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A mathematical model for wind-generated
particle–fluid flow fields with an application to
the helicopter cloud problem
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We develop a model for the interaction of a fluid flowing above an otherwise static particle
bed, with generally the particles being entrained or detrained into the fluid from the upper
surface of the particle bed, and thereby forming a fully two phase fluidized cloud above
the particle bed. The flow in this large-scale fluidized region is treated as a two-phase flow,
whilst the key processes of entrainment and detrainment from the particle bed are treated
by examining the local dynamical force balances on the particles in a thin transition layer
at the interface between the fully fluidized region and the static particle bed. This detailed
consideration leads to the formation of an additional macroscopic boundary condition at
this interface, which closes the two-phase flow problem in the bulk fluidized region above.
We then introduce an elementary model of the well-known helicopter brownout problem,
and use the theory developed in the first part of the paper to fully analyse this model, both
analytically and numerically.

Key words: particle/fluid flows

1. Introduction

In this paper, we develop a rational (that is, based directly on the fundamental Newtonian
laws of mechanics) physically based mathematical model for the generation of wind-driven
particle flow fields from a static particle bed. The physical model is composed of three
structured regions: the fluidized region in which the particles lifted from the surface of the
static particle bed are in suspension in the fluid, forming a fully developed two-phase
flow; the key interfacial layer in which the interaction mechanisms between the local
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near-surface fluid flow and the particle bed enable surface particles to be entrained by
the local flow from the static bed of particles into the fluidized region and/or detrained
from the local flow in the fluidized region into the static bed of particles; and the static bed
region where the particles are stored.

A particular example of such wind-driven particle flow fields is the scenario in which a
helicopter may descend towards a bed of sand, the helicopter cloud problem (often referred
to as the ‘brownout problem’ in the aero-engineering literature). In this case, the local
interaction between the downdraught and swirling flow, generated by the helicopter rotor,
and the upper surface of the otherwise static sand bed, entrains sand particles from a thin
interfacial layer into the fluidized region, which then flow in the form of a high-velocity
particle-laden cloud around the helicopter body, which we refer to as the helicopter cloud, a
consequence of which is generally a significant deterioration in visibility for the helicopter
pilot – when this becomes too severe, it is referred to as brownout. This problem has
received much attention in the engineering literature, but most work to date has been driven
primarily by observation and experimentation. Attempts to model the physics of brownout
include those by Wachspress et al. (2008), Phillips & Brown (2009), Phillips, Kim &
Brown (2011), Govindarajan, Leishman & Gumerov (2013), Porcù et al. (2020), Tan et al.
(2021, 2022a,b), Li et al. (2023) and Lin et al. (2024). In addition, a very recent thesis
by Rovere (2022) reviews particle tracking simulations together with experiments and
high-speed photographic evidence related to the helicopter cloud problem, and provides
an excellent survey of the engineering literature in this area. These modelling approaches
broadly split into two classes, which we now delineate.

The first approach is purely computational, and treats each particle within the fluid
flow as an individual entity, with no effort being made to address the entrainment or
detrainment of particles into the particle-laden flow via local interaction of the flow with
the upper surface of the otherwise static particle bed. Indeed, the particle bed is removed
from consideration, and instead, the particles are simply placed into the flow in a random
spatial distribution at an initial reference time. Subsequently, each particle is tracked as it
moves within the fluid flow according to its own dynamical equation of motion under the
action of the locally induced fluid interaction forces and gravity (the following, amongst
many others, are papers adopting this principal strategy as a key modelling component:
Govindarajan et al. 2013; Porcù et al. 2020; Tan et al. 2021, 2022a,b; Li et al. 2023;
Lin et al. 2024). Although this approach does give rational information about particulate
behaviour once the particles have made their way into the fluidized flow, the lack of
consideration of the entrainment and detrainment process at the interface between the
fluidized region and the static particle bed is a very severe drawback for this modelling
approach – it is this interaction process that is the fundamental and key process in initiating
and driving the whole phenomenon of the particle cloud. In addition, given that particle
clouds in the fluidized region are generally concentrated rather than dilute, with a low
fluid voidage (high particle concentration), the approach of treating each particle in the
fluidized region as an individual entity is exceptionally inefficient in computational time,
and a two-phase flow approach is much more natural and efficient.

The second modelling approach is to introduce a continuum particle density field in
the fluidized region (measuring particle volume per unit spatial volume of the two-phase
flow), and then to postulate that this field satisfies a suitable advection–diffusion partial
differential equation (PDE) throughout the flow field. This approach does go some way
to address the entrainment and detrainment of particles from the static particle bed.
Specifically, this is done in a phenomenological way by the introduction of a localized
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particle mass source term into the advection–diffusion PDE. This source term is localized
in space, so that it acts only in a thin neighbourhood of the interface between the fluidized
region and the static particle bed, and is designed to represent the localized input/ouput
of particles from the static bed into the fluidized region (see, in particular, Phillips et al.
2011). The nature of this source term is purely phenomenological, empirically based on
the very particular situation under immediate consideration, and must be recalibrated in
every specific example; as such, the ability of this approach to capture, in general, a decent
representation of the key rational mechanism of entrainment/detrainment at the interface of
the fluidized region and the static bed is very limited, and depends entirely, and critically,
upon the specific choice of this term. This serious limitation is addressed well in the paper
of Phillips et al. (2011). In their conclusions, they state that further developments in the
theory for the brownout problem depend crucially on an understanding ‘particularly of
how sediment leaves the ground and enters the flow around the helicopter in the first place’.
Moreover, these authors state (Phillips et al. 2011, p. 126) that ‘the physics of sediment
entrainment from the ground . . . is no doubt the area which could most benefit from
further research and, indeed, where a breakthrough in understanding could contribute most
to improving our confidence in the ability of predictive methods to capture the detailed
mechanisms at the origin of the brownout cloud’. The key message is that although
this approach does address local particle entrainment and detrainment from the static
particle bed, a thorough understanding and implementation of the fundamental interactive
mechanics governing these two principal processes, and their coupling with the fluidized
region, is essential for improving predictability in the problem. It is this serious defect
that we address from fundamental first principles in this paper, which leads to a natural
macroscopic boundary condition on void fraction to be applied at the interface of the
fluidized region and the static bed, which closes the continuum scale problem two-phase
flow in the fluidized region.

In more general terms, the development of fluidized clouds in gas or liquid flows above
otherwise static particle beds has many applications – for example, clouds generated by
the motion of desert vehicles, motion of sub-sea vehicles close to the ocean bed, and
large-scale particle clouds raised by localized desert or sub-surface oceanic storms and
disturbances. Indeed, the motion of desert dunes via bed-load and suspended-load sand
transport, and the related physical processes, were originally considered in the classic
text of Bagnold (1941), in which it was acknowledged that for a generally applicable
predictive theory for both of these transport phenomena, a detailed understanding of the
local interactive mechanisms in the layer adjacent to the interface between the fluid and the
otherwise static particle bed would be essential. In the absence of such an understanding
Bagnold (1941), whilst acknowledging their shortcomings, resorted to the development of
empirically fitted sediment transport relations. The physical aspects of wind-blown sand
have been addressed more recently in the extensive review article of Kok et al. (2012).

In this paper, we address these issues directly and generically. We consider the general
situation of an incompressible fluid overlying an otherwise static particle bed, and allow
for the general motion of the fluid to interact with the particle bed in a thin transition
layer, in which the local force balance between the fluid flow and the incipiently fluidized
particles is fully accounted for on the thickness scale of this thin transition region, which
rationally accounts for both the entrainment and detrainment of particles from the static
bed and into the fully fluidized region, and vice versa. The resolution of the dynamics on
the scale of this thin transition layer leads to an additional macroscopic boundary condition
on local void fraction that must be applied at the interface of the fully fluidized region
and the particle-bed surface. This closes the macroscopic two-phase flow problem in the
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fully fluidized region, with now the entrainment and detrainment mechanism rationally
accounted for, and the need for phenomenological parameters removed. This closed model
can now be used to formulate the problem in the fluidized region for any particular
circumstances under consideration. To illuminate this theoretical model, we apply it in
detail to a simple version of the helicopter cloud problem in the latter part of the paper.
Although direct experimental comparisons for the results from our model are not possible
at present without a specifically designed experimental programme, it is worthwhile
referring to the high-speed photography in Rovere (2022), through the images labelled
as figures 1.1, 1.3 and in particular 2.6, which gives a good qualitative comparison with
our theoretical examples presented in § 7 of this paper.

An outline of the paper is as follows. In § 2, we give a detailed description of the
physical model, and in particular our approach to rationally modelling the dynamics
of particle entrainment and detrainment in an interfacial layer. This is followed in § 3
by the formulation of the physical model as a mathematical model, with a detailed
treatment of the local dynamics in the interfacial layer, and the subsequent development
of the corresponding macroscopic boundary conditions that close the full two-phase flow
problem in the fully fluidized region. This is followed in § 4 by bringing together these
components in the formulation of the full closed mathematical problem in the fluidized
region. This mathematical problem is made dimensionless in § 5, where the formulation
is reduced to the determination of the voidage field and a fluid velocity potential. The
application to the helicopter cloud problem is developed in § 6, where the effect of the
helicopter close to the surface is modelled by a suitably chosen fluid dipole and fluid
line-vortex. The boundary value problems that are associated with this application are
formulated in a form suitable for numerical solution via finite-difference approximation;
in § 7 we present numerical examples demonstrating how varying certain parameters may
change qualitative features of the voidage field, with precise details of our numerical
method and its accuracy given in Appendix B.

2. The physical model

The physical model that we develop here is aimed at describing the particle and fluid flow
fields generated above a ground surface composed of a packed bed of solid particles, when
surface particles are raised into suspension via the flow of an incompressible fluid above
the surface. The physical model is developed in three structured regions, as follows.

(1) The fluidized region in which the particles lifted from the ground surface are in
suspension in the fluid. The flow in this region is a fully developed two-phase flow.

(2) The interfacial layer in which ground surface particles are transferred from the static
bed of particles into the fluidized region and/or are returned from the fluidized region
into the static bed of particles.

(3) The static particle-bed region where the particles are stored in the static particle bed.

