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Abstract
The high-altitude balloon proposed in this paper is a long-life balloon carrying a payload through a cable that flies
at 20km altitude in near space. A dynamic model of the system, including the thermodynamics of the buoyancy
body coupled with a hanging model of the pod, is developed using the Newton–Euler method. The buoyancy body
consists of a helium balloon and a ballonet. A differential pressure difference-based altitude adjustment is achieved
by tracking the pressure difference at the target altitude. A dynamic simulation of the buoyancy body with a slung
pod in autonomous vertical takeoff and altitude regulation processes is presented. The internal thermodynamic
variations and pressure differential of the buoyancy body are given. The air mass exchange and blower flow control
of the ballonet are validated. The altitude holding error is analysed. The maximum pull force that the cable can
withstand is calculated, and the maximum attitude angles of the pod during the ascending and descending processes
are depicted. Simulation results provide basic knowledge for the structural design and payload installation of pods.

Nomenclature
a solar radiation absorption efficiency
aP inertial acceleration of the pod expressed in the body coordinate system
A1 solar radiation absorption area
A2 heat transfer area between the balloon and the environment
A3 heat transfer area between internal air and helium
B = ρV buoyancy of the balloon
CD aerodynamic drag coefficient of the pod
Cp,He,Cp,air specific heat of helium and air
CX , CY , CZ , Cl, Cm, Cn aerodynamic coefficients of the balloon
FpA aerodynamic force on the pod
FpG gravity of the pod
FpL cable force on the pod
FpI inertial force on the pod
I solar radiation absorption constant
Ix,Iy,Iz inertial moments of the balloon
k volume ratio of the helium balloon to the ballonet
K1 heat transfer coefficient between the balloon and the environment
K2 heat transfer coefficient between internal air and helium
l cable length
lref reference length of the balloon
LHe net lift from the buoyancy body
m total mass of the balloon
mp pod mass
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mAir, mHe internal air mass and helium mass
mstru mass of the mechanical structure of the body
madd additional mass for the balloon
MAir molar mass of air
osxsyszs suspension point coordinate system
obxbybzb body coordinate system
p = [xp, yp, zp]T pod position in the body coordinate system
P,PHe,PAir pressure of the reference air, internal helium and internal air
Q dynamic pressure
R = 8.314 J/K/mol universal gas constant
RAir = 286.7 J/kg/K gas constant of air
RHe = 2078.6 J/kg/K gas constant of helium
s = [0, 0,d]T suspension point position in the body coordinate system
S reference area of the balloon
Sp reference area of the pod
T , THe, TAir temperature of the reference air, internal helium and internal air
VHe, VAir helium balloon volume and ballonet volume
V = VAir + VHe total volume of the balloon
VO = [

u v w
]T linear velocity of the balloon

VP = [
up vp wp

]T linear velocity of the pod
Vw = [

uw vw ww

]T wind velocity vector in the body coordinate system
Xa, Ya, Za, La, Ma, Na aerodynamic force and moment components in the balloon
ω = [

p q r
]T angular velocity of the balloon

θL, φL forward angle and lateral angle of inclination of the pod
φ,θ ,ψ Euler angles of the balloon
ρ reference atmospheric density
ρAir air density inside the ballonet
ρHe helium density inside the balloon
ρHe0 helium density under a normal pressure
�Pmax maximum pressure difference for the envelope to withstand
� differential pressure difference between current and target altitudes
δ pressure difference change threshold
δPHe pressure difference between the inside and outside of the balloon
δPAir pressure difference between the inside and outside of the ballonet
δTHe temperature difference between the inside and outside of the balloon
δTAir temperature difference between the inside and outside of the ballonet

1.0 Introduction
Lighter-than-air vehicles usually refer to airships or balloons filled with buoyancy gas to generate static
lift, which are also called static lift aerial vehicles [1, 2]. The vertical takeoff and landing capabilities of
lighter-than-air vehicles give them an advantage in transporting heavy loads, and their long endurance
and long-range motion are attractive for transporting equipment over land or sea areas [3]. Hence, lighter-
than-air vehicles have been proposed as environmental monitoring and telecommunication platforms
given their high-altitude hovering ability, long-distance displacement and long-term operation [4].

Hanging a load is a convenient way of carrying a payload, allowing for arbitrary placement and
exchange of loads; suspended payload can also provide a great view of sensors [5]. However, carrying
suspended external loads is a challenging task because the pendulum-like behaviour of slung loads
adversely affects aerial vehicles [6]. Therefore, dynamic simulation is important to realise a knowledge-
based design to address suspended load swings [7]. This aspect has been extensively studied in the field
of helicopters, with different modelling and control methods achieving good suspension performance
[8–10].
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Compared with helicopters, static lift aerial vehicles have great benefits in the transport of suspended
loads, but few theoretical studies exist on the dynamics of lighter-than-air vehicles with slung pods.
In the literature, Ardema proposed several buoyant heavy-lift prototypes in 1921 [11], Abdallah estab-
lished combined kinematic and dynamic models of an airship with a cable-driven parallel robot [12,
13], and Öznur constructed a model of a stratospheric balloon considering transport phenomena and a
gas compress–release system [14]. The challenge in accurate altitude control of lighter-than-air vehicles
and the uncontrollable horizontal position limit relevant research.

For environmental monitoring, atmospheric experiments require sensor readings across a wide range
of altitudes, so autonomous altitude regulation is necessary to change the flight level [15]. Most tradi-
tional altitude control methods consider vertical acceleration as control variable, and dynamic equations
of altitude with buoyancy have been established [16]. However, the buoyancy of gas is influenced by
temperature and pressure variations, which are nonlinear time-varying functions of altitude. To date, no
adequate knowledge or data on thermal characteristics are available for establishing an elaborate ther-
modynamic model of scientific balloons [14, 17, 18]; consequently, accurate altitude control of balloons
is difficult.

