remain invariant across inertial frames under Galilean relativity.
We emphasise that (3.6) represents a simplified description of the actual friction

force at play in the fluid shell, and is chosen to simplify the later analysis. This
friction force is ultimately rooted in the momentum transfer associated with electron
collisions. An accurate derivation of the friction force should take into account the
individual condition of the planet, e.g. the graduality of the transition from liquid
to solid phase in Earth’s interior, and would require kinetic modelling of particle
collisions in a rotating setting, leading to a corresponding electron fluid momentum
equation subject to boundary conditions for the velocity field that take into account
the planet’s rotation. If viscous resistive MHD equations are chosen to model the
electron momentum equation in the rotating frame, the resulting modification of
Ohm’s law in the non-rotating rest frame is

E = B × u + η J + ((meνe)/e)
ue ≈ B × u + η J + ((meνe)/e)
u, (3.8)

where νe is the electron fluid kinematic viscosity, 
 the Laplacian operator, we used
the fact that 
vR = 0 and neglected the term proportional to 
(J/Zen), which is
expected to represent a higher order correction in the plasma regime under consid-
eration. Note that, although vR does not appear explicitly in 
u, the presence of the
operator 
 implies that planetary rotation is felt throughout the toroidal domain via
the no-slip boundary conditions on u.

It is important to note that since the difference u − ue can be small relative to u,
the viscous term may be comparable to the resistive term. This implies that neglect-
ing viscous effects in resistive MHD may not always be a valid approximation,
as clear from the numerical examples given below. In particular, note that when
approaching the boundary of the fluid shell, the current density progressively drops
towards zero, leaving the friction/viscous forces the dominant toroidal component
in Ohm’s law. In fact, the condition η J ∼ meνe
u/e can be used to estimate the
characteristic spatial scale L of the relative velocity u − vR in the fluid shell needed
to sustain a given current density J . We have

u − vR ∼ eL2η

meνe
J ∼ eμ0L2

mePm
J =⇒ L2 ∼ mePm|u − vR|

eμ0|J | , (3.9)

where Pm = μ0νe/η is the (electron) magnetic Prandtl number. For given u − vR , we
see that when Pm is smaller, the current density and the turbulence scale L tend to
be very small. Conversely, in areas where Pm is higher, substantial currents can flow
and larger scales L are allowed. As an example, consider Earth’s liquid iron core
for a relative velocity of u − vR ≈ 10−4 m s−1. Using estimated values for resistiv-
ity, η ≈ 40 µΩ cm (Ohta et al. 2016), and kinematic viscosity, ν ≈ 1.5 × 10−6 m2 s−1
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Parameter Earth liquid iron core Saturn metallic hydrogen
u − vR 10−4 m s−1 10−2 m s−1

η 40 µ� (Ohta et al. 2016) 0.2 × 10−3 µ� cm (Preising
et al. 2023)

νe ≈ √
mi/me ν 1.5 × 10−6√mi/me m2 s−1

(de Wijs et al. 1998)
0.4 × 10−6√mi/me m2 s−1

(Preising et al. 2023)
,× B 10−13 Tm−1 10−14 Tm−1

L 10−3 m 10 m
r i 10−5 m 10−4 m

TABLE 1. Comparison of parameters for Earth’s liquid iron core and Saturn’s metallic hydro-
gen. L is the spatial turbulence scale at which the resistive term η J is comparable to the

viscous term meνe
u/e.

(de Wijs et al. 1998), noting that νe ≈ √
mi/meν (Freidberg 2014), one finds a turbu-

lence scale of L ≈ 10−3 m for the geomagnetic field B ≈ 10−6 T such that ,× B ≈
10−13 T m−1. A similar estimate for Saturn’s metallic hydrogen, with ν ≈ 0.4 ×
10−6m2 s−1, η ≈ 0.2 × 10−3µ� cm (Preising et al. 2023) and ,× B ≈ 10−14 T m−1,
gives L ≈ 10 m when u − vR ≈ 10−2 m s−1. In those plasma regimes, by contrast,
the ion gyroradii ri are found to be approximately 10−5 m and 10−4 m for the Earth
and Saturn, respectively. The MHD approximation with the modified Ohm’s law is
hence valid here (see table 1). We also note that these estimates on L likely represent
lower bounds as νe ≈ √

mi/meν only takes into account electron–electron collisions.
Finally, we remark that similar considerations apply to the ratio of the friction

force Fγ and the resistive term η J , as Fγ and 
u model the same dissipative force.