A schematic diagram of the above structure is shown in figure 1. In the fluidized region, the
two-phase flow varies on a length scale l that is very much greater than the particle-spacing
length scale ls and the particle radius a, so that

a � l, ls � l. (2.1a,b)

Under (2.1a,b), the particle and fluid fields in the fluidized region can be modelled
as two inter-penetrating continua, and the flow is governed by conservation of mass
and momentum in the two interacting phases. The interfacial layer is a thin layer,

998 A61-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.740


A mathematical model for wind-generated particle-fluid flow

z
y

x0

Fluidized region

Interfacial layer

Static bed

Particle transfer

h

l

g

Figure 1. Schematic diagram of the physical model.

of approximately uniform thickness, separating the static particle bed from the fully
developed fluidized region above, and accommodates particle mass transfer to and from
the static bed and the fluidized region. The thickness of the interfacial layer is typically of
the order of ten particle diameters. Thus with δ being the interfacial layer thickness, we
have

δ ≈ 20a, (2.2)

so that formally, a � δ, and the interfacial layer is thin compared to the two-phase flow
continuum length scale l, but sufficiently wide to contain enough particles for local average
particle velocities to be used. Thus we formally require

a � δ � l. (2.3)

The fluid flow in the thin interfacial layer is taken as being tangential to the surface of the
static particle bed when viewed relative to the normal motion of the surface of the static
particle bed. The particle motion within the interfacial layer, based on (2.3), is modelled as
a force balance between the drag and lift on the particles induced by the surface tangential
fluid flow in the interfacial layer, and the gravitational and particle collisional forces on the
particles, together with the fluid shearing force at the upper surface of the interfacial layer
and the particle–particle frictional force at the lower surface of the interfacial layer. Mass
transfer between the static particle bed and the fluidized region, via the interfacial layer,
then determines the surface deformation of the static particle bed. With h representing the
transverse static particle-bed surface deformation length scale (see figure 1), we consider
the situation when

δ � h � l. (2.4)

Connection between the interfacial layer and the bulk fluidized region is made by requiring
continuity of the normal particle and fluid mass flow fields and the voidage field at a
well-defined interface. Of course, this interface is a model device to replace the rapid
transition of the normal length scale from the interfacial layer into the bulk fluidized
region above. Provided that such a transition is passive, its modelling as an interface is
justified, and the theory bears this out. The static particle-bed region is taken as a particle
store, with the packed particles in static equilibrium (without strong cohesion). For the
specific problem addressed in § 6, namely the helicopter cloud problem, the continuum
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length scale l will be taken as the geometric dimension of the helicopter blade length.
The hydrodynamic effect of the helicopter is modelled as a fluid dipole, aligned with the
axis of blade rotation and located at the helicopter blade rotation point, to represent the
fluid downdraught, together with a line-vortex through the axis of rotation of the blades,
to represent the fluid swirl.

3. The mathematical model

Based on the physical model described in § 2, we derive the dynamical equations of
motion in the fluidized region and the interfacial layer. We begin in the fluidized
region. Throughout, reference will be made to a fixed Cartesian coordinate system with
coordinates x, y and z, and with z pointing vertically upwards. The usual associated unit
vectors are i, j and k, respectively. The position vector is r = (x, y, z), and rh = (x, y)
corresponds to the position vector in the horizontal xy-plane. The location of the lower
surface of the thin interfacial layer (which is also the upper surface of the static particle
bed) is taken as being at

z = ξ(rh, t), (3.1)

for rh ∈ R
2 and t ≥ 0, with t being time. It follows from (3.1) that the unit normal vector

field at the thin interfacial layer, pointing into the fluidized region, is given by

n̂(rh, t) = (−∇hξ, 1)
(1 + |∇hξ |2)1/2 , (3.2)

for rh ∈ R
2 and t ≥ 0. Here,

∇h(·) = ∂

∂x
(·) i + ∂

∂y
(·) j (3.3)

is the usual horizontal gradient operator. We now consider the equations of motion in the
fluidized region.

3.1. The fluidized region
In the fluidized region, the fluid and particle phases are modelled as inter-penetrating
continua, with the fluid being incompressible and inviscid on the two-phase continuum
length scale, but viscous on the particle length scale. Conservation of mass in the fluid
and particle phases then requires, respectively,

Et + ∇ · (Eu) = 0, (3.4)

−Et + ∇ · ((1 − E)v) = 0, (3.5)

with r in D(t) and t > 0. Here, D(t) is the interior of the fluidized region occupied by
the inter-penetrating continua at time t ≥ 0, E(r, t) is the voidage field (representing the
volume of fluid per unit volume in D(t) and taking values between the packing voidage of
the particles Es (<1) and unity), u(r, t) is the fluid velocity field, and v(r, t) is the particle
velocity field. Subscript t represents partial differentiation with respect to time, and ∇ is
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the usual gradient operator:

∇(·) = ∂

∂x
(·) i + ∂

∂y
(·) j + ∂

∂z
(·)k. (3.6)

Conservation of momentum in the fluid and particle phases also requires, respectively,

ρf E(ut + (u · ∇)u) = −∇p − ρf gEk − D, (3.7)

ρs(1 − E)(vt + (v · ∇)v) = −∇ps − ρsg(1 − E)k + D, (3.8)

with r in D(t) and t > 0. Here, p = p(r, t) is the fluid pressure field, ps = ps(E(r, t)) is the
particle–particle collisional pressure field, and D is the total drag force per unit volume
exerted by the fluid on the particles (which we anticipate, at the single-particle scale
in the fluidized flow field, will significantly dominate the single particle lift force). In
addition, ρf and ρs are the constant fluid and particle material densities, respectively, and
g is the acceleration due to gravity. It remains to relate the particle collision pressure to the
voidage field, and determine the form of the drag force. In general, the particle–particle
collisional pressure is a decreasing function of voidage, which approaches zero as the
voidage approaches unity. In the absence of detailed experimental evidence, we adopt, as
a first approximation, the simple linear form

ps = ps(E) = p0(1 − E), (3.9)

with p0 > 0 being a material constant. For the drag force per unit volume, we write

D = β(E) np(6πaμ(u − v)), (3.10)

where np is the number of particles per unit volume, so that np = (1 − E)/((4/3)πa3),
whilst the bracketed term is the Stokes drag on a single particle, and β = β(E) represents
the effect of neighbouring particles on the Stokes drag. In general, β(E) ≥ 1 is a
decreasing function of E ∈ [Es, 1], and β(1) = 1. Thus we have

D = 9
2
μ

a2 (1 − E) β(E) (u − v), (3.11)

with μ being the kinematic viscosity of the fluid. On substituting from (3.9) and (3.11)
into (3.7) and (3.8), we have

ρf E(ut + (u · ∇)u) = −∇p − ρf gEk − (9μ/2a2)(1 − E) β(E) (u − v), (3.12)

ρs(1 − E)(vt + (v · ∇)v) = p0 ∇E − ρsg(1 − E)k + (9μ/2a2)(1 − E) β(E) (u − v),
(3.13)

with r in D(t) and t > 0. In obtaining (3.7) and (3.8) (and consequently (3.12) and (3.13)),
for the micro-scale particle–fluid interaction, we have only included the drag term, which
we expect to dominate over lift and buoyancy in the bulk fluidized region, where the fluid
flow is primarily inviscid and irrotational on the two-phase continuum length scale (except
in the interfacial layer, where ground effect vorticity will enhance lift; see § 3.2). Thus the
dynamics in the fluidized region is represented by the four PDEs (3.4) and (3.5) with (3.12)
and (3.13). We now consider the dynamics in the interfacial layer.
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g

A

vI

uI

z
y

x0

Π

δ

O (δ)

Figure 2. Cylindrical element across the interfacial layer. The element is centred at r = (rh, ξ(rh, t)) which is
represented by •. Here, Π is the interfacial layer tangent plane at r = (rh, ξ(rh, t)). The cross-sectional area of
the cylindrical element is A.

3.2. The interfacial layer
Within the thin interfacial layer, we consider the dynamics on the thickness scale δ to
be in local equilibrium relative to the slow (compared to fluid velocity scale) normal
motion of the interfacial layer, with the fluid velocity uI and particle velocity vI being
tangential to the interfacial layer relative to the normal motion of the interfacial layer,
and without variation across the interfacial layer. Normal to the interfacial layer, the local
lift force balances the gravity force on the particles, whilst tangential to the interface,
the drag and fluid shearing forces on the particles are balanced by the gravity force
and the static particle-bed friction force on the particles. We consider a cylindrical
cross-sectional element, of radius O(δ), passing through the interfacial layer, and centred
at r = (rh, ξ(rh, t)), as shown in figure 2.

A force balance on the particles in the cylindrical element in figure 2 gives, in
equilibrium,

F g + F L + F D + F s + F f = 0, (3.14)

where F g is the gravitational force on the particles, F L is the lift force on the particles,
and F D is the drag force on the particles, within the element. In addition, F s is the fluid
shearing force exerted on the particles over the upper surface of the element, whilst F f is
the frictional force exerted on the particles over the lower surface of the element. As we are
considering the local dynamics in the interfacial layer, on the length scale δ (� h � l), to
be in equilibrium, uI and vI , together with the voidage in the interfacial layer EI ∈ [Es, 1],
may be considered as fixed throughout the cylindrical element. We then have

F g = −(1 − EI)ρsgδA((k · n̂)n̂ + (k − (k · n̂)n̂)), (3.15)

noting that the vector k − (k · n̂)n̂ lies in the tangent planeΠ to the interfacial layer. Next,
we have

F L = npδAΦ(EI)Lpn̂, (3.16)

where Lp is the lift force on a single particle in the cylindrical element, and Φ = Φ(EI)
accounts for the effect of neighbouring particles. For a single particle in the interfacial
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layer, moving through the fluid as a rolling grain, we have

Lp = 4πa2ρf |uI − vI|2, (3.17)

which is the Magnus force induced on an individual rolling particle grain as it moves along
the interfacial layer. We anticipate that in this incipiently fluidized interfacial layer, this
Magnus force dominates the Saffman lift force due to the local shear in the fluid flow. The
functionΦ(EI) is anticipated to be, in general, monotone increasing in EI , withΦ(Es) < 1
and Φ(1) = 1. Without detailed experimental evidence, we adopt the simple linear-form
approximation

Φ(EI) = EI . (3.18)

On substituting from (3.17) and (3.18) into (3.16), with np = 3(1 − EI)/(4πa3), we obtain

F L =
(

3ρf

a

)
δAEI(1 − EI) |uI − vI|2 n̂. (3.19)

Similarly, adopting (3.11), with E = EI , u = uI and v = vI , we obtain

F D = 9
2
μ

a2 δA(1 − EI) β(EI) (uI − vI), (3.20)

with β(·) as introduced in § 3.1. As discussed earlier, we recall that the vector (uI − vI)
is taken to lie in the tangent plane Π . For the upper surface shearing force, we may thus
write

F s = A(1 − EI)τ |uI − vI | (uI − vI), (3.21)

where τ > 0 is the turbulent fluid shear coefficient. Finally, the particle–particle friction
force at the lower surface is taken as

F f = A(1 − EI)FvI, (3.22)

where F > 0 is the dynamic friction coefficient. We now substitute from (3.15), (3.19),
(3.20), (3.21) and (3.22) into (3.14), and separate components normal and tangential to the
tangent plane Π . We obtain the scalar equation

