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Abstract
Grasp detection is a significant research direction in the field of robotics. Traditional analysis methods typically
require prior knowledge of the object parameters, limiting grasp detection to structured environments and result-
ing in suboptimal performance. In recent years, the generative convolutional neural network (GCNN) has gained
increasing attention, but they suffer from issues such as insufficient feature extraction capabilities and redundant
noise. Therefore, we proposed an improved method for the GCNN, aimed at enabling fast and accurate grasp
detection. First, a two-dimensional (2D) Gaussian kernel was introduced to re-encode grasp quality to address
the issue of false positives in grasp rectangular metrics, emphasizing high-quality grasp poses near the central
point. Additionally, to address the insufficient feature extraction capabilities of the shallow network, a receptive
field module was added at the neck to enhance the network’s ability to extract distinctive features. Furthermore,
the rich feature information in the decoding phase often contains redundant noise. To address this, we introduced
a global-local feature fusion module to suppress noise and enhance features, enabling the model to focus more on
target information. Finally, relevant evaluation experiments were conducted on public grasping datasets, including
Cornell, Jacquard, and GraspNet-1 Billion, as well as in real-world robotic grasping scenarios. All results showed
that the proposed method performs excellently in both prediction accuracy and inference speed and is practically
feasible for robotic grasping.

1. Introduction
Robots are playing an increasingly important role in fields such as industrial production and social
services. Among them, object grasping is one of the most common tasks for robots, but it remains
challenging. This is because grasping an object with a robotic arm requires both the pose information of
the object to adjust the hand’s posture through inverse kinematics, as well as the shape information of the
object to determine the grasp location of the end-effector on the object [1–4]. However, general object
detection and pose estimation methods do not account for the specific shape features of the object when
explaining and predicting grasp locations, which may lead to grasp failures [5, 6]. Early targeted grasp
detection research selected grasp locations by searching for key points or analyzing geometric contour
features [7, 8]. Although these methods improved grasp accuracy to some extent, they still suffer from
issues such as low accuracy, inefficiency, and poor generalization. In recent years, the development of
deep learning has provided new approaches for enhancing grasp detection capabilities [9–11]. Jiang et
al. [12] proposed a rectangular representation of the grasp location, providing a unified definition of the
ideal grasp position. LenZ et al. [13] were the first to introduce the grasp rectangle representation into
neural networks for learning and prediction, improving the generalization of grasp detection. However,
the complex and redundant network structure led to inefficient predictions. Redmon et al. [14] leveraged
the powerful feature extraction capabilities of AlexNet to transform the prediction of grasp rectangles
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Figure 1. Vision-based robot grasping system. (a) Hardware components of the system. (b) General
grasping process.

into a regression problem. However, this network can only predict a single grasp region, often resulting
in an averaging effect in the grasp outcomes. Chu et al. [15] and Zhou et al. [16] independently proposed
new models to address the single-region and single-angle issues identified in Ref. [14]. Morrison et al.
[17], building upon Ref. [13], proposed a novel grasp detection method that directly generates pixel-
level representations of grasp parameters through a generative convolutional neural network (GCNN),
significantly enhancing both grasp accuracy and prediction efficiency. Based on Ref. [17], Kumra et al.
[18, 19] introduced a residual module that can generate robust grasp predictions from n-channel inputs
at real-time speeds. However, this method still has limitations when handling complex object shapes and
scenes, and requires further improvements to enhance its accuracy and robustness.

The grasp rectangle representation proposed in Ref. [19] uses a binary method to learn grasp labels,
assuming that any grasp with a predicted center falling within the correct box is considered correct.
This assumption is flawed because the proximity of the center to the edge, combined with certain angu-
lar variations, may cause the gripper to collide with the object, leading to grasp failure. We referred
to such cases, where the grasp theoretically succeeds but often fails in practice, as ‘false positives’. To
mitigate grasp failures caused by the ‘false positives’ issue and improve the model’s ability to under-
stand high-quality grasps [20, 21], we introduced a 2D Gaussian kernel to re-encode the grasp quality,
emphasizing that the closer the grasp prediction is to the optimal grasp center, the higher the grasp quality
score. Building upon this, to further improve the grasp prediction performance of the model, we pro-
posed an improved structure based on the GCNN network, which consists mainly of five modules: input,
encoding, bottleneck, decoding, and output prediction. To address the limitations of the original shal-
low network in extracting high-discriminative and robust features, we introduced a receptive field block
(RFB) [22] at the bottleneck, which simulates the receptive field mechanism of the human visual system.
This module enables the network to more precisely capture and extract high-discriminative and robust
features, providing more effective feature support for subsequent grasp detection tasks. Additionally, the
rich feature information obtained from feature extraction and reconstruction of the input image often
contains redundant noise, which may affect subsequent grasp detection. We employed a global-local
feature fusion module (GLFFM) [23] to suppress redundant features and highlight important object fea-
tures. Finally, the proposed method was thoroughly evaluated on the widely used Cornell, Jacquard, and
GraspNet-1 Billion datasets, followed by real-world robotic grasping experiments. The experimental
results demonstrate the effectiveness and advancement of the proposed method.

