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Hilbert rings with maximal ideals of
different heights and unruly Hilbert rings
Y. Azimi

Abstract. Let f ∶ R → S be a ring homomorphism and J be an ideal of S. Then the subring R � f J ∶=
{(r, f (r) + j) ∣ r ∈ R and j ∈ J} of R × S is called the amalgamation of R with S along J with respect
to f. In this paper, we characterize when R � f J is a Hilbert ring. As an application, we provide an
example of Hilbert ring with maximal ideals of different heights. We also construct non-Noetherian
Hilbert rings whose maximal ideals are all finitely generated (unruly Hilbert rings).

1 Introduction

Throughout, let R and S be two commutative rings with unity, let J be a non-zero
proper ideal of S and f ∶ R → S be a ring homomorphism. D’Anna et al. in [9, 10] have
introduced the following subring

R � f J ∶= {(r, f (r) + j) ∣ r ∈ R and j ∈ J},

of R × S, called the amalgamated algebra (or amalgamation) of R with S along J
with respect to f. This construction generalizes the amalgamated duplication of a
ring along an ideal (introduced and studied in [12]). Moreover, several classical
constructions such as Nagata’s idealization (cf. [18, p. 2]), the R + XS[X] and the
R + XS⟦X⟧ constructions can be studied as particular cases of this new construction
(see [9, Example 2.5 and Remark 2.8]). Amalgamation, in turn, can be realized as a
pullback. The construction has proved its worth providing numerous examples and
counterexamples in commutative ring theory [6–8, 11, 13, 20].

Recall that a ring R is Hilbert if each proper prime ideal of R is an intersection of
maximal ideals of R. Thus, in view of Cohen’s theorem, it is natural to ask if a Hilbert
ring which all its maximal ideals are finitely generated is necessarily Noetherian.
There are counterexamples for this question, called unruly Hilbert rings. Gilmer and
Heinzer, in 1976, constructed an unruly Hilbert ring [14]. Then, in [4, 17], the authors
used the R + XS[X] construction and pullbacks to provide a family of unruly Hilbert
rings. In this paper we characterize when R � f J is a Hilbert ring (Theorem 3.3) and,
as an application, we give examples of unruly Hilbert rings.
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The simplest examples of Hilbert rings include the polynomial rings over a field
and the ring of integers. These rings have the property that all the maximal ideals
are of the same height. Therefore, it is interesting to find Hilbert rings with maximal
ideals of different heights. Roberts in [19] and Heinzer in [15] constructed interesting
examples of this kind. In this paper, we provide an easy way to construct such rings.

The outline of the paper is as follows. In Section 2, we fix our notation and
give some elementary results on which we base our approach. In Section 3, we
prove our main theorem, which provides a characterization of Hilbert property on
the amalgamations (Theorem 3.3). Our attempt results in examples of Hilbert rings
with maximal ideals of different heights and unruly Hilbert rings. These examples
presented in Section 4.

2 Preliminaries

Let us first fix some notation which we shall use. For a commutative ring A, the
set of nilpotent elements, prime ideals, and maximal ideals of A will be denoted by
Nil(A), Spec(A), and Max(A), respectively. V(I) denotes the set of prime ideals of
A containing I. For a multiplicatively closed subset T of A, we use the notation T−1A
to denote the ring of fractions of A with respect to T. In the sequel, we will use the
following remark without explicit mention.

Remark 2.1 [10, Proposition 2.6] For p ∈ Spec(R) and q ∈ Spec(S)/V(J), set

p
′ f ∶=p � f J ∶= {(p, f (p) + j) ∣ p ∈ p, j ∈ J},

q
f ∶={(r, f (r) + j) ∣ r ∈ R, j ∈ J , f (r) + j ∈ q}.

Then, the following statements hold.
• Spec(R � f J) = {p′ f ∣ p ∈ Spec(R)} ∪ {q f ∣ q ∈ Spec(S)/V(J)}.
• Max(R � f J) = {p′ f ∣ p ∈Max(R)} ∪ {q f ∣ q ∈Max(S)/V(J)}.