This paper presents a dynamic model of a high-altitude balloon suspended load system and the
dynamic simulation results in the process of altitude control. The general structure of the high-altitude
balloon system, which consists of a helium balloon and an air ballonet, is given. The buoyancy is changed
by inflating and deflating the ballonet via a two-way blower hanging under the platform. The detailed
modelling process of the balloon with suspended load is provided, and an engineering-feasible altitude
control system is designed. The dynamic characteristics are analysed during the entire process from
autonomous vertical takeoff to different altitude regulations.

2.0 Dynamic model of the whole system
2.1 System description
The platform consists of the buoyancy body and a pod with mass mp connected to the suspension point
at the bottom of the buoyancy body by a cable. The structural components of the buoyancy body are
similar to those of airships [19], including a helium balloon, a ballonet and a two-way blower. The
helium balloon generates buoyancy to balance the platform weight. The two-way blower inflates and
deflates the ballonet to regulate the buoyancy to control the descending and ascending processes of the
platform, as shown in Fig. 1.

The X-axis of the world coordinate system is supposed to be east–west, and the Z-axis is vertically
downward, pointing to the centre of the Earth. The world coordinate system is set parallel to the wind
directions to represent the horizontal motion of the platform. The initial state of the body coordinate
system obxbybzb is parallel to the world coordinate system. In a stable flight, the suspension point coordi-
nate system osxsyszs is always parallel to the body coordinate system and moves down the distance of d.
A model of a high-altitude balloon with slung load is unified into the whole body. After external forces
are calculated, all the forces and moments are turned into body frame obxbybzb, such that the 8-degree
of freedom (DOF) differential equations of motion, including two independent DOFs of the pod, are
obtained.

2.2 Hanging model of the pod in the body frame
2.2.1 Single-point hanging model
The coordinate vector of the suspension point on the balloon in the body coordinate system is s =
[0, 0, d]T, where the superscript T represents transposition. With the cable length supposed as l, at a
certain equilibrium position, the angle between the cable and the plane osyszs is defined as the forward
angle of inclination θL, and the angle between the projection of the cable and the oszs axis of the plane
osxszs is defined as the lateral angle of inclination φL. The position of the pod in the suspension point

https://doi.org/10.1017/aer.2024.66 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.66


The Aeronautical Journal 2859

Figure 1. Overall structure and state variables.

coordinate system is l = [−l sin θL, l cos θL sin φL, l cos θL cos φL]T. The position vector of the pod in the
body coordinate system p = [xp, yp, zp]T is described as

p = l + s = [−l sin θL, l cos θL sin φL, l cos θL cos φL+d]T (1)

Then, the velocity and acceleration of the pod relative to the body coordinate system are

ṗ =
⎡
⎢⎣

−l cos θL 0

−l sin θL sin φL l cos θL cos φL

−l sin θL cos φL −l cos θL sin φL

⎤
⎥⎦
[
θ̇L

φ̇L

]
= AL

[
θ̇L

φ̇L

]
(2)

p̈ =
⎡
⎢⎣

−l cos θL 0

−l sin θL sin φL l cos θL cos φL

−l sin θL cos φL −l cos θL sin φL

⎤
⎥⎦
[
θ̈L

φ̈L

]

+
⎡
⎢⎣

l sin θLθ̇
2
L

−l cos θL sin φLθ̇
2
L − 2l sin θL cos φLφ̇Lθ̇L − l cos θL sin φLφ̇

2
L

−l cos θL cos φLθ̇
2
L+2l sin θL sin φLφ̇Lθ̇L − l cos θL cos φLφ̇

2
L

⎤
⎥⎦= AL

[
θ̈L

φ̈L

]
+ BL (3)

From Equation (3), because of the constraint with a constant cable length, the pod has two
independent state variables: θL and φL.

2.2.2 Inertial motion of the pod in the body frame
When the body coordinate system has an instantaneous rotating angular velocity ω = [

p q r
]T, the

position vector p produces an entrainment velocity ω × p represented in the body coordinate system.
The motion of the body coordinate system relative to the inertial coordinate system is expressed in the
body coordinate system as VO = [

u v w
]T, so the absolute velocity of the pod relative to the inertial

coordinate system can be expressed in the body coordinate system as

VP =
⎡
⎢⎣

up

vp

wp

⎤
⎥⎦= VO + ṗ + ω × p (4)
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The derivation of this equation gives the expression of the inertial acceleration of the pod in the body
coordinate system as

aP = V̇P = V̇O + ω̇ × p + ω × ṗ + ω × (VO + ṗ + ω × p) + p̈

=
⎡
⎢⎣

u̇

v̇

ẇ

⎤
⎥⎦+

⎡
⎢⎣

ṗ

q̇

ṙ

⎤
⎥⎦×

⎡
⎢⎣

xp

yp

zp

⎤
⎥⎦+

⎡
⎢⎣

p

q

r

⎤
⎥⎦×

⎛
⎜⎝
⎡
⎢⎣

u

v

w

⎤
⎥⎦+

⎡
⎢⎣

p

q

r

⎤
⎥⎦×

⎡
⎢⎣

xp

yp

zp

⎤
⎥⎦
⎞
⎟⎠+ 2

⎡
⎢⎣

p

q

r

⎤
⎥⎦×

⎡
⎢⎣

ẋp

ẏp

żp

⎤
⎥⎦+

⎡
⎢⎣

ẍp

ÿp

z̈p

⎤
⎥⎦

=
⎡
⎢⎣

u̇ − vr + wq − xp(q2 + r2) + yp(pq − ṙ) + zp(pr + q̇)

v̇ − wp + ur − yp(p2 + r2) + zp(qr − ṗ) + xp(pq + ṙ)

ẇ − uq + vp − zp(q2 + p2) + xp(rp − q̇) + yp(rq + ṗ)

⎤
⎥⎦+ 2

⎡
⎢⎣

qżp − rẏp

rẋp − pżp

pẏp − qẋp

⎤
⎥⎦+

⎡
⎢⎣

ẍp

ÿp

z̈p

⎤
⎥⎦ (5)

where V̇O + p̈ + ω̇ × p + ω × ṗ is the inertial acceleration of the pod relative to the origin of the body
coordinate system, and ω × (VO + ṗ + ω × p) is the entrainment acceleration of the body coordinate
system relative to the inertial coordinate system.