2. Robot grasping system and problem modeling
2.1. Robot grasping system
As shown in Figure 1(a), a vision-based robotic grasping system typically consists of a robotic arm with a
gripper, visual sensors, a work platform, and a host computer. Figure 1(b) illustrates the general grasping
process. To complete the grasping task, the visual sensor (RGB-D camera) captures the scene images
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Figure 2. Grasping pose representation. (a) Two-finger parallel gripper. (b) Schematic image of grasp
representation.
from the work platform and sends them to the host computer for analysis and prediction. The prediction
results generate a control logic, which is then transmitted to the robot arm’s joints and end-effector
through the trajectory planning controller to control the arm in completing the grasping task.

2.2. Grasping problem modeling
Based on the aforementioned robot grasping system, defining an appropriate grasp representation model
is crucial. To avoid grasp failures caused by false positives and enhance the model’s ability to recognize
high-quality grasps, we introduced an improved version of the grasp representation model proposed by
Morrison et al. [17], incorporating a 2D Gaussian distribution. This approach emphasizes the grasp pose
with the highest confidence to improve grasping accuracy.

2.2.1. Basic grasp representation
Equation (1) represents an earlier proposed five-dimensional grasp representation model [17], where
(x, y) denotes the center of the gripper, θ represents the grasping angle, and w and h correspond to
the width and height of the appropriate grasping rectangle. The five-dimensional grasp representation
model, inspired by traditional object detection bounding boxes, effectively and simplistically represents
the parallel gripper grasping approach shown in Figure 2(a) on the grasp example object in Figure 2(b).
The grasp diagram is shown in Figure 2(b) and has been successfully used for grasp detection. However,
this model is not entirely applicable.

g = {x, y, θ , w, h} (1)

To improve the accuracy and real-time performance of robotic grasp detection, a new simplified grasp
representation model was reintroduced based on Equation (1) [17]:

g = {p, ϕ, w, q} (2)

where p represents the center point (x, y, z) in Cartesian coordinates, ϕ and w denote the grasping angle
and width, while q is a newly introduced quality coefficient used to assess the quality of the grasp and
provides a measure for grasp correctness.

Furthermore, Equation (2) can be reformulated in two-dimensional space as Equation (3) to interpret
the grasp representation model from the camera plane.

ĝ = {
p̂, ϕ̂, ŵ, q̂

}
(3)

where p̂ = (u, v) represents the center point in image coordinates, ϕ̂ is the grasping angle in the camera
coordinate system, ŵ and q̂ represent the grasp width and quality, respectively. Vision-based grasping
predicts the grasp pose ĝ of the target object from the camera image.
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Figure 3. False positive detection in binary cognition method.

To remap the grasp pose ĝ from the image coordinate system back to the robot coordinate system,
calibration of the robotic grasping system is required. Using the calibration results, the grasp pose ĝ is
transformed into the world coordinate system, guiding the robot to effectively complete the grasping
task. The transformation formula is given in Equation (4).

g = TRC

(
TCI

(
ĝ
))

,

TCI =
⎡
⎣ 1/f 0 0

0 1/f 0
0 0 1

⎤
⎦ , TRC = [R, T] .

(4)

where TCI is the transformation matrix that converts from image coordinates to camera coordinates
and TRC, which consists of the rotation matrix R ∈ R3×3and the translation matrix T ∈ R3×1, is the
transformation matrix that converts from camera coordinates to world coordinates.

Since the robotic arm’s grasp pose prediction for the target object may yield different results, we
represented the set of all grasp poses as shown in Equation (5). �, W, and Q are computed using Equation
(3) for each pixel in the image, resulting in three predicted images representing the grasp angle, grasp
width, and grasp quality score.

G = (�, W, Q) ∈R
3×h×w (5)

By searching for the pixel coordinates of the highest grasp quality score ĝ = maxQG, the grasp center
point with the highest confidence can be obtained, along with the corresponding grasp angle and width.

