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Integration on complex Grassmannians,
deformed monotone Hurwitz numbers,
and interlacing phenomena∗
Xavier Coulter, Norman Do and Ellena Moskovsky

Abstract. We introduce a family of polynomials, which arise in three distinct ways: in the large 𝑁
expansion of a matrix integral, as a weighted enumeration of factorisations of permutations, and via
the topological recursion. More explicitly, we interpret the complex Grassmannian Gr(𝑀, 𝑁 ) as
the space of 𝑁 × 𝑁 idempotent Hermitian matrices of rank 𝑀 and develop a Weingarten calculus
to integrate products of matrix elements over it. In the regime of large 𝑁 and fixed ratio 𝑀

𝑁
, such

integrals have expansions whose coefficients count factorisations of permutations into monotone
sequences of transpositions, with each sequence weighted by a monomial in 𝑡 = 1 − 𝑁

𝑀
. This gives

rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when 𝑡 = 1.
These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point
recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelm-
ing empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials
whose roots satisfy remarkable interlacing phenomena.
An outcome of our work is the viewpoint that the topological recursion can be used to “topologise”
sequences of polynomials, and we claim that the resulting families of polynomials may possess in-
teresting properties. As a further case study, we consider a weighted enumeration of dessins d’enfant
and conjecture that the resulting polynomials are also real-rooted and satisfy analogous interlacing
properties.

1 Introduction

In this paper, we introduce a family of polynomials, which arise in three distinct ways: in
the large𝑁 expansionof amatrix integral, as aweighted enumerationof factorisations of
permutations, and via the topological recursion. Our construction simultaneously gen-
eralises the Narayana polynomials and the monotone Hurwitz numbers, both of which
have garnered considerable attention in the literature [33, 46]. We prove or conjecture
that the family of polynomials we introduce satisfies a number of remarkable properties
concerning their coefficients and roots, such as symmetry, unimodality, real-rootedness
and interlacing.
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2 X. Coulter, N. Do and E. Moskovsky

Thiswork is inspired by the known relations betweenWeingarten calculus onunitary
groups, Jucys–Murphy elements in the symmetric group algebra, and monotone Hur-
witz numbers [44, 33]. Our starting point is the space of 𝑁 × 𝑁 idempotent Hermitian
matrices of rank 𝑀 , where 𝑀 < 𝑁 . This space admits the following three descriptions,
where 𝐼𝑀 denotes the𝑀×𝑀 identitymatrix and 𝐼𝑀,𝑁 denotes the 𝑁×𝑁 matrixwhose
first 𝑀 diagonal entries are 1 and whose remaining entries are 0.

S(𝑀, 𝑁) = {𝑆 ∈ Mat𝑁×𝑁 (C) | 𝑆2 = 𝑆, 𝑆 = 𝑆∗ and rank(𝑆) = 𝑀}
= {𝑆 = 𝑈∗𝑈 | 𝑈 ∈ Mat𝑀×𝑁 (C) and𝑈𝑈∗ = 𝐼𝑀 }
= {𝑆 = 𝑈𝐼𝑀,𝑁𝑈

∗ | 𝑈 ∈ U(𝑁)}

The unitary group U(𝑁) acts transitively on S(𝑀, 𝑁) by conjugation, thus endowing
it with the structure of a homogeneous space. Since the stabiliser of 𝐼𝑀,𝑁 is U(𝑀) ×
U(𝑁 − 𝑀), we may identify S(𝑀, 𝑁) with the complex Grassmannian Gr(𝑀, 𝑁) �
U(𝑁) /U(𝑀) × U(𝑁 − 𝑀), which parametrises 𝑀-dimensional subspaces of an 𝑁-
dimensional complex vector space.

As a compact homogeneous space, S(𝑀, 𝑁) inherits a normalised U(𝑁)-invariant
Haar measure, which we denote succinctly by d𝑆. For 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁 , define the function
𝑆𝑖 𝑗 : S(𝑀, 𝑁) → C corresponding to amatrix element. Taking our cue from the general
theory of Weingarten calculus, we consider integrals of the form∫

S(𝑀,𝑁 )
𝑆𝑖1 𝑗1𝑆𝑖2 𝑗2 · · · 𝑆𝑖𝑘 𝑗𝑘 d𝑆,

where 1 ⩽ 𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑗1, 𝑗2, . . . , 𝑗𝑘 ⩽ 𝑁 . Our primary goal is to study such matrix
integrals in the regime of large 𝑁 and fixed ratio 𝑀

𝑁
.

In recent decades, Weingarten calculus has developed into a rich theory concerned
with integration on compact groups and related objects, with respect to the Haar meas-
ure [14]. Following the usual paradigm, we define a Weingarten function that takes as
input a permutation 𝜎 ∈ 𝑆𝑘 and outputs the following elementary integral, where our
notation suppresses the dependence on 𝑀 and 𝑁 .

WgS (𝜎) =
∫
S(𝑀,𝑁 )

𝑆1,𝜎 (1)𝑆2,𝜎 (2) · · · 𝑆𝑘,𝜎 (𝑘 ) d𝑆

Modern approaches to Weingarten calculus typically rely on abstract algebraic tools
such as Schur–Weyl duality [12, 15]. These are not as amenable to the current setting as
the ideas rooted in the pioneering work of Weingarten [49] and revisited more recently
by Collins and Matsumoto [13], which we use as inspiration to obtain the following.1

Theorem A (Weingarten calculus)

• Convolution formula (Theorem 2.3)
Arbitrary integrals ofmonomials in thematrix elements ofS(𝑀, 𝑁) reduce to elementary

1This introduction includes only a cursory discussion of our main results and conjectures. The reader is
encouraged to consult the main text for the relevant definitions, precise statements, and further details.

2025/06/17 11:48

https://doi.org/10.4153/S0008414X25101168 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101168


Integration on Complex Grassmannians 3

integrals via the equation∫
S(𝑀,𝑁 )

𝑆𝑖1 𝑗1𝑆𝑖2 𝑗2 · · · 𝑆𝑖𝑘 𝑗𝑘 d𝑆 =
∑︁
𝜎∈𝑆𝑘

𝛿𝑖𝜎 (1) , 𝑗1𝛿𝑖𝜎 (2) , 𝑗2 · · · 𝛿𝑖𝜎 (𝑘) , 𝑗𝑘 WgS (𝜎).

• Orthogonality relations (Theorem 2.4)
For each permutation 𝜎 ∈ 𝑆𝑘 , the Weingarten function satisfies the relation

WgS (𝜎) = − 1
𝑁

𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘)) + 𝛿𝜎 (𝑘 ) ,𝑘
𝑀

𝑁
WgS (𝜎↓)

+ 1
𝑁

𝑘−1∑︁
𝑖=1

𝛿𝜎 (𝑖) ,𝑘WgS ( [𝜎 ◦ (𝑖 𝑘)]↓).

Here, for any permutation 𝜌 ∈ 𝑆𝑘 that fixes 𝑘 , we write 𝜌↓ ∈ 𝑆𝑘−1 to denote the
permutation that agrees with 𝜌 on the set {1, 2, . . . , 𝑘 − 1}.

The orthogonality relations allow for at least two distinct approaches to calculate val-
ues of the Weingarten function. By solving the non-degenerate linear system provided
by the orthogonality relations, one can explicitly obtain values of the Weingarten func-
tion, which are rational functions of𝑀 and 𝑁 . Alternatively, by iteratively and infinitely
applying the orthogonality relations, one obtains the following large 𝑁 expansion for
the Weingarten function, for fixed ratio 𝑀

𝑁
.

Theorem B (Large 𝑁 expansion, Theorem 2.12) For a permutation 𝜎 ∈ 𝑆𝑘 , let ®𝑤𝑡𝑟 (𝜎)
denote the weighted enumeration of tuples τ = (𝜏1, 𝜏2, . . . , 𝜏𝑟 ) of transpositions in 𝑆𝑘 such
that

• 𝜏1𝜏2 · · · 𝜏𝑟 = 𝜎;
• the sequence τ is monotone — that is, if we write 𝜏𝑖 = (𝑎𝑖 𝑏𝑖) with 𝑎𝑖 < 𝑏𝑖 , then
𝑏1 ⩽ 𝑏2 ⩽ · · · ⩽ 𝑏𝑟 ; and

• the weight of τ is 𝑡 | {𝑏1 ,𝑏2 ,...,𝑏𝑟 } | .

The Weingarten function has the following large 𝑁 expansion, for fixed 𝑡 = 1 − 𝑁
𝑀
.

WgS (𝜎) = 1
(1 − 𝑡)𝑘

∞∑︁
𝑟=0

®𝑤𝑡𝑟 (𝜎)
(
−1
𝑁

)𝑟
Monotone Hurwitz numbers count monotone sequences of transpositions with pre-

scribed length and with product of a prescribed cycle type, usually with an additional
transitivity assumption. They are known to arise in the Weingarten calculus for unit-
ary groups and in the large 𝑁 expansion of the HCIZ matrix integral [33]. The theorem
abovemotivates a “deformed” version of themonotoneHurwitz numbers, inwhich each
sequence ((𝑎1 𝑏1), (𝑎2 𝑏2), . . . , (𝑎𝑟 𝑏𝑟 )) of transpositions isweighted by themonomial
𝑡 | {𝑏1 ,𝑏2 ,...,𝑏𝑟 } | . The resulting polynomials in 𝑡 are referred to as deformed monotone Hur-
witz numbers and denoted by ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛). Their precise definition appears in
Definition 3.1 and they are the central objects introduced and studied in the present
work.
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4 X. Coulter, N. Do and E. Moskovsky

The deformed monotone Hurwitz numbers obey various recursions, from which
known results for the usual monotone Hurwitz numbers are recovered when 𝑡 =

1 [32, 18, 9].

Theorem C (Recursions)

• Cut-and-join recursion (Theorem 3.7)
The deformedmonotone Hurwitz numbers can be computed from the base case ®𝐻𝑡0,1 (1) =
1 and the recursion

𝜇1 ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇𝑆) =
𝑛∑︁
𝑖=2

(𝜇1 + 𝜇𝑖) ®𝐻𝑡𝑔,𝑛−1 (𝜇1 + 𝜇𝑖 , 𝜇𝑆\{𝑖})

+ (𝑡 − 1) (𝜇1 − 1) ®𝐻𝑡𝑔,𝑛 (𝜇1 − 1, 𝜇𝑆)

+
∑︁

𝛼+𝛽=𝜇1
𝛼𝛽

[
®𝐻𝑡𝑔−1,𝑛+1 (𝛼, 𝛽, 𝜇𝑆) +

∑︁
𝑔1+𝑔2=𝑔
𝐼1⊔𝐼2=𝑆

®𝐻𝑡
𝑔1 , |𝐼1 |+1 (𝛼, 𝜇𝐼1 ) ®𝐻𝑡

𝑔2 , |𝐼2 |+1 (𝛽, 𝜇𝐼2 )
]
.

• One-point recursion (Theorem 3.12)
The one-point deformed monotone Hurwitz numbers — in other words, those with 𝑛 = 1
— satisfy

𝑑2 ®𝐻𝑡𝑔,1 (𝑑) = (𝑑 − 1) (2𝑑 − 3) (𝑡 + 1) ®𝐻𝑡𝑔,1 (𝑑 − 1)

− (𝑑 − 2) (𝑑 − 3) (𝑡 − 1)2 ®𝐻𝑡𝑔,1 (𝑑 − 2) + 𝑑2 (𝑑 − 1)2 ®𝐻𝑡𝑔−1,1 (𝑑).

• Topological recursion (Theorem 4.1)
The deformed monotone Hurwitz numbers are governed by the topological recursion on
the genus zero spectral curve 𝑥𝑦2 + (𝑡 − 1)𝑥𝑦 − 𝑦 + 1 = 0.

These recursions are all effective and can be used to produce explicit data, some of
which is contained in Appendix A. At the level of coefficients, each deformedmonotone
Hurwitz number is symmetric (the sequence of coefficients is palindromic) and unim-
odal (the sequence of coefficients increases to a point and then decreases). We prove this
in Proposition 3.9 using the cut-and-join recursion and note that these properties are
not immediate from the combinatorial deformation of the deformedmonotoneHurwitz
numbers.

At the level of roots, it appears that the deformed monotone Hurwitz numbers are
real-rooted and that they exhibit interlacing phenomena. Two real-rooted polynomials
are said to interlace if their degrees differ by one and their roots weakly alternate on the
real number line. We have gathered overwhelming numerical evidence to support the
following conjectures.

Conjecture D (Roots)

• Real-rootedness (Conjecture 3.13)
The deformed monotone Hurwitz number ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) is a real-rooted poly-
nomial in 𝑡.
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Integration on Complex Grassmannians 5

• Interlacing (Conjecture 3.14)
The polynomial ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) interlaces each of the 𝑛 polynomials

®𝐻𝑡𝑔,𝑛 (𝜇1+1, 𝜇2, . . . , 𝜇𝑛), ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2+1, . . . , 𝜇𝑛), . . . , ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛+1).

In the case (𝑔, 𝑛) = (0, 1), the deformed monotone Hurwitz numbers recover the
sequence of Narayana polynomials via the equation

(𝜇 + 1) ®𝐻𝑡0,1 (𝜇 + 1) = Nar𝜇 (𝑡) :=
𝜇∑︁
𝑖=1

1
𝜇

(
𝜇

𝑖

) (
𝜇

𝑖 − 1

)
𝑡𝑖 . (1.1)

Thus, we consider the deformed monotone Hurwitz numbers to be a “topological gen-
eralisation” of the Narayana polynomials. We propose the topological recursion as a
mechanism to “topologise” sequences of polynomials more generally. In particular, we
claim that doing so can preserve interesting behaviour in the polynomials, such as sym-
metry, unimodality, real-rootedness, and interlacing properties. This is not only the case
for the deformedmonotone Hurwitz numbers, but we also observe these phenomena in
the weighted enumeration of dessins d’enfant — in other words, bicoloured maps — in
which each black vertex in a dessin d’enfant is assigned a multiplicative weight 𝑡.

Our results concerning integrationon complexGrassmannians anddeformedmono-
tone Hurwitz numbers suggest various avenues for further research. It would be natural
to consider integration on real GrassmanniansGr(𝑀, 𝑁), also in the regime of large 𝑁
with fixed ratio 𝑀

𝑁
, and the first two authors are currently pursuing this line of invest-

igation. Matsumoto considered Weingarten calculus on compact symmetric spaces [39]
and the particular case of the symmetric space AIII bears a strong resemblance to the
present work. It would be interesting to further develop the parallels between these two
settings. The real-rootedness and interlacing conjectures for deformed monotone Hur-
witz numbers (Conjectures 3.13 and 3.14) and theweighted dessin d’enfant enumeration
(Conjecture 4.11) not only require proof, but also invite a deeper exploration of how
common these phenomena might be.

The structure of the paper is as follows.

• In Section 2, we develop the Weingarten calculus for integration over S(𝑀, 𝑁).
This includes a convolution formula (Theorem 2.3) and orthogonality relations
(Theorem 2.4). We use the latter to express the Weingarten function of a per-
mutation as a weighted enumeration of monotone sequences of transpositions
(Theorem 2.12). As a consequence, the Weingarten function can be written suc-
cinctly in terms of Jucys–Murphy elements in the symmetric group algebra
(Proposition 2.14).

• In Section 3, we define the notion of deformed monotone Hurwitz numbers,
which are polynomials in the deformation parameter 𝑡, motivated by the res-
ults of the previous section. We prove “deformed” analogues of existing results
concerning the usual monotone Hurwitz numbers, such as a character formula
(Proposition 3.3), a cut-and-join recursion (Theorem 3.7), and a one-point recur-
sion (Theorem 3.12). It follows from the cut-and-join recursion that the coef-
ficients of deformed monotone Hurwitz numbers are symmetric and unimodal
(Proposition 3.9). On the basis of extensive numerical evidence, we conjecture that
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6 X. Coulter, N. Do and E. Moskovsky

these polynomials are real-rooted (Conjecture 3.13) and that their roots satisfy
remarkable interlacing phenomena (Conjecture 3.14).

• In Section 4, we briefly introduce the topological recursion of Chekhov, Eynard
andOrantin [11, 25] and then use a powerful result of Bychkov, Dunin-Barkowski,
Kazarian and Shadrin [8] to prove that topological recursion on the spectral curve
𝑥𝑦2 + (𝑡 − 1)𝑥𝑦 − 𝑦 + 1 = 0 governs the deformed monotone Hurwitz num-
bers (Theorem 4.1). We propose the topological recursion as a mechanism to
produce topological generalisations of sequences of polynomials with interest-
ing properties. As a case study, we consider the weighted enumeration of dessins
d’enfant — in other words, bicoloured maps — in which each black vertex re-
ceives a multiplicative weight 𝑡. This produces a family of polynomials that also
satisfies a cut-and-join recursion (Proposition 4.8) and the topological recursion
(Theorem 4.10). In analogy with the case of deformed monotone Hurwitz num-
bers studied in the previous section, we conjecture that these polynomials exhibit
real-rootedness and interlacing phenomena (Conjecture 4.11).