We need the following lemmas in the proof of our main result.

Lemma 2.2 Let p, p1 , p2 ∈ Spec(R) and q, q1 , q2 ∈ Spec(S)/V(J). Then
(1) p1 ⊆ p2 if and only if p

′ f
1 ⊆ p

′ f
2 .

(2) q1 ⊆ q2 if and only if q1
f ⊆ q2

f .
(3) q

f ⊆ p′ f if and only if f −1(q + J) ⊆ p.
(4) p′ f ⊈ q f .

Proof (1)–(3) are from [5, Lemmas 2.2 and 2.3]. To see (4), pick j ∈ J/q. Then
(0, j) ∈ p′ f /q f . ∎

Lemma 2.3 Let p, pα ∈ Spec(R) and q, qβ ∈ Spec(S)/V(J); α ∈ Λ, β ∈ Δ. Then

(1) p = ∩α∈Λpα if and only if p′ f = ∩α∈Λp
′ f
α .

(2) q = ∩β∈Δqβ if and only if q f = ∩β∈Δqβ
f .
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Proof The proof of (1) follows immediately from definition of p′ f in Remark 2.1.
The proof of (2) is similar to the proof of [5, Lemma 2.2], but we include a proof for
the convenience of the reader. Note that, by [5, Lemma 2.2], q ⊆ ∩β∈Δqβ if and only if
q

f ⊆ ∩β∈Δqβ
f . It is also clear that if∩β∈Δqβ ⊆ q, then∩β∈Δqβ

f ⊆ q f . Now let∩β∈Δqβ
f ⊆

q
f , and pick y ∈ ∩β∈Δqβ . Let v ∈ J/q. Then (0, yv) ∈ ∩β∈Δqβ

f , which implies yv ∈ q by
assumption and so y ∈ q. ∎

In order to construct examples of the title, we are required to know when maximal
ideals of amalgamations are finitely generated. Here, we collect some elementary
properties of this concept.

Lemma 2.4 Let m ∈ Spec(R) and n ∈ Spec(S)/V(J). Then
(1) If m and J are finitely generated, then m′ f is finitely generated.
(2) If m = ⟨x⟩ is nonzero principal and J is divisible by f (x) (i.e., for any i ∈ J, there

exists j ∈ J such that i = f (x) j), then m′ f is principal.
(3) If m is finitely generated and f (m)S = S, then m′ f is finitely generated.
(4) Assume that f is injective, f −1(J) = 0, and n is generated by an element of f (R) +

J = S. Then n
f is principal.

Proof For the proof of (1) see the beginning of the proof of [6, Theorem
4.1]. To prove (2), Let m = ⟨x⟩ and pick (r, f (r) + i) ∈ m′ f . We want to prove
that m′ f = ⟨(x , f (x))⟩. By assumption, r = xa and i = f (x) j, for some a ∈ R and
j ∈ J. Then (r, f (r) + i) = (x , f (x))(a, f (a) + j), as claimed. (3) is an immediate
consequence of [11, Proposition 3.1(3)]. (4): Let n = ⟨ f (r) + i⟩. We wish to show that
n

f = ⟨(r, f (r) + i)⟩. To this end, let (x , f (x) + j) ∈ n f . One can write f (x) + j =
( f (r) + i)( f (s) + k), for some f (s) + k ∈ f (R) + J. Then f (x) − f (r) f (s) ∈ J,
which implies x = rs. Hence (x , f (x) + j) = (r, f (r) + i)(s, f (s) + k). ∎

3 Main result

In this section, we investigate when the amalgamated algebra R � f J is a Hilbert ring.
Then we present several corollaries that recover or generalize previous works. Let us
first introduce the concept of Hilbert condition for an arbitrary subset of Spec(R).

Definition 3.1 Let X ⊆ Spec(R). We call X Hilbert if each proper prime ideal P ∈ X
is an intersection of elements of Max(R) ∩ X. We simply call R Hilbert if Spec(R) is
Hilbert.