ΛEI |uI − vI|2 − (k · n̂) = 0, (3.23)

and the tangent plane vector equation

− ρsgδ(k − (k · n̂)n̂)+ 9
2
δμ

a2 β(EI) (uI − vI)+ τ |uI − vI | (uI − vI)− FvI = 0T ,

(3.24)
where 0T is the zero vector in the tangent plane Π , and

Λ = 3ρf

aρsg
. (3.25)

Since the interfacial layer is thin (δ � h � l), following (2.2), we conclude that the
dominant terms on the left-hand side of (3.24) are those representing upper surface shear
and lower surface friction (surface forces dominating body forces). With us

I and vs
I being
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typical scales for uI and vI , a balance between upper surface shear F s and lower surface
friction F f gives

vs
I = O

( τ
F
(us

I)
2
)

(3.26)

and

δ � min

(
τ(us

I)
2

ρsg
,
τa2us

I
μ

)
. (3.27)

With this approximation, the dominant form of (3.24) is

τ |uI − vI| (uI − vI)− FvI = 0T . (3.28)

Also, we anticipate that
vs

I � us
I, (3.29)

which follows from (3.26), when τus
I � F. Thus

|vI| � |uI|, (3.30)

which allows us to approximate both of (3.23) and (3.28), which become

ΛEI |uI|2 − (k · n̂) = 0, (3.31)

τ |uI | uI − FvI = 0T . (3.32)

A further simplification of (3.31) can be made in recalling from (2.4) that h � l, so the
interfacial layer slope, which is O(h/l), is small. In particular,

n̂ = k + O(h/l), (3.33)

so we may take
n̂ ∼ k, (3.34)

after which (3.31) becomes

ΛEI |uI|2 − 1 = 0. (3.35)

Since Es ≤ EI ≤ 1, with Es being the packing voidage for the particles, it follows from
(3.35) that the interfacial layer collapses for |uI|2 < 1/Λ (with EI = 1), whilst it becomes
saturated (with EI = Es) for |uI |2 > 1/(ΛEs). Between these limiting values of |uI|2, we
have, from (3.32) and (3.35), that in the interfacial layer,

vI = (τ/F) |uI | uI, (3.36)

EI = 1
Λ |uI|2 . (3.37)

In (3.37), the local voidage in the interfacial layer EI is related to the local tangential
fluid velocity in the interfacial layer, uI , whilst (3.36) relates the local tangential particle
velocity in the interfacial layer vI to the local tangential fluid velocity in the interfacial
layer uI , and the form is similar to a mobile bed-load sediment transport function (see,
for example, Bagnold (1941) for the classical discussion of bed-load sediment transport
formulae in a wind-blown sand environment). It should also be noted that throughout
the above determination of the overall force balance on particles in the small continuum
(containing many particles) element across the interfacial layer, we have taken the primary
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Interfacial layer

S
z

y

x0

Reference level

A′

A

n̂

ds

dl

Static bed

N̂

z = ξ

z = –d

z = ξ + δ

C
Figure 3. A qualitative schematic diagram representing a small element as a vertical slice through the static

bed and the interfacial layer, with an illustration of the notation used in analysing this element.

single-particle representative forces for drag, friction, shear and lift to be as simple as
possible, whilst retaining their principal features, and this is sufficient for our present
purpose. However, it is recognized that if required, these basic forms could be refined, and
thus improved, by introducing higher-order contributions, using, for example, the recent
results of Smith & Palmer (2019), Palmer & Smith (2020, 2021) and Jolley & Smith
(2022), amongst others, arising from detailed studies of the motion of small free bodies
located in the thin viscous boundary layer next to a wall, in high and moderate Reynolds
number flows. We next consider the motion of the interfacial layer.

3.3. Interfacial layer motion
We consider a cylindrical volume from z = −d in the static bed region (z = −d forming
a reference level in the static particle-bed region) and extending vertically upwards to the
upper surface of the interfacial layer at z = ξ + δ. The situation and nomenclature are
illustrated in figure 3.

Now the rate of change with respect to time t of the total particle mass in the cylindrical
element must be equal to the total mass flux of particles into or out of the cylindrical
element. The total particle mass in the cylindrical element is M, where

M =
∫ ∫

A

∫ z=ξ

z=−d
ρs(1 − Es) dz dA +

∫ ∫
A

∫ z=ξ+δ

z=ξ
ρs(1 − EI) dz dA

= ρs(1 − Es)

∫ ∫
A
(ξ + d) dA + ρsδ

∫ ∫
A
(1 − EI) dA, (3.38)

recalling that Es is the packing voidage of the particles in the static particle bed, and EI is
independent of z in the interfacial layer. The total mass flux of particles into the cylindrical
element is Q, where

Q = −
∫ ∫

S
ρs(1 − EI)vI · N̂ ds −

∫ ∫
A′
ρs(1 − EI) v(rh, ξ + δ, t) · n̂ dA′

= −
∫
C
ρsδ(1 − EI)vI · N̂ d�−

∫ ∫
A′
ρs(1 − EI) v(rh, ξ + δ, t) · n̂ dA′

= −ρsδ

∫ ∫
A

∇h · ((1 − EI)vI) dA − ρs

∫ ∫
A′
(1 − EI) v(rh, ξ + δ, t) · n̂ dA′, (3.39)
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up to O(h/l), via Green’s theorem in the plane, with ∇h(·) defined as in (3.3), and making
use of (3.33). Finally, we may rewrite the surface integral over A′ as a surface integral over
A to obtain, on using (3.33),

Q =
∫ ∫

A
(−ρsδ∇h · ((1 − EI)vI)− ρs(1 − EI) v(rh, ξ + δ, t) · n̂) dA. (3.40)

It now follows from the earlier conservation statement, via (3.38) and (3.40), that

(1 − Es)ξt − δEIt + δ∇h · ((1 − EI)vI)

= −(1 − EI) v(rh, ξ + δ, t) · n̂, rh ∈ R
2, t > 0. (3.41)

A further simplification can be made here, based upon (2.4). The ratio of the second two
terms on the left-hand side of (3.41) to the first term on the left-hand side of (3.41) is of
O(δ/h), so (3.41) may be approximated by

(1 − Es)ξt = −(1 − EI) v(rh, ξ, t) · n̂, rh ∈ R
2, t > 0, (3.42)

which finally describes the dynamics of the interfacial layer motion.

3.4. Boundary conditions between the fluidized region and the interfacial layer
First, the normal fluid velocity in the fluidized region at z = ξ + δ must agree with the
normal velocity of the interfacial layer. This requires

ξt = u(rh, ξ, t) · n̂, rh ∈ R
2, t > 0, (3.43)

where ξ + δ is approximated as ξ via (2.4). Second, the tangential fluid velocity in the
fluidized region at z = ξ + δ must agree with the tangential fluid velocity in the interfacial
layer. This requires, after using (2.4), that

uI(rh, t) = u(rh, ξ, t)− (u(rh, ξ, t) · n̂)n̂ ≡ uh(rh, t), rh ∈ R
2, t > 0. (3.44)

Finally, the voidage field in the fluidized region at z = ξ + δ must agree with the voidage
field in the interfacial layer, which, on using (2.4), requires

EI(rh, t) = E(rh, ξ, t), rh ∈ R
2, t > 0. (3.45)

The three equations (3.43)–(3.45) provide boundary conditions relating conditions in the
fluidized region to conditions in the interfacial layer.

4. Full problem in the fluidized region

Our main objective is to describe the dynamics in the fluidized region, together with the
motion of the interfacial layer. To this end, we can, via elimination, obtain a decoupled
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problem in the fluidized region. Via (3.4) and (3.5) with (3.12) and (3.13), we have

Et + ∇ · (Eu) = 0, (4.1)

−Et + ∇ · ((1 − E)v) = 0, (4.2)

ρf E(ut + (u · ∇)u) = −∇p − ρf gEk − (9μ/2a2)(1 − E) β(E) (u − v), (4.3)

ρs(1 − E)(vt + (v · ∇)v) = p0 ∇E − ρsg(1 − E)k + (9μ/2a2)(1 − E) β(E) (u − v),
(4.4)

for r in D(t), t > 0. Also, we must have

((1 − Es)u + (1 − E)v) · n̂ = 0 on z = ξ, with rh ∈ R
2, t > 0, (4.5)

via (3.42), (3.43) and (3.45), whilst (3.45) together with (3.37) and (3.44) requires

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |uh|2 < 1/Λ,
1

Λ|uh|2 , for 1/Λ ≤ |uh|2 ≤ 1/(ΛEs),

Es, for |uh|2 > 1/(ΛEs),

on z = ξ, with rh ∈ R
2, t > 0,

(4.6)
where

uh(rh, t) = u(rh, ξ, t)− (u(rh, ξ, t) · n̂)n̂, rh ∈ R
2, t > 0, (4.7)

is the tangential component of the fluid velocity in the fluidized region at z = ξ . Finally,
we have, via (3.43), that

ξt = u · n̂ on z = ξ, with rh ∈ R
2, t > 0. (4.8)

Thus the decoupled problem in the fluidized region is composed of the PDEs (4.1)–(4.4)
together with the boundary conditions (4.5)–(4.8) on z = ξ . In particular, we observe
that the detailed consideration of the dynamics in the interfacial layer has led to the
introduction of the key boundary condition (4.6) on the voidage at the interface. It is now
convenient to write (4.1)–(4.8) in dimensionless form.

5. The dimensionless problem

Let us be a typical velocity scale in the fluidized region (for both the fluid and particle
phases), with the length scales l and h as introduced in § 2. The time scale in the fluidized
region is then l/us, whilst a balance between pressure and drag in the momentum equation
(4.3) leads to a pressure scale

ps = μusl
a2 . (5.1)

Based upon these scales, we introduce the dimensionless variables

x = lx′, y = ly′, z = lz′, ξ = lξ ′, t = l
us

t′, u = usu′, v = usv
′, p = psp′.