2 Weingarten calculus

2.1 Convolution formula and orthogonality relations

Asmentioned in the introduction, the presentwork is concernedwith integration on the
complex Grasmannian Gr(𝑀, 𝑁) for 𝑀 < 𝑁 . We interpret this Grassmannian as the
space of𝑁×𝑁 idempotentHermitianmatrices of rank𝑀 , which admits three equivalent
descriptions as per the following definition.

Definition 2.1. Let 𝐼𝑀 denote the𝑀 ×𝑀 identity matrix and 𝐼𝑀,𝑁 denote the 𝑁 ×𝑁
matrix whose first 𝑀 diagonal entries are 1 and whose remaining entries are 0. For
𝑀 < 𝑁 , define the space

S(𝑀, 𝑁) = {𝑆 ∈ Mat𝑁×𝑁 (C) | 𝑆2 = 𝑆, 𝑆 = 𝑆∗ and rank(𝑆) = 𝑀}
= {𝑆 = 𝑈∗𝑈 | 𝑈 ∈ Mat𝑀×𝑁 (C) and𝑈𝑈∗ = 𝐼𝑀 }
= {𝑆 = 𝑈𝐼𝑀,𝑁𝑈

∗ | 𝑈 ∈ U(𝑁)}.

The unitary group U(𝑁) acts transitively on S(𝑀, 𝑁) by conjugation, thus endow-
ing it with the structure of a compact homogeneous space. Thus, the Haar measure on
U(𝑁) induces a U(𝑁)-invariant normalised Haar measure on S(𝑀, 𝑁), which we de-
note succinctly by d𝑆. (See [16] for an introduction to Haar measures.) The fact that the
stabiliser of 𝐼𝑀,𝑁 ∈ S(𝑀, 𝑁) isU(𝑀) ×U(𝑁 −𝑀) allows us to identify S(𝑀, 𝑁) with
the complex Grassmannian Gr(𝑀, 𝑁) � U(𝑁) /U(𝑀) × U(𝑁 − 𝑀).

For 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁 , define the function 𝑆𝑖 𝑗 : S(𝑀, 𝑁) → C corresponding to the
(𝑖, 𝑗) matrix element. Our primary goal is to calculate integrals of the form∫

S(𝑀,𝑁 )
𝑆𝑖1 𝑗1𝑆𝑖2 𝑗2 · · · 𝑆𝑖𝑘 𝑗𝑘 d𝑆,

where 1 ⩽ 𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑗1, 𝑗2, . . . , 𝑗𝑘 ⩽ 𝑁 . We impose the technical assumption that
𝑘 ⩽ 𝑁 for future convenience. However, this assumption has little bearing on our work,
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Integration on Complex Grassmannians 7

sincewewill study thesematrix integrals in the regime of large𝑁 and fixed ratio 𝑀
𝑁
. The

following elementary integrals will be of particular importance.

Definition 2.2 (Weingarten function). For each permutation 𝜎 ∈ 𝑆𝑘 , define the
integral

WgS (𝜎) =
∫
S(𝑀,𝑁 )

𝑆1,𝜎 (1)𝑆2,𝜎 (2) · · · 𝑆𝑘,𝜎 (𝑘 ) d𝑆.

We refer to the functionWgS : 𝑆0 ⊔ 𝑆1 ⊔ 𝑆2 ⊔ · · · → C as theWeingarten function for
S(𝑀, 𝑁). Here, we include the symmetric group 𝑆0, whose unique element is denoted
( ) and represents the empty permutation. In the notation for the Weingarten function,
we suppress the dependence on 𝑀 and 𝑁 to avoid clutter.

The setup described above sits firmly in the realm of Weingarten calculus, which
is broadly concerned with the calculation of integrals on compact groups and related
objects with respect to the Haar measure [14]. Modern accounts of Weingarten calcu-
lus often rely on elegant algebraic approaches via Schur–Weyl duality [12, 15]. A direct
use of such an argument is not immediately available for the case of integration over
S(𝑀, 𝑁). We instead follow the approach via orthogonality relations utilised by Collins
and Matsumoto [13], which is in turn inspired by the ideas contained in the seminal
paper of Weingarten [49].

In the remainder of this section, we develop the Weingarten calculus for integration
on S(𝑀, 𝑁) in three parts. First, we prove a convolution formula that reduces general
integrals of monomials in the matrix elements to the elementary ones defined in Defin-
ition 2.2. Second, we prove so-called orthogonality relations that completely determine
all values of theWeingarten function. Third,we solve the linear systemprovided by these
orthogonality relations, which connects naturally to the representation theory of the
symmetric groups, particularly to the Jucys–Murphy elements in the symmetric group
algebra.

Theorem 2.3 (Convolution formula) Arbitrary integrals of monomials in the matrix ele-
ments of S(𝑀, 𝑁) reduce to elementary integrals via the equation∫

S(𝑀,𝑁 )
𝑆𝑖1 𝑗1𝑆𝑖2 𝑗2 · · · 𝑆𝑖𝑘 𝑗𝑘 d𝑆 =

∑︁
𝜎∈𝑆𝑘

𝛿𝑖𝜎 (1) , 𝑗1𝛿𝑖𝜎 (2) , 𝑗2 · · · 𝛿𝑖𝜎 (𝑘) , 𝑗𝑘 WgS (𝜎).

Proof Write 𝑆 ∈ S(𝑀, 𝑁) in the form 𝑆 = 𝑈𝐼𝑀,𝑁𝑈
∗ for𝑈 ∈ U(𝑁). Then the two

sides of the desired equation can be equivalently expressed as integrals overU(𝑁).

LHS =

𝑁∑︁
𝑚1 ,...,𝑚𝑘=1

( 𝑘∏
𝑖=1

[
𝐼𝑀,𝑁

]
𝑚𝑖𝑚𝑖

) ∫
U(𝑁 )

𝑈𝑖1𝑚1 · · ·𝑈𝑖𝑘𝑚𝑘
𝑈∗
𝑚1 𝑗1

· · ·𝑈∗
𝑚𝑘 𝑗𝑘

d𝑈

RHS =
∑︁
𝜎∈𝑆𝑘

( 𝑘∏
𝑎=1

𝛿𝑖𝜎 (𝑎) , 𝑗𝑎

) 𝑁∑︁
𝑚1 ,...,𝑚𝑘=1

( 𝑘∏
𝑖=1

[
𝐼𝑀,𝑁

]
𝑚𝑖𝑚𝑖

)
∫
U(𝑁 )

𝑈1𝑚1 · · ·𝑈𝑘𝑚𝑘
𝑈∗
𝑚1 ,𝜎 (1) · · ·𝑈

∗
𝑚𝑘 ,𝜎 (𝑘 ) d𝑈
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8 X. Coulter, N. Do and E. Moskovsky

Thus, the result would follow from the equation∫
U(𝑁 )

𝑈𝑖1𝑚1 · · ·𝑈𝑖𝑘𝑚𝑘
𝑈∗
𝑚1 𝑗1

· · ·𝑈∗
𝑚𝑘 𝑗𝑘

d𝑈

=
∑︁
𝜎∈𝑆𝑘

𝛿𝑖𝜎 (1) , 𝑗1 · · · 𝛿𝑖𝜎 (𝑘) , 𝑗𝑘

∫
U(𝑁 )

𝑈1𝑚1 · · ·𝑈𝑘𝑚𝑘
𝑈∗
𝑚1 ,𝜎 (1) · · ·𝑈

∗
𝑚𝑘 ,𝜎 (𝑘 ) d𝑈.

However, this is a direct consequence of applying the convolution formula forU(𝑁) [15,
Corollary 2.4] to both sides. ■

The following orthogonality relations forWgS are inspired by the orthogonality rela-
tions obtained by Collins andMatsumoto in other settings forWeingarten calculus [13].
The proof crucially relies on the convolution formula of Theorem 2.3. For future refer-
ence, observe that we use the notational convention of composing permutations from
right to left.

Theorem 2.4 (Orthogonality relations) For each permutation 𝜎 ∈ 𝑆𝑘 , the Weingarten
function satisfies the relation

WgS (𝜎) = − 1
𝑁

𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘)) + 𝛿𝜎 (𝑘 ) ,𝑘
𝑀

𝑁
WgS (𝜎↓)

+ 1
𝑁

𝑘−1∑︁
𝑖=1

𝛿𝜎 (𝑖) ,𝑘WgS ( [𝜎 ◦ (𝑖 𝑘)]↓).

Here, for any permutation 𝜌 ∈ 𝑆𝑘 that fixes 𝑘 , we write 𝜌↓ ∈ 𝑆𝑘−1 to denote the permutation
that agrees with 𝜌 on the set {1, 2, . . . , 𝑘 − 1}.

Proof Let 𝜎 ∈ 𝑆𝑘 and consider the cases 𝜎(𝑘) = 𝑘 and 𝜎(𝑘) ≠ 𝑘 separately.
Case 1. Suppose 𝜎(𝑘) = 𝑘 .

Consider the integral

𝑁∑︁
𝑖=1

∫
S(𝑀,𝑁 )

𝑆1,𝜎 (1)𝑆2,𝜎 (2) · · · 𝑆𝑘−1,𝜎 (𝑘−1)𝑆𝑖,𝑖 d𝑆. (∗)

On the one hand, we can use
∑𝑁
𝑖=1 𝑆𝑖𝑖 = Tr(𝑆) = Tr(𝑈𝐼𝑀,𝑁𝑈∗) = Tr(𝐼𝑀,𝑁 ) = 𝑀 and

the definition ofWgS to express the integral as 𝑀WgS (𝜎↓). On the other hand, we can
apply the convolution formula directly to each summand. For the 𝑖th summand, where
1 ⩽ 𝑖 < 𝑘 , the convolution formula yields∫

S(𝑀,𝑁 )
𝑆1,𝜎 (1) · · · 𝑆𝑖,𝜎 (𝑖) · · · 𝑆𝑘−1,𝜎 (𝑘−1)𝑆𝑖,𝑖 d𝑆 = WgS (𝜎) +WgS (𝜎 ◦ (𝑖 𝑘)).

For the 𝑖th summand, where 𝑘 ⩽ 𝑖 ⩽ 𝑁 , the convolution formula yields∫
S(𝑀,𝑁 )

𝑆1,𝜎 (1)𝑆2,𝜎 (2) · · · 𝑆𝑘−1,𝜎 (𝑘−1)𝑆𝑖,𝑖 d𝑆 = WgS (𝜎).
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Integration on Complex Grassmannians 9

Adding these contributions over 𝑖 = 1, 2, . . . , 𝑁 and equating with the expression we
previously obtained for the integral (∗) leads to

𝑀WgS (𝜎↓) = 𝑁WgS (𝜎) +
𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘))

⇒ WgS (𝜎) = − 1
𝑁

𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘)) + 𝑀
𝑁

WgS (𝜎↓). (2.1)

Case 2. Suppose 𝜎(𝑘) ≠ 𝑘 .
Let 𝑗 = 𝜎−1 (𝑘) and consider the integral

𝑁∑︁
𝑖=1

∫
S(𝑀,𝑁 )

(
𝑆1,𝜎 (1) · · · 𝑆 𝑗−1,𝜎 ( 𝑗−1)

)
𝑆 𝑗 ,𝑖

(
𝑆 𝑗+1,𝜎 ( 𝑗+1) · · · 𝑆𝑘−1,𝜎 (𝑘−1)

)
𝑆𝑖,𝜎 (𝑘 ) d𝑆.

(∗∗)
On the one hand, we have 𝑆2 = 𝑆 for all 𝑆 ∈ S(𝑀, 𝑁), so it follows that∑𝑁
𝑖=1 𝑆 𝑗 ,𝑖𝑆𝑖,𝜎 (𝑘 ) = 𝑆 𝑗 ,𝜎 (𝑘 ) . Combining this observation with the convolution formula

allows us to express the integral as follows.∫
S(𝑀,𝑁 )

𝑆1,𝜎 (1) · · · 𝑆 𝑗−1,𝜎 ( 𝑗−1)𝑆 𝑗 ,𝜎 (𝑘 )𝑆 𝑗+1,𝜎 ( 𝑗+1) · · · 𝑆𝑘−1,𝜎 (𝑘−1) d𝑆 = WgS ( [𝜎 ◦ ( 𝑗 𝑘)]↓)

On the other hand, we can apply the convolution formula directly to each summand,
resulting in a calculation analogous to that of Case 1. For the 𝑖th summand, where 1 ⩽
𝑖 < 𝑘 , the convolution formula yields∫

S(𝑀,𝑁 )

(
𝑆1,𝜎 (1) · · · 𝑆 𝑗−1,𝜎 ( 𝑗−1)

)
𝑆 𝑗 ,𝑖

(
𝑆 𝑗+1,𝜎 ( 𝑗+1) · · · 𝑆𝑘−1,𝜎 (𝑘−1)

)
𝑆𝑖,𝜎 (𝑘 ) d𝑆

= WgS (𝜎) +WgS (𝜎 ◦ (𝑖 𝑘)).

For the 𝑖th summand, where 𝑘 ⩽ 𝑖 ⩽ 𝑁 , the convolution formula yields∫
S(𝑀,𝑁 )

(
𝑆1,𝜎 (1) · · · 𝑆 𝑗−1,𝜎 ( 𝑗−1)

)
𝑆 𝑗 ,𝑖

(
𝑆 𝑗+1,𝜎 ( 𝑗+1) · · · 𝑆𝑘−1,𝜎 (𝑘−1)

)
𝑆𝑖,𝜎 (𝑘 ) d𝑆 = WgS (𝜎).

Adding these contributions over 𝑖 = 1, 2, . . . , 𝑁 and equating with the expression we
previously obtained for the integral (∗∗) leads to

WgS ( [𝜎 ◦ ( 𝑗 𝑘)]↓) = 𝑁WgS (𝜎) +
𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘))

⇒ WgS (𝜎) = − 1
𝑁

𝑘−1∑︁
𝑖=1

WgS (𝜎 ◦ (𝑖 𝑘)) + 1
𝑁

WgS ( [𝜎 ◦ ( 𝑗 𝑘)]↓). (2.2)

Finally, the desired result is obtained by writing the two expressions for WgS (𝜎)
obtained in equations (2.1) and (2.2) from the two separate cases in one formula, making
use of the Kronecker delta notation. ■
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10 X. Coulter, N. Do and E. Moskovsky

The orthogonality relations provide a non-degenerate linear systemof equations that
uniquely determines the Weingarten function. The example below shows that values of
theWeingarten function can be computed explicitly and are rational functions of𝑀 and
𝑁 .

Example 2.5. By the orthogonality relations of Theorem 2.4 and the conjugacy invari-
ance ofWgS, we obtain the following equations.

WgS ((1) (2) (3)) = − 1
𝑁

[
WgS ((1 3) (2)) +WgS ((2 3) (1))

]
+ 𝑀
𝑁

WgS ((1) (2))

= − 2
𝑁

WgS ((1 2) (3)) + 𝑀
𝑁

WgS ((1) (2))

WgS ((1 2) (3)) = − 1
𝑁

[
WgS ((1 3 2)) +WgS ((1 2 3)

]
+ 𝑀
𝑁

WgS ((1 2))

= − 2
𝑁

WgS ((1 2 3)) + 𝑀
𝑁

WgS ((1 2))

WgS ((1 2 3)) = − 1
𝑁

[
WgS ((2 3) (1)) +WgS ((1 2) (3)

]
+ 1
𝑁

WgS ((1 2))

= − 2
𝑁

WgS ((1 2) (3)) + 1
𝑁

WgS ((1 2))

Using the valuesWgS ((1) (2)) =
𝑀 (𝑀𝑁−1)
𝑁 (𝑁 2−1) andWgS ((12)) =

−𝑀 (𝑀−𝑁 )
𝑁 (𝑁 2−1) , one can

solve this linear system of equations to obtain the following unique solution.

WgS ((1) (2) (3)) = −2(𝑀𝑁 − 2)
𝑁 (𝑁2 − 4) WgS ((1 2)) + 𝑀

𝑁
WgS ((1) (2))

=
𝑀 (𝑀2𝑁2 − 2𝑀2 − 3𝑀𝑁 + 4)

𝑁 (𝑁2 − 1) (𝑁2 − 4)

WgS ((1 2) (3)) = 𝑀𝑁 − 2
𝑁2 − 4

WgS ((1 2)) = −𝑀 (𝑀 − 𝑁) (𝑀𝑁 − 2)
𝑁 (𝑁2 − 1) (𝑁2 − 4)

WgS ((1 2 3))) = 𝑁 − 2𝑀
𝑁2 − 4

WgS ((1 2)) = 𝑀 (𝑀 − 𝑁) (2𝑀 − 𝑁)
𝑁 (𝑁2 − 1) (𝑁2 − 4)

In this way, one can begin with the base case WgS (( )) = 1 and inductively obtain
WgS (𝜎) for 𝜎 ∈ 𝑆𝑘 in terms ofWgS (𝜎′) for 𝜎′ ∈ 𝑆𝑘−1. Further values can be found in
Appendix A.