2.2.2. Introducing a 2D Gaussian distribution
Since discrete rectangular boxes cannot cover all possible grasp positions on the target object, Morrison
used a binary method for grasp labels to implement a heuristic model cognition [17]. As shown in
Figure 3, if the predicted grasp center falls within the green box which is one-third the size of the correct
grasping rectangle (blue box), it is considered valid, with the grasp quality marked as 1. If it does not
fall within the green box, it is marked as 0, meaning invalid. This cognition is flawed. For example,
the yellow dashed box is marked as a valid grasping frame in the binary method, but in real grasping
scenarios, it is highly likely that the task cannot be completed due to a collision between the gripper and
the object [20]. This situation is referred to as ‘false positives’ in our paper.

To address this flaw, we introduced a 2D Gaussian kernel (Equation (6)) to redefine the grasp quality
label. Grasp quality points within the valid grasping frame are represented as a 2D Gaussian distribution,
with the mean located at the center of the optimal grasp rectangle, emphasizing the importance of the
optimal grasp. As the distance from the center increases, the grasp quality score gradually decreases,
thus providing the model with a new heuristic understanding to avoid most ‘false positives’ and improve
the accuracy of real grasping.

Q = K (x, y) = exp

(
− (x − x0)

2

2σx
2

− (y − y0)
2

2σy
2

)
(6)

In the above equation, the grasp quality map predicted by the model is determined by the center point
position (x0, y0), self-learning scale factor parameters σx = σx0exp(�sx) and σyσy0exp(�sy), with the peak
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Figure 4. Illustration of grasp quality distribution after the expansion of the 2D Gaussian function.

of the Gaussian distribution located at the center of the optimal grasp rectangle. Here, σx0 and σy0 are
hyperparameters determined empirically or through experimentation. In image processing and deep
learning, σ is typically set to a power of 2 and is no larger than the image size. In this work, we trained
and tested the grasp detection accuracy on the Cornell dataset using different values of σ from the set
{4,8,16,32,64,128}, and selected the value of σ that achieves the highest accuracy as the initial values for
σx0 and σy0 (set to σx0 = σy0=32). Finally, we have introduced �sx and �sy as the adjustment terms learned
by the network, which are used to optimize the initial scale factors. This is because a fixed-scale 2D
Gaussian distribution limits the performance and adaptability of grasp detection, whereas introducing
self-learned scale factors enables the Gaussian distribution of grasp quality to be more flexible and
precise, adapting to complex and variable grasping environments, thereby significantly enhancing the
performance of grasp detection. Finally, the aforementioned approach is integrated into the network’s
grasp quality branch for learning and prediction, thereby producing more accurate grasp quality maps.
Figure 4 illustrates the grasp quality distribution after the expansion of the 2D Gaussian function.

3. Improved generative convolutional neural network
3.1. Basic network structure
Figure 5 illustrates the GCNN proposed by Kumra [18]. This network takes an n-channel image as input
and uses an encoder-decoder architecture. Features are extracted through convolutional layers, residual
layers, and deconvolutional layers. Based on these features, three images are generated to predict the
grasp pose: grasp quality score, grasp angle, and grasp width. The efficient and simple network not only
improves the accuracy of grasp detection but also ensures real-time prediction performance. However,
such a network still has limitations: Firstly, the bottleneck module employs five residual layers, but an
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Figure 5. Architecture of the generative residual convolutional neural network.

excessive number of residual layers can lead to issues such as vanishing gradients and dimensional
errors, causing saturation and a decline in accuracy [19]. Additionally, the simple bottleneck module
fails to effectively focus on high-discriminative and robust features, which are crucial for improving the
accuracy of network predictions. Secondly, the network uses deconvolution operations to reconstruct
features during the decoding phase. However, due to the large amount of image feature information
extracted during the encoder and bottleneck phases, which includes both valid features and redundant
noise, the original network does not enhance the valid information or reduce the redundant noise, which
negatively impacts the accuracy to some extent.

In summary, we proposed an improved GCNN to enhance the grab prediction performance of the
original network. The structure is shown in Figure 6: n-channel input images pass through the encoder
block to obtain feature maps with smaller dimensions, more channels, and richer semantic information.
Subsequently, four residual layers were applied and a RFB [22] was introduced, enabling the network to
extract more discriminative and robust features from the feature maps. The small-sized feature maps with
rich information obtained so far are difficult to interpret into the desired information for grasp prediction.
Therefore, a decoder block was used for feature reconstruction. During the reconstruction process, we
introduced a GLFFM [23] to obtain more refined target information and reduce irrelevant noise, which
is primarily used to effectively enhance and fuse the target features after feature reconstruction. Finally,
four sub-channels with convolution layers and dropout layers (which help extract rare but useful feature
information through regularization) were used to predict the pixel-level images of grasp quality scores,
grasp angles and grasp widths, thus completing the grasp prediction. The calculation formula for the
grasp angle is given by Equation (7).

gAngle = arctan

(
gsin 2θ

gcos 2θ

)
/2 (7)

Here, gsin2θ and gcos2θ represent the network-predicted values of sin2θ and cos2θ , respectively. Due
to the ±π/2 symmetry of antipodal grasps, this formulation avoids angular ambiguity. A unique grasp
angle gAngle is obtained through Equation (7).