(5.2a–h)
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On substitution from (5.2a–h) and (5.1) into (4.1)–(4.8), we obtain the dimensionless
problem in the fluidized region as, after dropping primes for convenience,

Et + ∇ · (Eu) = 0, (5.3)

−Et + ∇ · ((1 − E)v) = 0, (5.4)

R̄f E(ut + (u · ∇)u) = −∇p − GEk − (1 − E) β̄(E) (u − v), (5.5)

ρR̄f (1 − E)(vt + (v · ∇)v) = α∇E − ρG(1 − E)k + (1 − E) β̄(E) (u − v), (5.6)

for r in D(t), t > 0, together with

((1 − Es)u + (1 − E)v) · n̂ = 0, (5.7)

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |uh|2 < 1/γ,
1

γ |uh|2 , for 1/γ ≤ |uh|2 ≤ 1/(γEs),

Es, for |uh|2 > 1/(γEs),

(5.8)

ξt = u · n̂, (5.9)

on z = ξ , with rh ∈ R
2, t > 0. Here, we have introduced the dimensionless parameters

ρ = ρs/ρf , giving the density ratio of the particulate material to the fluid material, and

R̄f = ε2Rf (5.10)

where ε = a/l is the ratio of the microscopic scale particle radius and the macroscopic
continuum length scale, and in general can be considered very small, whilst the fluid phase
Reynolds number Rf = ρf usl/μ, based on the macroscopic length scale l, is expected
to be large, justifying our neglect of fluid phase macroscopic viscous terms in (5.5).
Correspondingly, R̄f = ε2Rf measures the ratio of the inertia terms to the drag terms in
the momentum equations (5.5) and (5.6). In what follows, we will restrict attention to the
situation when the macroscopic Reynolds number is large, but the ratio of the microscopic
to macroscopic length scales is sufficiently small so that

1 � Rf � ε−2, (5.11)

hence ε2 � R̄f � 1. As a consequence of this, in the fluid phase macroscopic momentum
balance, inertia will play a secondary role. This is not uncommon in two-phase gas/solid
particle flow, as seen in models of gas fluidized beds (see, for example, Needham & Merkin
1983). In addition, G = ρf ga2/μus measures the ratio of the gravity terms to the drag
terms in the momentum equations (5.5) and (5.6), whilst α = p0a2/lμus measures the
ratio of the particle–particle pressure term to the drag term in the momentum equation
(5.6). Finally, γ = 3u2

sρf /agρs measures the ratio of the lift force to the gravity force
acting on the particles in the interfacial layer. For convenience, we have also written

β̄(E) = 9
2 β(E). (5.12)

The PDEs (5.3)–(5.6), together with the boundary conditions (5.7)–(5.9), govern the
dynamics in the fluidized region, and the dynamics of the location of the interfacial layer.
For the problems that we wish to examine (in particular for the helicopter cloud problem,
where the length scale l is based upon the helicopter rotary circle radius, and the velocity
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0

1Es

E

H(E)

Figure 4. A typical graph of the function H(E) against E.

scale us is based upon the downdraught generated by the rotor, with the fluid being air and
the particles being sand grains), we estimate that

ρ � 1, R̄f � α

ρ
� 1, G � α

ρ
� 1. (5.13a–c)

Based upon these estimates of the dimensionless parameters for the cloud problem, we
may approximate (5.5) and (5.6) by

0 = −∇p − (1 − E) β̄(E) (u − v), (5.14)

0 = α∇E + (1 − E) β̄(E) (u − v), (5.15)

for r in D(t), t > 0, which henceforth replace (5.5) and (5.6). In both phases, the
fundamental balance in (5.14) and (5.15) is between drag and pressure gradient. We can
now make some direct progress with (5.14) and (5.15). An addition of (5.14) and (5.15)
gives

∇( p − αE) = 0, r ∈ D(t), t > 0, (5.16)

which gives, on integration,

p(r, t) = α E(r, t)+ F(t), r ∈ D̄(t), t ≥ 0, (5.17)

where D̄(t) is the closure of D(t), which replaces (5.14). Here, F(t) is an arbitrary
function of t ≥ 0. We note from (5.17) that fluid isobars and isovoids coincide in D̄(t).
A rearrangement of (5.15) then leads to

v(r, t) = u(r, t)+ α∇(H(E(r, t)))
1 − E(r, t)

, r ∈ D̄(t), t ≥ 0, (5.18)

where for later convenience we have introduced

H(E) =
∫ E

Es

dθ
β̄(θ)

, Es ≤ E ≤ 1, (5.19)

as sketched in figure 4.
We next add (5.3) and (5.4) to obtain

∇ · (Eu + (1 − E)v) = 0, r ∈ D(t), t > 0, (5.20)

which replaces (5.4). We also observe from (5.18) that

∇ × v = ∇ × u, r ∈ D(t), t > 0. (5.21)

Attention is now restricted to irrotational flow in the fluid phase, so that ∇ × u = 0 in D̄(t)
for all t ≥ 0. It then follows from (5.21) that ∇ × v = 0 in D̄(t) for all t ≥ 0, so the flow in
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the particle phase is also irrotational. Under these conditions, there exist scalar potentials
φ and ψ such that

u = ∇φ, v = ∇ψ, (5.22a,b)

for all r in D̄(t), t ≥ 0. It follows from (5.18) that

∇ψ = ∇φ + α

1 − E
∇(H(E)), r ∈ D̄(t), t ≥ 0, (5.23)

after which substituting into the two remaining equations (5.20) and (5.3) gives

∇2(φ + αH(E)) = 0, (5.24)

Et + ∇φ · ∇E − αE ∇2(H(E)) = 0, (5.25)

for r in D(t), t > 0, which are two coupled nonlinear PDEs determining φ and E. Then ψ
and p are obtained from (5.23) and (5.17). Finally, we substitute from (5.22a,b) and (5.23)
into the boundary conditions (5.7)–(5.9), which become

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |∇hφ|2 < 1/γ,
1

γ |∇hφ|2 , for 1/γ ≤ |∇hφ|2 ≤ 1/(γEs),

Es, for |∇hφ|2 > 1/(γEs),

(5.26)

(2 − Es − E)∇φ · n̂ + α∇H(E) · n̂ = 0, (5.27)

ξt = ∇φ · n̂, (5.28)

on z = ξ , with rh in R
2, t > 0. We observe from (5.24) that φ + αH(E) is harmonic in

D(t) for all t > 0, whilst E satisfies a convection–diffusion equation (5.25) in D(t) for all
t > 0, which is nonlinear, with diffusion coefficient

α = p0a2

lμus
. (5.29)

The boundary conditions (5.26)–(5.28) are coupled and nonlinear.
With a view to the helicopter cloud problem, in general we expect that the wind velocity

scale will be sufficiently large so that

us � p0a2

lμ
. (5.30)

Therefore the parameter α may be regarded as small. It then follows that we may write

φ = φ̄ + O(α), (5.31)

with φ̄ = O(1) as α → 0, whilst from (5.27) and (5.28) we may write

ξ = αξ̄ + O(α2), (5.32)

with ξ̄ = O(1) as α → 0, from which it follows that n̂ = k + O(α) as α → 0. On
substituting from (5.31) and (5.32) into (5.24) and (5.27), the leading-order problem for φ̄
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decouples, and is given by

∇2φ̄ = 0, r ∈ D0, t > 0, (5.33)

subject to
∇φ̄ · k = 0, z = 0, rh ∈ R

2, t > 0. (5.34)

Here, D0 is the fixed domain
D0 = R

2 × (0,∞). (5.35)

With E = O(1) as α → 0, the remaining problem for the voidage E is given, from (5.25)
and (5.26), as

Et + ∇φ̄ · ∇E − αE ∇2(H(E)) = 0, r ∈ D0, t > 0, (5.36)

subject to

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |∇hφ̄|2 < 1/γ,
1

γ |∇hφ̄|2 , for 1/γ ≤ |∇hφ̄|2 ≤ 1/(γEs),

Es, for |∇hφ̄|2 > 1/(γEs),

z = 0, rh ∈ R
2, t > 0. (5.37)

It should be noted here that to maintain the spatial uniformity of the approximation in E
when 0 < α � 1, the dominant terms in both convection and diffusion have been retained
in (5.36). Finally, on substitution from (5.32), (3.33) and (5.27) into (5.28), we obtain, at
leading order,

ξ̄t = − 1
2 − Es − E

∇H(E) · k, z = 0, rh ∈ R
2, t > 0. (5.38)

We are now in a position to formulate the helicopter cloud problem in detail.

6. The helicopter cloud problem

In this section, we introduce an elementary model for the helicopter cloud problem, and
examine this model in detail using the generic framework established in the preceding
sections. Specifically, we model a helicopter hovering steadily, with rotor blades rotating
in a horizontal plane, in otherwise still air above a sand bed, which has undisturbed level
at z = 0. The effect of the helicopter, with rotor blade length l, hovering steadily with the
rotor at a vertical distance lzd above the undisturbed particle bed level at z = 0, as shown
in figure 5, is modelled as follows.

(i) A half-space fluid dipole is placed at location

r = (0, 0, lzd), (6.1)

with zd > 0 (dimensionless). The axis of the dipole aligns with the unit vector −k,
and the moment of the dipole is Ms > 0. This represents the downdraught effect of
the helicopter rotor motion. The associated fluid velocity scale is then

us = Ms

l3
. (6.2)

The dipole is placed at the centre point of the axis of a cylindrical shell aligned with
the z-axis, which has axial length and radiusΔl, withΔ � 1. The cylindrical shell is
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l

lzd

Figure 5. The parameter zd measures the ratio of the hovering height of the helicopter rotor to the rotor blade
radius – though precise dimensions will vary, we might expect zd ≈ 0.5 to correspond to the helicopter resting
on the sand bed.

permeable to fluid and particles, with the normal fluid and particle velocities taken
as equal on the surface of the cylindrical shell (which represents drag domination
close to the dipole, where the fluid velocity becomes unbounded approaching the
dipole) and equal to the normal velocity field associated with the dipole at the centre
of the shell. In dimensionless variables, the dipole is located at r = (0, 0, zd), and
the cylindrical shell length and radius is Δ.

(ii) A fluid line-vortex is placed with its core along the positive z-axis. The strength
of the line vortex is taken as Γs > 0. This represents the swirl generated by the
helicopter rotor motion.

We might expect this simplistic model of the flow field to at least represent the overall
qualitative features of that flow field generated by a helicopter in hovering mode, at least
away from the immediate neighbourhood of the helicopter body. The key objective is to
provide a relevant case to illustrate an application of the generic theory developed in the
preceding sections. Representing the interior of the cylindrical shell containing the dipole
as C, with boundary ∂C, the fluidized region now occupies the domain Dc = D0 \ C̄.
The modelling structures (i) and (ii) require us to introduce the boundary conditions, in
dimensionless form,

∇φ̄ · N̂ = ∇φd · N̂, r ∈ ∂C, (6.3)

∇φ̄ = Ω

2πR
θ̂ + O(1) as R → 0 uniformly in D̄c. (6.4)

Here, (R, θ, z) are the usual cylindrical polar coordinates in relation to the Cartesian
coordinates (x, y, z) that were introduced earlier, with unit vectors R̂, θ̂ and k. In (6.3),
φd represents the harmonic half-space dipole, given by

φd =
2∑

i=1

(−1)i−1(z − zi)

4π(R2 + (z − zi)2)3/2
in D̄c, (6.5)

with
z1 = zd, z2 = −zd, (6.6a,b)

whilst the dimensionless parameter Ω in (6.4) is given by

Ω = Γsl2

Ms
. (6.7)
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A mathematical model for wind-generated particle-fluid flow

Here, Ω measures the ratio of the fluid velocity scale induced by the line-vortex to that
induced by the dipole. In addition to (6.3) and (6.4), it follows from (i) and (5.22a,b) with
(5.23) that we must have

∇E · N̂ = 0, r ∈ ∂C. (6.8)

Throughout the above, N̂ is the unit outward normal on the cylindrical shell. It remains
to consider the far field boundary conditions at large distances from the cylindrical shell
surface ∂C. We require

E → 1 as (R2 + z2) → ∞ uniformly in D̄c, (6.9)

∇φ̄ → 0 as (R2 + z2) → ∞ uniformly in D̄c, (6.10)

ξ̄ → 0 as R → ∞ uniformly in 0 ≤ θ < 2π.