2.2 Large 𝑁 expansion

Apriori, computing the values of theWeingarten functionWgS via the integral definition
is far from straightforward. However, as evidenced by the calculations of Example 2.5,
the orthogonality relations of Theorem 2.4 uniquely determine the Weingarten func-
tion and imply that its values are rational functions of𝑀 and 𝑁 . We will shortly see that
their structure also leads directly to a large 𝑁 expansion forWgS (𝜎), with coefficients
that enumerate factorisations of 𝜎 into transpositions that satisfy a certain monoton-
icity condition. This combinatorial structure can be understood in terms of paths in
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the Weingarten graph, which encode the result of recursively applying the orthogonal-
ity relations ad infinitum. The notion of a Weingarten graph was originally introduced
by Collins and Matsumoto [13]. In the setting of integration over unitary groups, the
Weingarten graph GU has two types of edges, which reflects the fact that the orthogon-
ality relations in that case express the Weingarten function of a permutation in terms
of two types of terms. In the setting of integration over S(𝑀, 𝑁), we have three terms
appearing on the right side of the orthogonality relations, motivating the following
definition.

Definition 2.6. Define theWeingarten graph GS to be the infinite directed graph with
vertex set 𝑆 =

⊔∞
𝑖=0 𝑆𝑖 and edge set 𝐸 = 𝐸𝐴 ⊔ 𝐸𝐵 ⊔ 𝐸𝐶 , where:

• the set 𝐸𝐴 comprises the “type 𝐴” edges, which are of the form

𝜎 𝜎 ◦ (𝑖 𝑘)

for 𝜎 ∈ 𝑆𝑘 and 1 ⩽ 𝑖 < 𝑘 ;
• the set 𝐸𝐵 comprises the “type 𝐵” edges, which are of the form

𝜎 𝜎↓

for 𝜎 ∈ 𝑆𝑘 with 𝜎(𝑘) = 𝑘 ; and
• the set 𝐸𝐶 comprises the “type𝐶” edges, which are of the form

𝜎 [𝜎 ◦ (𝑖 𝑘)]↓

for 𝜎 ∈ 𝑆𝑘 such that 𝜎(𝑖) = 𝑘 for some 1 ⩽ 𝑖 < 𝑘 .

(13) (2) (1) (2) (3) (23) (1) (123) (12) (3) (132)

(1) (2) (12)

(1)

( )

Figure 1:The part of theWeingarten graphGS induced by vertices belonging to 𝑆0⊔𝑆1⊔𝑆2⊔𝑆3.

Remark 2.7. TheWeingarten graph GU in the setting of integration overU(𝑁) appears
in [13] and is the subgraph of GS obtained by removing all type𝐶 edges.
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12 X. Coulter, N. Do and E. Moskovsky

Repeated application of the orthogonality relations leads to paths in the Weingarten
graph GS. In this way, one is motivated to enumerate paths in the Weingarten graph in
which edges of types 𝐴, 𝐵,𝐶 receive multiplicative weights − 1

𝑁
, 𝑀
𝑁
, 1
𝑁
, respectively.

Definition 2.8. A path in GS is a sequence of permutations

ρ = (𝜌0, 𝜌1, 𝜌2, . . . , 𝜌ℓ) ∈ 𝑆ℓ+1,

where (𝜌𝑖−1, 𝜌𝑖) is a directed edge of GS for each 𝑖 = 1, 2, . . . , ℓ. We call the integer
ℓ = ℓ(ρ) the length of the path and denote by P(𝜎, 𝜎′) the set of all paths from 𝜎 to
𝜎′. Define the weight 𝑤(ρ) of a path ρ by(

− 1
𝑁

)ℓ𝐴 (ρ) (
𝑀

𝑁

)ℓ𝐵 (ρ) (
1
𝑁

)ℓ𝐶 (ρ)
,

where ℓ𝐾 (ρ) denotes the number of edges of type 𝐾 ∈ {𝐴, 𝐵, 𝐶} on the path ρ.

By construction, the Weingarten graph is a combinatorial encoding of the ortho-
gonality relations and their repeated application. Starting with 𝜎 ∈ 𝑆𝑘 , iterating the
orthogonality relations ℓ times produces the formula

WgS (𝜎) =
∑︁

ρ∈P(𝜎, ( ) )
ℓ (ρ)⩽ℓ

𝑤(ρ) +
∑︁

𝜎′∈𝑆1⊔···⊔𝑆𝑘
WgS (𝜎′)

∑︁
ρ∈P(𝜎,𝜎′ )
ℓ (ρ)=ℓ

𝑤(ρ).

By sending the number of iterations ℓ to infinity, one obtains the following large 𝑁
expansion of the Weingarten function.

Proposition 2.9 For any permutation 𝜎, we have the large 𝑁 expansion

WgS (𝜎) =
∑︁

ρ∈P(𝜎, ( ) )
𝑤(ρ) =

∑︁
ρ∈P(𝜎, ( ) )

(
− 1
𝑁

)ℓ𝐴 (ρ) (𝑀
𝑁

)ℓ𝐵 (ρ) ( 1
𝑁

)ℓ𝐶 (ρ)
.

At this point, let us consider the Weingarten function in the regime of large 𝑁 with
fixed ratio 𝑞 = 𝑀

𝑁
.2 For ρ ∈ P(𝜎, ( )) and 𝜎 ∈ 𝑆𝑘 , we have ℓ𝐵 (ρ) + ℓ𝐶 (ρ) = 𝑘 , which

leads to

WgS (𝜎) = 𝑞𝑘
∞∑︁
𝑟=0

(
− 1
𝑁

)𝑟 ∑︁
ρ∈P(𝜎, ( ) )

ℓ𝐴 (ρ)+ℓ𝐶 (ρ)=𝑟

(
− 1
𝑞

)ℓ𝐶 (ρ)
.

To develop a clearer combinatorial description of the coefficients appearing in the
expansion above, we consider the correspondence between paths in the Weingarten
graph and monotone factorisations. This connection already appears in theWeingarten
calculus for unitary groups [13].

Definition 2.10. A monotone factorisation of 𝜎 ∈ 𝑆𝑘 is a sequence τ = (𝜏1, 𝜏2, . . . , 𝜏𝑟 )
of transpositions in 𝑆𝑘 such that

• 𝜏1𝜏2 · · · 𝜏𝑟 = 𝜎; and

2One could of course consider other regimes, such as fixed𝑀 , although this line of investigation did not
appear to be as fruitful.
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• if we write 𝜏𝑖 = (𝑎𝑖 𝑏𝑖) with 𝑎𝑖 < 𝑏𝑖 , then 𝑏1 ⩽ 𝑏2 ⩽ · · · ⩽ 𝑏𝑟 .

Moreover, we call a monotone factorisation transitive if 𝜏1, 𝜏2, . . . , 𝜏𝑟 generate a trans-
itive subgroup of 𝑆𝑘 . Denote the set of monotone factorisations of 𝜎 by M(𝜎) and
the length of τ by 𝑟 (τ ). We refer to the number of distinct elements of the multiset
{𝑏1, 𝑏2, . . . , 𝑏𝑟 } as the hive number of τ and denote this quantity by 𝑏(τ ).

Given a path in the Weingarten graph GS from 𝜎 to ( ), one can record the sequence
of transpositions arising from the type 𝐴 edges and the type 𝐶 edges. The composition
of these transpositions in reverse order recovers the permutation 𝜎. Thus, a path ρ ∈
P(𝜎, ( )) gives rise to a monotone factorisation τ ∈ M(𝜎) satisfying ℓ𝐴(ρ) +ℓ𝐶 (ρ) =
𝑟 (τ ). Represent this construction via the map

F : P(𝜎, ( )) → M(𝜎).

In the analogous construction for the unitary case, one obtains a one-to-one cor-
respondence between paths and monotone factorisations, but that is not the case here.
Given a monotone factorisation τ of 𝜎, there exists a unique path in F −1 (τ ) contain-
ing only edges of types 𝐴 and 𝐵. The number of pairs of consecutive 𝐴–𝐵 edges in the
path is equal to the hive number 𝑏(τ ). Any such pair can be replaced by a type 𝐶 edge
to obtain an element of F −1 (τ ) and every element of F −1 (τ ) can be obtained in this
way. Thus, we have |F −1 (τ ) | = 2𝑏 (τ ) . Moreover, keeping track of the effect on edge
weights, we have the equality∑︁

ρ∈F−1 (τ )

(
− 1
𝑞

)ℓ𝐶 (ρ)
=

(
1 − 1

𝑞

)𝑏 (τ )
.

These observations allow us to express the coefficients of the large 𝑁 expansion of
WgS (𝜎) in terms of monotone factorisations via the equation

WgS (𝜎) = 𝑞𝑘
∞∑︁
𝑟=0

(
− 1
𝑁

)𝑟 ∑︁
τ ∈M(𝜎)
𝑟 (τ )=𝑟

(
1 − 1

𝑞

)𝑏 (τ )
.

The discussion above motivates the following definition and theorem, whose proof
is immediate after setting 𝑡 = 1 − 1

𝑞
in the previous equation.

Definition 2.11. For 𝑟 ⩾ 0 and 𝜎 a permutation, let ®𝑤𝑡𝑟 (𝜎) denote the weighted
count of monotone factorisations of 𝜎, where the weight of a monotone factorisation
τ is 𝑡𝑏 (τ ) . Let ®ℎ𝑡𝑟 (𝜎) denote the analogous count restricted to transitive monotone
factorisations.

Theorem 2.12 (Large 𝑁 expansion) For a permutation 𝜎 ∈ 𝑆𝑘 , we have the following large
𝑁 expansion for fixed 𝑡 = 1 − 𝑁

𝑀
.

WgS (𝜎) = 1
(1 − 𝑡)𝑘

∞∑︁
𝑟=0

®𝑤𝑡𝑟 (𝜎)
(
− 1
𝑁

)𝑟
(2.3)
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2.3 Representation-theoretic interpretation

The unitary invariance of the Haar measure implies that the Weingarten functionWgS
is a function of permutations that is constant on conjugacy classes. It is natural to ask
whether it admits a natural description in the class algebra of the symmetric group. Such
a description of the unitary Weingarten functionWgU is well understood and given in
terms of the Jucys–Murphy elements in the symmetric group algebra [40, 44]. We will
show that the Weingarten functionWgS can be expressed similarly.

The Jucys–Murphy elements 𝐽1, 𝐽2, . . . , 𝐽𝑘 are elements of the symmetric group al-
gebra defined by

𝐽𝑖 = (1 𝑖) + (2 𝑖) + · · · + (𝑖 − 1 𝑖) ∈ C[𝑆𝑘],

where we interpret the formula for 𝑖 = 1 as 𝐽1 = 0. They were introduced inde-
pendently by Jucys [36] and Murphy [41] and their seemingly simple definition belies
their remarkable properties. For example, they commute with each other and indeed,
generate a maximal commutative subalgebra of C[𝑆𝑘]. Any symmetric function of the
Jucys–Murphy elements lies in the class algebra 𝑍C[𝑆𝑘] and the class expansions of such
expressions are of significant interest, appearing in various contexts [30]. Furthermore,
the Jucys–Murphy elements are essential elements of the Okounkov–Vershik approach
to the representation theory of symmetric groups [45]. We will subsequently require the
following results that date back to the seminal work of Jucys.

Proposition 2.13 (Jucys [36])

(a) The Jucys–Murphy elements 𝐽1, 𝐽2, . . . , 𝐽𝑘 ∈ C[𝑆𝑘] satisfy

(𝑥 + 𝐽1) (𝑥 + 𝐽2) · · · (𝑥 + 𝐽𝑘) =
∑︁
𝜎∈𝑆𝑘

𝑥#cycles(𝜎) 𝜎.

(b) Let 𝜆 be a partition of 𝑘 and let 𝜒𝜆 the corresponding irreducible character of the sym-
metric group. We adopt the usual abuse of notation and consider 𝜒𝜆 as an element of the
class algebra 𝑍C[𝑆𝑘]. If 𝑓 is a symmetric polynomial in 𝑛 variables, then

𝑓 (𝐽1, 𝐽2, . . . , 𝐽𝑘) 𝜒𝜆 = 𝑓 (cont(𝜆)) 𝜒𝜆,

where cont(𝜆) denotes the multiset of contents in the Young diagram for 𝜆. (The content
of a box in row 𝑖 and column 𝑗 of a Young diagram is the number 𝑗 − 𝑖.)

It was shown by Novak [44] that the unitary Weingarten function can be naturally
expressed in terms of the Jucys–Murphy elements via the formula∑︁

𝜎∈𝑆𝑘
WgU (𝜎) 𝜎 =

𝑘∏
𝑖=1

1
𝑁 + 𝐽𝑖

.

By considering the right side as a series in − 1
𝑁
, one observes that the coefficients are

homogeneous symmetric functions of the Jucys–Murphy elements. This leads directly
to the notion ofmonotoneHurwitz numbers, which countmonotone factorisations of a
given permutation with a prescribed length. The analogue of the equation above for the
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Weingarten functionWgS is the following, which leads to a deformation of the mono-
tone Hurwitz numbers, which are now weighted counts of monotone factorisations
with weight equal to 𝑡 to the power of the hive number. This idea was already briefly
introduced in Definition 2.11, but will be studied in further detail in Section 3.

Proposition 2.14 For each positive integer 𝑘 , we have the following equality in 𝑍C[𝑆𝑘] , the
centre of the symmetric group algebra.∑︁

𝜎∈𝑆𝑘
WgS (𝜎) 𝜎 =

𝑘∏
𝑖=1

𝑀 + 𝐽𝑖
𝑁 + 𝐽𝑖

Proof This is essentially an algebraic reformulation of the orthogonality relations of
Theorem 2.4 and wewill prove it by induction on 𝑘 . The base case 𝑘 = 1 corresponds to
the fact thatWgS ((1)) = 𝑀

𝑁
, which is an immediate consequence of the orthogonality

relation for 𝜎 = (1).
It remains to show that, for 𝑘 ⩾ 2,∑︁

𝜎∈𝑆𝑘
WgS (𝜎) 𝜎 =

𝑀 + 𝐽𝑘
𝑁 + 𝐽𝑘

∑︁
𝜎∈𝑆𝑘−1

WgS (𝜎) 𝜎↑,

where for any permutation𝜎 ∈ 𝑆𝑘−1, we write𝜎↑ ∈ 𝑆𝑘 to denote the permutation that
agrees with 𝜎 on the set {1, 2, . . . , 𝑘 − 1} and fixes 𝑘 . Consider multiplying both sides
of this equation by 𝑁 + 𝐽𝑘 and use the definition of the Jucys–Murphy element 𝐽𝑘 to
show that

(𝑁 + 𝐽𝑘)
∑︁
𝜎∈𝑆𝑘

WgS (𝜎) 𝜎 =
∑︁
𝜎∈𝑆𝑘

(
𝑁WgS (𝜎) +

𝑘−1∑︁
𝑖=1

WgS ((𝑖 𝑘) ◦ 𝜎)
)
𝜎, (2.4)

(𝑀 + 𝐽𝑘)
∑︁

𝜎∈𝑆𝑘−1
WgS (𝜎) 𝜎↑ =

∑︁
𝜎∈𝑆𝑘

(
𝛿𝜎 (𝑘 ) ,𝑘 𝑀WgS (𝜎↓) (2.5)

+
𝑘−1∑︁
𝑖=1

𝛿𝜎 (𝑖) ,𝑘WgS ( [𝜎 ◦ (𝑖 𝑘)]↓
)
𝜎. (2.6)

The second equality is more subtle than the first and relies on the observation that for
1 ⩽ 𝑖 ⩽ 𝑘 − 1,∑︁

𝜎∈𝑆𝑘−1
WgS (𝜎) (𝑖 𝑘) ◦ 𝜎↑ =

∑︁
𝜎∈𝑆𝑘 :𝜎 (𝑘 )=𝑘

WgS (𝜎↓) (𝑖 𝑘) ◦ 𝜎

=
∑︁

𝜎∈𝑆𝑘 :𝜎 (𝑖)=𝑘
WgS ( [𝜎 ◦ (𝑖 𝑘)]↓) 𝜎.

Finally, the desired equality between equations (2.4) and (2.6) follows directly from the
orthogonality relations of Theorem 2.4, which completes the proof. ■

Proposition 2.14 implies the following character formula for the Weingarten func-
tion.
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16 X. Coulter, N. Do and E. Moskovsky

Corollary 2.15 (Character formula) Consider a permutation 𝜎 ∈ 𝑆𝑘 and let id ∈ 𝑆𝑘 be
the identity. Then

WgS (𝜎) = 1
𝑘 !