4. Modified Cowling’s theorem

Let us examine how Cowling’s theorem changes under the modified Ohm’s law
(3.7). It will be sufficient to consider an axially symmetric poloidal magnetic field

B = ∇Ψ × ∇ϕ, (4.1)

where Ψ (r, z, t) denotes the flux function, and an axially symmetric velocity field

u = ∇Θ × ∇ϕ + g∇ϕ, (4.2)

with Θ(r, z, t) and g(r, z, t) single-valued functions. For simplicity, we hereafter
assume ηγ > 0 to be constant. Using (3.7), the induction equation for the magnetic
field B reads as

∂ B
∂t

= ,× (
u × B − ηγ J + γ u

) − γΩ∇z. (4.3)

Substituting (4.1), we have

,×
(

∂Ψ

∂t
∇ϕ

)
=,×

{
− (∇Ψ · u) ∇ϕ + g

r 2
∇Ψ + ηγ

μ0

[
r

∂

∂r

(
1
r

∂Ψ

∂r

)
+ ∂2Ψ

∂z2

]
∇ϕ

}

+ γ,×
(

∇Θ × ∇ϕ + g∇ϕ − 1
2
Ωr 2∇ϕ

)
. (4.4)
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Considering a toroidal volume T ⊂R
3 as domain for the induction equation, we can

remove the curl operator by introducing a potential Φ(r, z, t) such that

∂Ψ

∂t
∇ϕ = ∇Φ +

[
γ g − γ

2
Ωr 2 − (∇Ψ · u) + ηγ

μ0
(
Ψ − 2∇Ψ · ∇ log r)

]
∇ϕ

+ g

r 2
∇Ψ + γ∇Θ × ∇ϕ. (4.5)

The toroidal component of this equation reads as

∂Ψ

∂t
= γ g − γ

2
Ωr 2 − ∇Ψ · u + ηγ

μ0
(
Ψ − 2∇Ψ · ∇ log r) . (4.6)

A key observation is that this governing equation allows for a zero magnetic field
solution whenever the toroidal velocity equals the planet’s rotational speed, specif-
ically when g = Ωr 2/2. Hence, the system is not frictionally driven, allowing for
spontaneous dynamo action.

Next, we evaluate the integral

1
2

d
dt

||Ψ ||2T = 1
2

d
dt

∫
T

Ψ 2 dV, (4.7)

where ||·||T denotes the standard L2(T ) norm. We have

1
2

d
dt

||Ψ ||2T =
∫

T

Ψ

[
γ g − γ

2
Ωr 2 − ∇Ψ · u + ηγ

μ0
(
Ψ − 2∇Ψ · ∇ log r)

]
dV .

(4.8)

Noting that 
 log r = 0, and integrating by parts under the boundary conditions

Ψ = 0 on ∂T, (4.9a)
u · n = 0 on ∂T, (4.9b)

where ∂T denotes the boundary of T with unit outward normal n, it follows that

1
2

d
dt

||Ψ ||2T = γ

∫
T

Ψ

(
g − 1

2
Ωr 2

)
dV − ηγ

μ0
||∇Ψ ||2T . (4.10)

For a suitable choice of the toroidal flow g, the integrand of the first term on
the right-hand side becomes positive, indicating the possibility of dynamo action.
For example, setting Ct

0 = ||Ψ ||2T , Ct
1 = ||∇Ψ ||2T and g = KΨ + (1/2)Ωr 2, at a

given instant t , we have (1/2)(d/dt)||Ψ ||2T = γ K Ct
0 − ((ηγ )/(μ0))Ct

1, which is pos-
itive for large enough K ∈R>0. If the system achieves an equilibrium, defining
Ψ∞ = limt→+∞ Ψ and g∞ = limt→+∞ g, we find that

||∇Ψ∞||2T = γμ0

ηγ

∫
T

Ψ∞

(
g∞ − 1

2
Ωr 2

)
dV . (4.11)

Evidently, for a suitable equilibrium toroidal flow g∞ in T , the right-hand side
becomes positive, and this equality admits non-trivial solutions ∇Ψ∞ �= 0 in T (see
the following for more details). Note that, however, the right-hand side of (4.11) van-
ishes as soon as the restoring force (3.6) is absent, i.e. γ = 0, recovering Cowling’s
theorem.
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In R
3, the rate of change in magnetic energy is

