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Summary

Zygotic genome activation (ZGA) is a critical event in early embryonic development, and
thousands of genes are involved in this delicate and sophisticated biological process. To date,
however, only a handful of these genes have revealed their core functions in this special process,
and therefore the roles of other genes still remain unclear. In the present study, we used
previously published transcriptome profiling to identify potential key genes (candidate genes)
in minor ZGA andmajor ZGA in both human and mouse specimens, and further identified the
conserved genes across species. Our results showed that 887 and 760 genes, respectively, were
thought to be specific to human and mouse in major ZGA, and the other 135 genes were
considered to be orthologous genes. Moreover, the conserved genes were most enriched in
rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis,
ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of
this first comprehensive identification and characterization of candidate genes in minor and
major ZGA provide relevant insights for future studies on ZGA.

Introduction

Embryonic development in mammals starts with the fertilization of an oocyte by a sperm cell,
followed by the formation of the pluripotent zygote and differentiation into a new individual
(Shpargel et al., 2014). During this process, the embryo undergoes dramatic morphological
changes, coupled with widespread epigenetic reprogramming, of which maternal-to-zygotic
transition (MZT) represents the most critical biological event. Notably, MZT involves two main
stages, namely the degradation of maternal products and the activation of zygotic genomes.
During this process, embryos complete the conversion of maternal to zygotic control (Tadros
and Lipshitz, 2009; Sha et al., 2019). The mature oocyte is in a transcriptional silencing state
initially (Moore et al., 1974), once fertilized, the genome is rapidly activated. In addition, zygotic
RNA accumulates following the gradual degradation of maternal products.

In the last few decades, numerous studies have revealed the importance of maternal products
in embryonic development (Nüsslein-Volhard and Wieschaus, 1980; Driever and Nüsslein-
Volhard, 1988). The initiation events of early embryonic development in mammals are mainly
controlled by maternal effectors, which are encoded by maternal effect factors. These factors
accumulate during oogenesis, a phenomenon that makes it possible for zygotic genome
activation (ZGA), embryo cleavage and blastocyst development with an inner cell mass and
trophectoderm cells. To date, more than 30 mouse genes harbouring maternal mutation effects
(effects caused by maternal gene mutation) have been documented including the factor Nelfa
(Hu et al., 2020), X-linked Huwe1 (Eisa et al., 2020), and Argonaute 2 (Zhang et al., 2020).
Functionally, these genes regulate the fusion of female and male nuclei, the elimination of
maternal material, the activation of the embryonic genome, the cleavage of the zygote and the
densification of the embryo (Li et al., 2010; Zheng and Liu, 2012). Moreover, they have been
shown to play important roles in oogenesis, meiotic maturation, preimplantation and post-
implantation embryonic development (Innocenti et al., 2022).

ZGA is considered the most essential step in regulating early embryo development. It has
been demonstrated in previous studies that ZGA disorders result in embryo arrest beyond the 2-
cell stage. For example, the growth of Btg4 knock-out embryos was arrested at the 2-cell stage
(Yu et al., 2016), and similar effects were observed in embryos that lacked specific factors such as
Nanog, Soxb1 and Pou5f3 in zebrafish (Lee et al., 2013). Additional evidence has shown that
Dux4, a classical ZGA gene, also plays a vital function in ZGA in 2-cell-like cells (De Iaco et al.,
2017; Hendrickson et al., 2017; Whiddon et al., 2017). Although subsequent research has
demonstrated that the loss of Dux4 would be dramatically compensated for by some alternative
substitution factors (Chen and Zhang, 2019), it undoubtedly remains an essential regulatory
factor in the process of ZGA in the mouse embryo.
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ZGA is the critical step for the successful development of an
embryo (Vastenhouw et al., 2019). To date, very large numbers of
researchers have described the role of DNA methylation
(Messerschmidt et al., 2014; Iurlaro et al., 2017), post-translational
modifications of histones (Dahl et al., 2016; Xia et al., 2019),
chromatin accessibility (Wu et al., 2016) and the effect of pioneer
transcription factors (Duan et al., 2021; Riesle et al., 2023) and
some others in the process of ZGA. Despite a series of epigenetic
modifications reportedly associated with ZGA such as DNA
modifications and histones, the core issue of embryo development
is still gene activation, transcription and translation. Moreover, it
has been reported that only a proportion (12–15%) of the genome
sequence, instead of the whole genome, is activated with
transcription factors in the subsequent process (Rizvi et al.,
2017; Eckersley-Maslin et al., 2018). Namely, numerous genes are
silenced or repressed, and only few genes are activated in the
specific process. In other words, it is meaningful but difficult to
determine which genes participate in this process and how they
interact with each other during this regulation network.

