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Abstract

A key component of explaining the array of galaxies observed in the Universe is the feedback of active galactic nuclei,
each powered by a massive black hole’s accretion disk. For accretion to occur, angular momentum must be lost by that
which is accreted. Electromagnetic radiation must offer some respite in this regard, the contribution for which is quantified
in this paper, using solely general relativity, under the thin-disk regime. Herein, I calculate extremised situations where
photons are entirely responsible for energy removal in the disk and then extend and relate this to the standard relativistic
accretion disk outlined by Novikov & Thorne, which includes internal angular-momentum transport. While there is
potential for the contribution of angular-momentum removal from photons to be �1% out to ∼104 Schwarzschild radii if
the disk is irradiated and maximally liberated of angular momentum through inverse Compton scattering, it is more likely
of order 102 Schwarzschild radii if thermal emission from the disk itself is stronger. The effect of radiation/scattering is
stronger near the horizons of fast-spinning black holes, but, ultimately, other mechanisms must drive angular-momentum
liberation/transport in accretion disks.

Keywords: accretion, accretion disks – black hole physics – galaxies: active – galaxies: nuclei – relativistic processes –
quasars: general

1 INTRODUCTION

It has long been widely accepted that active galactic nuclei
are powered by gravitationally liberated energy from accre-
tion disks around massive black holes (Lynden-Bell 1969).
While the study of accretion is an interesting prospect in it-
self, the feedback it ensues is significantly consequential for
the evolution of galaxies as well (e.g. Di Matteo, Springel,
& Hernquist 2005). To truly gauge the effect of feedback
requires highly detailed cosmological hydrodynamic simu-
lations that self-consistently track the growth of black holes
and the emission from their accretion disks. However, even
the most state-of-the-art simulations presently (e.g. Vogels-
berger et al. 2014; Schaye et al. 2015) are unable to resolve
accretion disks, and must use subresolution models to de-
scribe their physics (e.g. Springel, Di Matteo, & Hernquist
2005; Booth & Schaye 2009), in a similar vein to semi-
analytic models (e.g. Croton et al. 2006; Benson 2012). An
analytic understanding of the functioning of accretion disks
is hence key for this cause.

∗astevens@swin.edu.au

In the simple picture of a thin accretion disk, particles
quasi-statically shrink on equatorial, circular orbits, where
pressure forces are assumed negligible, until they reach the
orbit of lowest energy, after which they are assumed to be cap-
tured by the black hole (Lynden-Bell 1969; Bardeen 1970).
In doing so, those particles must be liberated of their an-
gular momentum. Either angular momentum is lost through
the disk out to higher radii, or it is emitted vertically and
removed from the disk entirely. The latter occurs naturally
through thermal emission of the disk and through scattering
of photons if the disk is subject to irradiation from an exter-
nal source. It is of interest then to assess the contribution of
angular-momentum liberation that photons provide in order
to better understand the process of accretion itself. This paper
aims to calculate exactly this, using purely general relativistic
arguments.

In Section 2 of this paper, relevant mathematical formulae
for studying accretion disks are outlined. General relativis-
tic calculations are performed based on these formulae in
Section 3, where limiting cases for the liberation of angu-
lar momentum via photons, as well as from the standard
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Novikov & Thorne (1973) disk, are considered. Concluding
remarks are provided in Section 4.

2 MATHEMATICAL FORMALISMS AND
BACKGROUND

The unique metric for space-time around a (non-charged)
rotating source mass (e.g. a black hole) was first discovered
by Kerr (1963), usually now written in Boyer–Linquist co-
ordinates (Boyer & Lindquist 1967), for which the invariant
interval is

− c2dτ 2 = −
(

1 − rsr

ρ

)
c2dt2 + ρ

�
dr2 + ρ dθ2

+
(

r2 + a2 + rsra2 sin2(θ )

ρ

)
sin2(θ ) dφ2

−2rsra2 sin2(θ )

ρ
c dt dφ; (1a)

ρ ≡ r2 + a2 cos2(θ ), � ≡ r2 − rsr + a2, (1b)

where c is the speed of light, rs ≡ 2GM/c2 is the
Schwarzschild radius, and a ≡ J/Mc is the spin parameter
(specific angular momentum) of the source of mass M and
angular momentum J. The metric is stationary, axisymmetric,
and, as Carter (1968) showed (but see also Misner, Thorne,
& Wheeler 1973, Section 33.5), exhibits four constants of
motion.1 Two of these constants are the azimuthal and time
components of covariant four-momentum. Taking the limit
r → ∞, one finds these to be relativistic analogues of en-
ergy and azimuthal angular momentum, usually referred to
as the energy and angular momentum ‘at infinity’. Often the
‘at infinity’ is dropped for brevity, and the usual symbols for
these quantities are used, i.e.