3.2. Multi-scale receptive field block
The RFB (L8) introduced in Figure 6 is further illustrated in Figure 7. The design of the module is
inspired by the receptive fields of the human visual system, particularly the characteristics of receptive
field size and eccentricity variation across retinal locations. These characteristics enable the human
visual system to focus on salient features in image tasks. The RFB module leverages these features to
address the limitations in the feature extraction ability of shallow convolutional neural networks [22]. In
robotic grasp detection tasks, multi-scale receptive fields enhance the deep feature extraction capabilities
of neural networks, thereby yielding features with high discriminability and robustness in the feature
maps.
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Figure 6. The structure of the improved generative convolutional neural network, with improvements
indicated in red.

Figure 7. Simulation process of the RFB module.

Figure 7 illustrates the simulation process of the RFB, which is divided into three main components:
(1) the use of multi-branch pooling to simulate receptive fields of various sizes, capturing features at
different scales through convolution kernels and pooling layers of different sizes; (2) the use of dilated
convolutions to simulate the variation of eccentricity by increasing the spacing between convolutional
kernel elements, thus expanding the receptive field without increasing computational parameters; and
(3) the use of feature recombination to mimic the receptive field of the human visual system, capturing
rich image details.
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Figure 8. The structure of the global feature integration module.

Figure 9. Local feature enhancement module.

3.3. Global-local feature fusion module
After passing through the encoder and bottleneck modules, the rich image feature information often
contains redundant noise, which may affect the accuracy of grasp prediction. To minimize feature redun-
dancy and ensure the model focuses on important target information rather than irrelevant noise, we
proposed the integration of a GLFFM [23] in the decoder block. This module extracts useful information
from the rich reconstructed feature data, eliminates redundant noise and fuses the remaining informa-
tion into the output, thereby enhancing key feature information. The L10 and L12 modules introduced
in Figure 6 will be further explained in Figures 8 and 9.

3.3.1. Global feature integration module (GFIM)
Figure 8 illustrates the GFIM module. The upper branch follows the squeeze-and-excitation module,
performing global average pooling on the input feature map Fr, compressing it into a global descriptor
for each channel, and obtaining the channel weights α through two fully connected layers. The lower
branch uses a 1 × 1 convolutional layer followed by a ReLU activation to obtain the local features Flocal.
Finally, as defined in Equation (8), the result of multiplying the local features by the channel weights is
passed through a 1 × 1 convolutional layer and a ReLU activation to yield the final output Fout

GFIM.

Fout
GFIM = CR

(
α × Fin

local

)
(8)

where the CR(·) operation denotes performing a 1 × 1 convolution followed by a ReLU activation on
the features inside the parentheses.

3.3.2. Local feature enhancement module (LFEM)
After the global feature aggregation operation, dense convolutions are applied to feature map Fout

GFIM to
integrate features from different stages, aiming to obtain more refined features. The dense convolution
consists of three identical parts: the result obtained by applying a 3 × 3 convolution and ReLU activation
to the input is concatenated with the original input along the feature dimensions, and the concatenated
result is then used as the input for the next part. Finally, a 1 × 1 convolution followed by a ReLU
activation is applied to obtain the fused features Fout

LFEM, and the network architecture is shown in Figure 9.
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Table I. Key hardware and software parameters in the experimental environment.

Name Parameter
Central Processing Unit (CPU) Intel Core I7-7700@3.60Hz
Graphic Processing Unit (GPU) NVIDIA GeForce RTX 3060 12GB
Operating system Ubuntu 20.04
Training framework Pytorch 1.2.0+torchvision 0.4.0+Cuda 10.0
Programming software Pycharm 2021.1.3
Programming language Python 3.6

3.4. Definition of the loss function
The neural network model can be viewed as a method for approximating complex functions, learning
the relationship between the input images I = {I1, . . . , In} and the correct grasp labels L = {L1, . . . , Ln},
and inferring the corresponding grasp predictions G = {G1, . . . , Gn} through I → G. The model is then
trained by minimizing the error between the grasp predictions G and the correct grasp labels L, thereby
enabling accurate grasp prediction. Since the learning task is a regression problem, and to better han-
dle gradient explosion, we used the smooth L1 loss as the loss function to optimize the model. The
mathematical formula is given in Equation (9) [18].