To conclude, we note that the dynamics of the helicopter rotor will generally relate the
dipole strength Ms and the line-vortex strength Γs in the model. The simplest form, which
we adopt here, is a linear relation

Γs = kMs, (6.11)

with k > 0 a constant of proportionality, depending upon the particular helicopter rotor
under consideration. The dimensionless parameter Ω is then given by

Ω = kl2, (6.12)

independent of the dipole and line-vortex strengths. In its final form, the steady helicopter
cloud model has reduced to the following problem for the fluid velocity potential φ̄, using
(5.33), (5.34), (6.3), (6.4) and (6.10):

∇2φ̄ = 0, r ∈ Dc,

∇φ̄ · k = 0, z = 0, rh ∈ R
2,

∇φ̄ · N̂ = ∇φd · N̂, r ∈ ∂C,

∇φ̄ = Ω

2πR
θ̂ + O(1) as R → 0 uniformly in D̄c,

∇φ̄ → 0 as |r| → ∞ uniformly in D̄c.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.13)

The unique solution to this problem is readily established to be φ̄ : D̄c → R, given by

φ̄(R, θ, z) = φd(R, z)+ Ω

2π
θ, (6.14)

for r(R, θ, z) ∈ D̄c. The steady problem for E : D̄c → R is then, via (5.36), (5.37), (6.8)
and (6.9), given by

∇φ̄ · ∇E − αE ∇2(H(E)) = 0, r ∈ Dc, (6.15)

with

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for |∇hφ̄|2 < 1/γ,
1

γ |∇hφ̄|2 , for 1/γ ≤ |∇hφ̄|2 ≤ 1/(γEs),

Es, for |∇hφ̄|2 > 1/(γEs),

z = 0, rh ∈ R
2, t > 0, (6.16)
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D.J. Needham and S. Langdon

and
∇E · N̂ = 0, r ∈ ∂C, (6.17)

E → 1 as |r| → ∞ uniformly in D̄c. (6.18)

We now observe that φ̄ : D̄c → R, as given in (6.14) and (6.5), is such that

∇φ̄(R, z) = a(R, z) R̂ + Ω

2πR
θ̂ + b(R, z)k (6.19)

for r ∈ D̄c, with

a(R, z) = 3R
4π

[
z + zd

(R2 + (z + zd)2)5/2
− z − zd

(R2 + (z − zd)2)5/2

]
, (6.20)

b(R, z) = 3
4π

[
(z + zd)

2

(R2 + (z + zd)2)5/2
− (z − zd)

2

(R2 + (z − zd)2)5/2

]

+ 1
4π

[
1

(R2 + (z − zd)2)3/2
− 1
(R2 + (z + zd)2)3/2

]
. (6.21)

Thus via (6.19)–(6.21), we have

|∇hφ̄(R, 0)|2 = 9z2
dR2

4π2(R2 + z2
d)

5
+ Ω2

4π2R2 , (6.22)

for R > 0. Using (6.22), the problem (6.15)–(6.18) may be rewritten as

∇φ̄ · ∇E − αE ∇2(H(E)) = 0, r ∈ Dc,

E = g(|rh|) on z = 0, rh ∈ R
2,

∇E · N̂ = 0 on r ∈ ∂C,

E → 1 as |r| → ∞ uniformly in D̄c.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.23)

which we henceforth refer to as [BVP]. The function g : [0,∞) → R is continuous and
piecewise smooth, and is given by, via (6.16) and (6.22),

g(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Es, for |∇hφ̄(X, 0)|2 > (γEs)
−1,

γ−1

(
9z2

dX2

4π2(X2 + z2
d)

5
+ Ω2

4π2X2

)−1

, for γ−1 ≤ |∇hφ̄(X, 0)|2 ≤ (γEs)
−1,

1, for |∇hφ̄(X, 0)|2 < γ−1.
(6.24)

We note that it is straightforward to refine the far field boundary condition (6.23) in [BVP]
to

E(r) = 1 + O(|r|−2) as |r| → ∞ uniformly in D̄c. (6.25)
On observing that

Es ≤ g(X) ≤ 1 for all X ∈ [0,∞), (6.26)
an application of the strong elliptic maximum principle (see, for example, Gilbarg &
Trudinger 1998, chapter 9) establishes that any solution E : D̄c → R to [BVP] must satisfy
the inequality

Es < E(r) < 1 for all r ∈ Dc. (6.27)
It then follows from (6.27) and (6.25) that [BVP] has a classical unique solution (see, for
example, Gilbarg & Trudinger 1998, chapter 9). An immediate consequence of uniqueness
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A mathematical model for wind-generated particle-fluid flow

z

zd

R

ω
Δ

Δ

0

Figure 6. The domain ω in the (R, z) plane.

for [BVP], together with the rotational symmetry of [BVP] about the z-axis, is that the
solution to [BVP] is axisymmetric in the cylindrical polar coordinates (R, θ, z); that is, if
E : D̄c → R is the solution to [BVP], then E = E(R, z).

A final simplification can be made to [BVP]. In general β̄ : [Es, 1] → R is monotone
decreasing, with β̄(1) = 9/2. In the absence of further information, we will take, as a first
approximation, the simple linear form

β̄(E) = β̄0 − (β̄0 − 9/2)E (6.28)

for E ∈ [Es, 1], with β̄0 > 9/2 a material constant. It then follows, after an integration,
that

H(E) = (β̄0 − 9/2)−1 log(β̄0(β̄0 − (β̄0 − 9/2)(E − Es))
−1) (6.29)

for E ∈ [Es, 1]. We anticipate that, in general, the variation in β̄(E) over E ∈ [Es, 1] will
be small, so we write

β̄0 = 9
2 + δβ0, (6.30)

with 0 < δβ0 � 1, after which (6.29) may be approximated as

H(E) = 2
9(E − Es)+ O(δβ0) (6.31)

as δβ0 → 0 uniformly for E ∈ [Es, 1]. The complete form of [BVP] when written in terms
of the cylindrical polar coordinates (R, θ, z) is presented in Appendix A, and its domain ω
is illustrated in figure 6.

Before proceeding further with [BVP], we must consider the detailed form of g :
[0,∞) → R, as defined in (6.24). First, we examine |∇hφ̄(X, 0)|2 for X ∈ (0,∞), the
form of which depends upon the two parameters Ω and zd. We begin by observing that

|∇hφ̄(X, 0)|2 ∼ Ω2

4π2X2 (6.32)

as X → 0+ and as X → ∞. Recalling (6.22), we have

d
dX

|∇hφ̄(X, 0)|2 = 9X4z2
d(z

2
d − 4X2)−Ω2(X2 + z2

d)
6

2π2X3(X2 + z2
d)

6
, (6.33)

hence |∇hφ̄(X, 0)|2 is strictly monotone decreasing for X ≥ zd/2. For fixed zd > 0, we see
from (6.32) and (6.33) that there is a critical value Ω = Ωc(zd) such that |∇hφ̄(X, 0)|2
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0

(a) (b)

X 0 X

|�hφ̄(X,0)|2 |�hφ̄(X,0)|2

Figure 7. A qualitative sketch of |∇hφ̄(X, 0)|2 against X for (a) Ω > Ωc(zd), and (b) 0 < Ω < Ωc(zd).

will also be strictly monotone decreasing for X ∈ [0, zd/2], unless Ω < Ωc(zd), where

Ωc(zd) = max
X∈[0,zd/2]

f (X), (6.34)

with

f (X) := 3X2zd(z2
d − 4X2)1/2

(X2 + z2
d)

3
, X ∈ [0, zd/2]. (6.35)

We see immediately that f (X) > 0 for X ∈ (0, zd/2), with f (0) = f (zd/2) = 0, and it is
straightforward to calculate

f ′(X) = 36Xzd

(X2 + z2
d)

4(z2
d − 4X2)1/2

⎛
⎝(2z2

d
3

− X2

)2

− 5z4
d

18

⎞
⎠ , (6.36)

hence f ′(X) = 0 if and only if X = 0 (a local minimum) or

X = Xc(zd) :=
√

4 − √
10

6
zd ≈ 0.373658 zd, (6.37)

a local maximum, with f ′(X) > 0 for X ∈ (0,Xc(zd)), and f ′(X) < 0 for
X ∈ (Xc(zd), zd/2). At X = Xc(zd), substitution into (6.35) and a little algebraic
manipulation reveals that

Ωc(zd) = f (Xc(zd)) = 2
5z2

d

√
−505 + 188

√
10

405
≈ 0.188046

z2
d

. (6.38)

We summarize the cases Ω ≥ Ωc(zd) and Ω < Ωc(zd) as follows.

(a) For Ω ≥ Ωc(zd), |∇hφ̄(X, 0)|2 is strictly monotone decreasing in X > 0, and for
Ω > Ωc(zd), it has the qualitative form shown in figure 7(a). If Ω = Ωc(zd), then
there is a point of inflection at X = Xc.

(b) For 0 < Ω < Ωc(zd), |∇hφ̄(X, 0)|2 has a local minimum and a local maximum in
X > 0, and has the qualitative form shown in figure 7(b).
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A mathematical model for wind-generated particle-fluid flow

We can now construct g : [0,∞) → R, via (6.24). We have

g(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Es, X ∈ I1,

γ−1

(
9z2

dX2

4π2(X2 + z2
d)

5
+ Ω2

4π2X2

)−1

, X ∈ I2,

1, X ∈ I3.

(6.39)

In case (a),

I1 = [0,R−
1 ], I2 = (R−

1 ,R+
1 ), I3 = [R+

1 ,∞). (6.40a–c)

However, in case (b), depending upon the choice of zd and Ω , there are four possibilities,
as follows:

(i) I1 = [0,R−
1 ], I2 = (R−

1 ,R+
1 ), I3 = [R+

1 ,∞);
(ii) I1 = [0,R−

1 ], I2 = (R−
1 ,R+

1 ) ∪ (R+
2 ,R+

3 ), I3 = [R+
1 ,R+

2 ] ∪ [R+
3 ,∞);

(iii) I1 = [0,R−
1 ] ∪ [R−

2 ,R−
3 ], I2 = (R−

1 ,R−
2 ) ∪ (R−

3 ,R+
1 ), I3 = [R+

1 ,∞);
(iv) I1 = [0,R−

1 ] ∪ [R−
2 ,R−

3 ], I2 = (R−
1 ,R+

1 ) ∪ (R+
2 ,R−

2 ) ∪ (R−
3 ,R+

3 ), I3 = [R+
1 ,R+

2 ] ∪
[R+

3 ,∞).