Therefore, the present study sought to identify candidate genes
in ZGA and provide a detailed list of those genes, with the aim of
setting up a platform for future exploration of the underlying
elusive mechanism. Additionally, we also devoted our efforts to
identifying the conserved genes between human and mouse with
the aim of generating relevant insights to guide future studies on
the ZGA process in human embryos. Taken together, these
findings are expected to broaden the knowledge of the underlying
mechanisms of ZGA and deepen the understanding of the process
of early embryo development.

Materials and methods

Collection of transcriptome data

We comprehensively searched PubMed, Embase and Web of
Science databases. All RNA-seq data were retrieved on embryo
development with the strategy ‘RNA-seq and embryo and Mus
musculus orHomo sapiens’, published up to 21 January 2023 as this
study aimed to screen candidate genes in ZGA, including minor
ZGA and major ZGA, and to distinguish whether they were
maternal factors. Therefore, each dataset should have included at
least four stages: oocyte stage, zygote stage, early 2-cell stage and
late 2-cell stage in mouse. Similarly, in human, the datasets needed
to include the oocyte stage, zygote stage or 2-cell stage, 4-cell stage
and 8-cell stage. Finally, we used a two-step filter for database
retrieval. First, we searched all the embryo transcriptome datasets
related to human and mouse that included all four stages
mentioned to ensure reliability. Second, we selected the datasets
reported in high-quality articles. In addition, the time of
publication, and the sequencing platform were also taken into
consideration. Finally, only the datasets GSE101571 (Wu et al.,
2018; human) and GSE71434 (Zhang et al., 2016; mouse) were
chosen for further analysis. The search and selection processes are
showed in Figure 1. Also the stages involved in ZGA are presented
in Figure 2.

According to our search strategy, 1524 records were searched in
mouse and 469 records were searched in human; 43 datasets were
included in mouse and 14 datasets were included in human after
duplicates were removed. Based on the fact that the preimplanta-
tion embryo development contains during several different stages,
such as oocyte (GV), zygote (PN5), 2-cell, 4-cell, 8-cell, morula,
and blastocyst, in this study we focused on ZGA-related processes

during mouse and human preimplantation embryo development.
Therefore, the dataset must have contained the transcriptome data
of each stage related to ZGA, and it was better to compare the gene
expression at the same level, which resulted in only one dataset
being eligible ultimately both in mouse and in human.

Identification of candidate genes during ZGA

Generally, the candidate genes were identified by comparing the
calculated gene expression levels at different stages. Numerous
transcription events occurred during ZGA. Here, we hypothesized
that if a gene was significantly upregulated during ZGA, then this
gene was highly likely to play a role in this process. Therefore its
upregulation might be positively correlated with its importance.
Notably, only genes with reliable sequence annotation were
allowed for further analysis. The levels of gene expression were
calculated based on the RPKM or FPKM values (Log2 RPKM or
Log2 FPKM) as the previous study described (Sha et al., 2020). For
genes with RPKM or FPKM values that were less than 1, we added
þ1 to the value of each gene to obtain positive results.

Screening criteria of candidate genes during ZGA
In mouse, minor ZGA completes in the early 2-cell (Early 2C)
whereas major ZGA occurs in the late 2-cell (Late 2C). Therefore,
in the minor ZGA, we selected out the genes if Expression (Early
2C) > Expression (PN5) þ1; for major ZGA, genes would be
selected if Expression (Late 2C)> Expression (PN5)þ1. In human,
ZGA occurs at the 4–8-cell stage. Therefore, we defined the 4- and
8-cell stages as minor ZGA andmajor ZGA, respectively. Genes for
ZGA in human were screened in a similar fashion to that in mouse.