L (G, I) =
N∑
i

∑
m∈(q,cos 2θ ,sin 2θ ,w)

l1 (Gi − Li) (9)

the smooth loss l1 is defined as,

l1 (x) =
{

(σx)2
/2 if |x| < 1

|x| − 0.5/σ 2, otherwise
(10)

where N represents the number of grasp candidates, q and w represent grasp quality and width, respec-
tively. The grasp angle is represented by cos2θ and sin2θ , and σ is the hyperparameter in the smooth
L1 loss function used to control the smoothing region. In this work, σ is set to 1.

4. Experimental results and analysis
To evaluate the performance of the proposed method, experiments were conducted on the widely
used Cornell, Jacquard and GraspNet-1 Billion Grasp Dataset and real robot grasping. Section 4.1
describes the experimental setup, Section 4.2 introduces the above datasets and evaluation metrics, and
Sections 4.3 to 4.5 discuss the experimental results, demonstrating the effectiveness and advancement
of the method.

4.1. Experimental environment
In this experiment, the key hardware and software parameters involved and configured are shown in
Table I. Other experimental settings, such as a batch size of 8, 50 training epochs, a learning rate of
10e-3, and the use of the Adam optimizer for backpropagation during training, are also provided.

4.2. Datasets and evaluation metrics
4.2.1. Introduction to the public grasp datasets
In this study, the Cornell [12], Jacquard [24], and GraspNet-1 Billion [25] datasets were primarily
introduced. These grasping datasets are widely used for the validation and evaluation of robotic grasp
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Table II. A summary of the public datasets introduced.

Image Number Number Number of
Dataset format Type of objects of images grasping labels
Cornell RGB-D Real 240 1035 8k
Jacquard RGB-D Sim 11k 54k 1.1M
GraspNet-1Billion RGB-D Real 88 97k 1.2B

detection methods, effectively quantifying the performance of the proposed grasp detection methods
[1]. In general, a summary of the public datasets is presented in Table II.

The Cornell Grasp Dataset contains 1,035 RGB-D images with a resolution of 640 × 480, with a
total of 5,110 positive grasps and 2,909 negative grasps. But the dataset size is insufficient to train the
proposed network effectively, we employed data augmentation techniques such as random cropping,
rotation, and scaling to create an expanded version of the Cornell dataset. Since only positive grasps
are considered during training, data augmentation was applied solely to the positive grasp examples,
resulting in a final total of 51.1k grasp labels for training the network [18].

The Jacquard dataset is a large-scale grasping dataset synthetically generated based on CAD models,
and it is significantly larger in scale than the Cornell dataset. It consists of 1.1M grasp annotations
generated from 11k different objects across 54k diverse scenes. For each scene, the dataset provides
one rendered RGB image, one segmentation mask, two depth images, and a set of valid and feasible
grasp labels. In addition, Jacquard includes the simulated grasp trials (SGTs) to facilitate performance
comparison across different methods. This system executes grasping actions using a simulated robot
and returns the final grasp success rate.

The GraspNet-1 Billion dataset is a large-scale grasping dataset containing a diverse set of everyday
objects. It consists of 97,280 RGB-D images captured from 190 cluttered scenes, with over 1.2 billion
annotated grasp labels in total. To utilize the original 1280 × 720 resolution rectangular images, we
cropped each image into a 720 × 720 square centered at the average center of the ground-truth bounding
boxes.

4.2.2. Grasp evaluation metrics
To ensure a fair comparison with other methods, the unified rectangular metric [18] was still used to eval-
uate our proposed method. Specifically, a grasp prediction is considered correct if it meets the following
two conditions:

(1) Intersection over Union (IoU): The IoU between the ground truth grasp rectangle and the predicted
grasp rectangle needs to exceed 25%, and the formula is shown in Equation (11).

IoU
(
gp, gt

) =
∣∣gp ∩ gt

∣∣∣∣gp ∪ gt

∣∣ (11)

where gp and gt denote the area of the predicted grasp rectangle and the ground truth grasp rectangle,
respectively.

(2) Angle offset: The difference between the grasp direction of the predicted grasp rectangle and the
grasp direction of the ground truth rectangle is less than 30◦.

4.3. Experiments on public datasets
4.3.1. Evaluation on the Cornell dataset
To effectively evaluate the grasp detection performance of the model on the Cornell dataset, we employed
the 5-fold cross-validation setup used in Ref. [13]: The proposed network was trained and validated
using two types of data split methods: image-wise (IW), where the training and test sets do not share
the same images, and object-wise (OW), where the training and test sets do not share any images of the
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Table III. Performance evaluation of different methods on the Cornell dataset.