To simplify the model, this study considers the balloon and the pod to be in steady-state motion,
ignoring the product form of the velocity vectors ω × ṗ and ω × (VO + ṗ + ω × p). Accordingly,

aP =
⎡
⎢⎣

u̇ − ypṙ + zpq̇

v̇ − zpṗ + xpṙ

ẇ + −xpq̇ + ypṗ

⎤
⎥⎦+

⎡
⎢⎣

ẍp

ÿp

z̈p

⎤
⎥⎦ (6)

2.2.3 External forces on the body frame
The inertial force on the pod is expressed in the body coordinate system as

FpI = mPaP =

⎧⎪⎨
⎪⎩

XpI

YpI

ZpI

⎫⎪⎬
⎪⎭ (7)

The gravity of the pod is decomposed into the body coordinate system as

FpG =

⎧⎪⎨
⎪⎩

XpG

YpG

ZpG

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

−mpg sin θ

mpg sin φcosθ

mpg cos φ cos θ

⎫⎪⎬
⎪⎭ (8)

The balloon is actively controlled by the buoyancy adjustment system in the vertical direction and
floats with the wind in the horizontal direction, so its aerodynamic force is manifested as drag in the
vertical direction and as thrust in the horizontal direction. The aerodynamic force on the pod expressed
in the body coordinate system is [20]

FpA =

⎧⎪⎨
⎪⎩

XpA

YpA

ZpA

⎫⎪⎬
⎪⎭= 1

2
ρSpCD(Vw − Vp)|Vw − Vp| (9)

where ρ is the air density, CD > 0 is the aerodynamic coefficient of the pod, Sp is the reference area of
the pod, and Vw = [ uw vw ww ]T is the wind velocity vector in the body coordinate system.

Under the body coordinate system, the cable force on the pod is FpL, which satisfies the force balance
on the pod, as shown in Fig. 2.

FpA+FpG+FpL = FpI (10)
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Figure 2. Diagram of the force balance on the pod.

From Equation (10), the pull force FpL represented in the body coordinate system is

FpL =
⎡
⎢⎣

XpL

YpL

ZpL

⎤
⎥⎦= mp

⎡
⎢⎣

u̇ − ypṙ + zpq̇ + ẍp

v̇ − zpṗ + xpṙ + ÿp

ẇ − xpq̇ + ypṗ + z̈p

⎤
⎥⎦− 1

2
ρSpCD

⎡
⎢⎣

(uw − up)
∣∣uw − up

∣∣
(vw − vp)

∣∣vp − vw

∣∣
(ww − wp)

∣∣wp − ww

∣∣
⎤
⎥⎦− mpg

⎧⎪⎨
⎪⎩

− sin θ

sin φcosθ

cos φ cos θ

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mp

(
u̇ − ypṙ + zpq̇ + ẍp

)− 1
2
ρSpCD

(
uw − up

) ∣∣uw − up

∣∣+ mpg sin θ

mp

(
v̇ − zpṗ + xpṙ + ÿp

)− 1
2
ρSpCD

(
vw − vp

) ∣∣vp − vw

∣∣− mpg sin φcosθ

mp

(
ẇ − xpq̇ + ypṗ + z̈p

)− 1
2
ρSpCD

(
ww − wp

) ∣∣wp − ww

∣∣− mpg cos φ cos θ

(11)

Meanwhile, the cable pull force FpL can be decomposed into the body coordinate system as

FpL =
⎡
⎢⎣

XpL

YpL

ZpL

⎤
⎥⎦= ∥∥FpL

∥∥
2

⎡
⎢⎣

sin θL

− sin φLcosθL

− cos φL cos θL

⎤
⎥⎦ (12)

Equation (12) indicates that two independent equations correspond to two independent state vari-
ables, as shown in Equation (3). Through the force balance equation of the pod, we have{

XpL sin φLcosθL + YpL sin θL = 0

YpL = ZpLtgφL

(13)

Equation (11) is substituted into Equation (13), and the mass point motion equation of the pod is
obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
mp(v̇ − zpṗ + xpṙ + ÿp) − 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ
]

= mp(ẇ − xpq̇ + ypṗ + z̈p) − 1
2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣− mpg cos φ cos θ ]tgφL[
mp(u̇ − ypṙ + zpq̇ + ẍp) − 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣+ mpg sin θ
]

sin φLcosθL

= − [
mp(v̇ − zpṗ + xpṙ + ÿp) − 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ
]

sin θL

(14)
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2.3 Thermodynamic model of the buoyancy body
2.3.1 Net-lift model in the whole process
Net-lift is defined here as the lift generated from the helium balloon, which is used to balance the weight
of the structure. According to the ideal gas equation, the following relationship exists for the helium
balloon, ballonet and external reference air:

VHe = mHeRHeTHe

PHe

ρHe = PHe

RHeTHe

(15)

VAir = mAirRAirTAir

PAir

ρAir = PAir

RAirTAir

(16)

ρ = P

RAirT
(17

Here, RAir = 286.7J/kg/K and RHe = 2078.6J/kg/K are the specific gas constants of air and helium,
respectively. mAir and mHe are the internal air mass and helium mass, respectively. ρAir and ρHeare the
internal air density and helium density, respectively; THe and TAir are the helium temperature and inter-
nal air temperature, respectively; PHe and PAir are the helium balloon pressure and internal air ballonet
pressure, respectively; VHe and VAir are the helium balloon volume and ballonet volume, respectively.
The total volume of the buoyancy body is obtained as V = VAir + VHe. Given the density ρ, pressure P
and temperature T of the external reference atmosphere, the net-lift from the buoyancy of the helium
balloon is modelled as [20]