Note that R is Hilbert in the usual sense, if it is Hilbert in the sense of above
definition. For X ⊆ Spec(R), when we write that “X̂ is Hilbert,” it is to be understood
that each P ∈ X is an intersection of elements of Max(R) (all maximal ideals of the
ring not only those who are in X). We shall need the following well-known fact (see,
e.g., [16, Theorem 31]).

Lemma 3.2 For a ring R and indeterminates X1 , . . . , Xn over R, the following condi-
tions are equivalent∶
(1) R is a Hilbert ring.
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(2) R/I is a Hilbert ring for each proper ideal I of R.
(3) R[X1 , . . . , Xn] is a Hilbert ring.

The following theorem is the main result of this section.

Theorem 3.3 The following statements are equivalent∶
(1) R � f J is a Hilbert ring.
(2) R and Spec(S)/V(J) are Hilbert.
(3) R and ̂Spec(S)/V(J) are Hilbert.

Proof (1) ⇒ (2) Assume that R � f J is a Hilbert ring. Then, by Lemma 3.2, R
is also a Hilbert ring since it is a homomorphic image of R � f J. Next, let Q ∈
Spec(S)/V(J). Then Q f is a prime ideal of the Hilbert ring R � f J, and so Q f

=
(∩α∈Λp

′ f
α ) ∩ (∩β∈Δqβ

f ), for suitable families pα ∈Max(R) and qβ ∈Max(S)/V(J).
The proof is completed by showing that Q = ∩β∈Δqβ . From Lemma 2.2, we have
Q ⊆ ∩β∈Δqβ . To see the converse inclusion, let x ∈ ∩β∈Δqβ and pick v ∈ J/Q. Hence, for
all β ∈ Δ we have xv ∈ qβ ∩ J, hence that (0, xv) ∈ qβ

f . Note that for all p ∈ Spec(R),
we always have (0, xv) ∈ p′ f . It follows that (0, xv) ∈ Q f , which implies xv ∈ Q and
so x ∈ Q.

(2)⇒ (3) is trivial.
(3)⇒ (1) Assume that R and ̂Spec(S)/V(J) are Hilbert, and let P ∈ Spec(R � f J).

IfP = p′ f , for some p ∈ Spec(R), then p is an intersection of maximal ideals, and hence
the same is true for p′ f , by Lemma 2.3. Next, let P = q f , for some q ∈ Spec(S)/V(J).
By the Hilbert assumption on ̂Spec(S)/V(J), we have q = (∩α∈Λmα) ∩ (∩β∈Δnβ), for
suitable families mα ∈Max(S) ∩V(J) and nβ ∈Max(S)/V(J). Since R is a Hilbert
ring, for any α ∈ Λ we have f −1(mα) = ∩γ∈�Mαγ for a suitable families Mαγ ∈Max(R),
which implies ( f −1(mα))

′ f = ∩γ∈� (Mαγ)
′ f (Lemma 2.3). Thus, if we prove that q f =

(∩α∈Λ ( f −1(mα))
′ f ) ∩ (∩β∈Δnβ

f ), the assertion follows. This we do.
It follows from Lemma 2.2(3) that q f ⊆ ∩α∈Λ ( f −1(mα))

′ f and from Lemma
2.2(2) that q f ⊆ ∩β∈Δnβ

f . To see the converse inclusion, let (r, f (r) + i) ∈ (∩α∈Λ

( f −1(mα))
′ f ) ∩ (∩β∈Δnβ

f ). Then, for all α ∈ Λ and β ∈ Δ, we have r ∈ f −1(mα)
and f (r) + i ∈ nβ . Hence f (r) + i ∈ (∩α∈Λmα) ∩ (∩β∈Δnβ) = q, which implies
(r, f (r) + i) ∈ q f . ∎

Recall that if f ∶= idR is the identity homomorphism on R, and I is an ideal of R,
then R � I ∶= R �idR I is called the amalgamated duplication of R along I.

Corollary 3.4 Let I be an ideal of R. Then R � I is a Hilbert ring if and only if so is R.

In the following, we observe what happens if we let J be too small or too big.