E ≡ −pt , Lz ≡ p
φ

. (2)

When discussing the emission or transport of energy or
angular momentum in accretion disks (or Kerr geometry in
general), these are the quantities that are meant.

Throughout the rest of this paper, most quantities will
be expressed in a dimensionless form, represented by a bar
placed on the quantity of interest. For quantities with di-
mensions of distance, this means normalising to half the
Schwarzschild radius, e.g. r̄ ≡ 2r/rs, ā ≡ 2a/rs, in line with
literature convention. Equation (3) covers quantities with
other dimensions.

By analysing equations of motion for particles in a Kerr
space-time, Bardeen, Press, & Teukolsky (1972) obtained
expressions for the energy and specific angular momentum
for circular (i.e. pr = 0), equatorial (i.e. θ = π/2 and pθ =
0), Keplerian (i.e. gravity is entirely centrifugally balanced)

1In fact, those authors showed this for the more general, charge-inclusive
Kerr–Newman metric (Newman et al. 1965).

orbits:

Ē ≡ E

mc2
= r̄3/2 − 2r̄1/2 ± ā

r̄3/4
(
r̄3/2 − 3r̄1/2 ± 2ā

)1/2 , (3a)

L̄z ≡ Lz

mcrs

= ±r̄2 − 2ār̄1/2 ± ā2

2r̄3/4
(
r̄3/2 − 3r̄1/2 ± 2ā

)1/2 , (3b)

where upper signs are for prograde orbits and lower signs
retrograde. Note that m represents the rest mass of a particle
(at infinity), not its inertial mass. By checking the derivatives
of these quantities,

dĒ

dr̄
= 8ār̄1/2 − 3ā2 + r̄(r̄ − 6)

W
, (4a)

dL̄z

dr̄
= W −1

⎧⎨
⎩ā2r̄1/2

(
4 − 3

2
r̄

)
+ r̄5/2

(
1

2
r̄ − 3

)

−3

[
1

2
ā3 − ār̄

(
3

2
r̄ − 1

)] ⎫⎬
⎭; (4b)

W ≡ 2r̄7/4
[
2ā + r̄1/2(r̄ − 3)

]3/2
, (4c)

one finds these two relations share a common minimum,
referred to in the literature as the innermost stable circular
orbit (ISCO), where r̄ISCO is given by Equation (2.21) of
Bardeen et al. (1972).2

Under the picture where particles transit between infinites-
imally adjacent orbits in the process of accretion (until they
reach the ISCO), the above equations provide the starting
point for calculating how much specific angular momentum
can be lost from photon emission and/or scattering. Hereafter,
the use of E and Lz (with or without bars, but without further
subscripts) refers to the orbiting states for which Equations
(3)–(4) apply.

3 RADIATING AND SCATTERING AWAY
ANGULAR MOMENTUM

In each of the following subsections, the relative specific-
angular-momentum loss to photons in an accretion disk,
−dL̄z,γ /dL̄z (where subscript γ is for photons), as a func-
tion of radius, is calculated for a different idealised situa-
tion, where each builds on the last. Each result is plotted
in Figure 1 for r ≥ rISCO, allowing for comparisons between
each individual case. The models considered here are all of
thin, relativistic accretion disks, whereby the mathematics of
Section 2 is applicable.