1
2

d
dt

||B||2
R3 = −μ0

∫
T

E · J dV = μ0

∫
T

[u × B + γ (u − vR)] · J dV − μ0ηγ ||J ||2T ,

(4.12)

where we used Maxwell’s equation ∂ B/∂t = −,× E, the fact that E and B
must vanish at infinity, the fact that the current density is confined to T , and
(3.7). Now suppose that the flow u = g∇ϕ is purely toroidal. Noting that μ0 J =
−(
Ψ − 2∇Ψ · ∇ log r)∇ϕ is purely toroidal, it follows that

1
2

d
dt

||B||2
R3 = μ0γ

∫
T

(
g − 1

2
Ωr 2

)
J · ∇ϕ dV − μ0ηγ ||J ||2T . (4.13)

For example, if the current density has the same orientation as the planet’s rotation
speed vR , and the toroidal flow g is large enough, the first term on the right-hand
side may exceed the second one, leading to an increase in magnetic energy. The
amplification of the magnetic field is not limited to the toroidal volume T . Indeed,
in O , we have

1
2

d
dt

||B||2O = −
∫

O

, · (E × B) dV − μ0

∫
O

E · J dV =
∫

∂T

E × B · n dS, (4.14)

where we used Maxwell’s equation ∂ B/∂t = −,× E, the fact that E and B must
vanish at infinity, and the fact that J = 0 in O (there is no current outside T ). The
tangential electric field Et = n × (E × n) must be continuous across the toroidal
boundary ∂T . Furthermore, since the electric current J vanishes in O , from (3.7),
we conclude that

Et = −γ (u − vR) on ∂T, (4.15)

where we used the fact that u · n = 0 on ∂T (recall (4.9)). Now suppose that at the
time t = 0, the initial seed electric current J 0 = J(x, 0) �= 0 is positively oriented
along the toroidal direction ϕ. Then, there is some time interval in which ∇Ψ points
towards the centre of T . More precisely, the unit outward normal on ∂T is given by
n = −∇Ψ/|∇Ψ |, leading to

1
2

d
dt

||B||2O = γ

∫
∂T

(
g

r 2
− Ω

2

)
|∇Ψ | dS. (4.16)

This quantity becomes positive for sufficiently large g > 0 and vanishes when γ = 0.
From this equation, we also see that an equilibrium solution is given by g∞ = r 2Ω/2
on ∂T , i.e.

(u∞ − vR) · ∇ϕ = 0 on ∂T, (4.17)

where u∞ = limt→+∞ u.
For completeness, it is useful to show how Cowling’s theorem is modified if the

modified Ohm’s law (3.8) involving viscosity is used in place of (3.7). For simplicity,
we consider a purely toroidal flow u = g∇ϕ. We have

1
2

d
dt

||B||2
R3 = μ0meνe

e

∫
T

(2∇g · ∇ log r − 
g) J · ∇ϕ dV − μ0η ||J ||2T . (4.18)
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We thus see that the first term on the right-hand side can be positive for a suit-
able toroidal flow g, indicating the possibility of dynamo action. For example,
noting that J = −μ−1

0 (
Ψ − 2∇Ψ · ∇ log r)∇ϕ and setting g = KΨ/μ0, one obtains
(1/2)(d/dt)||B||2

R3 = μ0(K ((meνe)/e) − η)||J ||2T , which is positive for large enough
K ∈R>0. A similar calculation to (4.16) shows that magnetic field growth is not
limited to T ,

1
2

d
dt

||B||2O = meνe

e

∫
∂T

r−2 (2∇g · ∇ log r − 
g) |∇Ψ | dS. (4.19)

5. Modified neutral point argument

Cowling’s theorem is related to the so-called neutral point argument. Let us see
how the neutral point argument changes in the present setting. Suppose that the
equilibrium flux function Ψ∞ is a well-behaved non-constant function in R

3. Then,
by symmetry, it will attain local maximima or minimima somewhere in R

3. At these
neutral points, ∇�∞ and B∞ = ∇�∞ × ∇ϕ vanish. Let N denote a neutral point,
and consider a circle C of radius ε ∼ |B∞(N + εδ)|, where δ is some unit vector.
Let �C denote a surface in the (r, z)-plane, with normal nC = r∇ϕ, enclosed by C
and such that N ∈ �C . Using Ohm’s law (3.1), Stokes’ theorem and noting that, at
equilibrium, the electric field E∞ = −∇Φ∞ is given as the gradient of a single-valued
potential Φ∞(r, z), we have