Distinction between maternal and non-maternal genes
Next, we differentiated the identified key genes into maternal and
non-maternal categories. We adopted a previously described
method (Sha et al., 2020) to stratify the mRNA as maternal if the
gene had an RPKM or FPKM value of GV stage >2, whereas those
with RPKM or FPKM value at GV stages < 0.5 were considered
non-maternal mRNAs (Li et al., 2018; Wu et al., 2018). For
convenience, we defined genes corresponding to maternal and
non-maternal mRNAs as maternal genes and non-maternal genes,
respectively. Last, genes with RPKM or FPKM values between 0.5
and 2 were classified into the uncertain group.

Evaluation of gene age and the identification of conserved
genes

New gene emergence is so far assumed to be mostly driven by
duplication and divergence of existing genes. Generally, the older
the gene, the more conservative it is. Therefore, to identify
conserved genes between human and mouse, we first identified the
orthologous genes and then assessed the gene age. Previous studies
have used phylostratigraphic approaches to classify gene ages and
divided human and mouse genes into 20 groups (P1–P20;
Domazet-Lošo and Tautz, 2008, 2010; Neme and Tautz, 2013).
All loci, based on Ensemble Gene ID, from mouse and human
assigned to their respective phylostrata and gene age data can be
obtained from published research (Neme and Tautz, 2013). Then
the age of genes identified in ZGA in mouse and human was
obtained by converting gene names. Each gene could correspond to
its gene age. Next, we used gene ages to distinguish conserved
genes. Specifically, based on a previous protocol (Gao et al., 2018),
genes in the P1–P10 and P11–P20 group were considered older
and relatively younger genes, respectively. Those in the P1–P10
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group were regarded as conserved genes and subjected to further
analysis. The gene age data published previously is presented in
Table S1.

Pathway analysis

Bioinformatics analysis was mainly focused on signaling pathways.
Gene ontology (GO) pathway analysis is functional analysis
associating differentially expressed mRNAs with GO categories.
Pathway analysis was performed using the ‘Pathview’ and ‘org.
Rn.eg.’ functions (rat and human genome-wide annotation). The
P-value of the enriched pathway was derived from the Metascape
tool (http://metascape.org/; Zhou et al., 2019). which is a
convenient, independent, free site providing comprehensive
functional annotation analysis, with the default settings requiring
enriched terms to include ≥ 3 candidates, a P-value≤ 0.01, and
enrichment factor≥ 1.5.

Enrichment analysis
Given a gene list, pathway/process enrichment analysis applies the
standard accumulative hypergeometric statistical test to identify
ontology terms, in which input genes show significant presence.
Compared with other GO-based enrichment analysis tools,
Metascape provides additional arguably better ontology terms
including ones from Broad’s Molecular Signatures Database
(MSigDB), as well as automatically clusters resultant terms to
reduce redundancy.

Enriched terms clustering
As ontology terms, especially within GO, heavily overlap, output
terms typically show large degrees of redundancy. Metascape
adopts a similar idea as the Database for Annotation, Visualization
and Integrated Discovery (DAVID) and automatically clusters all
resultant terms into groups based on their similarities. As a result,
Metascape can review one term group at a time.Metascape can also

Figure 1. Flow diagram showing the dataset
selection process.

Figure 2. Stages involved in ZGA in mouse and in human.
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uncheck boxes for terms that represent a biological process too
broad to be useful so that they are ignored in the export. Terms are
hyperlinked to web pages that give their detailed definition.

Results

Identification of candidate genes in minor ZGA and major
ZGA in mouse

We identified the key genes expressed during the ZGA process by
calculating expression levels [Log2 (RPKM/FPKMþ1)] of all
annotated genes from the aforementioned databases. Then we
further analyzed which ones were involved in bothminor ZGA and
major ZGA processes, here termed co-expressed factors. Out of
20,000 genes screened in mice, 432 and 3829 were identified as key
inminor andmajor ZGA, respectively. Notably, out of 432 genes in
minor ZGA, 352 genes are the co-expressed factors, indicating that
themajority of the 432 genes plays a certain role during bothminor
ZGA and major ZGA (Figure 3A). In addition, several previous
studies have demonstrated that early embryonic development is
entirely dependent on and driven by maternal factors (Innocenti
et al., 2022). Therefore, we further examined whether the factors
identified in minor ZGA and major ZGA were maternal genes. So
all the genes selected were classified into two groups based on their
expression level in the GV oocyte [(FPKM/RPKM> 2 or FPKM/
RPKM< 0.5)]. Our results showed that 196 and 85 genes fell into
the maternal and non-maternal categories in minor ZGA, while
1988 and 1222 genes were maternal and non-maternal in themajor
ZGA process (Figure 3B).