3.1 Pure, relatively isotropic emission

Before considering consequences for other forms of energy
transport, the energy carried away by a photon supplied by

2In their notation, rms/M and a/M are equivalent to r̄ISCO and ā here,
respectively.
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Figure 1. (Specific) angular momentum lost to photons relative to the
(specific-)angular-momentum gap between adjacent, equatorial, circular or-
bits in a relativistic accretion disk as a function of radius. Thick curves apply
for an accretion disk around a non-spinning black hole, while thin curves
are for a hole spinning with ā = 0.998 (the maximum of Thorne 1974).
The dot-dashed curves assume photons are emitted with energy equal to the
difference of the orbits and are angled to the accretion disk plane such that
the φ-velocity of the photons matches that of the disk itself (see Section
3.1). The solid curves follow the solution of Novikov & Thorne (1973),
which include effects of internal torques (outlined further in Section 3.2).
The dashed curves also account for internal torques, and show the upper
limit of scattering, where the momentum imparted on photons is parallel to
the φ-direction (Section 3.3).

a particle moving to an adjacent lower-energy circular orbit
should, at most, be the energy difference between the orbits.
This can be written in terms of differentials as

dE
γ

= −dE . (5)

If this energy is lost primarily through radiation, one ex-
pects each photon to be emitted with statistical isotropy from
the frame of the emitting particle. For a non-rotating disk,
this would make the average direction of emission from each
face of the disk vertical (i.e. initially completely in the ±θ -
direction). For a rotating disk perceived from an external
frame (i.e. one static with the Boyer–Lindquist coordinates),
this can then be modelled by stating that photons are emitted
in the φ–θ ‘plane’ with a three-velocity in the φ-direction
equivalent to that of the disk, naturally a function of radius.
This (angular) velocity is found as V φ = pφ/pt . Recognising
pt = −gttE + gtφLz and pφ = −gtφE + gφφLz (cf. Equations
(1) and (2)), obtaining the contravariant metric components
by taking the matrix inverse of Equation (1), and expanding
and simplifying with Equation (3), one concludes consis-
tently with Bardeen et al. (1972) that

pφ

pt
= ±(2rs)

1/2c

2r3/2 ± (2rs)
1/2a

. (6)

Let us write the (contravariant) four-momentum compo-
nents of an emitted photon as dpμ. One can then simultane-
ously solve

gttdpt + gtφdpφ = −dE
γ

(7)

and Equation (6) (for the latter, the left-hand side now reads
dpφ/dpt) to obtain explicit functions for dpt and dpφ . Further

calculating dpφ = dLz,γ , one obtains

dL̄z,γ

dĒ
γ

= L̄z

Ē
= ±r̄2 − 2ār̄1/2 ± ā2

2
(
r̄3/2 − 2r̄1/2 ± ā

) , (8)

consistent with the report of Lynden-Bell (1986, Section
3.10). Now through Equation (5), combined with use of
Equation (4), one finds an explicit form of −dL̄z,γ /dL̄z,
as presented by the dot-dashed lines in Figure 1. For non-
spinning black holes, the analytic relation simplifies to

dL̄z,γ

dL̄z

(ā = 0) = 1

r̄ − 2
, (9)

which further reduces to the Newtonian case presented by
Johnson (2011) for r 	 rs.

Under this picture, one finds that specific-angular-
momentum removal by photons is important beyond the per-
cent level out to ∼50rs. For non-spinning holes, as particles
approach the ISCO, the radiative efficiency of angular mo-
mentum approaches 25%, while the efficiency approaches
87% for maximally spinning black holes. Already from this
analysis, it is clear, and perhaps unsurprising, that radiation
is insufficient by itself to liberate an accretion disk of its
necessary specific angular momentum.

3.2 Relatively isotropic emission with internal
angular-momentum transport

The previous subsection considered a limiting role of photons
without any additional form of angular-momentum transport.
Because photons are unable to remove all the necessary angu-
lar momentum if they remove all the necessary energy, some
other mechanism must remove angular momentum, which
consequently must alter the energy liberated by photons too.

The standard model of thin accretion disks proposed by
Shakura & Sunyaev (1973), and extended to be relativistic
by Novikov & Thorne (1973), considers angular momentum
to be transported radially through internal torques (generated
by magnetically induced ‘viscosity’ – see Lynden-Bell 1969;
Shakura & Sunyaev 1973; Lin, Liu, & Xiaoqing 2013), in
addition to removal from photons, in an accretion disk whose
structure is completely stable (i.e. not a function of time). If
dL̄z,int/dr̄ represents the radial net removal of specific angular
momentum from internal torques during a particle transition
to an infinitesimally adjacent orbit, then it must hold that

dL̄z

dr̄
+ dL̄z,int

dr̄
+ dL̄z,γ

dr̄
= 0 . (10)