∑︁
𝜆⊢𝑘

𝜒𝜆 (id) 𝜒𝜆 (𝜎)
∏
□∈𝜆

𝑀 + 𝑐(□)
𝑁 + 𝑐(□) ,

where 𝑐(□) denotes the content of the box □ in a Young diagram of a partition. Here and
throughout, we use the notation 𝜆 ⊢ 𝑘 to denote that 𝜆 is a partition of 𝑘 .

Proof By the orthogonality of characters, the identity in 𝑍C[𝑆𝑘] can be expressed as
𝑒 = 1

𝑘!
∑
𝜆⊢𝑘 𝜒

𝜆 (id) 𝜒𝜆. Use part (b) of Proposition 2.13 to write

𝑘∏
𝑖=1

𝑀 + 𝐽𝑖
𝑁 + 𝐽𝑖

· 𝑒 = 1
𝑘 !

∑︁
𝜆⊢𝑘

(∏
□∈𝜆

𝑀 + 𝑐(□)
𝑁 + 𝑐(□)

)
𝜒𝜆 (id) 𝜒𝜆.

By Proposition 2.14, WgS (𝜎) is the coefficient of 𝜎 in the above expression, and the
result follows. ■

In summary, integrals on the space S(𝑀, 𝑁) ofmatrices admit a convolution formula
involving theWeingarten functionWgS. TheWeingarten function is in turn determined
by orthogonality relations, from which it follows that its values have a representation-
theoretic interpretation in terms of Jucys–Murphy elements. An alternative perspective
shows that the large 𝑁 expansion of the Weingarten function for fixed 𝑡 = 1 − 𝑁

𝑀
has

coefficients that are weighted counts ofmonotone factorisations. In the next section, we
investigate the combinatorics of these enumerations in further detail.

3 Deformed monotone Hurwitz numbers

3.1 Deformed monotone Hurwitz numbers

Monotone Hurwitz numbers enumerate monotone factorisations of permutations and
arise as coefficients in the large 𝑁 expansion of the unitary Weingarten function [33].
Weingarten calculus on the space S(𝑀, 𝑁) naturally motivates a deformation of the
monotoneHurwitz numbers, obtained by countingwith aweight equal to 𝑡 to the power
of the hive number. This constructionproduces a family of polynomialswith remarkable
properties.

Recall fromDefinition 2.11 that ®𝑤𝑡𝑟 (𝜎) denotes theweighted count ofmonotone fac-
torisations of 𝜎, while ®ℎ𝑡𝑟 (𝜎) restricts the count to transitive monotone factorisations.
To fit the usual nomenclature concerning Hurwitz-type problems, we introduce a new
notation to reindex by “topology”, consider the enumeration as a function on cycle type,
and normalise by the product of cycle lengths.

2025/06/17 11:48

https://doi.org/10.4153/S0008414X25101168 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101168


Integration on Complex Grassmannians 17

Definition 3.1 (Deformed monotone Hurwitz numbers). For 𝜇1, . . . , 𝜇𝑛 ⩾ 1, let 𝜎 be
any permutation with 𝑛 cycles of lengths 𝜇1, . . . , 𝜇𝑛 and define

®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) =

1
𝜇1 · · · 𝜇𝑛

®𝑤𝑡|𝜇 |+2𝑔−2+𝑛 (𝜎),

®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) =
1

𝜇1 · · · 𝜇𝑛
®ℎ𝑡|𝜇 |+2𝑔−2+𝑛 (𝜎).

Here and throughout, we use the notation |𝜇 | as a shorthand for the sum 𝜇1 + · · · + 𝜇𝑛.
We refer to ®𝑊 𝑡

𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) as a disconnected deformed monotone Hurwitz number and
®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) as a connected deformed monotone Hurwitz number.

Remark 3.2. The pair (𝑔, 𝑛) here can be interpreted as encoding the topology of a sur-
face, with 𝑔 denoting the genus and 𝑛 the number of punctures, or marked points. A
monotone factorisation (𝜏1, 𝜏2, . . . , 𝜏𝑟 ) of 𝜎 can be interpreted as the monodromy of
a branched cover S → CP1 of Riemann surfaces, with 𝜎 representing the mono-
dromy over∞ ∈ CP1. So ®𝑊 𝑡

𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) and ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) enumerate certain
branched covers of CP1 by a genus 𝑔 surface with 𝑛 preimages of ∞ ∈ CP1, the
latter restricting the enumeration to connected covers. Consistent with this interpret-
ation, we have that ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) = 0 unless 𝑔 is a non-negative integer, while
®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) can be non-zerowhen 𝑔 is a negative integer. Note that the genus of a

disconnected surface may be negative, since we consider the Euler characteristic 2− 2𝑔
to be additive over disjoint union, rather than the genus itself.

The character formula of Corollary 2.15 translates into one for deformed monotone
Hurwitz numbers as follows.

Proposition 3.3 (Character formula) Let [ℏ𝑟 ]𝐹 (ℏ) denote the coefficient of ℏ𝑟 in the series
for 𝐹 (ℏ) at ℏ = 0 and let 𝜒𝜆𝜇 denote the value of the symmetric group character 𝜒𝜆 on a
permutation of cycle type 𝜇. Then

®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) =

1
𝜇1 · · · 𝜇𝑛

[
ℏ |𝜇 |+2𝑔−2+𝑛

] ∑︁
𝜆⊢|𝜇 |

𝜒𝜆11· · ·1 𝜒
𝜆
𝜇

|𝜇 |!
∏
□∈𝜆

1 − ℏ 𝑐(□) + 𝑡ℏ 𝑐(□)
1 − ℏ 𝑐(□) .

Proof Equate the expressions forWgS (𝜎) in terms of monotone factorisations (The-
orem 2.12) and characters of the symmetric group (Corollary 2.15), using the notation
ℏ = − 1

𝑁
and 𝑡 = 1 − 𝑁

𝑀
.

1
(1 − 𝑡)𝑘

∞∑︁
𝑟=0

®𝑤𝑡𝑟 (𝜎) ℏ𝑟 =
1
𝑘 !

∑︁
𝜆⊢𝑘

𝜒𝜆 (id) 𝜒𝜆 (𝜎)
∏
□∈𝜆

1 − ℏ 𝑐(□) + 𝑡ℏ 𝑐(□)
(1 − 𝑡) (1 − ℏ 𝑐(□))

The desired result is obtained by multiplying through by (1− 𝑡)𝑘 , extracting the coeffi-
cient of ℏ |𝜇 |+2𝑔−2+𝑛 fromboth sides, and usingDefinition 3.1 for ®𝑊 𝑡

𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛). ■

The family of deformed monotone Hurwitz numbers is stored in the large 𝑁 ex-
pansion of the following matrix integral, which we interpret as the partition function
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18 X. Coulter, N. Do and E. Moskovsky

for the enumeration. As usual, the partition function naturally stores the disconnected
enumeration, while its logarithm stores the connected enumeration.

Proposition 3.4 (Matrix integral) The large𝑁 expansion of the formalmatrix integral below
is a partition function for the deformed monotone Hurwitz numbers. Here, we use the notation
ℏ = − 1

𝑁
and 𝑝𝑖 represents the 𝑖th power sum symmetric function, evaluated on the eigenvalues

of the 𝑁 × 𝑁 complex matrix 𝐴. (It is common to see a power of ℏ2𝑔−2+𝑛 in the partition
function — the extra ℏ |𝜇 | here can be removed by rescaling.)

∫
S(𝑀,𝑁 )

exp
𝑁 tr(𝐴𝑆)

𝑀
d𝑆

= 1 +
∞∑︁

𝑔=−∞

∞∑︁
𝑛=1

∞∑︁
𝜇1 ,...,𝜇𝑛=1

®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛)

ℏ |𝜇 |+2𝑔−2+𝑛

𝑛!
𝑝𝜇1 · · · 𝑝𝜇𝑛

= exp

[ ∞∑︁
𝑔=0

∞∑︁
𝑛=1

∞∑︁
𝜇1 ,...,𝜇𝑛=1

®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛)
ℏ |𝜇 |+2𝑔−2+𝑛

𝑛!
𝑝𝜇1 · · · 𝑝𝜇𝑛

]
Remark 3.5. Recall that the parameter 𝑡 is encoded in the parameters of the space
S(𝑀, 𝑁) via the relation 𝑡 = 1 − 𝑁

𝑀
. The usual monotone Hurwitz numbers are re-

covered from their deformed counterparts defined above by setting 𝑡 = 1. Perhaps
surprisingly, this particular value of 𝑡 does not correspond to valid parameters and 𝑀
and 𝑁 in thematrix integral interpretation. It would be interesting to have amore direct
connection between integration overU(𝑁) and S(𝑀, 𝑁).
Remark 3.6. It would also be natural to consider “double” deformed monotone Hur-
witz numbers that take two partitions as arguments, rather than one. These enumerate
monotone factorisations whose product with a permutation of cycle type given by the
first partition produces a permutation of cycle type given by the second. Although this
“double” enumeration deserves further attention,we refrain fromdeveloping this theory
in the present work, since they do not give rise to polynomials with the same remarkable
properties as the “single” enumeration.

3.2 Cut-and-join recursion

The notion of cut-and-join analysis was originally developed for single Hurwitz num-
bers, before being adapted to work in the monotone case [34, 32]. Deformed monotone
Hurwitz numbers are amenable to a similar analysis, resulting in the following recursion.
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Theorem 3.7 (Cut-and-join recursion) Apart from the initial condition ®𝐻𝑡0,1 (1) = 1, the
deformed monotone Hurwitz numbers satisfy

𝜇1 ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇𝑆) =
𝑛∑︁
𝑖=2

(𝜇1 + 𝜇𝑖) ®𝐻𝑡𝑔,𝑛−1 (𝜇1 + 𝜇𝑖 , 𝜇𝑆\{𝑖})

+ (𝑡 − 1) (𝜇1 − 1) ®𝐻𝑡𝑔,𝑛 (𝜇1 − 1, 𝜇𝑆)

+
∑︁

𝛼+𝛽=𝜇1
𝛼𝛽

[
®𝐻𝑡𝑔−1,𝑛+1 (𝛼, 𝛽, 𝜇𝑆) +

∑︁
𝑔1+𝑔2=𝑔
𝐼1⊔𝐼2=𝑆

®𝐻𝑡
𝑔1 , |𝐼1 |+1 (𝛼, 𝜇𝐼1 ) ®𝐻𝑡

𝑔2 , |𝐼2 |+1 (𝛽, 𝜇𝐼2 )
]
,

(3.1)

where we use the notation 𝑆 = {2, 3, . . . , 𝑛} and 𝜇𝐼 = {𝜇𝑖1 , 𝜇𝑖2 , . . . , 𝜇𝑖𝑘 } for 𝐼 =

{𝑖1, 𝑖2, . . . , 𝑖𝑘}.

Proof The proof is based on the case for the usual monotone Hurwitz numbers [32],
with some additional care required to keep track of the deformation parameter 𝑡. Con-
sider multiplying equation (3.1) by 𝜇2 · · · 𝜇𝑛 and consider the right side to be composed
of four terms in the obvious way.

Fix a permutation 𝜎 ∈ 𝑆𝑘 of cycle type (𝜇1, . . . , 𝜇𝑛) and consider the quant-
ity ®ℎ𝑡

𝑟+1 (𝜎) for some 𝑟 ⩾ 0. Note that a transitive monotone factorisation τ =

(𝜏1, 𝜏2, . . . , 𝜏𝑟+1) of 𝜎 must have 𝜏𝑟+1 = (𝑎 𝑘) for some 1 ⩽ 𝑎 ⩽ 𝑘 − 1. So a transitive
monotone factorisation τ of 𝜎 with length 𝑟 + 1 is equivalent to a monotone factorisa-
tion τ ′ of 𝜎 ◦ (𝑎 𝑘) with length 𝑟 for some 1 ⩽ 𝑎 ⩽ 𝑘 − 1, where ⟨τ ′, (𝑎 𝑘)⟩ ⩽ 𝑆𝑘 is
transitive. This can be expressed via the equation

®ℎ𝑡𝑟+1 (𝜎) =
∑︁

τ ∈M𝑟+1 (𝜎)
⟨τ ⟩ transitive

𝑡𝑏 (τ ) =
𝑘−1∑︁
𝑎=1

∑︁
τ ′∈M𝑟 (𝜎◦(𝑎 𝑘 ) )
⟨τ ′ , (𝑎 𝑘 ) ⟩ transitive

𝑡 |b(τ
′ )∪{𝑘} | ,

where we introduce the boldface notation b(τ ) to denote the set {𝑏1, 𝑏2, . . . , 𝑏𝑟 },
excluding multiplicities, for τ = ((𝑎1 𝑏1), (𝑎2 𝑏2), . . . , (𝑎𝑟 𝑏𝑟 )).

The sum on the right side can be broken down into further sums, depending on vari-
ous cases. For a fixed value of 𝑎, either 𝑎 is in the same cycle of𝜎 as 𝑘 , or 𝑎 is in a different
cycle. The transposition (𝑎 𝑘) is referred to as a cut or a join of 𝜎 depending on these
two cases, respectively. Moreover, if (𝑎 𝑘) is a join of 𝜎, then any monotone factorisa-
tion τ ′ of 𝜎 ◦ (𝑎 𝑘), with ⟨τ ′, (𝑎 𝑘)⟩ transitive, must be transitive itself. Based on these
considerations, each term in the equation above falls into one of three cases: for each
1 ⩽ 𝑎 ⩽ 𝑘 − 1 and τ ′ ∈ M𝑟 (𝜎 ◦ (𝑎 𝑘)) with ⟨τ ′, (𝑎 𝑘)⟩ transitive, either

• (𝑎 𝑘) is a join of 𝜎 and ⟨τ ′⟩ ⩽ 𝑆𝑘 is transitive;
• (𝑎 𝑘) is a cut of 𝜎 and ⟨τ ′⟩ ⩽ 𝑆𝑘 is transitive; or
• (𝑎 𝑘) is a cut of 𝜎 and ⟨τ ′⟩ ⩽ 𝑆𝑘 is not transitive.
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The first two cases can be expressed as one term to give the equation

®ℎ𝑡𝑟+1 (𝜎) =
𝑘−1∑︁
𝑎=1

®ℎ𝑡𝑟 (𝜎 ◦ (𝑎 𝑘)) +
𝑘−1∑︁
𝑎=1

(𝑎 𝑘 ) cuts 𝜎

∑︁
τ ′∈M𝑟 (𝜎◦(𝑎 𝑘 ) )
⟨τ ′ , (𝑎 𝑘 ) ⟩ transitive
⟨τ ′ ⟩ not transitive

𝑡 |b(τ
′ )∪{𝑘} | . (3.2)

In the usual notation for deformedmonotoneHurwitz numbers, the first term here pre-
cisely gives rise to the first and third terms of equation (3.1), while the second term here
almost gives rise to the fourth term of equation (3.1). The remainder of the proof ex-
plains the meaning of “almost” here and how the second term of equation (3.1) accounts
correctly for this anomaly.

If τ ′ falls into the third case for some value of 1 ⩽ 𝑎 ⩽ 𝑘−1, then the transitive orbit
of ⟨τ ′, (𝑎 𝑘)⟩ is split into two orbits of ⟨τ ′⟩ — one containing 𝑎 and one containing 𝑘 .
In fact, these orbits are given by a partition of the disjoint cycles of 𝜎 ◦ (𝑎 𝑘) into two
classes, thus giving rise to the quadratic terms in equation (3.1). The only instance that
𝑏(τ ′) and 𝑏(τ ′, (𝑎 𝑘)) differ is when 𝑘 is in an orbit of size 1 under ⟨τ ′⟩, which then
requires an additional weight of 𝑡 to be contributed. The 𝑡 − 1 factor in the second term
of equation (3.1) precisely handles this adjustment, since we wish to remove one of the
®𝐻𝑡0,1 (1) ®𝐻𝑡𝑔,𝑛 (𝜇1 − 1, ®𝜇𝑆) contributions appearing in the fourth term and weight it by
an additional factor of 𝑡.

Thus, in the correct final accounting of all terms, we see that the first term of equa-
tion (3.2) corresponds to the first and third terms of equation (3.1), while the second
term of equation (3.2) corresponds to the second and fourth terms of equation (3.1). ■

The cut-and-join recursion provides an effective algorithm for calculating deformed
monotone Hurwitz numbers, which is more efficient than naive approaches. With this
improved computational power comes the ability to make large-scale empirical obser-
vations on the structure of the deformed monotone Hurwitz numbers and a recursive
means to prove them. The most evident of these observations are the symmetric and
unimodal nature of the coefficients of ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛).

Adopting the terminology of Brenti [7] and Zeilberger [50], we define the following.

Definition 3.8. A polynomial 𝑃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + · · · + 𝑎𝑛𝑡𝑛 with real coefficients
is said to be:

• symmetric if the sequence . . . , 0, 0, 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, 0, 0, . . . is palindromic;
• unimodal if there exists an integer 𝑘 such that 𝑎0 ⩽ 𝑎1 ⩽ · · · ⩽ 𝑎𝑘 ⩾ 𝑎𝑘+1 ⩾
· · · ⩾ 𝑎𝑛; and

• aΛ-polynomial if it is a non-zero polynomial with non-negative coefficients that is
both palindromic and unimodal.