Next, we aimed to identify the most important candidate genes
in the ZGA process by calculating the difference in expression
levels between the two stages in minor ZGA (Early 2C vs PN5) and
major ZGA (Late 2C vs PN5). It should be noted that if the
expression level of a gene is significantly increased then this gene is
more likely to be critical in the ZGA process. As presented in
Table 1, genes including Snora7a, Snora81, Snora74a, Rn4.5s,
Amd1, Zscan4f, Zscan4a, Zscan4c, Zscan4b and Zfp352 were
identified to be some of the most important candidate genes in
minor ZGA, as well as Mir8099-2, Snora78, Snora81, Mt2, Mt1,
Guca1a, Obox3, Obox6, Vimp, and Cdk2ap1 in major ZGA.
Interestingly, we also found identical genes between minor and
major ZGA gene lists, including Gcsh and Ctsl (Table S2),
indicating that these genes might play critical roles in both minor
ZGA and major ZGA. In addition, the top 100 candidate genes in
major ZGA are additionally listed in Table S2.

Identification of candidate genes in minor ZGA and major
ZGA in human

To explore the candidate genes in ZGA in human, similarly we first
evaluated the expression level of each gene [Log2 (RPKM/FPKMþ
1)] in minor ZGA and major ZGA, then further analyzed which
ones were co-expressed factors in both minor ZGA and major
ZGA. As shown in Figure 4A, only 60 genes were identified as co-
expressed factors, a number that was markedly lower than that
identified in mouse (60 vs. 352). We attributed this discrepancy to
the small number of minor ZGA (130 vs. 432). Conversely, when it
came to the major ZGA, in total, 3566 genes were chosen that were
not significantly different from those in mouse (3566 vs. 3829;
Figures 3A and 4A).

Next, we also characterized whether the genes selected were
maternal genes. As depicted in Figure 4B, indications implied that
there were 85 maternal genes and 27 non-maternal genes in minor

ZGA, while 1971 and 1130 genes were classified as maternal genes
and non-maternal genes, respectively, in major ZGA. Notably,
more maternal than non-maternal genes were recorded in both
minor ZGA and major ZGA, indicating that the former category
plays a certain role at the stage of zygotic genome activation stage,
followed by degradation of maternal factors. Then, in major ZGA,
we found that the number of both gene categories in human was
comparable with that in mouse (1971–1988 for maternal and
1130–1222 for non-maternal genes), indicating that the number of
key transcripts across species is approximately consistent during
major ZGA, regardless of whether they were from maternal or the
non-maternal groups.

Next, we also identified the most important candidate genes in
the ZGA process in human. As shown in Table 2, the top 10
candidate genes identified in minor ZGA and major ZGA were
outlined. In summary, SNAR-C3, S100A1,TMSB10, MBD3L2,
LOC101927482, FRG2C,G0S2, RRAD,MBD3L3 and LXN in minor
ZGA, and KHDC1L, H2AFZ, MBD3L2, DUXA, LOC100506790,
MBD3L3, BIK, TCEAL9, ZSCAN4 and NANOGNB in major ZGA
were standout examples. The top 100 candidate genes in major
ZGA are additionally listed in Table S3.

Identification of genes conserved between mouse and
human

Generally, different genes play unique roles in biological evolution,
while conserved genes play roughly the same role. Next, we
screened the lists of candidate genes related to the ZGA process in
both human and mouse and explored the conserved genes. Genes
in major ZGA were markedly upregulated but only slightly
upregulated inminor ZGA, andmore genes were involved inmajor
than minor ZGA; we only included genes identified in major ZGA
in subsequent analysis. In addition, we set the fold change for each
gene to three-fold to screen out the most significant candi-
date genes.

As shown in Figure 5A, we compared the candidate genes
identified in the two lists, of which 135 genes were considered to be
orthologous genes, while 887 and 760 genes were thought to be
specific to human and mouse, respectively. Next, we explored the
age of all the 135 genes and used the resulting ages to determine
which ones were conserved. Considering that the age data (Neme
and Tautz, 2013; see Materials and methods for more details) of
mouse and human are not identical, we investigated the gene age of
the 135 genes with both the two gene age datasets. In total, 115 and
116 genes in mouse and human, respectively, were successfully
mapped, while the remainder failed to match. Most of the genes
(109 in mouse and 107 in human) were grouped as older genes,
with only a few falling into the younger category (Figure 5B), and
the identified common genes had a high degree of conservation.
A summary of the conserved genes identified here is provided in
Table S4.