0 =
∫

�C

E∞ · nC dS =
∫

�C

B∞ × u∞ · nC dS + η

μ0

∫
C

B∞ · dl. (5.1)

However, by construction, �C = πε2 while C = 2πε. In proximity of N , (5.1) can
thus be satisfied only if (μ0/η)u∞ ∼ ε−1, implying that u∞ is singular at N for non-
vanishing and bounded coefficients η and μ0. If the same argument is applied to the
modified Ohm’s law (3.7), one obtains

0 =
∫

�C

[B∞ × u∞ − γ (u − vR)] · nC dS + ηγ

μ0

∫
C

B∞ · dl. (5.2)

Now, the second and third terms on the right-hand side are both second-order terms
in ε, and the neutral point argument does not apply.

We conclude this section by noting that modifying Ohm’s law only by retaining the
Hall effect does not suffice to invalidate the neutral point argument. This is because
J∞ × B∞ · nC = 0, given that J∞ × nC = 0.

6. Axially symmetric poloidal equilibrium configurations

Let us construct axially symmetric poloidal equilibrium configurations, i.e. steady
solutions of the induction equation such that

B∞ = ∇Ψ∞ × ∇ϕ, (6.1a)

J∞ = − 1
μ0

(
Ψ∞ − 2∇Ψ∞ · ∇ log r) ∇ϕ, (6.1b)

E∞ = −∇Φ∞, (6.1c)

u∞ = ∇Θ∞ × ∇ϕ + g∞∇ϕ. (6.1d)
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Recalling the modified Ohm’s law (3.7), the equilibrium equation is

−∇Φ∞ =
(
∇Θ∞ × ∇ϕ · ∇Ψ∞ − ηγ

μ0

Ψ∞ + 2

ηγ

μ0
∇Ψ∞ · ∇ log r − γ g∞ + 1

2
γΩr 2

)
∇ϕ

− g∞
r 2

∇Ψ∞ − γ∇Θ∞ × ∇ϕ. (6.2)

The poloidal component of u∞ can be eliminated by setting Θ∞ = constant.
However, the electrostatic potential must be single-valued, leading to g∞ =
r 2d f (Ψ∞)dΨ∞ and Φ∞ = f (Ψ∞). The equilibium flux function Ψ∞ is then deter-
mined by a Poisson equation. The full set of equilibrium equations is


Ψ∞ = 2∇Ψ∞ · ∇ log r − γμ0

ηγ

r 2

(
d f (Ψ∞)

dΨ∞
− Ω

2

)
in T, (6.3a)

Φ∞ = f (Ψ∞) in T, (6.3b)

g∞ = r 2 d f (Ψ∞)

dΨ∞
in T, (6.3c)

Θ∞ = constant in T, (6.3d)

Ψ∞ = 0 on ∂T, (6.3e)

d f (Ψ∞)

dΨ∞
= Ω

2
on ∂T . (6.3f )

For given f (Ψ∞), this system admits non-trivial regular solutions in T thanks to
the source term proportional to γ in the first equation. The result reveals that the
electric field E∞ is balanced by the ideal convective term B∞ × u∞ (see 6.3b), while
the resistive term ηγ J∞ is balanced by the friction term −γ (u∞ − vR) as shown in
(6.3a). This type of force balance is consistent with kinetic theory of plasmas, which
informs us that equilibria of the Boltzmann equation usually belong to the kernel of
the collision operator, i.e. in a steady-state, ideal terms and dissipative terms vanish
independently (see e.g. Sato & Morrison (2024) and references therein). Indeed,
MHD and related two-fluid theories are reduced models originating from kinetic
theory. As previously noted, zero magnetic field solutions are permitted when g∞ =
(r 2Ω)/2 in T . Additionally, it is important to observe that the toroidal component of
the fluid velocity, g∞∇ϕ, can deviate significantly from the planet’s rotation speed,
vR = (1/2)Ωr 2∇ϕ, within T when a non-zero magnetic field is present (see 6.3a).