If 𝑃 is a Λ-polynomial, then there exists a unique integer dar(𝑃) such that 𝑃(𝑡) =

𝑡dar(𝑃)𝑃(𝑡−1). The quantity dar(𝑃) is called the darga of 𝑃.

Proposition 3.9 For 𝑔 ⩾ 0, 𝑛 ⩾ 1 and |𝜇 | ⩾ 2, the deformed monotone Hurwitz number
®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) is a Λ-polynomial of degree |𝜇 | − 1 and darga |𝜇 |.
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Proof We use strong induction on the value of 𝑟 = |𝜇 | + 2𝑔 − 2 + 𝑛 ⩾ 1. The only
deformed monotone Hurwitz number corresponding to 𝑟 = 1 is ®𝐻𝑡0,1 (2) =

1
2 𝑡, which

is indeed aΛ-polynomial of degree 1 and darga 2. Now consider a deformed monotone
Hurwitz number ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) corresponding to 𝑟 ⩾ 2 and rewrite the cut-and-
join recursion of Theorem 3.7 as

𝜇1 ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇𝑆) =
𝑛∑︁
𝑖=2

(𝜇1 + 𝜇𝑖) ®𝐻𝑡𝑔,𝑛−1 (𝜇1 + 𝜇𝑖 , 𝜇𝑆\{𝑖})

+ (𝑡 + 1) (𝜇1 − 1) ®𝐻𝑡𝑔,𝑛 (𝜇1 − 1, 𝜇𝑆)

+
∑︁

𝛼+𝛽=𝜇1
𝛼𝛽

[
®𝐻𝑡𝑔−1,𝑛+1 (𝛼, 𝛽, 𝜇𝑆) +

no ®𝐻𝑡
0,1 (1)∑︁

𝑔1+𝑔2=𝑔
𝐼1⊔𝐼2=𝑆

®𝐻𝑡
𝑔1 , |𝐼1 |+1 (𝛼, 𝜇𝐼1 ) ®𝐻𝑡

𝑔2 , |𝐼2 |+1 (𝛽, 𝜇𝐼2 )
]
.

Here, we have simply removed the two terms including ®𝐻𝑡0,1 (1) from the final summa-
tion and incorporated them into the second term on the right side.

By the inductive hypothesis, all deformed monotone Hurwitz numbers appear-
ing on the right side of the cut-and-join recursion are Λ-polynomials. To prove
that ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) is also one, we rely on the following closure properties of
Λ-polynomials, proofs of which can be found in [47].

• If 𝑃 and 𝑄 are Λ-polynomials, then the product 𝑃𝑄 is a Λ-polynomial with
dar(𝑃𝑄) = dar(𝑃) + dar(𝑄).

• If 𝑃 and𝑄 are Λ-polynomials of the same darga 𝑑, then 𝑃 + 𝑄 is a Λ-polynomial
of darga 𝑑.

It follows that each of the four terms on the right side of the equation above are Λ-
polynomials of darga |𝜇 |, or possibly equal to the zero polynomial. So the entire right
side, and hence ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛), is a Λ-polynomial of darga |𝜇 |.

For any permutation 𝜎 ∈ 𝑆𝑘 for 𝑘 ⩾ 2, one can construct a transitive monotone
factorisation of 𝜎 with hive number 1. So the polynomial ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) has a non-
zero linear term, but no constant term. Combined with the fact that it is aΛ-polynomial
of darga |𝜇 |, it follows that ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) is a polynomial of degree |𝜇 | − 1. ■

Remark 3.10. We have thus far provided two interpretations for the polynomials that
we refer to as deformed monotone Hurwitz numbers — one as weighted counts of
monotone factorisations (Definition 3.1) and the other as coefficients in the large 𝑁
expansion of a matrix integral (Proposition 3.4). The symmetry of these polynomials
does not appear to be immediately evident from either of these manifestations. In the
matrix integral interpretation, the transformation 𝑡 ↦→ 1

𝑡
encodes the transformation

𝑀 ↦→ 𝑁 −𝑀 . This is natural from the perspective of integration on the Grassmannian,
since Gr(𝑀, 𝑁) � Gr(𝑁 − 𝑀, 𝑁), although further investigation of this symmetry is
warranted. In the monotone factorisation interpretation, the symmetry of the polyno-
mials implies that the number of transitive monotone factorisations of a permutation
𝜎 ∈ 𝑆𝑘 with hive number ℎ is equal to the number of transitive monotone factorisa-
tions of𝜎with hive number 𝑘−ℎ. This does not appear to be immediately obvious, so it
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would be interesting to have a direct combinatorial proof of this fact. It is worth remark-
ing that the disconnected enumeration ®𝑊 𝑡

𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) does not lead to symmetric
polynomials, so the transitivity condition is important here.
Remark 3.11. There are various other properties of polynomial coefficients that are of-
tenmentioned alongside symmetry and unimodality. The deformedmonotoneHurwitz
numbers constitute a family of polynomials that appears to satisfy many of these. As ex-
amples, we pose the following questions. Do the coefficients of the deformedmonotone
Hurwitz numbers exhibit log-concavity? Do they exhibit asymptotic normality?

As we will see in Section 4, deformed monotone Hurwitz numbers belong to a large
class of enumerative problems governed by the topological recursion. In many such in-
stances, the one-point invariants — in other words, those with 𝑛 = 1— are governed by
a recursion that is linear, rather than quadratic like the cut-and-join recursion. In pre-
vious work of Chaudhuri and the second author [9], it was shown that such one-point
recursions exist for “weighted Hurwitz numbers”, to use the terminology of Alexan-
drov, Chapuy, Eynard and Harnad [1]. Furthermore, they gave an explicit algorithmic
approach to obtain these recursions that is effective in many examples. In the case of
deformed monotone Hurwitz numbers, one obtains the following result.

Theorem 3.12 (One-point recursion) The one-point deformed monotone Hurwitz numbers
— in other words, those with 𝑛 = 1— satisfy

𝑑2 ®𝐻𝑡𝑔,1 (𝑑) = (𝑑 − 1) (2𝑑 − 3) (𝑡 + 1) ®𝐻𝑡𝑔,1 (𝑑 − 1)

− (𝑑 − 2) (𝑑 − 3) (𝑡 − 1)2 ®𝐻𝑡𝑔,1 (𝑑 − 2) + 𝑑2 (𝑑 − 1)2 ®𝐻𝑡𝑔−1,1 (𝑑).

Observe that setting 𝑡 = 1 above recovers the known one-point recursion for
monotone Hurwitz numbers [9]. Furthermore, setting 𝑔 = 0 and combining with
equation (1.1) recovers the known linear recursion for Narayana polynomials [31].

3.3 Interlacing phenomena

Root conjectures
The cut-and-join recursion of Theorem 3.7 can be used to effectively compute a large
number of deformed monotone Hurwitz numbers, some of which are shown in Ap-
pendix A. We previously stated in Proposition 3.9 that the coefficients of these poly-
nomials are symmetric and unimodal. We now turn our attention to their roots, which
exhibit rather striking behaviour that remains largely conjectural at present. The most
apparent property concerning roots of deformed monotone Hurwitz numbers is the
following.

Conjecture 3.13 (Real-rootedness) For all 𝑔 ⩾ 0, 𝑛 ⩾ 1 and 𝜇1, . . . , 𝜇𝑛 ⩾ 1, the deformed
monotone Hurwitz number ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) is a real-rooted polynomial in 𝑡.

The roots of the deformed monotone Hurwitz numbers are not only real, but also
possess interesting structure relative to each other. We say that a polynomial 𝑃 interlaces
a polynomial𝑄 if

2025/06/17 11:48

https://doi.org/10.4153/S0008414X25101168 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101168


Integration on Complex Grassmannians 23

• the degree of 𝑃 is 𝑛 and the degree of𝑄 is 𝑛 + 1 for some positive integer 𝑛;
• 𝑃 has 𝑛 real roots 𝑎1 ⩽ 𝑎2 ⩽ · · · ⩽ 𝑎𝑛 and𝑄 has 𝑛+ 1 real roots 𝑏1 ⩽ 𝑏2 ⩽ · · · ⩽
𝑏𝑛+1, allowing for multiplicity; and

• 𝑏1 ⩽ 𝑎1 ⩽ 𝑏2 ⩽ 𝑎2 ⩽ · · · ⩽ 𝑏𝑛 ⩽ 𝑎𝑛 ⩽ 𝑏𝑛+1.

If the inequalities above are strict, thenwe say that the polynomial 𝑃 strictly interlaces the
polynomial𝑄. By convention, we will also say that a polynomial 𝑃 (strictly) interlaces a
polynomial𝑄 if 𝑃 is constant and𝑄 is affine.

It is known that the sequence of Narayana polynomials interlace in the sense that
Nar𝜇 (𝑡) interlacesNar𝜇+1 (𝑡) for every positive integer 𝜇 [31]. Given equation (1.1), one
may wonder whether an analogous property persists more generally across the whole
family of deformed monotone Hurwitz numbers. Overwhelming empirical evidence
suggests that this is indeed the case and we have the following.

Conjecture 3.14 (Interlacing) The polynomial ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) interlaces each of the
𝑛 polynomials

®𝐻𝑡𝑔,𝑛 (𝜇1+1, 𝜇2, . . . , 𝜇𝑛), ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2+1, . . . , 𝜇𝑛), . . . , ®𝐻𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛+1).

Conjecture 3.14 states that for fixed (𝑔, 𝑛), one obtains a lattice of interlacing poly-
nomials. It has been checked computationally for many cases, including the following,
amounting to 1430 independent checks:

• 𝑔 ∈ {0, 1}, 𝑛 ∈ {1, 2, 3, 4, 5}, |𝜇 | ⩽ 15;
• 𝑔 ∈ {2, 3}, 𝑛 ∈ {1, 2, 3, 4, 5}, |𝜇 | ⩽ 12;
• 𝑔 ∈ {4, 5}, 𝑛 ∈ {1, 2, 3, 4, 5}, |𝜇 | ⩽ 10.

One can observe rich structure in the roots of the deformedmonotoneHurwitz num-
bers and write down further conjectures. As an example, consider the following, which
asserts that the roots of ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) behave well for fixed 𝜇1, . . . , 𝜇𝑛 and increas-
ing 𝑔. A great deal of data can be generated to support this conjecture, some examples
of which appear in the tables of Figures 2 and 3.

Conjecture 3.15 Fix positive integers 𝜇1, . . . , 𝜇𝑛 whose sum is 𝑑. As 𝑔 → ∞, the roots of
the polynomial ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛), in order from smallest to largest, respectively approach the
values

−𝑑 − 2
1

, −𝑑 − 3
2

, −𝑑 − 4
3

, . . . , − 2
𝑑 − 3

, − 1
𝑑 − 2

, 0.

Moreover, the convergence to a number less than −1 is increasing from below, while the
convergence to a non-zero number greater than −1 is decreasing from above.

An interlacing result
There is a rich theory concerning interlacing polynomials, as evidenced by the tome of
Fisk [31]. The following lemma is a slight adaptation of [31, Lemma 1.82], and will be
used to prove the (𝑔, 𝑛) = (0, 1) and (𝑔, 𝑛) = (1, 1) cases of Conjectures 3.13 and 3.14.
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(𝜇1, . . . , 𝜇𝑛) 𝛼1 𝛼2 𝛼4 𝛼5

(7) -5.001267941 -2.000328365 -0.499917922 -0.199949295
(6, 1) -5.001267941 -2.000328365 -0.499917922 -0.199949295
(5, 2) -5.001056435 -2.000273606 -0.499931607 -0.199957751
(5, 1, 1) -5.001232684 -2.000319238 -0.499920203 -0.199950704
(4, 3) -5.001056438 -2.000273614 -0.499931605 -0.199957751
(4, 2, 1) -5.001056436 -2.000273609 -0.499931607 -0.199957751
(4, 1, 1, 1) -5.001173928 -2.000304027 -0.499924004 -0.199953053
(3, 3, 1) -5.001056438 -2.000273614 -0.499931605 -0.199957751
(3, 2, 2) -5.000880235 -2.000227985 -0.499943010 -0.199964796
(3, 2, 1, 1) -5.001027065 -2.000266006 -0.499933507 -0.199958925
(3, 1, 1, 1, 1) -5.001100492 -2.000285016 -0.499928756 -0.199955990
(2, 2, 2, 1) -5.000880235 -2.000227985 -0.499943010 -0.199964796
(2, 2, 1, 1, 1) -5.000978117 -2.000253332 -0.499936675 -0.199960882
(2, 1, 1, 1, 1, 1) -5.001018906 -2.000263893 -0.499934035 -0.199959252
(1, 1, 1, 1, 1, 1, 1) -5.001018906 -2.000263893 -0.499934035 -0.199959252

Figure 2: The roots 𝛼1 ⩽ 𝛼2 ⩽ · · · ⩽ 𝛼6 of ®𝐻𝑡20,𝑛 (𝜇1, . . . , 𝜇𝑛) for all 𝜇1, . . . , 𝜇𝑛 satisfying
|𝜇 | = 7, to 9 decimal places. The roots 𝛼3 = −1 and 𝛼6 = 0 have been omitted. Observe the
proximity of the numbers in each column to − 5

1 ,−
4
2 ,−

2
4 ,−

1
5 , as predicted by Conjecture 3.15.

𝑔 𝛼1 𝛼2 𝛼4 𝛼5

10 −5.04160471695 −2.01061201575 −0.49736099862 −0.19834954466
11 −5.02866367964 −2.00734550081 −0.49817034466 −0.19885998820
12 −5.01979225354 −2.00508876970 −0.49873103630 −0.19921143136
13 −5.01368866239 −2.00352761946 −0.49911964790 −0.19945394844
14 −5.00947834547 −2.00244657225 −0.49938910423 −0.19962158353
15 −5.00656851803 −2.00169741487 −0.49957600612 −0.19973760398
16 −5.00455473040 −2.00117796109 −0.49970568307 −0.19981797659
17 −5.00315968769 −2.00081762929 −0.49979567620 −0.19987369231
18 −5.00219259524 −2.00056759939 −0.49985814041 −0.19991233463
19 −5.00152183411 −2.00039406763 −0.49990150249 −0.19993914515
20 −5.00105643628 −2.00027360928 −0.49993160703 −0.19995775147

Figure 3: The roots 𝛼1 ⩽ 𝛼2 ⩽ · · · ⩽ 𝛼6 of ®𝐻𝑡
𝑔,3 (4, 2, 1) for 𝑔 = 10, 11, 12, . . . , 20, to 11 decimal

places. The roots 𝛼3 = −1 and 𝛼6 = 0 have been omitted. Observe the monotonic convergence
of the numbers in each column to − 5

1 ,−
4
2 ,−

2
4 ,−

1
5 , as predicted by Conjecture 3.15.

Lemma 3.16 Let 𝑓1 (𝑡), 𝑓2 (𝑡), . . . be a sequence of polynomials with non-negative coeffi-
cients, such that deg 𝑓𝑖 = 𝑖. Suppose that 𝑓1 (𝑡) strictly interlaces 𝑓2 (𝑡), and that the sequence

2025/06/17 11:48

https://doi.org/10.4153/S0008414X25101168 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101168


Integration on Complex Grassmannians 25

of polynomials satisfies the relation

𝑓𝑑+1 (𝑡) = ℓ𝑑 (𝑡) 𝑓𝑑 (𝑡) − 𝑞𝑑 (𝑡) 𝑓𝑑−1 (𝑡), (3.3)

where ℓ𝑑 (𝑡) is an affine function and 𝑞𝑑 (𝑡) is a quadratic function that is positive for 𝑡 ⩽ 0.
Then all polynomials in the sequence are real-rooted and 𝑓𝑖 (𝑡) strictly interlaces 𝑓𝑖+1 (𝑡) for
every positive integer 𝑖.

Proof Suppose that 𝑓𝑑−1 (𝑡) strictly interlaces 𝑓𝑑 (𝑡). Since 𝑓𝑑 (𝑡) has non-negative in-
teger coefficients, its roots canbewritten as0 ⩾ 𝑟1 > 𝑟2 > · · · > 𝑟𝑑 . Then equation (3.3)
evaluated at one of these roots yields

𝑓𝑑+1 (𝑟𝑖) = −𝑞𝑑 (𝑟𝑖) 𝑓𝑑−1 (𝑟𝑖),

which implies that 𝑓𝑑+1 (𝑟𝑖) and 𝑓𝑑−1 (𝑟𝑖) have different signs. Since 𝑓𝑑−1 (𝑡) strictly in-
terlaces 𝑓𝑑 (𝑡), its values at 𝑟1, 𝑟2, . . . , 𝑟𝑑 must alternate in sign, leading to the following
table. The entries indicate the signs of 𝑓𝑑−1 (𝑡) and 𝑓𝑑+1 (𝑡), evaluated at 𝑟1, 𝑟2, . . . , 𝑟𝑑
and in the limit 𝑡 → ±∞.