Detection
Input Accuracy(%) Inference

Authors Method Modality IW OW Time(ms)
LenZ [13] SAE,struct.reg RGB 73.9 75.6 1350
Kumra [26] ResNet-50x2 RGB 89.2 88.9 103
Karaoguz [27] GRPN RGB 88.7 – 200
Chen [28] Edge-based EG RGB 93.5 92.1 146
Kumra [18] GR-ConvNet RGB-D 97.7 96.6 20
Yu [29] SE-ResUNet RGB-D 98.2 97.1 25
Zhai [30] FANet-GPU RGB 98.5 97.8 23
Wang [31] TF-Grasp RGB-D 97.9 96.7 42
Xi [32] EGA-Net RGB-D 97.8 98.9 24
Zhou [33] DSC-GraspNet RGB-D 98.3 97.7 14
Ours Improved-GCNN RGB-D 99.0 98.3 22

Table IV. The model parameter comparison of different methods.

Authors Method Parameters (Approx.)
Johns [34] Grasp Function + CNN 60 million
Morrison [17] GG-CNN2 0.066 million
Chu [15] Deep Grasp 216 million
Kumra [18] GR-ConvNet 1.9 million
Wang [31] TF-Grasp 5.8 million
Guo [35] MDETR 5.5 million
Ours Improved-GCNN 2.0 million

same objects. The experimental results, as shown in Table III, demonstrated that the proposed method
achieves detection accuracies of 99.0% and 98.3% for image-wise and object-wise, reaching state-of-
the-art performance compared to other methods. Table IV presents a comparison of model parameters
across different methods. As shown in Tables III and IV, our network has only about 2.0M parameters,
making it more lightweight compared to other grasp detection methods with millions of parameters or
complex network architectures. Its inference speed is fast, with an inference time of approximately 22
ms per image during evaluation.

To further validate the accuracy, robustness, and suppression effect of the model on false positives,
we also evaluated the accuracy of the model at higher IoU thresholds, and the results are shown in
Figure 10. Compared to other methods, our proposed method maintains a higher prediction accuracy
even under higher threshold conditions, further demonstrating its excellent performance.

Figure 11 shows the grasp detection results for the example objects from the Cornell dataset. The
result with the highest grasp quality score was selected as the final output. The first column displays the
original input image, while the second, third, and fourth columns represent pixel prediction maps for
grasp quality score, grasp angle, and width, respectively. The fifth column shows the optimal predicted
grasp pose. As seen in Figure 11, our proposed method can perform accurate and reliable grasp detection
on objects of varying shapes and poses.

In addition, our method was compared with other advanced methods for grasp detection on the scis-
sor object in the Cornell dataset, and the qualitative comparison is shown in Figure 12. As illustrated
in the figure, our method outperforms the others in the predicted grasp quality, angle, and width maps.
This superiority is mainly reflected in the fact that the predicted information is more aligned with real-
istic grasping and contains richer features, thereby enabling more accurate grasp detection. It can be
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Figure 10. Accuracy comparison on the Cornell dataset at different IoU thresholds.

attributed to the introduction of a 2D Gaussian representation and a more effective network architecture
for learning and predicting grasps. As shown in the last column, our method yields better predictions
and a higher theoretical success rate for robotic grasping. This is because the first method attempts to
grasp the less stable blade area, while the second method predicts an insufficient grasp width that may
lead to collisions, both of which reduce the success rate.

Despite the many advantages of our proposed method demonstrated in the above experiments, it still
encounters some failure cases during the prediction process. As shown in Figure 13, these failure cases
occurred during the evaluation process. Although the real-world robot may occasionally succeed in
grasping during some attempts, the overall theoretical success rate remains relatively low. Specifically,
the white plastic bottle on the left has a color very similar to the background, which causes the network
to struggle in accurately predicting the required grasp width and angle. On the right, the cluttered wire
harness, with its uniform color and complex variations in texture, may introduce prediction errors. To
effectively tackle these challenges, it is imperative to improve the standardization and precision of grasp
label definitions while simultaneously advancing the network’s capacity for robust feature extraction
and understanding of targets within real-world environments.