Signal pathways analyses of the genes identified in the
major ZGA

Biological development comprises a complex network of regula-
tory mechanisms, in which different genes play specific roles. To
obtain a more comprehensive understanding of the roles of these
genes in major ZGA, we conducted GO and pathway enrichment
analyses on all conserved genes (n= 135) using Metascape.
Results revealed the enrichment of 20 signal pathways, among
which those regulating ‘rRNA processing in the nucleus and
cytosol (n= 21)’, ‘ribonucleoprotein complex biogenesis (n= 26)’,
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‘ribonucleoprotein complex assembly (n= 12)’ and ‘ribosome
large subunit biogenesis (n= 9)’ were significantly enriched
(Figure 6A). Interestingly, all these pathways were related to the
ribosome, and many more genes were contained in these pathways
than the others, indicating that the genes associated with the
ribosome and rRNA had made a large contribution to major ZGA;

this observation is consistent with results previously reported
(Shen et al., 2022).

In addition, GO enrichment analysis of the specific genes
(n= 760) identified in mouse were significantly enriched in
‘ribonucleoprotein complex biogenesis’, ‘ribonucleoprotein com-
plex subunit organization’, and ‘mRNA processing’ (Figure 6B). In

Figure 3. Candidate genes identified in minor ZGA and major ZGA in mouse. (A) Candidate genes identified in minor ZGA and major ZGA in mouse. (B) Maternal genes and non-
maternal genes identified in minor ZGA and major ZGA in mouse.

Table 1. List of candidate genes identified in minor ZGA and major ZGA in mouse*

Gene Oocyte Zygote Early 2-cell Late 2-cell Fold change Category

Minor
ZGA

Snora7a 0 0 57533.1 0 15.81212966 Non-maternal

Snora81 0 0 725.19 574.706 9.504203253 Non-maternal

Snora74a 0 0 231.222 0 7.859360845 Non-maternal

Rn4.5s 0 0 46.8939 55.7259 5.581770014 Non-maternal

Amd1 0.127472 0.666257 59.9236 129.917 5.192318353 Non-maternal

Zscan4f 0.449601 1.59728 93.351 159.21 5.182964351 Non-maternal

Zscan4a 0.0984696 0.457244 39.3866 69.8893 4.792562329 Non-maternal

Zscan4c 0.595843 1.71532 70.3166 101.664 4.71504379 Uncertain

Zscan4b 0.0945571 0.288384 32.4962 51.5039 4.700362883 Non-maternal

Zfp352 0 0.622242 39.0539 224.849 4.625881766 Uncertain

Major
ZGA

Mir8099-2 0 0 0 64838 15.98457422 Non-maternal

Snora78 0 0 0 1507.85 10.55923367 Non-maternal

Snora81 0 0 725.19 574.706 9.169188438 Non-maternal

Mt2 1.13292 0.798252 11.9356 813.017 8.822319905 Uncertain

Mt1 0.960658 0.844275 9.65903 762.392 8.693226465 Uncertain

Guca1a 0 0 8.6284 327.534 8.359898873 Non-maternal

Obox3 0.042464 0.364362 12.6351 446.529 8.357610883 Non-maternal

Obox6 0.267919 0.0654915 4.30065 309.995 8.189228491 Non-maternal

Vimp 16.7101 0.152345 2.53189 259.901 7.822785954 Maternal

Cdk2ap1 3.45267 0.500025 2.95344 321.446 7.747927217 Maternal

*Table shows the RPKM value for each stage of the genes identified; values for the stages associated with the ZGA are bold.
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human, the specific genes (n= 887) identified are predominately
enriched in ‘metabolism of RNA’, ‘ribonucleoprotein complex
biogenesis’, ‘mitochondrial gene expression’, and ‘mitochondrion
organization’ (Figure 6C). Overall, it is worth suggesting that the
ribosome-related signal pathway is a major signal pathway in
major ZGA in both human and mouse.