∞ 𝑟1 𝑟2 𝑟3 · · · 𝑟𝑑 −∞

𝑓𝑑−1 (𝑡) + + − + · · · (−)𝑑−1 (−)𝑑−1
𝑓𝑑+1 (𝑡) + − + − · · · (−)𝑑 (−)𝑑+1

The intermediate value theorem implies that 𝑓𝑑+1 (𝑡) has 𝑑 + 1 real roots and that
𝑓𝑑 (𝑡) strictly interlaces 𝑓𝑑+1 (𝑡). The result then follows by induction on 𝑑. ■

Proposition 3.17 Conjectures 3.13 and 3.14 hold for (𝑔, 𝑛) = (0, 1) and (𝑔, 𝑛) = (1, 1).

Proof Setting 𝑔 = 0 in the one-point recursion of Theorem 3.12 yields

𝑑2 ®𝐻𝑡0,1 (𝑑) = (𝑑−1) (2𝑑−3) (𝑡+1) ®𝐻𝑡0,1 (𝑑−1)−(𝑑−2) (𝑑−3) (𝑡−1)2 ®𝐻𝑡0,1 (𝑑−2). (3.4)

Divide both sides by 𝑑2𝑡 to obtain a recursion governing the polynomials
®𝐻𝑡
0,1 (1)
𝑡

,
®𝐻𝑡
0,1 (2)
𝑡

,
®𝐻𝑡
0,1 (3)
𝑡

, . . . of the form of equation (3.3). It follows from Lemma 3.16
that this sequence is real-rooted and strictly interlacing. Therefore, the sequence
®𝐻𝑡0,1 (1), ®𝐻𝑡0,1 (2), ®𝐻𝑡0,1 (3), . . . is a sequence of real-rooted polynomials in which each
polynomial interlaces the next.

For the genus 1 case, we argue in exactly the same way, using the as yet unproven
claim that

𝑑 (𝑑−2) ®𝐻𝑡1,1 (𝑑) = (𝑑−1) (2𝑑−1) (𝑡+1) ®𝐻𝑡1,1 (𝑑−1)−(𝑑−2) (𝑑+1) (𝑡−1)2 ®𝐻𝑡1,1 (𝑑−2).
(3.5)

It remains to prove this relation, which we do using a generating function approach.
Multiply both sides by 𝑥𝑑−1 and sum over all positive integers 𝑑. Setting 𝑤1,1 (𝑥) =∑∞
𝑑=1 𝑑

®𝐻𝑡1,1 (𝑑) 𝑥𝑑−1, the claim is equivalent to

−𝑥
[
(𝑡 − 1)2𝑥2 − 2(𝑡 + 1)𝑥 + 1

] 𝜕

𝜕𝑥
𝑤1,1 (𝑥) =

[
4(𝑡 − 1)2𝑥2 − 3(𝑡 + 1)𝑥 − 1

]
𝑤1,1 (𝑥).

(3.6)
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We borrowTheorem 4.1 from the next section, which allows us to explicitly compute
via 𝑤1,1 (𝑥) = 𝜔1,1 (𝑧)

d𝑥 that

𝑤1,1 (𝑥) = − 𝑡𝑧(𝑧 − 1) (1 − 𝑧 + 𝑡𝑧)4
(𝑡𝑧2 − 𝑧2 + 2𝑧 − 1)5 , (3.7)

where the coordinates 𝑥 and 𝑧 are related by 𝑥 = 𝑧 (1−𝑧)
1−𝑧+𝑡 𝑧 . One can now check that the ex-

pression for 𝑤1,1 (𝑥) of equation (3.7) satisfies the differential equation of equation (3.6)
using a computer algebra system, thereby proving equation (3.5). ■

Remark 3.18. It is natural to seek higher genus analogues of equations (3.4) and (3.5), in
order to extend the result and proof of Proposition 3.17. However, one can prove that
there exists no recursion of the form

𝑑𝐴(𝑑) ®𝐻𝑡2,1 (𝑑) = (𝑑 − 1)𝐵(𝑑) 𝑓 (𝑡) ®𝐻𝑡2,1 (𝑑 − 1) − (𝑑 − 2)𝐶 (𝑑)𝑔(𝑡) ®𝐻𝑡2,1 (𝑑 − 2),

where 𝐴(𝑑), 𝐵(𝑑), 𝐶 (𝑑) are affine functions of 𝑑, 𝑓 (𝑡) is an affine function of 𝑡,
and 𝑔(𝑡) is a quadratic function of 𝑡. So the exact argument used in the proof of
Proposition 3.17 cannot extend to genus 2 and higher without some alteration.

4 Topological recursion

4.1 Topological recursion for deformed monotone Hurwitz numbers

The topological recursion arose in the mathematical physics literature as a formalism
to capture loop equations in matrix models [11, 25]. There is now an extensive theory
around topological recursion and it is known to govern a wide range of enumerative-
geometric problems beyond the original matrix model context. These include: Hurwitz
numbers and various generalisations [6, 4, 19, 27, 2, 23], monotone Hurwitz num-
bers [18], lattice points inmoduli spaces of curves [42, 10], intersection theory onmoduli
spaces of curves [25, 24], Gromov–Witten theory of CP1 [43, 22], Gromov–Witten the-
ory of toric Calabi–Yau threefolds [5, 26, 29], and cohomological field theories [22].
The topological recursion is also conjectured to govern certain quantum knot invari-
ants, such as the large 𝑁 asymptotics of coloured Jones polynomials [17, 3] and coloured
HOMFLY-PT polynomials [35].

In its original formulation due to Chekhov, Eynard and Orantin [11, 25], the topo-
logical recursion takes as input a spectral curve (C, 𝑥, 𝑦, 𝜔0,2) comprising a compact
Riemann surface C equipped with two meromorphic functions 𝑥, 𝑦 : C → CP1 and a
bidifferential 𝜔0,2 with a double pole along the diagonal. These are required to satisfy
mild technical assumptions, which we do not mention here. Indeed, rather than fully
define the topological recursion, we refer the reader to the many existing expositions
in the literature [18, 28]. For the present discussion, it suffices to note that the topolo-
gical recursion uses the initial data to define the base cases 𝜔0,1 (𝑧1) = 𝑦(𝑧1) d𝑥(𝑧1)
and𝜔0,2 (𝑧1, 𝑧2), and then produces so-called correlation differentials via the following
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recursive formula.3

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) =
∑︁
𝛼

Res
𝑧=𝛼

𝐾 (𝑧1, 𝑧)
[
𝜔𝑔−1,𝑛+1 (𝑧, 𝜎𝛼 (𝑧), 𝑧2, . . . , 𝑧𝑛)

+
◦∑︁

𝑔1+𝑔2=𝑔
𝐼1⊔𝐼2={2,...,𝑛}

𝜔𝑔1 , |𝐼1 |+1 (𝑧, 𝑧𝐼1 ) 𝜔𝑔2 , |𝐼2 |+1 (𝜎𝛼 (𝑧), 𝑧𝐼2 )
]

In various settings, the correlation differential 𝜔𝑔,𝑛 acts as a generating function for
enumerative-geometric quantities, where 𝑔 represents the genus of a surface and 𝑛 its
number of punctures, or boundaries.

It was previously shown that the monotone Hurwitz numbers are governed by the
topological recursion in the following sense [18]. Topological recursion on the spectral
curve4

C = CP1, 𝑥(𝑧) = 𝑧(1 − 𝑧), 𝑦(𝑧) = 1
1 − 𝑧 , 𝜔0,2 (𝑧1, 𝑧2) =

d𝑧1 d𝑧2
(𝑧1 − 𝑧2)2

produces correlation differentials satisfying

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) = d1 · · · d𝑛
∞∑︁

𝜇1 ,...,𝜇𝑛=1

®𝐻𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑥(𝑧1)𝜇1 · · · 𝑥(𝑧𝑛)𝜇𝑛

+ 𝛿𝑔,0𝛿𝑛,2
d𝑥(𝑧1) d𝑥(𝑧2)

(𝑥(𝑧1) − 𝑥(𝑧2))2
.

Here, d𝑖 represents the exterior derivative in the 𝑖th coordinate and ®𝐻𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) =[ ®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛)] 𝑡=1 denotes a monotone Hurwitz number.
It is thus natural to consider whether the deformedmonotone Hurwitz numbers sat-

isfy the topological recursion on a deformation of the spectral curve above. Perhaps
unsurprisingly, this is indeed the case and follows from the representation-theoretic in-
terpretation for deformedmonotoneHurwitz numbers ofCorollary 2.15 and a powerful
result of Bychkov, Dunin-Barkowski, Kazarian and Shadrin [8], which builds on previ-
ous work of Alexandrov, Chapuy, Eynard and Harnad [1].

Theorem 4.1 Topological recursion on the spectral curve

C = CP1, 𝑥(𝑧) = 𝑧(1 − 𝑧)
1 − 𝑧 + 𝑡𝑧 , 𝑦(𝑧) = 1 − 𝑧 + 𝑡𝑧

1 − 𝑧 , 𝜔0,2 (𝑧1, 𝑧2) =
d𝑧1 d𝑧2

(𝑧1 − 𝑧2)2

3The reader should note that the various appearances of the topological recursion formula in the literature
differ subtly, particularly in terms of the expression for 𝜔0,1 , the definition of the recursion kernel𝐾 (𝑧1, 𝑧) ,
and the choice of sign for 𝑦. Ultimately, the first two differences are inconsequential and a change of sign for
𝑦 simply sends each correlation differential 𝜔𝑔,𝑛 to (−1)𝑛𝜔𝑔,𝑛 .

4The topological recursion is not sensitive to reparametrisation of the underlying plane curve, whose
global description in this case is 𝑥𝑦2 − 𝑦 + 1 = 0. We have expressed the spectral curve here using a different
rational parametrisation to that appearing in [18], in order to align more closely with the statement and proof
of Theorem 4.1.
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produces correlation differentials satisfying

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) = d1 · · · d𝑛
∞∑︁

𝜇1 ,...,𝜇𝑛=1

®𝐻𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑥(𝑧1)𝜇1 · · · 𝑥(𝑧𝑛)𝜇𝑛

+ 𝛿𝑔,0𝛿𝑛,2
d𝑥(𝑧1) d𝑥(𝑧2)

(𝑥(𝑧1) − 𝑥(𝑧2))2
.

Proof The main theorem of Bychkov, Dunin-Barkowski, Kazarian and Shadrin in [8]
states that the topological recursion governs the coefficients of certain KP tau functions
of hypergeometric type.We present here a simplified version of their result that is fit for
purpose.

Let �̃�(𝑧) = ∑∞
𝑖=1 𝑦𝑖 𝑧

𝑖 be the series expansion of a rational function satisfying �̃�(0) =
0 and let 𝑓 (𝑧) be a rational function satisfying 𝑓 (0) = 1. From this data, define the
generating function

𝑍 (𝑝1, 𝑝2, . . . ; ℏ) =
∑︁
𝜆∈P

𝑠𝜆 (𝑝1, 𝑝2, . . .) 𝑠𝜆
( 𝑦1
ℏ
,
𝑦2

ℏ
, . . .

) ∏
□∈𝜆

𝑓 (ℏ 𝑐(□)),

where P is the set of partitions, 𝑠𝜆 represents the Schur function expressed in terms of
power sum symmetric functions, and 𝑐(□) denotes the content of the box□ in the Young
diagram of a partition. This is a KP tau function of hypergeometric type and there exist
“weighted Hurwitz numbers” 𝑋𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) for 𝑔 ⩾ 0, 𝑛 ⩾ 1 and 𝜇1, . . . , 𝜇𝑛 ⩾ 1
such that

𝑍 (𝑝1, 𝑝2, . . . ; ℏ) = exp
( ∞∑︁
𝑔=0

∞∑︁
𝑛=1

ℏ2𝑔−2+𝑛

𝑛!

∞∑︁
𝜇1 ,...,𝜇𝑛=1

𝑋𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑝𝜇1 · · · 𝑝𝜇𝑛
)
.

(4.1)
Bychkov, Dunin-Barkowski, Kazarian and Shadrin [8] prove that topological recur-

sion on the spectral curve

C = CP1, 𝑥(𝑧) = 𝑧

𝑓 ( �̃�(𝑧)) , 𝑦(𝑧) = �̃�(𝑧)
𝑥(𝑧) , 𝜔0,2 (𝑧1, 𝑧2) =

d𝑧1 d𝑧2
(𝑧1 − 𝑧2)2

produces correlation differentials satisfying

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) = d1 · · · d𝑛
∞∑︁

𝜇1 ,...,𝜇𝑛=1
𝑋𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑥(𝑧1)𝜇1 · · · 𝑥(𝑧𝑛)𝜇𝑛

+ 𝛿𝑔,0𝛿𝑛,2
d𝑥(𝑧1) d𝑥(𝑧2)

(𝑥(𝑧1) − 𝑥(𝑧2))2
.

We simply specialise this result to �̃�(𝑧) = 𝑧 and 𝑓 (𝑧) = 1−𝑧+𝑡 𝑧
1−𝑧 . It remains to

check that the monotone deformed Hurwitz numbers agree with the weighted Hurwitz
numbers with this particular choice of data.

The exponential of equation (4.1) transforms the connected generating function
to the disconnected generating function, so it suffices to show that the disconnected
deformed monotone Hurwitz numbers satisfy

®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) = |Aut(𝜇) |

[
ℏ2𝑔−2+𝑛𝑝𝜇1 · · · 𝑝𝜇𝑛

]
𝑍 (𝑝1, 𝑝2, . . . ; ℏ).
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Here, Aut(𝜇) denotes the subgroup of permutations in 𝑆𝑛 that fix (𝜇1, . . . , 𝜇𝑛). This
automorphism factor arises because the summation in equation (4.1) is over all tuples of
positive integers, rather than partitions.

Now use 𝑠𝜆 (𝑝1, 𝑝2, . . .) =
∑︁
𝜇⊢|𝜆 |

𝜒𝜆𝜇

|Aut(𝜇) |
∏ 𝑝𝜇𝑖

𝜇𝑖
in the expression

𝑍 (𝑝1, 𝑝2, . . . ; ℏ) =
∑︁
𝜆∈P

𝑠𝜆 (𝑝1, 𝑝2, . . .) 𝑠𝜆 ( 1ℏ , 0, 0, . . .)
∏
□∈𝜆

1 − ℏ 𝑐(□) + 𝑡ℏ 𝑐(□)
1 − ℏ 𝑐(□) .

to obtain

|Aut(𝜇) |
[
ℏ2𝑔−2+𝑛𝑝𝜇1 · · · 𝑝𝜇𝑛

]
𝑍 (𝑝1, 𝑝2, . . . ; ℏ)

=
1

𝜇1 · · · 𝜇𝑛
[
ℏ |𝜇 |+2𝑔−2+𝑛

] ∑︁
𝜆⊢|𝜇 |

𝜒𝜆11· · ·1 𝜒
𝜆
𝜇

|𝜇 |!
∏
□∈𝜆

1 − ℏ 𝑐(□) + 𝑡ℏ 𝑐(□)
1 − ℏ 𝑐(□) .

That this is equal to ®𝑊 𝑡
𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) is precisely the content of Proposition 3.3, and

this concludes the proof. ■

Remark 4.2. The meromorphic functions 𝑥, 𝑦 : CP1 → CP1 of Theorem 4.1 satisfy

𝑥𝑦2 + (𝑡 − 1)𝑥𝑦 − 𝑦 + 1 = 0,

which is the global form of the spectral curve. The general theory of topological re-
cursion asserts that, for (𝑔, 𝑛) ≠ (0, 1) or (0, 2), the correlation differential 𝜔𝑔,𝑛 is a
rational multidifferential on this curve with poles only at the zeroes of d𝑥 and further
conditions on the pole structure [25]. This in turn leads to a polynomiality structure the-
orem for the deformedmonotoneHurwitz numbers. Furthermore, the relation between
topological recursion and cohomological field theories should lead to an interpretation
of deformed monotone Hurwitz numbers as intersection numbers on moduli spaces of
curves [24, 22].However,wedonot pursue this investigation further in the presentwork.

4.2 Topologising sequences of polynomials

From Catalan curves to Narayana curves
As previously mentioned in equation (1.1), the (𝑔, 𝑛) = (0, 1) case of the deformed
monotone Hurwitz numbers recovers the Narayana polynomials in the following way.

(𝜇 + 1) ®𝐻𝑡0,1 (𝜇 + 1) = Nar𝜇 (𝑡) :=
𝜇∑︁
𝑖=1

1
𝜇

(
𝜇

𝑖

) (
𝜇

𝑖 − 1

)
𝑡𝑖

Hence, we consider the deformed monotone Hurwitz numbers to be a “topological
generalisation” of the Narayana polynomials. This viewpoint appears throughout the
literature, such as in Dumitrescu and Mulase’s exposition on generalised Catalan num-
bers [21].