LHe = gρVHe − mHeg + gρVAir − mAirg

= mHeg

(
ρVHe

mHe

− 1

)
+ mAirg

(
ρVAir

mAir

− 1

)

= mHeg

(
PMAir

RT
mHeRTHe
PHeMHe

mHe

− 1

)
+ mAirg

(
PMAir

RT
mAirRTAir
PAirMAir

mAir

− 1

)
(18)

= mHeg

(
MAir

MHe

P

PHe

THe

T
− 1

)
+ mAirg

(
P

PAir

TAir

T
− 1

)

= mHeg

(
MAir

MHe

P

P + (PHe − P)

T + (THe − T)

T
− 1

)
+ mAirg

(
P

P + (PAir − P)

T + (TAir − T)

T
− 1

)

Here, the universal gas constant R = 8.314J/K/mol. MAir and MHe are the molar masses of air and
helium, respectively. δTHe = THe − T and δTAir = TAir − T are the temperature difference between the
inside and outside of the helium balloon and ballonet, respectively. δPHe = PHe − P and δPAir = PAir − P
stand for the pressure difference between the inside and outside of the helium balloon and ballonet,
respectively. In general, PHe−P

P
and PAir−P

P
are small at low altitude, but they cannot be ignored when the

balloon is approaching the climb ceiling.
For zero-pressure balloons [21], no overpressure occurs, so net-lift is simplified as

LHe = mHeg

(
MAir

MHe

T + (THe − T)

T
− 1

)
+ mAirg

(
T + (TAir − T)

T
− 1

)
(19)
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Here, THe−T
T

and TAir−T
T

depend on the thermal characteristics of the balloon, as will be described in
the following section.

For balloon long-time flying at a stable altitude, δTHe and δTAir are neglected, then the net-lift becomes

LHe = mHeg

(
MAir

MHe

P

P + (PHe − P)
− 1

)
+ mAirg

(
P

P + (PAir − P)
− 1

)
(20)

2.3.2 Thermodynamic models during ascending and descending
During the ascending process, the balloon is not full of gas. Thus, the pressure of the helium balloon
is [20]

PHe = P = gρz

⇒ dPHe

dz
= dP

dz
= −gρ = −g

PMAir

RT
(21)

⇒ dPHe

PHedz
= dP

Pdz
= −g

MAir

RT

where MAir is the molar mass of air. The thermal environment of the high-altitude balloon includes the
internal and external environments. The heat transfer between the high-altitude balloon and external air
involves radiation and the convection amongst the film, internal gases and external air. In consideration
of the semitransparent property of the film, the thermal radiation amongst the film, external reference air
and internal gases includes direct solar irradiation, reflected and scattered solar radiation and infrared
radiation. Given that the film is very thin, its heat conduction is neglected for simplification. In accor-
dance with the first law of thermodynamics, energy conservation equations for the helium balloon and
the internal air ballonet are established as follows [19]:

mHeCp,He

dTHe

dt
=
∑

QHe,i + VHe

dPHe

dt

mAirCp,Air

dTAir

dt
=
∑

QAir,i + VAir

dPAir

dt
(ascending) (22)

mAirCp,Air

dTAir

dt
=
∑

QAir,i + VAir

dPAir

dt
+ Cp,Air(TAir − T)

dmAir

dt
(descending)

where Cp,He and Cp,air are the specific heat of helium and air at constant pressure, respectively.
∑

QHe,i

and
∑

Qair,i represent the heat transfer rate of helium and internal air with the environment, respectively.
Equation (22) represents the energy conservation of helium and internal air. Specifically, the second
equation is for the ascending phase, and the third one is for the descending phase, which considers
the added heat from the pumped external air. The pump inflates the balloon by doing work, thereby
generating heat. When deflating, the blower is driven by the internal and external pressure difference,
and the energy required is negligible.

The heat transfer rate considered in Equation (22) includes the solar radiation heat IaA1, the con-
vective heat transferred between internal air and reference air K1A2 (T − (THeVHe + TAirVAir) /V) and the
heat transferred between internal air and helium K2A3 (THe − TAir), as shown below:∑

QHe,i = (K1A2 (T − (THeVHe + TAirVAir) /V)+ IaA1)VHe/V + K2A3 (TAir − THe)∑
QAir,i = (K1A2 (T − (THeVHe + TAirVAir) /V)+ IaA1)VAir/V + K2A3 (THe − TAir) (23)

Here, I = 1367W/m2 is the estimated solar constant, a = 0.4 is the estimated efficiency of absorbing
radiation, and A1 = V2/3 is the estimated effective area of absorbing radiation. K1 = 30W/(m2K) and
A2 = V2/3 are the estimated heat transfer coefficient and the heat transfer area between the balloon and
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the environment, respectively. K2 = 10W/(m2K) and A3 = V2/3
Air are the estimated heat transfer coefficient

and the heat transfer area between internal air and helium, respectively.
From Equations (15) and (21), we have

VHe

dPHe

dt
= mHeRHeTHe

dPHe

PHedz

dz

dt

= −gmHeRHeTHe

MAir

RAirT
ż (24)

= −gmHe

RHeTHe

RAirT
ż

Accordingly, we obtain

mHeCp,He

dTHe

dt
=
∑

QHe,i − gmHe

RHeThe

RT
ż (25)

The current temperature of helium with vertical motion can be calculated using Equation (25), and
the total net-lift can be determined via Equation (19).