Here, R−
i , i = 1, 2, 3, are the consecutive positive zeros of the algebraic equation

|∇hφ̄(X, 0)|2 = (γEs)
−1, (6.41)

whilst R+
i , i = 1, 2, 3, are the consecutive positive zeros of the corresponding algebraic

equation

|∇hφ̄(X, 0)|2 = γ−1. (6.42)

We note that in case (b), with zd, Ω and Es fixed, small values of γ correspond to case (i),
whilst increasing γ moves through cases (ii)–(iv).

In order to understand more precisely for which choices of γ , Es, zd and Ω we will
see each of cases (i)–(iv), we now investigate a little further how the local maximum
and minimum of |∇hφ̄(X, 0)|2 in case (b) depend on zd and Ω . Defining xmax and xmin,
respectively, as the values of X at which the local maximum and minimum of |∇hφ̄(X, 0)|2
are achieved, we see from (6.33), with the change of variables

x̄ =
(

X
zd

)2

, Ω̄ = Ω2z4
d, (6.43a,b)

that x̄max := (xmax/zd)
2 and x̄min := (xmin/zd)

2 are the solutions x̄ ∈ (0, 1/4) of

9x̄2(1 − 4x̄) = Ω̄(1 + x̄6), (6.44)

where if

Ω̄ > Ω̄c := Ω2
c z4

d = 4
25

(
−505 + 188

√
10

405

)
≈ 0.0353613, (6.45)

then (6.44) has no solutions, if Ω̄ = Ω̄c, then (6.44) has one solution at x̄∗ = (4 − √
10)/

6 ≈ 0.139620, and if 0 < Ω̄ < Ω̄c, then (6.44) has precisely two solutions, x̄max and x̄min.
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As Ω̄ → 0, we see that x̄min → 0 and x̄max → 1/4. A little algebraic manipulation then
reveals that

|∇hφ̄(X, 0)|2 = 9x̄(2 − 3x̄)

4π2(1 + x̄)6z6
d

for X = xmax, xmin, (6.46)

where x̄ solves (6.44). From this, we see that

|∇hφ̄(xmin, 0)|2 → 0, |∇hφ̄(xmax, 0)|2 → 576
3125π2z6

d
≈ 0.0186755

z6
d

, as Ω → 0,

(6.47a,b)
and

|∇hφ̄(xmin, 0)|2 = |∇hφ̄(xmax, 0)|2 = 955 + 424
√

10
10125π2z6

d
≈ 0.0229742

z6
d

for Ω = Ωc(zd),

(6.48)
hence the range of possible values of |∇hφ̄(xmin, 0)|2 and |∇hφ̄(xmax, 0)|2 is rather narrow.

We now consider the parameters in [BVP]. There are six dimensionless parameters,
namely, Es, α, γ , Ω , zd and Δ. We can give order of magnitude estimates of these
parameters for the helicopter cloud problem using typical helicopter parameters as
recorded, for example, in the papers by Wachspress et al. (2008), Govindarajan et al.
(2013), Porcù et al. (2020), Tan et al. (2021, 2022a,b), Li et al. (2023) and Lin et al.
(2024), together with the standard properties of air and sand, to approximate l,Ms, γs. The
parameterΔmeasures the ratio of the helicopter rotor core radius to the rotor blade radius,
and typically,Δ ≈ 10−2. The parameter zd measures the ratio of the hovering height of the
helicopter rotor to the rotor blade radius (recall figure 5), and typically, zd ≈ 10−1–101.
For the fluid, the ratio of the hovering helicopter induced swirl velocity to the induced
downwash velocity is measured by Ω , and using typical values extracted from the above
papers, we have Ω ≈ 10−1–100. The parameter Es is the particle packing voidage, and for
sand in air this is typically of magnitude 10−2. The ratio of the lift force per unit volume
to the gravity force per unit volume on particles in the interfacial layer is given by γ ,
and again using the typical values extracted from the above papers, we have γ ≈ 102–103.
Finally, α measures the ratio of particle collisional pressure to drag in the particle flow
phase, and we tentatively estimate, for sand fluidized in air, that α ≈ 10−1. With these
estimates of all dimensionless parameters appearing in [BVP], in the next section we
consider the numerical solution to [BVP].

7. Numerical examples

The accurate and efficient numerical solution of [BVP] requires a degree of non-trivial
consideration, and as such, we present the technical details and assessment in Appendix B,
where we also establish convergence of our numerical scheme (see example B.1). Here, we
now consider how the solution behaviour depends on our parameter choices. In examples
7.1–7.3, we fix

Es = 0.01, α = 0.1, Δ = 0.04, (7.1a–c)

and consider the nine possible combinations of

γ = 1000, 500, 100, Ω = 1, 0.5, 0.1 (7.2a,b)

(with γ = 500,Ω = 0.5, corresponding to example B.1). As described in Appendix B, the
accuracy of our numerical scheme depends on a number of discretization parameters. From
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Figure 8. Boundary data g(X) and |∇hφ̄(X, 0)|2, γ−1 = 0.002 and (γEs)
−1 = 0.2 for γ = 500,Ω = 0.5 and

(a,c) zd = 0.9 (case (a)), and (b,d) zd = 0.5 (case (b)(i)). Note that the dotted line γ−1 = 0.002 almost overlays
the X-axis.

our assessment there of the scheme, we here choose the parameters N = 8, LR = 32N,
Lz = 16N (compared to LR = 12N and Lz = 6N in example B.1), and ε = 1/(10N2), in
order to ensure that the computational domain is large enough that all relevant solution
behaviour will be captured across this wide range of values of γ and Ω . These parameter
choices lead to the total number of degrees of freedom in our numerical solution being
DOF = 2 317 056 for zd = 0.5, DOF = 2 481 536 for zd = 0.9, and DOF = 2 646 016 for
zd = 1.3, for each of examples 7.1–7.3. In each of the figures below, we truncate the
computational domains where appropriate for presentational purposes, noting that the
solution satisfies E ≈ 1 everywhere outside the plotted range – note that all plots are over
the same range within each figure, but that the plotted range varies for examples 7.1–7.3
(R ∈ [0, 6], z ∈ [0, 5] for example 7.1; R ∈ [0, 5], z ∈ [0, 4] for example 7.2; R ∈ [0, 3],
z ∈ [0, 2] for example 7.3), though the computational domain for any given value of zd is
identical for each example.

For each combination of γ and Ω , we choose zd = 1.3, zd = 0.9 and zd = 0.5,
representing the helicopter landing on the bed of sand (recall figure 5). Recalling (6.38),
the critical value Ωc of Ω that determines whether the boundary data is in case (a) or
case (b), as shown in figure 7, depends only on zd, and for the three choices of zd considered
here, we have

Ωc(0.5) ≈ 0.7522, Ωc(0.9) ≈ 0.2322, Ωc(1.3) ≈ 0.1113. (7.3a–c)

For all parameter choices in examples 7.1 and 7.2, and all in examples 7.3 except one
(detailed below), we are in either case (a) or case (b)(i). This is illustrated for the
case γ = 500, Ω = 0.5, and zd = 0.9 or zd = 0.5 (as in example B.1) in figure 8: for
zd = 0.9, Ω = 0.5 > Ωc(0.9), hence case (a) holds; for zd = 0.5, Ω = 0.5 < Ωc(0.5),
hence case (b) holds – however, in this case, both the local maximum and the local
minimum take values greater than (γEs)

−1 and γ−1, hence case (b)(i) holds. The boundary
data g (shown in figures 8c,d) is qualitatively comparable in each of these cases.

Finally, we note that our expectation, from the physical interpretation of the parameters,
is that there will be more sand in the air for large γ , since large γ means that lift dominates
gravity in the lifting layer (recalling that γ is the ratio of the lift force per unit volume to
the gravity force per unit volume on particles in the interfacial layer), so that larger γ
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Figure 9. Voidage field E, example 7.1, plotted for γ = 1000 and (a,d,g) Ω = 1, (b,e,h) Ω = 0.5, and
(c, f,i)Ω = 0.1, each for (a–c) zd = 1.3, (d–f ) zd = 0.9, and (g–i) zd = 0.5. In each plot, R ∈ [0, 6], z ∈ [0, 5].

corresponds to more sand being entrained into the fluidized region. We recall also that
Ω measures the ratio of the swirl velocity to the downdraught velocity, and recalling the
definition of g in (6.24), we expect that this will also lead to more sand being entrained
into the air for large Ω .

EXAMPLE 7.1 (Large γ ). We first consider γ = 1000. We plot the voidage field E for
Ω = 1 in figures 9(a,d,g), for Ω = 0.5 in figures 9(b,e,h), and for Ω = 0.1 in
figures 9(c, f,i), each for zd = 1.3 (figures 9a–c), zd = 0.9 (figures 9d–f ) and zd = 0.5
(figures 9g–i). We see more sand in the air (lower values of E) corresponding to larger
values of Ω , and to lower values of zd. For Ω = 1, and for Ω = 0.5 and zd = 0.9, 1.3,
the boundary data fits case (a) and is qualitatively comparable to that seen in figure 8c.
For Ω = 0.1, and for Ω = 0.5 and zd = 0.5, the boundary data fits case (b)(i) and is
qualitatively comparable to that seen in figure 8d. In either case, this tallies with the single
plume that we see rising up around the helicopter as zd decreases.

EXAMPLE 7.2 (Medium γ ). Next, we consider γ = 500. We plot the voidage field E for
Ω = 1 in figures 10(a,d,g), for Ω = 0.5 in figures 10(b,e,h), and for Ω = 0.1 in
figures 10(c, f,i), each for zd = 1.3 (figures 10a–c), zd = 0.9 (figures 10d–f ) and zd = 0.5
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Figure 10. Voidage field E, example 7.2, plotted for γ = 500 and (a,d,g) Ω = 1, (b,e,h) Ω = 0.5 and
(c, f,i) Ω = 0.1, each for (a–c) zd = 1.3, (d–f ) zd = 0.9 and (g–i) zd = 0.5. In each plot, R ∈ [0, 5], z ∈ [0, 4].

(figures 10g–i). Again, we see more sand in the air (lower values of E) corresponding to
larger values of Ω , and to lower values of zd. Comparing to figure 9, we see less sand
in the air for the lower value of γ . Note that the plotted range is smaller in figure 10
than in figure 9, though the computational domain is identical. Exactly as for example 7.1,
for Ω = 1, and for Ω = 0.5 and zd = 0.9, 1.3, the boundary data fits case (a), whilst for
Ω = 0.1, and for Ω = 0.5 and zd = 0.5, the boundary data fits case (b)(i), with similar
qualitative solution behaviour.