We propose that the topological recursion can be used as amechanism to “topologise”
sequences of polynomials. One would apply topological recursion to a spectral curve
with a deformation parameter 𝑡 to obtain a family of polynomials 𝑋 𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) for
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𝑔 ⩾ 0, 𝑛 ⩾ 1 and 𝜇1, . . . , 𝜇𝑛 ⩾ 1 such that 𝑋 𝑡0,1 (1), 𝑋 𝑡0,1 (2), . . . recovers the ori-
ginal sequence of polynomials in 𝑡. Furthermore, we claim that interesting properties
of the original sequence of polynomials can persist into the topological generalisation.
Examples of such properties are the symmetry and unimodality of coefficients as well
as the interlacing of roots. These both hold for Narayana polynomials and are respect-
ively proven (Proposition 3.9) and conjectured (Conjecture 3.14) to hold for deformed
monotone Hurwitz numbers more generally.

There is more than one way to topologise a given sequence of polynomials. In order
to obtain a topological generalisation of the Narayana numbers, it is natural to con-
sider spectral curves that store Catalan numbers in the correlation differential𝜔0,1 and
to consider a suitable 𝑡-deformation. The literature suggests three natural candidates
for such “Catalan spectral curves” and these curves govern monotone Hurwitz num-
bers, map enumeration, and dessin d’enfant enumeration. This leads to the following
three “Narayana spectral curves” with C = CP1, 𝜔0,2 =

d𝑧1 d𝑧2
(𝑧1−𝑧2 )2 , and the meromorphic

functions 𝑥, 𝑦 : C → CP1 satisfying the following.
• Monotone Hurwitz numbers.We have

𝑦(𝑥) =
∞∑︁
𝜇=0

Cat𝜇 𝑥𝜇 ⇒ 𝑥𝑦2 − 𝑦 + 1 = 0,

which is the global form of the spectral curve formonotoneHurwitz numbers [18].
Promoting the Catalan numbers to the Narayana polynomials, one obtains

𝑦(𝑥) =
∞∑︁
𝜇=0

Nar𝜇 (𝑡) 𝑥𝜇 ⇒ 𝑥𝑦2 + (𝑡 − 1)𝑥𝑦 − 𝑦 + 1 = 0.

This is the global form of the spectral curve for deformed monotone Hurwitz
numbers, which appeared above in Theorem 4.1.

• Map enumeration.We have

𝑦(𝑥) =
∞∑︁
𝜇=0

Cat𝜇 𝑥−2𝜇−1 ⇒ 𝑦2 − 𝑥𝑦 + 1 = 0,

which is the global form of the spectral curve for the enumeration of maps [11, 25].
Promoting the Catalan numbers to the Narayana polynomials, one obtains

𝑦(𝑥) =
∞∑︁
𝜇=0

Nar𝜇 (𝑡) 𝑥−2𝜇−1 ⇒ 𝑥𝑦2 − 𝑥2𝑦 + (𝑡 − 1)𝑦 + 𝑥 = 0.

To the best of our knowledge, this is the global form of a spectral curve that has not
yet been studied in the literature. We do not investigate it further in the present
work, largely due to the fact that it has genus 1 for generic values of 𝑡. The topo-
logical recursion on spectral curves of positive genus is much less straightforward
than on those of genus 0. Nevertheless, it would be interesting to understand this
spectral curve and whether it governs a natural enumerative problem.
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• Dessin d’enfant enumeration.We have

𝑦(𝑥) =
∞∑︁
𝜇=0

Cat𝜇 𝑥−𝜇−1 ⇒ 𝑥𝑦2 − 𝑥𝑦 + 1 = 0,

which is the global form of the spectral curve for the enumeration of dessins
d’enfant [20, 37]. Promoting the Catalan numbers to the Narayana polynomials,
one obtains

𝑦(𝑥) =
∞∑︁
𝜇=0

Nar𝜇 (𝑡) 𝑥−𝜇−1 ⇒ 𝑥𝑦2 − 𝑥𝑦 + (𝑡 − 1)𝑦 + 1 = 0.

This is the global formof a spectral curvewith genus 0. It leads to a topological gen-
eralisation of the Narayana polynomials that differs from the deformedmonotone
Hurwitz numbers. We will consider its properties in the next section.

Remark 4.3. We certainly do not claim that the spectral curves above provide the only
natural topological generalisations of the Catalan numbers or the Narayana polynomi-
als. Indeed, one could study spectral curves arising from 𝑦(𝑥) =

∑∞
𝜇=0 Cat𝜇 𝑥𝑎𝜇+𝑏 or

𝑦(𝑥) = ∑∞
𝜇=0 Nar𝜇 (𝑡) 𝑥𝑎𝜇+𝑏 for judicious choices of 𝑎 and 𝑏, and it is not unlikely that

these would lead to interesting enumerative problems.

Deforming the dessin d’enfant enumeration
The previous discussion motivates the study of the spectral curve whose global form is
𝑥𝑦2− 𝑥𝑦 + (𝑡 −1)𝑦 +1 = 0. In parametrised form, this corresponds to the spectral curve

C = CP1, 𝑥(𝑧) = 1 − 𝑧 + 𝑡𝑧
𝑧(1 − 𝑧) , 𝑦(𝑧) = 𝑧, 𝜔0,2 (𝑧1, 𝑧2) =

d𝑧1 d𝑧2
(𝑧1 − 𝑧2)2

.

By construction, this spectral curve should govern a 𝑡-deformation of the usual dessin
d’enfant enumeration. In the following, we prove that this enumeration arises by at-
taching a multiplicative weight 𝑡 to each black vertex of a dessin d’enfant. Moreover,
we observe that the polynomials arising from this construction empirically satisfy
real-rootedness and interlacing properties analogous to those observed for deformed
monotone Hurwitz numbers in Conjectures 3.13 and 3.14. Although the weighted enu-
meration of dessins d’enfant has been studied previously [37], these real-rootedness
and interlacing properties have not been observed in the literature, to the best of our
knowledge. Our discussion of the weighted enumeration of dessins d’enfant should be
considered as a further case study promoting the viewpoint that topological recursion
produces interesting topological generalisations of sequences of polynomials.

First, let us define dessins d’enfant — in other words, bicoloured maps — and their
enumeration.

Definition 4.4. Amap is a finite graph — possibly with loops or multiple edges — em-
bedded in a compact oriented surface such that the complement of the graph is a disjoint
union of topological disks. We refer to these disks as faces and require that they are
labelled 1, 2, 3, . . . , 𝑛, where 𝑛 denotes the number of faces.
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A dessin d’enfant is a map whose vertices have been coloured black or white such that
each edge is incident to one black vertex and one white vertex. The degree of a face is
defined to be half the number of edges incident to it.

An equivalence between two maps (or dessins d’enfant) is a bijection between their
respective vertices, edges and faces that is realised by an orientation-preserving homeo-
morphism of their underlying surfaces and preserves all adjacencies, incidences, labels
(and colours). An automorphism of a map (or dessin d’enfant) is an equivalence from the
map (or dessin d’enfant) to itself.

Definition 4.5. For 𝑔 ⩾ 0, 𝑛 ⩾ 1 and 𝜇1, . . . , 𝜇𝑛 ⩾ 1, let 𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) ∈ Q[𝑡]
denote the weighted enumeration of connected genus 𝑔 dessins d’enfant with 𝑛 labelled
faces of degrees 𝜇1, . . . , 𝜇𝑛. The weight attached to a dessin d’enfant Γ is 𝑡𝑏 (Γ)

|Aut(Γ) | , where
𝑏(Γ) denotes the number of black vertices of Γ and Aut(Γ) denotes the automorph-
ism group of Γ. Let 𝐷𝑡•𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) ∈ Q[𝑡] denote the analogous count, including
possibly disconnected dessins d’enfant.

Example 4.6. Consider the dessin d’enfant enumeration 𝐷𝑡0,2 (2, 2). The only dess-
ins d’enfant that contribute are the five pictured below. We have represented these as
plane graphs, with the face labelled 1 corresponding to the bounded region and the face
labelled 2 corresponding to the unbounded region.

The central dessin d’enfant has two automorphisms, while the remaining dessins
d’enfant have one, so we have 𝐷𝑡0,2 (2, 2) =

(
𝑡3

1
)
+

(
𝑡2

1 + 𝑡2

2 + 𝑡2

1
)
+

(
𝑡1

1
)
= 𝑡3 + 5

2 𝑡
2 + 𝑡.

Proposition 4.7 If |𝜇 | < 2𝑔 + 𝑛, then 𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) = 0. If |𝜇 | ⩾ 2𝑔 + 𝑛, then
𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) ∈ Q[𝑡] is a polynomial of degree |𝜇 | + 1 − 2𝑔 − 𝑛 whose coefficients are
symmetric.

Proof Consider a dessin d’enfant with genus 𝑔 and 𝑛 faces with degrees 𝜇1, . . . , 𝜇𝑛.
By an Euler characteristic calculation, the number of vertices is |𝜇 | + 2 − 2𝑔 − 𝑛. Since
there must be at least one black vertex and at least one white vertex, we must have have
|𝜇 | ⩾ 2𝑔 + 𝑛.

We will show that, under the assumption |𝜇 | ⩾ 2𝑔 + 𝑛, there exists a dessin d’enfant
with exactly one white vertex. Take a polygon with 4𝑔 + 2 sides, whose vertices are
alternately coloured black andwhite. By identifying opposite edges, one obtains a dessin
d’enfant on a genus 𝑔 surface, with one black vertex, one white vertex, and one face with
degree 2𝑔+1. By adding 𝑛−1 appropriate edges from the black vertex to thewhite vertex,
one can obtain a genus 𝑔 dessin d’enfant with one black vertex, one white vertex, and
𝑛 faces with any degrees 𝜇1, . . . , 𝜇𝑛 satisfying |𝜇 | = 2𝑔 + 𝑛. We can relax this condition
to |𝜇 | ⩾ 2𝑔 + 𝑛 by adding appropriate black vertices with degree 1 that are adjacent to
the unique white vertex. Such a dessin d’enfant contributes to degree |𝜇 | + 1 − 2𝑔 − 𝑛
in 𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛), and there can be no contributions in higher degree.
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Finally, observe that switching the colours of the vertices of a dessin d’enfant changes
the number of black vertices from 𝑏 to ( |𝜇 | + 2 − 2𝑔 − 𝑛) − 𝑏, leading to the desired
symmetry in the coefficients of 𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛). ■

There is an analogue of the cut-and-join recursion for deformed monotone Hurwitz
numbers of Theorem 3.7 in the context of the dessin d’enfant enumeration. We omit the
proof, since it can be found in the literature [37].

Proposition 4.8 (Cut-and-join recursion) Apart from the initial condition𝐷𝑡0,1 (1) = 1, the
dessin d’enfant enumeration satisfies

𝜇1𝐷
𝑡
𝑔,𝑛 (𝜇1, 𝜇𝑆) =

𝑛∑︁
𝑖=2

(𝜇1 + 𝜇𝑖 − 1) 𝐷𝑡𝑔,𝑛−1 (𝜇1 + 𝜇𝑖 − 1, 𝜇𝑆\{𝑖})

+ (𝑡 + 1) (𝜇1 − 1) 𝐷𝑡𝑔,𝑛 (𝜇1 − 1, 𝜇𝑆)

+
∑︁

𝛼+𝛽=𝜇1−1
𝛼𝛽

[
𝐷𝑡𝑔−1,𝑛+1 (𝛼, 𝛽, 𝜇𝑆) +

∑︁
𝑔1+𝑔2=𝑔
𝐼1⊔𝐼2=𝑆

𝐷𝑡
𝑔1 , |𝐼1 |+1 (𝛼, 𝜇𝐼1 ) 𝐷

𝑡
𝑔2 , |𝐼2 |+1 (𝛽, 𝜇𝐼2 )

]
,

where we use the notation 𝑆 = {2, 3, . . . , 𝑛} and 𝜇𝐼 = {𝜇𝑖1 , 𝜇𝑖2 , . . . , 𝜇𝑖𝑘 } for 𝐼 =

{𝑖1, 𝑖2, . . . , 𝑖𝑘}.

It is well-known that dessins d’enfant correspond to pairs of permutations acting on
the edges — one permutation rotates edges around black vertices and the other rotates
edges around white vertices. (Equivalent descriptions in the literature often use triples
of permutations that compose to give the identity.) This leads to an expression for the
disconnected enumeration of dessins d’enfant in terms of characters of the symmet-
ric group, via Frobenius’s formula. For details, we recommend the book of Lando and
Zonkin [38]. To incorporate the parameter 𝑡, we observe that its exponent should equal
the number of cycles in the permutation that rotates edges around black vertices. As a
consequence of Jucys’s results described in part (a) of Proposition 2.13, we obtain the
following result, for which we omit the proof.

Proposition 4.9 The disconnected enumeration of dessins d’enfant is given by the formula

𝐷𝑡•𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) =
1

𝜇1 · · · 𝜇𝑛
[
ℏ2𝑔−2+𝑛

] ∑︁
𝜆∈P

𝜒𝜆𝜇 𝑠𝜆 ( 1ℏ ,
1
ℏ
, . . .)

∏
□∈𝜆

(𝑡 + ℏ 𝑐(□)) .

We are now in a position to prove that topological recursion governs the weighted
enumeration of dessins d’enfant.5

Theorem 4.10 Topological recursion on the spectral curve

C = CP1, 𝑥(𝑧) = 1 − 𝑧 + 𝑡𝑧
𝑧(1 − 𝑧) , 𝑦(𝑧) = 𝑧, 𝜔0,2 =

d𝑧1 d𝑧2
(𝑧1 − 𝑧2)2

5Topological recursion for a more general weighted enumeration of dessins d’enfant was previously
studied by Kazarian and Zograf [37], although they obtain a different form for the spectral curve.
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produces correlation differentials satisfying

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) = d1 · · · d𝑛
∞∑︁

𝜇1 ,...,𝜇𝑛=1
𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑥(𝑧1)−𝜇1 · · · 𝑥(𝑧𝑛)−𝜇𝑛

+ 𝛿𝑔,0𝛿𝑛,2
d𝑥(𝑧1) d𝑥(𝑧2)

(𝑥(𝑧1) − 𝑥(𝑧2))2
.

Proof We again invoke the result of Bychkov, Dunin-Barkowski, Kazarian and Shad-
rin [8], noting that the more restricted result of Alexandrov, Chapuy, Eynard and
Harnad [1] would suffice in this particular context. See the proof of Theorem 4.1 above
for a statement of the result.

The representation-theoretic interpretation of the dessin d’enfant enumeration
given inProposition 4.9 implies that they areweightedHurwitz numberswith the choice
of data �̃�(𝑧) =

∑∞
𝑖=1 𝑧

𝑖 = 𝑧
1−𝑧 and 𝑓 (𝑧) = 𝑡 + 𝑧. Hence, topological recursion on the

spectral curve

C = CP1, 𝑥(𝑧) = 𝑧(1 − 𝑧)
𝑡 − 𝑡𝑧 + 𝑧 , 𝑦(𝑧) = 𝑡 − 𝑡𝑧 + 𝑧

(1 − 𝑧)2 , 𝜔0,2 (𝑧1, 𝑧2) =
d𝑧1 d𝑧2

(𝑧1 − 𝑧2)2

produces correlation differentials satisfying

𝜔𝑔,𝑛 (𝑧1, . . . , 𝑧𝑛) = d1 · · · d𝑛
∞∑︁

𝜇1 ,...,𝜇𝑛=1
𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝑥(𝑧1)𝜇1 · · · 𝑥(𝑧𝑛)𝜇𝑛

+ 𝛿𝑔,0𝛿𝑛,2
d𝑥(𝑧1) d𝑥(𝑧2)

(𝑥(𝑧1) − 𝑥(𝑧2))2
.

This does not yet match our spectral curve, since the enumeration is stored as an
expansion at 𝑥(𝑧) = 0 rather than at 𝑥(𝑧) = ∞. We obtain the desired spectral curve by
performing the following three transformations in order:

(𝑥, 𝑦, 𝑡) ↦→ (𝑥−1, 𝑥2𝑦, 𝑡), (𝑥, 𝑦, 𝑡) ↦→ (𝑥, 𝑦 + 𝑡𝑥, 𝑡), (𝑥, 𝑦, 𝑡) (𝑡𝑥, 𝑦, 𝑡−1).

The first transformation changes the expansion at 𝑥(𝑧) = 0 to an expansion at 𝑥(𝑧) =
∞; the second transformation preserves the correlation differentials [28, Section 4.2];
and the third transformation preserves the coefficients of the expansion, due to the
symmetry of the coefficients of 𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) and the homogeneity property of
topological recursion [28, Section 4.1]. Thus, we arrive at the desired result. ■

Although the enumeration of dessins d’enfant has been studied previously [37], the
following conjectural properties have not yet been observed in the literature, to the best
of our knowlege.