Discussion

Recent research evidence has confirmed that activation of the
zygotic genome is not a single event, but a process through which
embryo transcripts are constantly activated. The ZGA process is
divided into two stages based on the level of RNA synthesis. The
first large-scale synthesis of RNA during embryonic development

Table 2. List of candidate genes identified in two processes in ZGA in human*

Gene Oocyte 2-cell 4-cell 8-cell Fold change Category

Minor
ZGA

SNAR-C3 0 0 15.8134 0 4.07153959 Non-maternal

S100A11 19.20703333 1.1426865 21.65550085 540.0815 3.402368698 Maternal

TMSB10 397.0661667 8.559745 96.1312695 387.017 3.344891777 Maternal

MBD3L2 0 0.808905 14.362915 2993.645 3.086263435 Non-maternal

LOC101927482 6.4735 0.2215975 9.2587 4.37996 3.070007002 Maternal

FRG2C 0.006915133 0.186125107 7.677665 7.36316 2.871050705 Non-maternal

G0S2 2.379845 0.09715885 6.0443 0.93966 2.682683933 Maternal

RRAD 2.721403333 0 4.868852 0.995944 2.553078327 Maternal

MBD3L3 0 0.8689175 9.90054 1600.61 2.544124816 Non-maternal

LXN 8.770456667 0 4.498135 2.5230725 2.458942331 Maternal

Major
ZGA

KHDC1L 0 0.7566055 6.128905 27582.55 13.9387303 Non-maternal

H2AFZ 31.80910333 2.462925 8.47638 12132.115 11.77467123 Maternal

MBD3L2 0 0.808905 14.362915 2993.645 10.69305263 Non-maternal

DUXA 0.008167267 0.03839195 1.43304495 1297.26 10.28801252 Non-maternal

LOC100506790 0 0 1.513743 876.532 9.777307925 Non-maternal

MBD3L3 0 0.8689175 9.90054 1600.61 9.743104286 Non-maternal

BIK 8.314286667 1.083791 0.636949 1747.475 9.712670867 Maternal

TCEAL9 4.863233333 0.160115 3.92782 956.1925 9.688397459 Maternal

ZSCAN4 0.22626 1.1185015 3.7883135 1595.87 9.557987003 Non-maternal

NANOGNB 0 0 0.085399 719.716 9.493287064 Non-maternal

*Table shows the RPKM value for each stage of the genes identified; values for the stages associated with the ZGA are bold.

Figure 4. Candidate genes identified in minor ZGA and major ZGA in human. (A) Candidate genes identified in minor ZGA and major ZGA in human. (B) Maternal genes and non-
maternal genes identified in minor ZGA and major ZGA in human.
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is called major ZGA, which is followed by a preceding small wave
namedminor ZGA (Hamatani et al., 2004). The two stages differ in
both the number and content of transcripts. Researchers have, for a
long time, focused on major ZGA while ignoring the role of minor
ZGA. However, it should be noted that major ZGA cannot be
successfully activated by inhibition of minor ZGA, namely the
inhibition of minor ZGA prevents major ZGA. However, when the
inhibition is reversed, transcription activities are observed and
characterized as minor rather than major ZGA (Abe et al., 2018).
Consequently, both ZGA’s main and secondary waves play a
crucial role in embryo development.

How does the ZGA program occur? How many genes are
important for the ZGA? We are trying to answer these questions.
In the present study, we identified the key genes expressed inminor
and major ZGA across both human and mouse systems. It should
be emphasized that 1222 non-maternal genes were screened from
more than 20,000 genes inmouse in our study, which is roughly the
same as the number (n= 1312; Li et al., 2018) of the genes
identified in the previous work, affirming the reliability of our
results. Compared with that research, we additionally identified
both non-maternal and maternal genes across minor ZGA stages
(top 10 on the list) and major ZGA stages (top 100 on the list).
Conversely, to further confirm the reliability of our results, we also
compared the candidate genes identified during major ZGA with
two additional datasets, GSE53386 (Fan et al., 2015) andGSE71257
(Yu et al., 2016). It is worth noting that the majority of the top 100
genes (Table S2) could be successfully matched in Table S5 based
on datasets GSE53386 and GSE71257, with the expression levels
increased significantly. The reason these datasets were not
included in this comprehensive analysis is because they only
contained data for three stages in mouse, including oocytes,
zygotes and late 2-cell stages and not for the early 2-cell stages.
Considering the possible limitations of the results based on a single
dataset, with the same method mentioned in this paper, we next
calculated and compared the gene expression level of each gene at
different stages in the other two datasets (GSE53386 and
GSE71257) and screened out the upregulated genes in major
ZGA in mouse. The results showed that 3987 and 3541 genes were
upregulated in major ZGA, which is similar to the results in our

study (3987 in GSE53386, 3541 in GSE71257, and 3829 in our
study), and most of the top 100 genes identified in major ZGA can
be mapped with the genes identified based on the other two
datasets (Table S5).