We also remark that J∞ vanishes on ∂T due to the boundary condition (6.3f )
coming from (4.17). Hence, for any x ∈R

3, the (continuous) magnetic field vanish-
ing at infinity and corresponding to the current distribution resulting from system
(6.3) can be obtained through the Biot–Savart integral,

B∞(x) = μ0

4π

∫
T

J∞(x ′) × (x − x ′)
|x − x ′|3 dV ′. (6.4)

The properties of the Biot–Savart integral (6.4), as well as a generalisation to
bounded domains, can be found in Enciso, Garcia-Ferrero & Peralta-Salas (2018).
We remark that since the current density J∞ is an axially symmetric toroidal flow,
it follows that in O , the equilibrium magnetic field B∞ is an axially symmetric
dipole-type magnetic field.
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7. Concluding remarks

We have proposed a novel dynamo model that incorporates a modified Ohm’s law
within a toroidal volume. The geometry of this toroidal volume, inspired by analogies
with fusion plasma physics, can be viewed as a nearly spherical dynamo-active region
enclosed by a liquid shell surrounding a planetary core. It is important to note that,
whether the system involves liquid iron in rocky planets or ionised hydrogen in
gas giants, its electromagnetic behaviour is fundamentally governed by microscopic
interactions between ions and electrons, thereby justifying the use of a two-fluid
model. In this framework, Ohm’s law is modified to account for the dissipative
force associated with electron collisions that tends to align macroscopic flows with
the planet’s rotation speed. This force is modelled either as a frictional damping term
or as a viscous force. Specifically, the two models examined are as follows. The first
model introduces a frictional (damping) force that tends to align the fluid velocity
with the planet’s rotation speed. The second model treats the dissipative force as
viscous dissipation, under the assumption that the rotating fluid shell adheres to a
Navier–Stokes reduction of the underlying kinetic equations. Our analysis shows that
this dissipative force can be comparable to the conventional resistive force associated
with electron–ion collisions in the standard formulation of Ohm’s law. Therefore, it
should not be neglected.

The presented approach indeed enables the formation of axially symmetric
steady-state magnetic fields, circumventing traditional spherical geometries and anti-
dynamo theorems. The key components of our model include: (i) identifying the
dissipative force acting on the fluid shell, in addition to collisional resistive forces,
as a critical factor in the electron momentum equation; (ii) modelling the convect-
ing region as a toroidal volume, which allows for non-trivial steady states of the
induction equation; (iii) focusing on steady states where ideal and dissipative terms
balance independently.

Note that the governing equation, e.g. (4.6), allows for a zero magnetic field
solution when the toroidal velocity matches the planet’s rotational speed, indicating
that the system is not frictionally driven. This implies that the current model can
spontaneously generate a magnetic field purely through fluid motion. These findings
adhere to anti-dynamo theorems: we demonstrate how Cowling’s theorem and the
neutral point argument are modified by the dissipative force, enabling the existence
of non-trivial, axially symmetric equilibrium magnetic fields.

Our model successfully captures the essence of a dynamo, producing a stable
dipolar magnetic field and providing valuable insights into the long-term operation
and stability of geophysical and astrophysical dynamos. The model’s foundation in
partial differential equations ensures broad applicability, including potential general-
isations to oscillating magnetic field amplification. To determine the precise range of
parameters for which the theory is applicable, experimental and numerical validation
are necessary.

We conclude by speculating on a scenario in which the flows considered in this
work could be sustained beyond the kinematic dynamo framework. Specifically, one
may consider a viscous MHD system governed by a modified Ohm’s law, where
the initial kinetic energy of the plasma gradually decreases due to viscous dissipa-
tion, while magnetic energy increases through dynamo action. Boundary interactions
lead to angular momentum exchange, with frictional effects tending to align the
plasma flow with the background rotation. As the system evolves, it may approach
a force-balanced configuration, resulting in a reduced kinetic energy state and a
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self-consistently sustained magnetic field. This scenario highlights the potential for
self-consistent dynamo action compatible with the flows described here. An alter-
native scenario is also plausible, in which, however, the magnetic field is eventually
lost. Initially, the magnetic field is amplified while there exists a mismatch between
the angular velocity of the ions and that of the domain boundary. Once frictional
forces realign the plasma flow with the background rotation, the dynamo action
would cease. Subsequently, the magnetic energy would gradually dissipate due to
the plasma resistivity. The detailed investigation of such coupled evolution is left for
future work.
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