2.3.3 Overpressure models with fixed volume ratio
When the balloon reaches the maximum altitude of 20km, a pressure difference δPAir occurs between
the inside and outside of the balloon. Thus, the balloon has a fixed shape, and its volume is at the
maximum value. This condition is defined as the steady state of the balloon. The pressure differences of
the helium balloon and the ballonet are assumed to be equal, i.e. δPAir = δPHe, under the steady state for a
given station-keeping altitude, which means that the shape will not change during the height adjustment
process. The temperature difference between inside and outside the sphere for a long time at one altitude
is ignored. For the mass conservation, we have

mAir = ρVAir

(
1 + δPAir

P

)

mHe = ρHe0VHe

(
1 + δPHe

P

)
(26)

V = VAir + VHe

where ρHe0 is the helium density under a normal pressure. For the balloon in a steady state, the volume
ratio k of the helium balloon to the ballonet is fixed and can be deduced as

k = VHe

VAir

= mHeρAir0

mAirρHe0

VAir = V/(1 + k) (27)

VHe = V − VAir

For a stable balance at any altitude, the balloon has a vertical balance, i.e.⎧⎨
⎩ g[(ρ − ρHe0)VHe − ρHe0

δρHe

P
VHe − ρ

δPAir

P
VAir]

∣∣∣∣
h

− (mstruc + mp)g = 0

VHe + VAir = V
(28)

where mstru is the mechanical structure mass, mainly including the two-way blower and the envelope.
The net-lift generated in Equation (28) is another form of Equation (20). If we substitute Equation

(26) into Equation (28), the following relationship exists: ρ = ρHe0
MAir
MHe

.
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2.4 Dynamic model of the overall system
2.4.1 Nonlinear model
From Equation (11), the force and moment generated by the cable pull force on the balloon expressed
in the body coordinate system are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−FpL =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−mp(u̇ − ypṙ + zpq̇ + ẍp) + 1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣− mpg sin θ

−mp(v̇ − zpṗ + xpṙ + ÿp) + 1

2
ρSpCD(vw − vp)

∣∣vw − vp

∣∣+ mpg sin φcosθ

−mp(ẇ − xpq̇ + ypṗ + z̈p) + 1

2
ρSpCD(ww − wp)

∣∣ww − wp

∣∣+ mpg cos φ cos θ

−s × FpL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d[−mp(v̇ − zpṗ + xpṙ + ÿp) + 1

2
ρSpCD(vw − vp)

∣∣vw − vp

∣∣+ mpg sin φcosθ ]

d[−mp(u̇ − ypṙ + zpq̇ + ẍp) + 1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣− mpg sin θ ]

0

(29)

where φ, θ and ψ are the Euler angles of the body in the world coordinate system.
The dynamics of the balloon considering the cable pull force is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xa − mg sin θ − XpL = m(u̇ − vr + wq)

Ya + mg cos θ sin φ − YpL = m(v̇ − wp + ur)

Za + mg cos θ cos φ − ZpL − B = m(ẇ − uq + vp)

La + dYpL = Ixṗ + (Iz − Iy)rq

Ma − dXpL = Iyq̇ + (Ix − Iz)rp

Na = Izṙ

(30)

where the total mass of the balloon m = mAir + mHe + mstru + madd; here, madd is the additional mass [20].
Ix, Iy and Iz are the inertial moments, ρ is the density of the reference air, Q is the dynamic pressure,
and B = ρV is the total buoyancy. Xa = 1

2
ρSCX(uw − u) |uw − u|, Ya = 1

2
ρSCY(vw − v) |vw − v| and Za =

1
2
ρSCZ(ww − w) |ww − w| are the aerodynamic components of the balloon along the three axes of the

body coordinate system. La = QSlref Cl, Ma = QSlref Cm and Na = QSlref Cn are the aerodynamic moment
components of the three axes around the body coordinate system. CX , CY , CZ , Cl, Cm and Cn are the
aerodynamic coefficients of the balloon, S is the reference area, and lref is the reference length of the
balloon.

Equations (14) and (30) constitute the whole 8-DOF system dynamics, i.e.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[mp(v̇ − zpṗ + xpṙ + ÿp) − 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ ]

= [mp(ẇ − xpq̇ + ypṗ + z̈p) − 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣− mpg cos φ cos θ ]tgφL

[mp(u̇ − ypṙ + zpq̇ + ẍp) − 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣+ mpg sin θ ] sin φLcosθL

= −[mp(v̇ − zpṗ + xpṙ + ÿp) − 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ ] sin θL

m(u̇ − vr + wq) = Xa − mg sin θ − mp(u̇ − ypṙ + zpq̇ + ẍp) + 1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣− mpg sin θ

m(v̇ − wp + ur) = Ya + mg cos θ sin φ − mp(v̇ − zpṗ + xpṙ + ÿp) + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣
+ mpg sin φcosθ

m(ẇ − uq + vp) = Za + mg cos θ cos φ − mp(ẇ − xpq̇ + ypṗ + z̈p) + 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣
+ mpg cos φ cos θ − B

Ixṗ + (Iz − Iy)rq = La + d(mp(v̇ − zpṗ + xpṙ + ÿp) − 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ )

Iyq̇ + (Ix − Iz)rp = Ma − d(mp(u̇ − ypṙ + zpq̇ + ẍp) − 1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣+ mpg sin θ )

Izṙ = Na

(31)
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Equation (31) can be rearranged into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mpv̇ − mptgφLẇ − (mpzp + mptgφLyp)ṗ + mptgφLxpq̇ + mpxpṙ + mpÿp − mptgφLz̈p

= 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣+ mpg sin φcosθ − 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣ tgφL

−mpg cos φ cos θ tgφL

mp sin φLcosθLu̇ − mp sin θLv̇ − mpzp sin θLṗ − (mpyp sin φLcosθL − mpxp sin θL)ṙ + mpzp sin φLcosθLq̇

+ mp sin φLcosθLẍp + mp sin θLÿp

= 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣ sin φLcosθL − mpg sin θ sin φLcosθL + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣ sin θL

+ mpg sin φcosθ sin θL

(m + mp)u̇ + mpzpq̇ − mpypṙ + mpẍp = Xa + 1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣− (mg + mpg − B) sin θ

+ mvr − mwq

(m + mp)v̇ − mpzpṗ + mpxpṙ + mpÿp = Ya + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣+ (mg + mpg − B) sin φcosθ

+ mwp − mur

(m + mp)ẇ + mpypṗ − mpxpq̇ + mpz̈p = Za + 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣
+ (mg + mpg − B) cos φ cos θmuq − mvp