EXAMPLE 7.3 (Small γ ). Next, we consider γ = 100. We plot the voidage field E for
Ω = 1 in figures 11(a,d,g), for Ω = 0.5 in figures 11(b,e,h) and for Ω = 0.1 in
figures 11(c, f,i), each for zd = 1.3 (figures 11a–c), zd = 0.9 (figures 11d–f ) and zd = 0.5
(figures 11g–i). Again, we see more sand in the air (lower values of E) corresponding to
larger values of Ω , and to lower values of zd. Comparing to figures 9 and 10, we see less
sand in the air for the lower value of γ . Note that the plotted range is smaller in figure 11
than in both figures 10 and 9, though the computational domain is identical in each case.
As for examples 7.1 and 7.2, for Ω = 1, and for Ω = 0.5 and zd = 0.9, 1.3, the boundary
data fits case (a), whilst for Ω = 0.5 and zd = 0.5, and for Ω = 0.1 and zd = 0.9, 1.3,
the boundary data fits case (b)(i), with similar qualitative solution behaviour. However,
for Ω = 0.1 and zd = 0.5, we are now in case (b)(iii), as illustrated in figure 12. In this
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Figure 11. Voidage field E, example 7.3, plotted for γ = 100 and (a,d,g) Ω = 1, (b,e,h) Ω = 0.5 and
(c, f,i) Ω = 0.1, each for (a–c) zd = 1.3, (d–f ) zd = 0.9 and (g–i) zd = 0.5. In each plot, R ∈ [0, 3], z ∈ [0, 2].

case, we see that the local maximum is greater than (γEs)
−1, whilst the local minimum

is less than (γEs)
−1. As a result, the boundary data g has a small hump near X ≈ 0.05,

though it is hard to see any discernible effect from this on the qualitative solution behaviour
(figure 11i).

EXAMPLE 7.4 (Two-plume example). In our final example, we choose

Es = 0.01, Δ = 0.04, γ = 70, Ω = 0.1, (7.4a–d)

with first α = 0.1 (as above), and then α = 0.02. Our choice of γ = 70 is smaller than in
examples 7.1–7.3, hence γ−1 is larger, enabling us to demonstrate case (b)(ii) (recalling
figure 7), which provides new and qualitatively different phenomena in the solution
behaviour compared to that seen in examples 7.1–7.3.

Here, we will start with zd = 1.1, and gradually reduce it, with the transition between
cases (b)(i) and (b)(ii) being rather sensitive to the choice of zd, for zd ∈ [0.9, 1.1]. This
is illustrated in figure 13, where we plot |∇hφ̄(X, 0)|2, the value γ−1 and the boundary
data g for a range of values of zd. We see that for zd = 1.1, the local maximum is below
γ−1 (case (b)(i)). As zd decreases, the local maximum becomes greater than γ−1, causing
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Figure 12. Boundary data g(X) and |∇hφ̄(X, 0)|2, γ−1 = 0.01 and (γEs)
−1 = 1 for Ω = 0.1, zd = 0.5,

example 7.3. Note that the dotted line γ−1 = 0.01 almost overlays the X-axis.

a dip in the boundary data, where g < 1 between two regions where g = 1 (case (b)(ii)).
As zd decreases further, to zd = 0.98 and below, the local minimum rises above γ−1, and
we return to case (b)(i). The presence of two separated regions where g = 1 drives the
formation of a qualitatively new phenomenon, compared to examples 7.1–7.3, namely a
second ‘plume’.

Specifically, for zd = 1.1, we see a single concentration of sand below the helicopter.
As the helicopter descends to zd = 1.05, a second concentration of sand forms; as
the helicopter descends further, this second concentration grows and starts to form a
second ‘plume’ (compared to the single plume that we saw in examples 7.1–7.3), until at
approximately zd = 1.0, the two concentrations of sand merge, forming a single plume
again. This behaviour is illustrated for α = 0.1 in figure 14. All experiments in this
example were carried out with N = 8, and with LR = 16N, Lz = 8N (lower values than
for examples 7.1–7.3, with the key phenomena more localized near the origin), and again
ε = 1/(10N2). As for the examples above, we again truncate the computational domains
for presentational purposes, noting that the solution satisfies E ≈ 1 outside the plotted
range.

Finally, we repeat the same experiment with α = 0.02 instead of α = 0.1. This smaller
value of α, compared to all other examples above, represents the case where convection
is dominating more than diffusion, and we see in figure 15 that this leads to a ‘wispier’
(thinner) plume, compared to the earlier examples. Again, we see the formation of a second
‘plume’, for the same reasons as explained above for the case α = 0.1.

8. Conclusion

In this paper, we have developed a model for the formulation and analysis of problems
relating to the flow of an incompressible fluid above an otherwise static particle bed, and
the consequent development and evolution of a fluidized particle cloud in the fluid flow.
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Figure 13. Boundary data g(X), and |∇hφ̄(X, 0)|2, γ−1 = 1/70, example 7.4, plotted for
zd = 1.1, 1.05, 1.02, 1.0, 0.98, 0.95, 0.9, 0.8. For zd = 1.0, 1.02, 1.05, we are in case (b)(ii); for all
other values of zd , we are in case (b)(i). The line (γEs)

−1 = 0.7 is not shown on the plot.
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Figure 14. Voidage field E, example 7.4, α = 0.1, zd ∈ [0.4, 1.1].

With the flow in the bulk fluidized region modelled as a two-phase flow, the principal
contribution of the paper has been to develop a rational theory for the key processes of
particle entrainment and detrainment from the otherwise static particle bed into the fully
fluidized region above. This leads to a natural additional macroscopic boundary condition
at the interface of the fully fluidized region and the particle bed, which renders a closed
problem in the fully fluidized region, for the voidage field and a fluid velocity potential.

To illustrate the applicability of this theory, we have formulated it in relation to a
simple model of the helicopter cloud problem, leading to a fully determined nonlinear
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Figure 15. Voidage field E, example 7.4, α = 0.02, zd ∈ [0.4, 1.1].

elliptic boundary value problem for the voidage field throughout the fluidized region.
This provides a rational and efficient approach to computing the voidage field for this
application. Careful numerical solution via a finite-difference approximation scheme
has demonstrated through a series of experiments how the qualitative behaviour of the
voidage field varies as key parameters change, in a way that is entirely consistent with
our understanding of the underlying physical processes. It may be of interest to look at
this example in relation to controlled scale model experiments in order to specifically
determine the qualitative and quantitative accuracy of the rational model that has been
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developed in this paper, but such considerations are left to future work. However, we do
note that qualitative structural agreement between the high-speed photography presented
in Rovere (2022), and particularly relating to figure 2.6 therein, and the theoretical figures
presented here in § 7, is very encouraging.
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Appendix A. The problem [BVP] in cylindrical polar coordinates (R, θ, z)

On adopting (6.31), the problem [BVP] becomes, in terms of the cylindrical polar
coordinates (R, θ, z),

E
(

ERR + 1
R

ER + Ezz

)
− ā(R, z)ER − b̄(R, z)Ez = 0, (R, z) ∈ ω, (A1)

E = g(R) on z = 0, R ≥ 0, (A2)

ER = 0 on
{

R = 0, z ∈ (0, z−
d ) ∪ (z+

d ,∞),

R = Δ, z ∈ [z−
d , z+

d ],
(A3)

Ez = 0 on z = z+
d , z−

d , R ∈ (0,Δ), (A4)

E → 1 as (R2 + z2) → ∞ uniformly in ω. (A5)

Here,

ā(R, z) = 9
2α

a(R, z), b̄(R, z) = 9
2α

b(R, z), (A6a,b)

for (R, z) ∈ ω, whilst

z+
d =zd + Δ

2
, z−

d =zd − Δ

2
, (A7a,b)

and

ω = {(R, z) : z > 0, R > 0} \ {(R, z) : z−
d ≤z ≤ z+

d , 0 < R ≤ Δ}. (A8)

Appendix B. The numerical method, convergence and error estimates

To solve the nonlinear boundary value problem [BVP] given by (A1)–(A5), we proceed in
an iterative fashion. First, we set

E(0) = 1 for all (R, z) ∈ ω. (B1)
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Then for n ≥ 1, we choose a tolerance level ε, and seek E(n) solving

E(n−1)
(

E(n)RR + 1
R

E(n)R + E(n)zz

)
− ā(R, z)E(n)R − b̄(R, z)E(n)z = 0, (R, z) ∈ ω, (B2)

E(n) = g(R) on z = 0, R ≥ 0, (B3)

E(n)R = 0 on
{

R = 0, z ∈ (0, z−
d ) ∪ (z+

d ,∞),

R = Δ, z ∈ [z−
d , z+

d ],
(B4)

E(n)z = 0 on z = z+
d , z−

d , R ∈ (0,Δ), (B5)

E(n) → 1 as (R2 + z2) → ∞ uniformly in ω. (B6)

We continue until we have

max
(R,z)∈ω

|E(n) − E(n−1)| < ε. (B7)

Given E(n−1), we solve the linear [BVP] (B2)–(B6) for E(n) numerically, using a
finite-difference approximation scheme.

We begin by truncating the unbounded domain ω. We choose truncation parameters
LR, Lz ≥ 1, and truncate ω at R = R∞ := (LR + 1)Δ and at z = z∞ := zd + (Lz + 1/2)Δ,
i.e. R∞ is LRΔ to the right of R = Δ, and z∞ is LzΔ above z = z+

d , so that the truncated
domain is

ωL := {(R, z) : z ∈ (0, z∞), R ∈ (0,R∞)} \ {(R, z) : z−
d ≤z ≤ z+

d , 0 < R ≤ Δ}. (B8)

To discretize the domain ωL, we choose a discretization parameter N ≥ 1, and set the mesh
size h := Δ/N. This allows for a uniform mesh, in both R and z directions, for z > z−

d . For
z ≤ z−

d , in order to ensure that our mesh aligns with the boundaries of ωL, we choose
Nz ∈ Z to be the smallest integer such that

Nz ≥ N
(

zd

Δ
− 1

2

)
, (B9)

and set the mesh size hz := z−
d /Nz ≤ h, with equality (i.e. hz = h, and hence a uniform

mesh throughout ωL) if N(zd/Δ− 1/2) ∈ Z, since in that case,

hz = z−
d

N(zd/Δ− 1/2)
= z−

d h
Δ(zd/Δ− 1/2)

= h. (B10)

The mesh that we use for our finite-difference scheme then consists of the points (xi, yj) ∩
ωL, where

xi := ih, i = 0, . . . ,N(LR + 1)− 1, (B11)

and

yj :=
{

jhz, j = 1, . . . ,Nz,

z−
d +( j − Nz)h, j = Nz + 1, . . . ,Nz + N(Lz + 1)− 1.