With some small rearranging, the solution derived purely
from the continuity equations of rest mass, angular momen-
tum, and energy by Novikov & Thorne (1973) provides

dL̄z,int

dr̄
= −1

2

d

dr̄

(√
r̄Q

)
, (11a)

dL̄z,γ

dr̄
= −3

2

L̄z

r̄2

Q

B
√

C
, (11b)
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Figure 2. Relative energy scattered away or emitted through photons be-
tween infinitesimally adjacent orbits for a Novikov & Thorne (1973) accre-
tion disk (solid curves, Section 3.2) and a maximally scattering-dominant
disk with internal angular-momentum transport (dashed curves, Section 3.3)
around non-spinning (thick curves) and maximally spinning (thin curves)
black holes. Where the curves pass above a value of 1 (dot-dashed line),
extra energy is radiated away, transferred internally within the disk. The
dotted line indicates an asymptote; at large radii, a massive particle in the
disk emits a photon with thrice the necessary energy to reach its adjacent
lower orbit to account for energy supplied by internal transport.

where Q, B, and C are dimensionless quantities that ap-
proach unity for increasing r: the reader is referred to Equa-
tion (5.4.1) of Novikov & Thorne (1973) for their formal
definitions.3

As for the previous subsection, −dL̄z,γ /dL̄z is presented
for the Novikov & Thorne (1973) model in Figure 1 as solid
lines. For non-spinning black holes, the liberation of angular
momentum from photons at low radii is noticeably less ef-
fective than the previous limiting case. Faster spinning holes
reach a peak efficiency of radiative angular-momentum re-
moval of nearly 40%.

Naı̈vely, one may have expected the solid lines in Figure 1
to lie underneath the dot-dashed lines (i.e. the result of
Section 3.1), because a new mode of angular-momentum
transport has been introduced since Section 3.1. However,
as noted by Shakura & Sunyaev (1973), internal angular-
momentum transport provides a net energy source for r 	
rISCO, meaning more angular momentum must be liberated
by photons, specifically by a factor of 3. This is reconcilable
by considering an energy outflow balance equation (i.e. an
energy version of Equation (10)),

dĒ

dr̄
+ dĒint

dr̄
+ dĒ

γ

dr̄
= 0 . (12)

Using a combination of Equations (4a), (8), and (11b), one
can determine −dĒγ /dĒ to show that indeed this asymptotes
to a value of 3. This is plotted in Figure 2 (solid curves).
When interpreting Figure 2, one should appreciate that the

3Page & Thorne (1974) note a sign error for equation 5.4.1h. Those au-
thors also provide an analytically integrated expression for Q, but using
that provides different results and does not satisfy Equation (10), whereas
numerically integrating the equations of Novikov & Thorne (1973) does.
For an alternate parametrisation, see Riffert & Herold (1995).

absolute energy gap between adjacent orbits tends to zero as
r̄ → ∞, and that thin disks have higher densities toward their
centres.

3.3 Scattering with internal angular-momentum
transport

If an accretion disk is irradiated by an external source, incom-
ing photons can be absorbed or scattered, causing particles
in the disk to lose angular momentum, à la the Poynting–
Robertson effect (Poynting 1904; Robertson 1937; Burns,
Lamy, & Soter 1979). In the absorption case, where the mo-
tive absorbing particles re-emit the radiation, the analysis
of Section 3.2 remains sound. However, it could also tran-
spire that charged particles in the disk anisotropically transfer
their energy to the incoming photons via inverse Compton
scattering.

An external irradiative source is observationally motivated
by X-ray reflection spectra generated by an accretion disk’s
corona, which provide a means for measuring black holes’
spins (for a review, see Reynolds 2014). At very high red-
shift, the cosmic background radiation could also provide an
irradiative source (e.g. Fukue & Umemura 1994; Mineshige,
Tsuribe, & Umemura 1998), although far more modest in
temperature. For fast-spinning holes, a notable portion of
emitted radiation from accretion disks is expected to fall
back on the disks as well (Cunningham 1976). So long as
the Thomson regime is applicable in the scattering particle’s
reference frame, the scattered photon can have its energy sig-
nificantly multiplied and be beamed in the direction of the
scatterer’s motion as perceived by an external observer (see
Rybicki & Lightman 1979, Section 7.1). While the precise
direction of the photon’s change of momentum would de-
pend on its initial energy relative to the scattering particle,
one can consider the extreme upper limit where this is the
φ-direction, as shown immediately below.