−mpdv̇ + (Ix + mpdzp)ṗ − mpdxpṙ − mpdÿp = La − d
1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− (mgzg

+ (d + zp)mpg) sin φcosθ − (Iz − Iy)rq

mpdu̇ + (Iy + mpdzp)q̇ − mpdypṙ + mpdẍp = Ma + d
1

2
ρSpCD(uw − up)

∣∣uw − up

∣∣− (mgzg

+ (d + zp)mpg) sin θ − (Ix − Iz)rp

Izṙ = Na

(32)

2.4.2 Point mass model
The balloon is assumed to be stable in level flight, such that the movement of the pod is balanced. The
changes in the angular velocity and acceleration of the balloon are ignored; thus, p = q = r = 0, and
ṗ = q̇ = ṙ = 0. The point mass model of the platform is simplified to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mpv̇ + mpÿp − mptgφLẇ − mptgφLz̈p = −1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣ tgφL − mpgtgφL

+ 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣
mp sin φLcosθLu̇ + mp sin φLcosθLẍp + mp sin θLv̇ + mp sin θLÿp

= 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣ sin φLcosθL + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣ sin θL

mu̇ + mp(u̇ + ẍp) = 1

2
ρSCX(uw − u) |u − uw| + 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣− mg sin θ − mpg sin θ

mv̇ + mp(v̇ + ÿp) = 1

2
ρSCY(vw − v) |v − vw| + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣+ mg cos θ sin φ

+ mpg sin φcosθ

mẇ + mp(ẇ + z̈p) = 1

2
ρSCZ(ww − w) |w − ww| + 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣+ mg cos θ cos φ

+ mpg cos φ cos θ − B
(33)

Equation (3) is combined with Equation (33) to form the kinetic equation of the mass point system.
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2.4.3 Static equilibrium
This study assumes that the platform is stable in level flight and that the pod is statically balanced;
hence, p = q = r = 0, ṗ = q̇ = ṙ = 0, u̇ = v̇ = ẇ = 0 and ẍp = ÿp = z̈p = 0 hold. Then, the cable pull force
is simplified to

FpL =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣+ mpg sin θ

−1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpg sin φcosθ

−1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣− mpg cos φ cos θ

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)

The platform is in a static equilibrium state, so⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ρSCX(uw − u) |u − uw| + 1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣= 0

1

2
ρSCY(vw − v) |v − vw| + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣= 0

1

2
ρSCZ(ww − w) |w − ww| + 1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣+ mg + mpg − B = 0

−1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣ tgφL + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣− mpgtgφL

1

2
ρSpCD(uw − u) |u − uw| sin φLcosθL + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣ sin θL

(35)

Supposing that the attitude of the helium balloon is negligible, i.e. θ = φ = 0, this study further
simplifies the cable pull force to

FpL =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1

2
ρSpCD(uw − up)

∣∣up − uw

∣∣
−1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣
−1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣− mpg

⎤
⎥⎥⎥⎥⎥⎥⎦

(36)

When the moving speed of the pod and the wind speed are equal, the horizontal component of the
cable pull force of the platform is zero. The vertical component of the cable pull force is the magnitude
of the pod weight. Hence, the pod static balance is simplified to⎧⎪⎪⎨

⎪⎪⎩
1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣= [
1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣+ mpg]tgφL

1

2
ρSpCD(uw − u) |u − uw| sin φLcosθL + 1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣ sin θL = 0

(37)

Under this condition, the hanging angle of the pod satisfies the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φL = atg

⎛
⎜⎝

1

2
ρSpCD(vw − vp)

∣∣vp − vw

∣∣
1

2
ρSpCD(ww − wp)

∣∣wp − ww

∣∣+ mpg

⎞
⎟⎠ or φL = atg

(
YpL

ZpL

)

θL = atg

(
−(uw − u) |u − uw| sin φL

(vw − vp)
∣∣vp − vw

∣∣
)

or θL = atg

⎛
⎝ −XpL√

YpL
2 + ZpL

2

⎞
⎠

(38)
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Table 1. Parameters of the platform

Parameters Value
Initial altitude 10m
Diameter of the balloon 15m
Cable length 7.5m
Initial position of the pod (0,0,14.5)m
Gravity centre (0,0,4)m
Total volume of the balloon 1,280m3

Initial helium mass 15.5kg
Initial ballonet mass 5.546kg
Helium volume at 10m 91.82m3

Ballonet volume at 10m 4.5317m3

Residual pressure difference at 20km altitude 200Pa
Maximum pressure difference of the platform 500Pa
Structural mass mstruc 62.7kg
Pod mass mp 30kg
Buoyancy at 10m altitude 96.875kg
Lift at 10m altitude 4.1164kg
Maximum flow rate of the blower 0.5kg/s
Pressure difference change threshold δ 20Pa/s

From Equation (38), the lateral angle of inclination φL is determined by the ratio of the lateral force to
the vertical component force experienced by the pod. The forward angle of inclination θL is determined
by the ratio of the forward force experienced by the pod to the resultant force in the plane osxsyszs.

3.0 Differential pressure difference-based altitude adjustment
3.1 Overall parameter design
The platform parameters are designed for the task of environmental monitoring. The designed hover
altitude of 20km is the optimal altitude for high-altitude balloons when the wind field is considered;
20km is the bottom of the stratosphere, which is a low wind zone. The vertical mixing motion of the
atmosphere is weak, and the atmospheric motion is mostly horizontal, which is convenient for position
control of the balloon. The platform’s maximum hovering altitude is supposed to be 20km, and the
structural mass is mstruc = 63kg. The pressure difference at 20km is designed to be δPAir = δρHe = 200Pa.
The maximum pressure difference for the envelope to withstand is�Pmax = 500Pa. The diameter of this
platform is about 15m, and the overall volume is about V = 1280m3. The lift and gravity balance at
20km and the total volume are assumed to remain the same during the altitude adjustment process. The
helium mass at 20km is 15.5kg.

The parameters of the platform and the calculation results at 20km for balance are shown in
Table 1.