Generally, most of the current knowledge regarding early
mammalian development mainly comes from mouse, due to this
system’s characteristics of rapid reproduction, easy obtainment, as
well as fewer ethical concerns. However, biological development is
stage specific and the timing of the ZGA is not exactly the same. For
example, ZGA occurs at the 4–8-cell stage in human (Li et al., 2010;
Wu et al., 2016), but at the 8–16-cell stage in cattle and sheep
(Schultz, 2002; Chen et al., 2012). This indicates that the process in
human cannot be directly inferred from that in mouse. However,
extensive experiments were limited to be carried out due to the
preciousness and scarcity of the embryos. To overcome this
problem, we identified the conserved genes in ZGA and presented
the gene list with the aim of pinpointing targets for future
exploration of the underlying mechanisms in mouse, and
prediction of their role in human embryonic development. In a
word, our findings provide relevant insights to guide further
explorations on human embryonic development.

Although our findings are encouraging, the study had some
limitations. First, we analyzed gene expression using the FPKM or
RPKM values provided in the database, which might introduce
some errors. However, as more than 40,000 genes were obtained in
this study, it is difficult to experimentally analyze gene expression
using methods such as quantitative real-time polymerase chain
reaction (qPCR). Second, as some genes on our list have
demonstrated their important roles in recently published work,
such as the Mt1/Mt2 (Shi et al., 2018),Obox (Ji et al., 2023), Zfp352
(Mwalilino et al., 2023), Zscan5b (Ogawa et al., 2019), Zscan4
(Cheng et al., 2020; Srinivasan et al., 2020) in mouse and DUX4
(Vuoristo et al., 2022), ZSCAN4 (Vuoristo et al., 2022), and
NANOGNB (Dunwell and Holland, 2017) in human (Table 3), we
did not pick any other candidate genes for functional validation.
Moreover, it was unreliable to validate one by one. Third, as
mentioned above, ZGA proceeds in two phases, minor and major
ZGA, and the pattern of gene expression is dramatically changed
between these two phases (Abe et al., 2015; Yamamoto and Aoki,

Figure 5. Conserved genes in major ZGA between human and mouse. (A) Candidate genes identified in major ZGA in mouse and human. (B) Distribution of gene age of the
orthologous genes.
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Figure 6. Signaling pathway analyses of genes identified in the major ZGA. (A) Signal pathway analysis of the conserved genes identified in the major ZGA. (B) Signaling pathway
analysis of the specific genes identified in the major ZGA in mouse. (C) Signalimg pathway analysis of the specific genes identified in the major ZGA in human.
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2017). So, in this research, if the expression level of a gene was
significantly increased, this gene was considered to be potentially a
key factor in the ZGA process. However, some factors must be
admitted, such as the expression level showing just a slight change
during ZGA, thatmay also be of great importance to ZGA. Last, the
candidate genes identified may not only play a critical role in ZGA,
but also may be of great significance in early embryonic
development, such as the formation of totipotent blastocysts.
For instance, genesMga (Washkowitz et al., 2015) andMyc (Wang
et al., 2010; Wan et al., 2013) whose expression levels were
increased in ZGA, were also reported to have roles in maintaining
pluripotency in the mammalian embryo.

Overall, we identified potential key regulators in minor ZGA
and major ZGA both in human and mouse and generated two
respective lists of those genes. Moreover, we also made a list of
conserved genes in major ZGA, and revealed that their functions
were mainly related to ribosomal RNA in the biological process. In
summary, our findings provided a platform for future studies on
ZGA, and made it more convenient, rapid and easier for other
researchers to select one or several genes from the whole genome
for subsequent research, and contribute to revealing candidate
genes and the regulatory mechanisms in this special process.
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