Let us now write the four-momentum components of that
imparted on the scattered photon as dpμ [it is very important
to note that this is the change in photon’s momentum from
scattering; when considering radiation, this was the momen-
tum of the (average) photon itself, as it did not exist prior
(i.e. it had no initial momentum)]. Because photons have no
rest mass, it must hold that gμνdpμdpν = 0, where the gμν

terms are the metric components obtainable from Equation
(1), hence

gtt (dpt )2 + 2gtφdptdpφ + g
φφ

(dpφ )2 = 0 . (13)

Simultaneously solving Equations (7) and (13), recognis-
ing dLz,γ = dpφ = gtφdpt + gφφdpφ in this maximal limit
(cf. Equation (2)), and using Equation (5), one obtains

dL̄z,γ

dĒ
γ

= −dL̄z,γ

dĒ
= ±r̄

√
ā2 + r̄2 − 2r̄ − 2ā

2r̄ − 4
. (14)

One can consider taking the same energy lost to pho-
tons from Section 3.2 but instead using it to kick (scat-
ter) photons in the φ-direction. The relative increase in
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specific-angular-momentum loss can then be found by tak-
ing the ratio of Equations (14)–(8). However, by increasing
dL̄z,γ /dr̄, it must be true that dL̄z,int/dr̄ decreases, in order to
satisfy conservation of angular momentum (Equation (10)).
If dL̄z,int/dr̄ decreases, then so must dĒint/dr̄ by an amount
found by taking the ratio of Equations (10)–(12) after making
the internal-torque terms the arguments for each

dL̄z,int

dĒint

= dL̄z/dr̄ + (dL̄z,γ /dr̄)3.2

dĒ/dr̄ + (dĒ
γ
/dr̄)3.2

, (15)

where subscript 3.2 implies the quantities as determined from
Section 3.2. Consequently, dĒγ /dr̄ must increase from en-
ergy conservation (Equation (12)), and therefore dL̄z,γ /dr̄
must be higher than initially calculated. One can iteratively
work through these calculations until finding a converged
result.4

Using the above method, one can calculate the maximum
−dL̄z,γ /dL̄z for photon scattering with the effects of inter-
nal transport included. This is shown by the dashed lines in
Figure 1. Consistent with the above results, under this max-
imal regime, accretion disks can remain efficient above the
percent level for −dL̄z,γ /dL̄z beyond 104rs.

As was the case for the standard Novikov & Thorne (1973)
disk, −dĒγ /dĒ asymptotically approaches a value of 3 for
increasing radii, but does so more slowly. It also exceeds a
value of 1 at the same radius, as displayed by the dashed
curves in Figure 2.

It should again be stressed that the calculations in this
subsection are an upper limit. In truth, one should ex-
pect the relevant curve on Figure 1 to lie between the
solid and dashed ones presented, with a bias towards the
former.

4 CONCLUSION

As material accretes onto massive black holes, there must
be a process by which specific angular momentum is re-
moved from the system. As accretion disks are known to
be bright sources of radiation, the emission of photons pro-
vides one channel for this angular-momentum loss. If a disk
is irradiated, inverse Compton scattering provides another
channel. This paper has provided calculations of the con-
tribution of angular-momentum liberation through photons
in thin, relativistic accretion disks. In addtion to situations
where transport by internal torques was included, such that
the usual conservation laws of physics were satisfied, these
calculations included limiting situations where photon emis-
sion was responsible for all the necessary energy removal
and where photon scattering was angled to remove maximal
angular momentum.

On scales up to the order of a hundred Schwarzschild
radii, photons remove a small (>1) percentage of angular

4One can update the terms with subscript 3.2 in the iterations, but the end
result is the same.

momentum in accretion disks that emit in an expected fash-
ion, but beyond this contribute negligibly. At the absolute
most, disks subject to strong irradiation are potentially ca-
pable of scattering away angular momentum as efficiently
out two orders of magntiude farther from the black hole.
The contribution in both cases becomes stronger near the
horizon of a fast rotating black hole, especially in the lat-
ter case (�60%, cf. thin dashed line, Figure 1). By and large
though, angular momentum is transported far more efficiently
through the disk internally, rather than liberated from the disk
electromagnetically.
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