This study assumes that no gas exchange occurs during the ascent process. Thus, at the initial altitude
of 10m, the helium mass and air mass are the same as those at 20km altitude. Then, the total vertical
force obtained at 10m is 4.1164kg, which reaches the initial ascent.

3.2 General controller structure
Complex controller algorithms are unsuitable for engineering applications because achieving an accu-
rate dynamic model is difficult, so this study proposes an altitude adjustment method based on
differential pressure difference. This controller design is simply implemented by avoiding the trouble
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Figure 3. General structure of the controller.

of accurate modelling, and it is convenient for adoption in practical controller design. The controller
structure is shown in Fig. 3.

The pressure difference δPHe.t = δPAir.t at the target altitude and the pressure difference δPHe.c = δPAir.c

at the current altitude can be deduced from the lift and weight balance condition at different altitudes
given in Equation (28), as shown as follows:

δPHe.t = δPAir.t =
[
(ρAir0 − ρHe0)VHe − (mstruc + mp)

]
P

ρHe0VHe + ρAir0VAir

∣∣∣∣∣
h=targetaltitude

(39)

δPHe.h = δPAir.h =
[
(ρAir0 − ρHe0)VHe − (mstruc + mp)

]
P

ρHe0VHe + ρAir0VAir

∣∣∣∣∣
h=currentaltitude

(40)

The differential pressure difference between the current and target altitudes is calculated as

�= δPAir.h − δPAir.t (41)

The pressure difference-based threshold switching strategy is shown in Fig. 4.
Given that the altitude is regulated through the inflation or deflation of the ballonet by the two-way

blower, the commanded tracking pressure difference of the ballonet δPAir .c is determined by � via a
threshold switching strategy. � is compared with a pressure difference change threshold δ, which is
defined in the system design phase. The two-way blower provides the maximum air mass change per
control cycle for inflation and deflation, which is the design basis for δ. For this platform, the control
period is set to 1 s, and δ=20Pa/s. The maximum flow rate of the blower is lower than 0.5kg/s at an
arbitrary altitude, as decided and validated from subsequent simulations.

If � is less than δ, then the target pressure difference is assigned directly to the tracking pressure
difference ; if � exceeds δ, then the tracking pressure difference is the current pressure difference plus
or minus the threshold δ depending on the sign of �. The tracking commanded pressure difference
assignment logic is as follows: ⎧⎪⎨

⎪⎩
δPAir .c = δPAir.t |�|< δ
δPAir .c = δPAir.h − δ �> δ

δPAir .c = δPAir.h + δ �<−δ
(42)

On the basis of the condition that the pressure difference between the helium balloon and the ballonet
is equal, i.e. δPHe.c = δPAir.c, only the ballonet has gas exchange during the altitude adjustment process,
and the required helium balloon volume is calculated through the conservation of helium mass. Then,
the ballonet volume is derived from the invariant total volume. From helium mass conservation, the
following equation can be derived:

VHe.c = mHe

ρHe0

(
1 + δPHe.c

P

)
VAir.c = V−VHe.c (43)

where VHe.c and VAir.c are the commanded volumes to be reached.
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Figure 4. Differential pressure difference-based threshold switching strategy.

The remaining air mass of the ballonet at any control period should satisfy the commanded volume
and commanded tracking pressure difference, i.e.

mAir.c = ρAir0.cVAir.c

(
1 + δPAir.c

P

)
(44)

The required mass change of the ballonet is calculated as

�mAir = mAir − mAir.c (45)

The two-way blower realises the inflation and deflation of the ballonet and achieves these air mass
changes by controlling the size of the blower flow, which should satisfy the flow rate of the blower at
any altitude.

In this scheme, the control strategy can be worked out even without access to an accurate dynamic
model. Only the pressure difference at different altitudes needs to be determined. The commanded pres-
sure difference in Equation (39) is decided by the volume ratio, atmospheric density and pressure at
the target altitude. The volume ratio k at the target altitude is undetermined, so the volume ratio at the
current altitude in Equation (40) is used to calculate the ballonet volume VAir.t and the helium balloon
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Figure 5. Velocities and positions of the platform.
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Figure 7. Position and attitude of the pod and the cable force.

volume VHe.t at the target altitude. This volume ratio gradually approaches the target one as the platform
reaches the target altitude. Hence, the ideal target altitude can be obtained.

The limitation of this controller is based on the assumption that the atmospheric density and pressure
at the target altitude are obtained from a standard atmosphere model, which may be inaccurately deter-
mined. Thus, future work could establish an experimental model of atmospheric density and pressure
in relation to altitude in a certain experimental area to eliminate altitude errors when the commanded
pressure difference is reached [17].

4.0 Simulation of manoeuvring process dynamics
The simulation is divided into three phases: open ascending, autonomous descending and autonomous
ascending. The target altitude is designed as
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⎧⎪⎨
⎪⎩

ht = 20km (0 ≤ t< 5000)

ht = 10km (5000 ≤ t< 8000)

ht = 15km (8000 ≤ t< 10000)

(46)

MATLAB is used to simulate the dynamics of the whole system. Firstly, the command ‘fsolve’ is
applied to solve the dynamics of the whole system, as shown in Equation (33). Then, nine acceleration
variables are obtained. The command ‘ode45’ is used to integrate the acceleration to obtain the position
and attitude of the balloon. The acceleration of the pod is obtained from Equation (33), then ‘fsolve’ is
employed to solve Equation (3) to acquire the angle of inclination of the pod.

In all flight simulations, the drag coefficient is 0.5 for the body and pod in all directions. The coeffi-
cient of virtual mass is 0.5. Heat transfer coefficient values and solar conditions can be found in Section
2.3.2. The numerical simulation results from this study are based on the selected model parameters. The
simulation results for different parameters may vary in size, but the principles displayed in the simulation
results will not change.