Conjecture 4.11 (Real-rootedness and interlacing) For all 𝑔 ⩾ 0, 𝑛 ⩾ 1 and 𝜇1, . . . , 𝜇𝑛 ⩾
1, the dessin d’enfant enumeration 𝐷𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) is a real-rooted polynomial in 𝑡.
Furthermore, the polynomial 𝐷𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛) interlaces each of the 𝑛 polynomials

𝐷𝑡𝑔,𝑛 (𝜇1+1, 𝜇2, . . . , 𝜇𝑛), 𝐷𝑡𝑔,𝑛 (𝜇1, 𝜇2+1, . . . , 𝜇𝑛), . . . , 𝐷𝑡𝑔,𝑛 (𝜇1, 𝜇2, . . . , 𝜇𝑛+1).
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As with the deformed monotone Hurwitz numbers, we can effectively calculate
𝐷𝑡𝑔,𝑛 (𝜇1, . . . , 𝜇𝑛) using the cut-and-join recursion of Proposition 4.8 and explicitly
check for real-rootedness and interlacing. Again, one finds a wealth of data to support
Conjecture 4.11. We consider this as evidence that the real-rootedness and interlacing
observed for deformed monotone Hurwitz numbers is not simply a sporadic artefact,
but may be a more widespread phenomenon with a deep reason underlying it.
Remark 4.12. As previously mentioned, dessins d’enfant correspond to pairs of per-
mutations acting on the edges, or equivalently, triples of permutations that compose to
give the identity. It follows from Proposition 2.13 that each permutation has a unique
strictly monotone factorisation, defined analogously to amonotone factorisation in Defin-
ition 2.10, but with the stronger monotonicity requirement that 𝑏1 < 𝑏2 < · · · < 𝑏𝑟 .
Using this result on the permutation that rotates edges around black vertices leads to
the fact that the enumeration of dessins d’enfant can be interpreted as strictly monotone
Hurwitz numbers.

A Data

A.1 Deformed monotone Hurwitz numbers

The deformed monotone Hurwitz numbers can be computed using the cut-and-join
recursion or the topological recursion. These were both implemented in SageMath to
produce the following table [48].
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(𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 ®𝐻𝑡0,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 ®𝐻𝑡1,𝑛 (𝜇1, . . . , 𝜇𝑛)

(1) 1 0
(2) 𝑡 𝑡

(3) 𝑡2 + 𝑡 5𝑡2 + 5𝑡
(4) 𝑡3 + 3𝑡2 + 𝑡 15𝑡3 + 40𝑡2 + 15𝑡
(5) 𝑡4 + 6𝑡3 + 6𝑡2 + 𝑡 35𝑡4 + 175𝑡3 + 175𝑡2 + 35𝑡
(6) 𝑡5 + 10𝑡4 + 20𝑡3 + 10𝑡2 + 𝑡 70𝑡5+560𝑡4+1050𝑡3+560𝑡2+70𝑡
(7) 𝑡6 + 15𝑡5 + 50𝑡4 + 50𝑡3 + 15𝑡2 + 𝑡 126𝑡6 + 1470𝑡5 + 4410𝑡4 +

4410𝑡3 + 1470𝑡2 + 126𝑡

(1, 1) 𝑡 𝑡

(2, 1) 2𝑡2 + 2𝑡 10𝑡2 + 10𝑡
(3, 1) 3𝑡3 + 9𝑡2 + 3𝑡 45𝑡3 + 120𝑡2 + 45𝑡
(2, 2) 4𝑡3 + 10𝑡2 + 4𝑡 50𝑡3 + 128𝑡2 + 50𝑡
(4, 1) 4𝑡4 + 24𝑡3 + 24𝑡2 + 4𝑡 140𝑡4 + 700𝑡3 + 700𝑡2 + 140𝑡
(3, 2) 6𝑡4 + 30𝑡3 + 30𝑡2 + 6𝑡 168𝑡4 + 792𝑡3 + 792𝑡2 + 168𝑡
(5, 1) 5𝑡5 + 50𝑡4 + 100𝑡3 + 50𝑡2 + 5𝑡 350𝑡5 + 2800𝑡4 + 5250𝑡3 +

2800𝑡2 + 350𝑡
(4, 2) 8𝑡5 + 68𝑡4 + 128𝑡3 + 68𝑡2 + 8𝑡 448𝑡5 + 3348𝑡4 + 6128𝑡3 +

3348𝑡2 + 448𝑡
(3, 3) 9𝑡5 + 72𝑡4 + 138𝑡3 + 72𝑡2 + 9𝑡 462𝑡5 + 3432𝑡4 + 6312𝑡3 +

3432𝑡2 + 462𝑡

(1, 1, 1) 4𝑡2 + 4𝑡 20𝑡2 + 20𝑡
(2, 1, 1) 10𝑡3 + 28𝑡2 + 10𝑡 140𝑡3 + 368𝑡2 + 140𝑡
(3, 1, 1) 18𝑡4 + 102𝑡3 + 102𝑡2 + 18𝑡 588𝑡4 + 2892𝑡3 + 2892𝑡2 + 588𝑡
(2, 2, 1) 24𝑡4 + 120𝑡3 + 120𝑡2 + 24𝑡 672𝑡4 + 3168𝑡3 + 3168𝑡2 + 672𝑡
(4, 1, 1) 28𝑡5+268𝑡4+528𝑡3+268𝑡2+28𝑡 1848𝑡5 + 14548𝑡4 + 27128𝑡3 +

14548𝑡2 + 1848𝑡
(3, 2, 1) 42𝑡5+348𝑡4+660𝑡3+348𝑡2+42𝑡 2268𝑡5 + 16908𝑡4 + 31008𝑡3 +

16908𝑡2 + 2268𝑡
(2, 2, 2) 56𝑡5+424𝑡4+768𝑡3+424𝑡2+56𝑡 2688𝑡5 + 19128𝑡4 + 34416𝑡3 +

19128𝑡2 + 2688𝑡
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(𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 ®𝐻𝑡2,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 ®𝐻𝑡3,𝑛 (𝜇1, . . . , 𝜇𝑛)

(1) 0 0
(2) 𝑡 𝑡

(3) 21𝑡2 + 21𝑡 85𝑡2 + 85𝑡
(4) 161𝑡3 + 413𝑡2 + 161𝑡 1555𝑡3 + 3930𝑡2 + 1555𝑡
(5) 777𝑡4 + 3612𝑡3 + 3612𝑡2 + 777𝑡 14575𝑡4 + 65505𝑡3 + 65505𝑡2 +

14575𝑡
(6) 2835𝑡5 + 20538𝑡4 + 37338𝑡3 +

20538𝑡2 + 2835𝑡
91960𝑡5 + 633160𝑡4 +
1132340𝑡3 + 633160𝑡2 + 91960𝑡

(7) 8547𝑡6 + 88473𝑡5 + 251328𝑡4 +
251328𝑡3 + 88473𝑡2 + 8547𝑡

443872𝑡6 + 4303728𝑡5 +
11851268𝑡4 + 11851268𝑡3 +
4303728𝑡2 + 443872𝑡

(1, 1) 𝑡 𝑡

(2, 1) 42𝑡2 + 42𝑡 170𝑡2 + 170𝑡
(3, 1) 483𝑡3 + 1239𝑡2 + 483𝑡 4665𝑡3 + 11790𝑡2 + 4665𝑡
(2, 2) 504𝑡3 + 1278𝑡2 + 504𝑡 4750𝑡3 + 11956𝑡2 + 4750𝑡
(4, 1) 3108𝑡4 + 14448𝑡3 + 14448𝑡2 +

3108𝑡
58300𝑡4+262020𝑡3+262020𝑡2+
58300𝑡

(3, 2) 3402𝑡4 + 15450𝑡3 + 15450𝑡2 +
3402𝑡

61116𝑡4+271764𝑡3+271764𝑡2+
61116𝑡

(5, 1) 14175 ∗ 𝑡5 + 102690𝑡4 +
186690𝑡3 + 102690𝑡2 + 14175𝑡

459800𝑡5 + 3165800𝑡4 +
5661700𝑡3 + 3165800𝑡2 +
459800𝑡

(4, 2) 16296𝑡5+114256𝑡4+205376𝑡3+
114256𝑡2 + 16296𝑡

499136𝑡5 + 3377976𝑡4 +
6005536𝑡3 + 3377976𝑡2 +
499136𝑡

(3, 3) 16443𝑡5+115344𝑡4+207666𝑡3+
115344𝑡2 + 16443𝑡

500544𝑡5 + 3389664𝑡4 +
6029784𝑡3 + 3389664𝑡2 +
500544𝑡

(1, 1, 1) 84𝑡2 + 84𝑡 340𝑡2 + 340𝑡
(2, 1, 1) 1470𝑡3 + 3756𝑡2 + 1470𝑡 14080𝑡3 + 35536𝑡2 + 14080𝑡
(3, 1, 1) 12726𝑡4 + 58794𝑡3 + 58794𝑡2 +

12726𝑡
236016𝑡4 + 1057824𝑡3 +
1057824𝑡2 + 236016𝑡

(2, 2, 1) 13608𝑡4 + 61800𝑡3 + 61800𝑡2 +
13608𝑡

244464𝑡4 + 1087056𝑡3 +
1087056𝑡2 + 244464𝑡

(4, 1, 1) 72996𝑡5+525016𝑡4+952136𝑡3+
525016𝑡2 + 72996𝑡

2338336𝑡5 + 16041176𝑡4 +
28652336𝑡3 + 16041176𝑡2 +
2338336𝑡

(3, 2, 1) 81774𝑡5 + 573456𝑡4 +
1031460𝑡3 + 573456𝑡2 + 81774𝑡

2498496𝑡5 + 16913256𝑡4 +
30076176𝑡3 + 16913256𝑡2 +
2498496𝑡

(2, 2, 2) 90552𝑡5 + 619728𝑡4 +
1104624𝑡3 + 619728𝑡2 + 90552𝑡

2658656𝑡5 + 17760016𝑡4 +
31432800𝑡3 + 17760016𝑡2 +
2658656𝑡
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A.2 Dessin d’enfant enumeration

The weighted dessin d’enfant enumeration can be computed using the cut-and-join re-
cursion or the topological recursion. These were both implemented in SageMath to
produce the following table [48].

(𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 𝐷𝑡0,𝑛 (𝜇1, . . . , 𝜇𝑛) 𝜇1 · · · 𝜇𝑛 𝐷𝑡1,𝑛 (𝜇1, . . . , 𝜇𝑛)

(1) 𝑡 0
(2) 𝑡2 + 𝑡 0
(3) 𝑡3 + 3𝑡2 + 𝑡 𝑡

(4) 𝑡4 + 6𝑡3 + 6𝑡2 + 𝑡 5𝑡2 + 5𝑡
(5) 𝑡5 + 10𝑡4 + 20𝑡3 + 10𝑡2 + 𝑡 15𝑡3 + 40𝑡2 + 15𝑡
(6) 𝑡6 + 15𝑡5 + 50𝑡4 + 50𝑡3 + 15𝑡2 + 𝑡 35𝑡4 + 175𝑡3 + 175𝑡2 + 35𝑡
(7) 𝑡7+21𝑡6+105𝑡5+175𝑡4+105𝑡3+

21𝑡2 + 𝑡
70𝑡5+560𝑡4+1050𝑡3+560𝑡2+70𝑡

(1, 1) 𝑡 0
(2, 1) 2𝑡2 + 2𝑡 0
(3, 1) 3𝑡3 + 9𝑡2 + 3𝑡 3𝑡
(2, 2) 4𝑡3 + 10𝑡2 + 4𝑡 2𝑡
(4, 1) 4𝑡4 + 24𝑡3 + 24𝑡2 + 4𝑡 20𝑡2 + 20𝑡
(3, 2) 6𝑡4 + 30𝑡3 + 30𝑡2 + 6𝑡 18𝑡2 + 18𝑡
(5, 1) 5𝑡5 + 50𝑡4 + 100𝑡3 + 50𝑡2 + 5𝑡 75𝑡3 + 200𝑡2 + 75𝑡
(4, 2) 8𝑡5 + 68𝑡4 + 128𝑡3 + 68𝑡2 + 8𝑡 80𝑡3 + 200𝑡2 + 80𝑡
(3, 3) 9𝑡5 + 72𝑡4 + 138𝑡3 + 72𝑡2 + 9𝑡 75𝑡3 + 198𝑡2 + 75𝑡
(6, 1) 6𝑡6+90𝑡5+300𝑡4+300𝑡3+90𝑡2+

6𝑡
210𝑡4 + 1050𝑡3 + 1050𝑡2 + 210𝑡

(5, 2) 10𝑡6 + 130𝑡5 + 400𝑡4 + 400𝑡3 +
130𝑡2 + 10𝑡

250𝑡4 + 1150𝑡3 + 1150𝑡2 + 250𝑡

(4, 3) 12𝑡6 + 144𝑡5 + 444𝑡4 + 444𝑡3 +
144𝑡2 + 12𝑡

240𝑡4 + 1140𝑡3 + 1140𝑡2 + 240𝑡

(1, 1, 1) 2𝑡 0
(2, 1, 1) 6𝑡2 + 6𝑡 0
(3, 1, 1) 12𝑡3 + 36𝑡2 + 12𝑡 12𝑡
(2, 2, 1) 16𝑡3 + 40𝑡2 + 16𝑡 8𝑡
(4, 1, 1) 20𝑡4 + 120𝑡3 + 120𝑡2 + 20𝑡 100𝑡2 + 100𝑡
(3, 2, 1) 30𝑡4 + 150𝑡3 + 150𝑡2 + 30𝑡 90𝑡2 + 90𝑡
(2, 2, 2) 40𝑡4 + 176𝑡3 + 176𝑡2 + 40𝑡 80𝑡2 + 80𝑡
(5, 1, 1) 30𝑡5+300𝑡4+600𝑡3+300𝑡2+30𝑡 450𝑡3 + 1200𝑡2 + 450𝑡
(4, 2, 1) 48𝑡5+408𝑡4+768𝑡3+408𝑡2+48𝑡 480𝑡3 + 1200𝑡2 + 480𝑡
(3, 3, 1) 54𝑡5+432𝑡4+828𝑡3+432𝑡2+54𝑡 450𝑡3 + 1188𝑡2 + 450𝑡
(3, 3, 2) 72𝑡5+528𝑡4+960𝑡3+528𝑡2+72𝑡 480𝑡3 + 1176𝑡2 + 480𝑡
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A.3 Weingarten functions

The value of WgS (𝜎) can be calculated by inverting the orthogonality relations or
by the character formula. The value of WgU (𝜎) is the leading coefficient of WgS (𝜎),
considered as a polynomial in 𝑀 .

𝜎 WgU (𝜎) WgS (𝜎)

( ) 1 1

(1) 1
𝑁

𝑀
𝑁

(1) (2) 1
𝑁 2−1

𝑀 (𝑀𝑁−1)
𝑁 (𝑁 2−1)

(12) −1
𝑁 (𝑁 2−1)

−𝑀 (𝑀−𝑁 )
𝑁 (𝑁 2−1)

(1) (2) (3) 𝑁 2−2
𝑁 (𝑁 2−1) (𝑁 2−4)

𝑀 (𝑀2𝑁 2−2𝑀2−3𝑀𝑁+4)
𝑁 (𝑁 2−1) (𝑁 2−4)

(12) (3) −1
(𝑁 2−1) (𝑁 2−4)

−𝑀 (𝑀−𝑁 ) (𝑀𝑁−2)
𝑁 (𝑁 2−1) (𝑁 2−4)

(123) 2
𝑁 (𝑁 2−1) (𝑁 2−4)

𝑀 (𝑀−𝑁 ) (2𝑀−𝑁 )
𝑁 (𝑁 2−1) (𝑁 2−4)

(1) (2) (3) (4) 𝑁 4−8𝑁 2+6
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

𝑀 (𝑀3𝑁 4−8𝑀3𝑁 2+6𝑀3 )
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

+𝑀 (−6𝑀2𝑁 3+24𝑀2𝑁+19𝑀𝑁 2−6𝑀−30𝑁 )
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

(12) (3) (4) −1
𝑁 (𝑁 2−1) (𝑁 2−9)

−𝑀 (𝑀−𝑁 ) (𝑀2𝑁 2−4𝑀2−5𝑀𝑁+10)
𝑁 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

(12) (34) 𝑁 2+6
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

𝑀 (𝑀−𝑁 ) (𝑀2𝑁 2+6𝑀2−𝑀𝑁 3−6𝑀𝑁+4𝑁 2−6)
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

(123) (4) 2𝑁 2−3
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

𝑀 (𝑀−𝑁 ) (2𝑀2𝑁 2−3𝑀2−𝑀𝑁 3−6𝑀𝑁+3𝑁 2+3)
𝑁 2 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

(1234) −5
𝑁 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)

−𝑀 (𝑀−𝑁 ) (5𝑀2−5𝑀𝑁+𝑁 2+1)
𝑁 (𝑁 2−1) (𝑁 2−4) (𝑁 2−9)
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