(B12)

We approximate the solution E(n) of (B2)–(B6) at the mesh points (xi, yj) ∩ ωL by EN ,
where

Ei,j := EN(xi, yj) ≈ E(n)(xi, yj). (B13)

The mesh points (xi, yj), i = 0, . . . ,N − 1, j = Nz + 1, . . . ,Nz + N, are excluded from
our computational domain, as they lie outside ωL, hence the total number of degrees of
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freedom in our numerical solution is given by

DOF := N(Nz(LR + 1)+ (N − 1)LR + NLz(LR + 1)). (B14)

At the boundary z = 0, recalling (B3), we set

Ei,0 := g(xi), i = 0, . . . ,N(LR + 1)− 1. (B15)

At the boundary R = R∞, recalling (B6), we set

EN(LR+1),j = 1, j = 1, . . . ,Nz + N(Lz + 1)− 1, (B16)

and at the boundary z = z∞, again recalling (B6), we set

Ei,Nz+N(Lz+1) = 1, i = 0, . . . ,N(LR + 1)− 1. (B17)

We next approximate the R derivatives in (B2) and the boundary condition (B4). Away
from the boundaries of ωL, we approximate the second-order derivative in the R-direction
to O(h2) accuracy by

E(n)RR(xi, yj) ≈ Ei+1,j − 2Ei,j + Ei−1,j

h2 , (B18)

and we approximate the first-order derivative in the R-direction to O(h2) accuracy by

E(n)R (xi, yj) ≈ Ei+1,j − Ei−1,j

2h
. (B19)

On the left boundary of ωL, i.e. at the points

(x0, yj), j = 1, . . . ,Nz,

(xN, yj), j = Nz + 1, . . . ,Nz + N,

(x0, yj), j = Nz + N + 1, . . . ,Nz + N(Lz + 1)− 1,

⎫⎪⎬
⎪⎭ (B20)

the boundary condition (B4) implies, using again the approximation (B19),

E−1,j = E1,j, j = 1, . . . ,Nz,

EN−1,j = EN+1,j, j = Nz + 1, . . . ,Nz + N,

E−1,j = E1,j, j = Nz + N + 1, . . . ,Nz + N(Lz + 1)− 1.

⎫⎪⎪⎬
⎪⎪⎭ (B21)

These values are inserted into (B18) near the boundaries of ωL, as required.
Finally, we approximate the z derivatives in (B2) and the boundary condition (B5). We

define

hz,j := yj+1 − yj =
{

hz, j = 1, . . . ,Nz,

h, j = Nz + 1, . . . ,Nz + N(Lz + 1)− 1,
(B22)

and then, away from the boundaries of ωL, and for yj /= z−
d , we approximate the

second-order derivative in the z-direction to O(h2) accuracy (recalling that hz ≤ h) by

E(n)zz (xi, yj) ≈ Ei+1,j − 2Ei,j + Ei−1,j

h2
z,j

, i = 0, . . . ,N(LR + 1)− 1,

j = 1, . . . ,Nz − 1,Nz + 1, . . . ,Nz + N(Lz + 1)− 1.

⎫⎪⎬
⎪⎭ (B23)

For yj = z−
d , i.e. for j = Nz, we need a different formula, to account for the fact that

the mesh spacings above and below yNz are not equal. In this case, we approximate the
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zd N h DOF iterations ‖(EN − E16)/E16‖∞ EOC

0.5 2 2.0 × 10−2 2448 4 4.6 × 100 3.9
4 1.0 × 10−2 28 800 6 3.1 × 10−1 1.0
8 5.0 × 10−3 377 856 9 1.5 × 10−1

16 2.5 × 10−3 5 382 144 11

0.9 2 2.0 × 10−2 3448 4 2.9 × 100 4.1
4 1.0 × 10−2 36 640 6 1.7 × 10−1 1.1
8 5.0 × 10−3 439 936 8 7.7 × 10−2

16 2.5 × 10−3 5 876 224 9

1.3 2 2.0 × 10−2 4448 4 1.9 × 100 4.3
4 1.0 × 10−2 44 480 5 9.6 × 10−2 1.2
8 5.0 × 10−3 502 016 7 4.1 × 10−2

16 2.5 × 10−3 6 370 304 8

Table 1. Convergence of our numerical approximation scheme as N increases, example B.1.

second-order derivative in the z-direction to O(h2) accuracy (this can be shown through
simple Taylor Series expansions) by

E(n)zz (xi, yNz) ≈
(

hz

h2(h + hz)

)
(Ei,Nz+2 − 2Ei,Nz+1)+ 1

h + hz

(
hz

h2 + h
h2

z

)
Ei,Nz

+
(

h
h2

z (h + hz)

)
(−2Ei,Nz−1 + Ei,Nz−2), i = 0, . . . ,N(LR + 1)− 1.

(B24)

Similarly, we approximate the first-order derivative in the z-direction to O(h2) accuracy by

E(n)z (xi, yj) ≈
(

hz,j−1

hz,j(hz,j + hz,j−1)

)
Ei,j+1 −

(
hz,j−1 − hz,j

hz,j−1hz,j

)
Ei,j

−
(

hz,j

hz,j−1(hz,j + hz,j−1)

)
Ei,j−1. (B25)

In the case that j /= Nz, in which case yj /= z−
d , we have hz,j = hz,j−1 in (B25), which then

becomes

E(n)z (xi, yj) ≈

⎧⎪⎪⎨
⎪⎪⎩

Ei,j+1 − Ei,j−1

2hz
, j = 1, . . . ,Nz − 1,

Ei,j+1 − Ei,j−1

2h
, j = Nz + 1, . . . ,Nz + N(Lz + 1)− 1.

(B26)

The formula (B25) is applied on the upper and lower boundaries of ωL to approximate the
boundary condition (B5), in an identical fashion to the approximation of (B4) described
above, with the values attained inserted into the formulae (B23) and (B24) as required.

If we choose LR, Lz ∝ N, then, recalling (6.25), we truncate at R∞, z∞ = O(h−1),
and in (B7) take ε = O(h2). With mesh size h, and each step of our finite-difference
approximation accurate to O(h2), we thus anticipate that as we decrease h, a reasonable
expectation would be that the overall error in our numerical scheme is O(h2). We test this
in the following numerical example.
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Figure 16. Numerical solution EN , zd = 0.9, example B.1, computed for (a) N = 2, (b) N = 4, (c) N = 8 and
(d) N = 16, each shown on the full computational domain. The (e) N = 8 and ( f ) N = 16 solutions are also
plotted over the same range as for the N = 4 solution, for easier comparison.

EXAMPLE B.1 (Numerical convergence). In this example, we choose the dimensionless
parameters as

Es = 0.01, α = 0.1, γ = 500, Ω = 0.5, Δ = 0.04, (B27a–e)

and we consider the three cases zd = 0.5, 0.9, and 1.3 (note that for these values,
(zd/Δ− 1/2) ∈ Z, hence hz = h). We fix LR = 12N and Lz = 6N, take ε = 1/(10N2), and
then successively increase N = 2, 4, 8, 16, to see if our numerical scheme is converging,
taking the solution computed with N = 16 as the reference solution for the purpose of
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Figure 17. Relative error |(EN − E16)/E16| for zd = 0.9, example B.1, computed for (a) N = 2, (b) N = 4,
(c) N = 8. Note the different scales on the colour bars for each plot.

computing errors. We denote the number of iterations required before (B7) is satisfied by
‘iterations’, and we calculate the expected order of convergence (EOC) as

EOC = log2

∣∣∣∣ ‖(EN − E16)/E16‖∞
‖(E2N − E16)/E16‖∞

∣∣∣∣ , (B28)

where, to enable comparison, we compute the relative errors for each value of N at the
mesh points from the example with N = 2, noting that the size of the computational
domain grows as N increases. Under the hypothesis that the overall error in our numerical
scheme is O(h2), we might expect to see EOC ∼ 2 as N increases. Results are shown in
table 1, with the last column having values only where EOC is well-defined.

As N increases, we see the error decrease, but the rate of convergence is somewhat
erratic. To see more clearly how the solution converges, in figure 16 we plot the solution
for zd = 0.9, for N = 2, 4, 8 and 16. These are plotted on the computational domain, which
grows with increasing N. To ease comparison, we additionally plot (on the same figure)
the N = 8 and 16 solutions over the same range as the N = 4 solution. In figure 17, we
plot the relative errors |(EN − E16)/E16|, each over the same range as the N = 2 solution.

For each value of zd, we see broadly comparable results. In each case, for N = 2, the
maximum relative error (as calculated in table 1) is where R is largest and z is smallest
(lower right corner of plot) – this is because the domain is not large enough in this case to
adequately capture the complete boundary data. As we increase N, the maximum relative
error moves closer to the location of the helicopter rotor. The norm that we have used in
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zd N error1 EOC error2 EOC error3 EOC

0.5 2 6.1 × 10−1 1.2 4.1 × 10−1 0.7 2.9 × 10−1 0.9

4 2.7 × 10−1 1.8 2.6 × 10−1 1.5 1.6 × 10−1 1.4
8 7.9 × 10−2 9.3 × 10−2 5.8 × 10−2

0.9 2 1.8 × 10−1 0.3 1.8 × 10−1 0.4 2.4 × 10−1 1.4
4 1.5 × 10−1 1.4 1.4 × 10−1 1.4 8.8 × 10−2 1.3
8 5.8 × 10−2 5.4 × 10−2 3.5 × 10−2

1.3 2 9.2 × 10−2 0.2 9.3 × 10−2 0.5 3.3 × 10−1 2.9
4 7.7 × 10−2 1.2 6.6 × 10−2 1.2 4.4 × 10−2 1.3
8 3.3 × 10−2 2.8 × 10−2 1.8 × 10−2

Table 2. Convergence of our numerical approximation scheme at three fixed points as N increases, example
B.1. Here, errorm = |(EN(xm)− E16(xm))/E16(xm)|, where x1 = (0.2, 0.8), x2 = (0.5, 0.5), x3 = (0.8, 0.2).

table 1 to measure error, namely the maximum pointwise relative error, solely measures
the relative error at the worst point in the domain. To present a more balanced picture of
the effectiveness of our method, illustrating numerically what we have seen qualitatively
in figure 17, in table 2 we focus on three specific points in the domain, to see how our
numerical solution converges at those points. The values of h, DOF and iterations are the
same in tables 2 and 1.

Though the convergence rate varies somewhat across these examples, we typically see a
relative error of 2 %–10 % for N = 8, with the error (for fixed N) decreasing as zd increases
– this is not surprising, noting (from table 1) that we have more degrees of freedom for
larger zd, with all other discretization parameters fixed. We can see from the results above
the importance of making the computational domain sufficiently large, and of having a
sufficiently fine mesh near the helicopter. The optimal way to achieve this might be through
using a non-uniform mesh, with smaller mesh width nearer the helicopter, and larger mesh
width further away from the helicopter. Noting though that we can achieve sufficiently
accurate results with our fixed mesh approach to demonstrate key qualitative features of
the solution, we leave such considerations to future work.
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