The simulation of the entire process of the platform is depicted in Figs 5–10. On the basis of the
point mass dynamic equation, i.e. Equation (33), the thermodynamic parameters are adopted from Ref.
(17). The variations in the state variable of the platform over time during the entire ascent and altitude
change processes are shown in Fig. 5. Figure 5(a), (c) and (e) demonstrate the velocity change, and
Fig. 5(b), (d) and (f) indicate the position change of the platform. The balloon is able to achieve flexible
altitude changes, and its horizontal position drifts with the wind. Rather than using altitude as the control
variable, this scheme adopts differential pressure difference; it can maintain a relatively stable tracking
accuracy by avoiding the complexity of model calculation. Given that pressure difference is a slowly
varying variable, the control response to differential pressure difference is delayed, and the overshoot
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Figure 9. Horizontal motion of the platform in the wind field.

caused by the large inertia of the platform is inhibited, as shown in Fig. 5(f). The maximum vertical
velocity reaches about 9m/s, as depicted in Fig. 5(e).

Figure 6 shows the vertical force and vertical acceleration of the platform. In the steady state, the
platform lifts remain 6.5N, as illustrated in Fig. 6(c), and no vertical motion occurs, as shown in Fig. 6(d).
The analysis of the dynamic equations indicates that the extra force is induced by the coupling of the
nonlinear equation. Figure 6(d) shows that the maximum vertical acceleration is −0.28m/s2 at the initial
condition and 0.32m/s2 at the beginning of descending.

Figure 7 shows the position and attitude change of the pod and the force curve on the cable during
the entire flight phases and in a short time. During the ascent, the forward angle of inclination θL of
the pod is close to −60◦, and the lateral angle of inclination φL in the left and right directions does
not change considerably. According to the definition of pod attitude angle, the forward direction of
the platform is affected by the horizontal east–west wind, as shown in Fig. 8(b), resulting in the high
forward movement speed of the platform depicted in Fig. 5(a), the forward position of the pod shown in
Fig. 7(a) and the attitude angle fluctuations presented in Fig. 7(b). From Fig. 7(f), the maximum cable
force does not exceed 500 N, which can be used for the designed lifting cable. Figure 7(h)–(k) indicate
evidence for the pendulum motion of the pod. The oscillation period of the forward position and the
forward angle of inclination is about 20s, as shown in Fig. 7(g) and (j). The oscillation period of the
lateral position and the lateral angle of inclination is about 5s, as demonstrated in Fig. 7(h) and (i). The
vertical position of the pod is oscillating with mixed frequencies, as shown in Fig. 7(k). The amplitude
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Figure 10. Volume variation in different phases.

of pod oscillation motion is about 0.1 m, as illustrated in Fig. 7(g), (i) and (k), or has an attitude change
of 0.01 rad, as shown in Fig. 7(h) and (j). No obvious oscillation in cable force occurs, as displayed in
Fig. 7(l).

Figure 8 gives the position and attitude of the pod under a no-wind situation in a short period. The
pendulum motion characteristic of the pod in Fig. 8(a)–(e) does not change compared with the wind
situation, as shown in Fig. 7(g)–(k), whilst the balloon oscillates with the same frequency and a smaller
amplitude of pendulum motion of the pod, as depicted in Fig. 8(g) and (h). The pod motion under the
no-wind situation comprises that in the average-wind situation in Fig. 7, possibly indicating that the
pendulum is moving with the platform motion in wind, as shown in Fig. 7(g)–(j).

Figure 9(a) and (b) show the wind field conditions at different heights of the platform, where Winds

is the wind from the south to the north, and Windw is the wind from the west to the east. Figure 9(c)
and (d) present the wind speed changes of the platform at different time phases. A comparison of body
and wind velocities is shown in Fig. 9(c) and (d) for the whole process and in Fig. 9(e) and (f) for a short
period. The platform passively drifts with the wind in the horizontal direction; however, their velocities
differ, and an inertial overshoot of the body velocity over the wind velocity is observed.

The internal state of the high-altitude balloon is shown in Figs 10 and 11. The altitude reached is
depicted in Fig. 10(a). The position error is about 30m higher than the set value because the stable pres-
sure difference is about 240Pa at a balance altitude, as shown in Fig. 11(c), which is about 40Pa higher
than the designed 200Pa. This error also results from the coupling effect of six nonlinear equations,
given that the vertical motion is coupled with other motion.

The temperature differences in the whole process derived from thermodynamic models are shown in
Fig. 12. The temperature of the ballonet is related to the altitude variation and the charging or discharging
of the ballonet. Overheating of the helium balloon in natural expansion process during ascending time
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Figure 11. Pressure difference in different phases.

occurs at about 2K, as exhibited in Fig. 12(b). An abrupt increase in ballonet temperature occurs at the
beginning of ballonet charging, as demonstrated in Fig. 12(c) and (d). The change in temperature is
closely related to the set parameters in Section 2.3.2.

These simulations validate the effectiveness of altitude control. The thermodynamic characteristic
of the buoyancy body determines the buoyancy generated. The altitude holding error comes from the
coupling of dynamics. The maximum pull force and maximum pod attitude angles during the ascending
and descending processes provide basic knowledge for the structural design and load installation of pods.

5.0 Conclusion
This paper presents a modelling method and the theoretical analysis results of a high-altitude balloon
with a slung pod as a combined system. Altitude adjustment of the high-altitude balloon is carried out
with differential pressure difference as the control variable. The pressure difference change threshold is
constrained by the blower flow rate. The controller can keep constant pressure difference at an arbitrary
station-keeping altitude. The status and force of the balloon, pod and cable during the entire flight plan
are simulated. The theoretical result of the maximum pull force of the cable is 500N. The forward
inclination angle θL of the pod reaches −60◦.

The mechanism analysis method presented in this paper can obtain a clear physical model, but numer-
ous model variables need to be determined to generate a feasible solution in a high-altitude envelope.
Thus, the results in this paper do not consider the dynamics of the cable and ignore the movement of the
platform attitude. Structural dynamic software is suggested to be used for further numerical analysis to
describe the dynamics of the motion process of the platform pod system thoroughly.
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