Corollary 3.5 The following hold∶
(1) Let J ⊆ Nil(S). Then R � f J is Hilbert if and only if so is R.
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(2) Let J be a maximal ideal of S. Then R � f J is a Hilbert ring if and only if so are R
and S.

Proof In the first case Spec(S)/V(J) = ϕ, and in the second case Spec(S)/V(J) =
Spec(S)/{J}. The assertion follows from Theorem 3.3. ∎

Let M (respectively, N = (M i)n
i=1) be an R-module (respectively, a family of R-

modules). Then R ⋉M (respectively, R ⋉n N) denotes the trivial extension of R by
M (respectively, the n-trivial extension of R by N). It should be noted that both
constructions are special cases of amalgamation with Jn = 0 (for definition and
more details, see [2, 7, 9]). Hence the next result follows from the first part of
Corollary 3.5.

Corollary 3.6 Let M be an R-module and N = (M i)n
i=1 be a family of R-modules.

Then the following hold∶
(1) R ⋉M is a Hilbert ring if and only if so is R.
(2) R ⋉n N is a Hilbert ring if and only if so is R.

Corollary 3.7 [4, Corollary 6] Let M be a maximal ideal of a ring T and let D be a
subring of T such that M ∩ D = (0). Then D +M is a Hilbert ring if and only if D and
T are Hilbert rings.

Proof D +M ≅ D �ι M, where ι ∶ D ↪ T is the natural embedding. The result now
follows from Corollary 3.5(2). ∎

Let α ∶ A→ C , β ∶ B → C be ring homomorphisms. The subring D ∶= α ×C β ∶=
{(a, b) ∈ A× B ∣ α(a) = β(b)} of A× B is called the pullback of α and β. Note that
the amalgamation can be studied in the framework of pullback constructions. In fact,
if π ∶ S → S/J is the canonical projection and f̌ = π ○ f , then R � f J = f̌ ×S/J π.

Assuming A is a subring of C and β is surjective, Anderson et al. prove that D
and C are Hilbert rings if and only if A and B are Hilbert rings [4, Theorem 3]. The
following Proposition removes the assumption that A is a subring of C, in the case of
amalgamations.

Proposition 3.8 R � f J and S/J are Hilbert rings if and only if so are R and S.

Proof Assume that R � f J and S/J are Hilbert rings. Then, by (the proof of)
Theorem 3.3, R is Hilbert and any Q ∈ Spec(S)/V(J) is an intersection of maximal
ideals of S. On the other hand, if Q ∈ Spec(S) ∩V(J), then Q/J is an intersection of
maximal ideals of S/J and so Q is an intersection of maximal ideals of S, as desired.
The converse is clear by Theorem 3.3 and Lemma 3.2. ∎

In [17, Theorem 5], assuming that R is a Hilbert domain contained in the field S, the
authors prove that R + XS[X] is a Hilbert domain. Then [4, Corollary 4] generalizes
this result as follows. Let X1 , . . . , Xn be finitely many indeterminates over a ring E,
and let D be a subring of E. Then D + (X1 , . . . , Xn)E[X1 , . . . , Xn] is a Hilbert ring if

https://doi.org/10.4153/S0008439522000200 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000200


Hilbert rings with maximal ideals of different heights 201

and only if D and E are Hilbert rings. We proceed with a slight generalization of these
results.

Corollary 3.9 Let X ∶= {X1 , . . . , Xn} be a finite set of indeterminates over S. Then
f (R) +XS[X] is a Hilbert ring if and only if so are R and S. In particular, if R is a
subring of S, then R +XS[X] is a Hilbert ring if and only if so are R and S.

Proof Let φ be the composition homomorphism φ ∶ R
f
�→ S ↪ S[X], and let J ∶=

XS[X]. Then, by [9, Proposition 5.1(3)], R �φ J ≅ f (R) +XS[X]. Therefore, by Propo-
sition 3.8 and and Lemma 3.2, f (R) +XS[X] and S are Hilbert rings if and only if so
are R and S. Observe that S is a homomorphic image of f (R) +XS[X] (via evaluation
at n-tuple 1) and the result follows. ∎

Let R be an integral domain and T be a multiplicatively closed subset of R. In [1,
Theorem 4.1], under certain conditions, the authors characterize when R + XRT[X]
is a Hilbert ring and conjectured that the conditions on T are not necessary. This
conjecture is proved in [4, Corollary 5] in a more general case; only assuming that
each element of T is a nonzerodivisor. As an applications of Corollary 3.9, we now
drop this assumption too. In the following, g ∶ R → RT stands for the canonical
homomorphism.