4.3.2. Evaluation on the Jacquard and GraspNet-1 Billion dataset
For the Jacquard dataset, its large-scale image data effectively supports the training of deep neural
networks. We split the dataset into training and testing sets using a 9:1 ratio for model training and
validation. The evaluation results of our method compared with other approaches on the Jacquard
dataset are summarized in Table V. In the experiments, we employed both the IoU metric and the
SGTs system for grasp evaluation, achieving accuracies of 95.9% and 91.6%, respectively. Moreover,
Figure 14(a) presents multiple grasp visualization results for several test objects from the Jacquard
dataset, demonstrating that our method can effectively perform grasp detection on complex objects with
diverse characteristics. These results demonstrate the superior performance of the proposed method and
further validate its effectiveness.

For the GraspNet-1 Billion dataset, its large-scale training data effectively compensates for the lack
of complexity in previous grasping datasets. However, the excessive volume of training samples may
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Figure 11. Grasp detection results of the grasp network on example object.

overload limited computational resources. To address this, we performed a preprocessing step by dis-
carding grasp labels with a friction coefficient μ<0.5, thereby reducing the number of grasp annotations
loaded per scene. Following the GraspNet-1 Billion evaluation protocol, we conducted training and
testing on a total of 190 scenes: scenes 1–100 (after preprocessing) were used for training; scenes 101–
130 served as test cases for seen objects; scenes 131–160 evaluated generalization to similar objects;
and scenes 161–190 were used to test performance on unseen objects. The grasp prediction accuracy
across the three scenes was compared against other methods, with the detailed results summarized in
Table VI. Figure 14(b) shows the grasp detection results for several complex test scenarios from the
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Table V. Performance evaluation of different methods on the Jacquard
dataset.

Accuracy(%)
Authors Method IoU SGTs
Morrison [17] GG-CNN2 84.0 85.0
Zhou [16] FCGN, ResNet-101 92.8 81.9
Kumra [18] GR-ConvNet 94.6 89.5
Wang [31] TF-Grasp-RGBD 94.6 –
Zhou [33] DSC-GraspNet-D 94.7 90.3
Zhai [30] FANet-CPU 95.3 –
Zhu [36] CFRA 94.2 –
Ours Improved-GCNN 95.9 91.6

Figure 12. Comparison of grasp detection results on the scissor object across different methods.

Figure 13. Some failure cases in the evaluation on the Cornell dataset.

GraspNet-1 Billion dataset. The results demonstrate that the proposed method achieves consistently
strong performance in grasp detection, particularly in scenarios involving novel or previously unseen
objects.
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Table VI. Performance evaluation of different methods on the GraspNet-1
Billion dataset.

Accuracy (%)
Scenes Scenes Scenes

Authors Method 101–130 131–160 161–190
Morrison [17] GG-CNN2 83.0 79.4 76.3
Kumra [19] GR-ConvNet 96.2 94.8 87.9
Yan [37] SISG-Net 96.7 93.9 88.4
Ours Improved-GCNN 98.0 95.8 90.6

Table VII. The impact of different network configurations on grasp perfor-
mance.

+ Gaussian distribution
√ √ √

+ RBF module
√ √

+ GLFFM module
√

Average accuracy(%) 97.15 97.35 98.15 98.65

Figure 14. Some visualization results from the evaluation on the Jacquard and GraspNet-1 Billion
datasets. (a) Jacquard dataset. (b) Grasp-1 Billion dataset.

4.4. Ablation studies
To further investigate the impact of different input data and improved modules on grasp detection accu-
racy, ablation studies were conducted. Models with different network configurations were trained and
compared on the Cornell dataset. Figure 15 shows the impact of different input data on grasp detection
accuracy. Among them, the RGB-D input data achieved the highest scores in both IW and OW validation
methods. This demonstrated that combining RGB data, which contains rich color and texture informa-
tion, with depth data for grasp prediction results in higher accuracy and robustness of the model.

Table VII shows the evaluation results of various improved modules on grasp detection accuracy. In
this set of experiments, RGB-D data were used as input, and the average accuracy under IW and OW
forms was calculated. The results indicated that each improvement contributed to enhanced grasp detec-
tion performance, with the combination of all improvements yielding the best grasp detection results.
This further underscores the rationality and advancement of the proposed method.
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Figure 15. Quantitative evaluation of the impact of different input data on grasp detection accuracy.

Figure 16. Grasp detection accuracy on the Cornell dataset when using different scale factors of the
Gaussian kernel.

Finally, we conducted grasp detection accuracy experiments on the Cornell dataset with different
scale factor settings in the Gaussian kernel. The set of fixed scale factor values was [8,16,32,64,128],
and the initial values of the self-learning scale factors were set to the current optimal value (32). The
average accuracy results under IW and OW settings are shown in Figure 16, where the self-learned
scale factors achieved the best detection accuracy of 98.65%, further demonstrating that dynamically
adjusting the scale factors for different objects can improve grasping performance.