Corollary 3.10 Let X ∶= {X1 , . . . , Xn} be a finite set of indeterminates over R, and T
be a multiplicatively closed subset of R. Then g(R) +XRT[X] is a Hilbert ring if and
only if R and RT are Hilbert rings. In particular, if each element of T is a nonzerodivisor,
then R +XRT[X] is a Hilbert ring if and only if R and RT are Hilbert rings.

4 Examples

In this section, we give examples of the rings of the title. We first present unruly Hilbert
rings using previously known rings of this kind [4, 14, 17]. Then we construct new
original examples. Finally, we construct a Hilbert ring with maximal ideals of different
heights.

Example 4.1 Let R be an unruly Hilbert ring and M be a finitely generated R-
module. By Corollary 3.6, R ⋉M is Hilbert, while [3, Theorem 4.8] shows that it is
not Noetherian. It follows from Lemma 2.4(1) that each maximal ideal of R ⋉M is
finitely generated. Therefore R ⋉M is an unruly Hilbert ring.

Example 4.2 Let R be an unruly Hilbert ring with 0 ≠ a ∈ Nil(R). Then R � ⟨a⟩ is
an unruly Hilbert ring, by [9, Proposition 5.6], Theorem 3.3, and Lemma 2.4(1).

To construct unruly Hilbert rings, one should consider the following questions:
• When is R � f J a Noetherian ring?
• When is R � f J a Hilbert ring?
• When are all maximal ideals of R � f J finitely generated?
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The first question is completely answered in [9, Proposition 5.6] and the second one
in Theorem 3.3 of this paper. The third question has a partial answer in Lemma 2.4.
Before we proceed with new examples, it is worth to notice that the key for further
examples via amalgamation is deepening of the answers for third question. In view
of Theorem 3.3 and [9, Proposition 5.6], one needs to answer the third question
when R is Noetherian and f (R) + J is not. The next example is a special case of
[17, Corollary 7].

Example 4.3 Z + XQ[X] is an unruly Hilbert domain. Indeed, if we set R = Z,
S = Q[X], J = XQ[X], and f be the natural inclusion, then R � f J ≅ Z + XQ[X]. Note
that, by Corollary 3.5 (or Corollary 3.10), Z + XQ[X] is a Hilbert domain, while it
follows from [9, Corollary 5.9] that it is not Noetherian. Finally, Lemma 2.4(2),(4)
implies that each maximal ideal of Z + XQ[X] is finitely generated (In fact, the
maximal ideals are principal since Z + XQ[X] is a Bézout domain). Therefore, R � f J
is an unruly Hilbert domain.

References [15, 19] are devoted to construct examples of Hilbert rings with maximal
ideals of different heights (1970s). Theorem 3.3 provides a very easy example with this
property. The following example is one of the main results of this paper.

Example 4.4 Let k be a field and X , Y be indeterminates over k. Let R = k[X , Y],
S = k[X], J = ⟨X2⟩, and f be the natural surjection. Take m = ⟨X , Y⟩ and n = ⟨X − 1⟩.
Then, by Theorem 3.3, R � f J is a Hilbert ring (of dimension 2, by [10, Proposition
4.1]). It is easy to see that ht(n f ) = 1. Indeed, by Lemma 2.2, ht(n f ) ≤ 1 and we have
the sequence 0 f

⊊ n f of prime ideals which implies ht(n f ) ≥ 1, as desired. Another use
of Lemma 2.2 shows that ht(m′ f ) = 2, since 0′ f ⊊ ⟨X⟩′ f ⊊ m′ f is a sequence of prime
ideals of length 2.

Acknowledgment The author is grateful to the referee for his/her careful reading of
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