4.5. Real robot grasping experiments
To further validate the performance of the proposed method in real robotic arm grasping scenarios,
a grasping experimental platform was built as shown in Figure 17. The platform mainly consists of
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Figure 17. Real robotic arm grasping experimental platform.

Figure 18. Grasping experiment targets.

the Tech TB6-R10 6-axis robotic arm, CTAG2F90-C collaborative two-finger gripper, Intel RealSense
D435i camera, and a host computer.

In our study, common everyday objects, as shown in Figure 18, were selected as the grasping experi-
ment targets. Real grasping experiments were conducted in two scenarios: (1) a single object in different
poses (Scene 1) and (2) multiple objects placed randomly (Scene 2).

4.5.1. Scene 1 experiments
In this section, a tooth cup was selected as the experimental object for this scene. In the experiment,
the grasp is considered successful when the robotic arm successfully grasps the target and effectively
places it in the target area. If the object drops or is placed incorrectly, the grasp is considered failed.
Finally, the object was placed in 20 different poses within the robotic arm’s workspace, and a total of 18
successful grasps were achieved, yielding a success rate of 90%. The grasping process for several poses
is shown in Figure 19: (a) Object to be grasped; (b) Grasp detection results from the proposed method,
displaying the highest confidence grasp position; (c) Robotic arm grasping the target object; (d) Robotic
arm placing the object in the designated area.

4.5.2. Scene 2 experiments
In Scene 2, all experimental objects were randomly placed on the work platform, and the D435i camera
captured color and depth images, which were then transmitted to the grasp detection node for processing.
After detection, the robotic arm sequentially performs the grasping tasks. Each object grasped is counted
as one trial. The success criteria for the grasp are the same as in the first scenario. After all objects are
grasped, their placement positions can be randomized for additional testing, allowing for the calculation
of the grasp success rate over all trials. The captured images and grasp detection results are shown in
Figure 20, and the grasping process is shown in Figure 21. Finally, to further evaluate the performance of
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Figure 19. Partial experimental process for scene 1. (a) Object to be grasped. (b) Grasp detection. (c)
grasping. (d) placing.

Figure 20. Captured images and grasp detection results.

our method, three additional randomly arranged cluttered scenes were tested, with experimental results
showing an average grasp success rate of 83.3%.

Compared with simple scenarios, the grasp success rate in cluttered scenarios decreases, which may
be attributed to the following reasons. For instance, objects that are densely and irregularly arranged
tend to occlude one another or have overlapping edges, which can result in the loss of geometric and
other visual features, thereby reducing the accuracy of grasp detection. In this study, a two-finger parallel
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Figure 21. Grasping process in Scene 2.

gripper was used for grasping. When multiple objects are placed closely together in a cluttered manner,
the limited spacing may lead to collisions during the grasping process, which further contributes to
reduced success rates. Future research will focus on addressing these typical challenges to improve the
grasping accuracy of robots in real-world cluttered environments.

The experimental results in Scene 1 and Scene 2 demonstrated that the proposed method effectively
performs grasp detection on the same object in different poses as well as multiple objects placed ran-
domly. The robotic arm has completed the grasping task based on the grasp detection results, further
validating the rationality and effectiveness of the proposed method.

5. Conclusion
To enhance the robotic grasp detection ability for target objects, we addressed the issue of ‘false posi-
tives’ in traditional grasp representations by introducing a 2D Gaussian kernel to emphasize the grasp
quality near the center, thereby improving the model’s recognition of grasp tasks. Based on this, an
improved generative grasp convolutional neural network with an encoder-decoder architecture was
proposed, consisting of five stages: input, encoder, bottleneck, decoder, and output prediction. In the bot-
tleneck stage, we introduced a RFB to extract highly discriminative and robust features. In the decoder
stage, a GLFFM was introduced to eliminate redundant noise, enhance critical feature information, and
guide the model to focus more on the features of the target object. In the experimental section, we first
conducted experiments on the Cornell Grasp Dataset, where the image-wise (IW) and object-wise (OW)
accuracies reached 99.0% and 98.3%, respectively. The inference time for a single image is only 22 ms.
Additionally, to further validate the performance of our method, we conducted experimental evaluations
on the Jacquard and GraspNet-1 Billion datasets. The results demonstrate a clear advantage over existing
grasp detection methods. Finally, real robotic grasping experiments were also conducted, achieving suc-
cess rates of 90% in scenarios with the same object in different poses and 83.3% in cluttered multi-object
settings. All the above results showed that the proposed method performs excellently in both prediction
accuracy and inference speed, enabling efficient grasp detection.
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