ON THE STEINER PROBLEM
E.J. Cockayne

(received February 7, 1967)

1. Introduction. Let M be a metric space with metric p
which has the following properties.

1. M is finitely compact.

2. There exists a geodesic in M joining each two points
of M.

3. For all a, beM, p(a,b) is equal to the length of a
geodesic joining a and b .

DEFINITION. Given N distinct points bi' e.., b in M,

N

a tree U on the vertices bi’ ceny bN is a set of geodesics joining

N
some of the (2) pairs of points bibj , with the property that any

two vertices can be joined by a sequence of geodesics belonging to
U in one and only one way. A geodesic bibj of U is called a

branch of U, the length L(U) is the sum of the lengths of its
branches, {bi} is the set of all vertices sending branches to

the vertex b. and W(bi) is the number of such vertices.
i

We consider the following problem.

Sn: Given a set A = {ai, a . an} of n> 3 distinct

2"

points in M, to find the shortest tree(s) whose vertices contain

these n points. In the Euclidean Plane S is called the Steiner
n

Problem and we keep this title for our generalisations. Suppose
a minimising tree U of Sn in the plane has additional vertices

., 8. . Then

S Kk

PR
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P1. U is non self-intersecting.

P2. w(si)=3,i=1,...,k.

P3. w(a,)<3,j=1,...,n.

P4, 0 _<_Jk <n-2.

P5. Each s, is the S-point of the triangle formed by {Si}

(See [1] and [2]).

In [1] it is proved from these properties that the set of

minimising trees of Sn in E2 can be constructed using a finite

set of Euclidean (ruler-compass) constructions. The proof
contains errors, the algorithm is not clearly described and there
is no attempt to make it more efficient.

In the first part of this paper we give another proof of this
result which demonstrates the structure of minimising trees and
continue with a discussion of how this structure can be used to
reduce greatly the number of constructions. In the later sections
we show that minimising trees of Sn in certain other spaces have

the properties listed above and we conclude with a discussion of a
generalisation of Sn posed in [1]. This discussion includes a

proof (using the compactness of M ) of the existence of all mini-
mising trees mentioned in the paper.

2. An Effective Algorithm for the Steiner Problem in E

5 "
DEFINITIONS. A tree with vertices {a'l, ey an} and
{Si’ cen sk} (from this point on, these will be termed a-points

and s-points respectively) has the property P4 if k = n-2 .

V is a subtree of a tree U if and only if (i) V is a tree
and (ii) the set of geodesics of V is contained in the set of
geodesics of U .

A tree U is an S-tree on A if it has properties P1, P2,
P3, P4, P5 of section 1.

A tree U is an S-tree on A if it has properties P1, P2,
P3, P4, P5.

A tree U is an Sk-tree on A if it has properties P2, P3,
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P4, P5.

The finite set {Ai’ A . At’ R} (t> 0) is a division of

2’
the set A if and only if
1. Each AiC_A, RCA.
RﬂAi:¢, i=4,...,t.

No aJ. can be an element of more than 3 of the sets Ai .

2
3
4. Each Ai has 3 or more elements.
5 A1UA2U U AtUR = A,

LEMMA 1. If U is any S-tree on A then for some
division Ot= {A1,A ""At’ R} of A there exist S-subtrees

2,
of U on Ai for i=1,...,t.
Proof. If U contains no s-point, the required division

is {A} . IX S, the setof s-points of U, is non-empty, we
define the relation '"o'" on S as follows: s, 0 Sj if and only if

the sequence of segments of U joining s, to Sj contains no
i

a-point of U . The relation is an equivalence relation and there-
fore partitions S into mutually exclusive and exhaustive sets

Si""’st (t>0). For each i=1,...,t define
Ai = {aj :aj € {sk} for some s

t

€S} ,and R=4A- ] 4 .
i=1

. At’ R} 1is a division of A . It remains to

k
The set {A'l’AZ’ . *
show that there is an S-subtree of U on each Ai . Let Ui be
the subtree of U whose vertex set is AiU Si ,i=1,...,t, (this
is certainly a subtree of U by construction). Ui has the proper-
ties P4, P2, P3 and P5. We prove P4. Let Ai contain p points,

Si q points and further suppose that Si contains n, , n, and n

1 2 3
s-points which directly join 41, 2 and 3 other s-points respectively.
Then
(1) n1+n2+n3=q.

The number of branches of Ui connecting s-points is

(n,1 +2n_ + 3n3)/2 . But by the defining property of Si this

2
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number is qg-1 . Hence

(2) n, +2n2 + 3n3 =2(qg-1) .

The number of branches of Ui connecting an a-point to an
s-point is Zn,1 + n, since the valency of each s-pointis 3.

Hence

3 + =p.
(3) Zn'1 n2 p

From equations (1) (2) and (3) we deduce q = p-2 . Therefore
Ui satisfies P4 and is an S-subtree of U . Hence the Lemma.

Incidentally one can also prove n =2 from (1), (2),

177
and (3), which implies that n, > 2 . We note that the non self-
intersection property is not involved in the establishment of these
equations and state that an S*-tree on a set A has at least two
s-points which directly join exactly one other s-point and two
a-points, This fact will be used in the next Lemma.

We call the subtrees Ui (i=1,...,t) the components of U

and suggest that the components of a minimising tree U may be
considered as stability sets for U in the following sense. If one
a-point belonging to a component Uj is slightly perturbed, there

is a minimising tree U' for the new set of n a-points which is
identical to U except for a small perturbation of Uj .

If P, Q are points in the plane we shall denote by (PQ)
and (QP) the third vertices of the equilateral triangle on PQ as
base, (PQ) being the point to the left of P looking from P
along PQ.

The construction we now explain is crucial to the proof.
Let U be an S-tree on A = {ai, ey an} with s-points

s then there exists (see note following Lemma 1) an

yeees S 3
1 k’
s-point say Sy which is connected directly to two a-points say

a, and a, In fact a portion of the tree appears as in Fig. 1.

434

https://doi.org/10.4153/CMB-1967-041-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-041-8

(aa,)

Figure 1

X is the third point of {si} in U . Since S, is the S-point
of {Si} , the line Xs1 produced passes through (azai) and

the tree U' on A' = {(azai),a ..,an} with s-points

3)

ERRE sk formed from U by replacing the branches a

a,s, > 51X by the single branch (a2a1)
(We cannot say that U' is an S-tree since the non-self inter-
section property may have been contradicted.) It is easy to show

t X = 1
tha a.131 + azs1 + s1 (azai)X and so the trees U and U

have equal lengths. Henceforth we shall refer to the above as the
"Equilateral Construction' .

S S )
11
X is an S¥%-tree on A'.

We next define the term ''Association'" of an S-tree U on

aset A. From U, we form a tree U' and set A' as above.

The construction is repeated forming a new tree U'" and set A",
r

U™ and A™ etc. until the set A( ) contains only two points.

(Actually r is equal to the number of s-points in the original

(r)

tree U ). The two points of A can be expressed in terms of
the original a-points of U and the equilateral triangle bracketing

notation defined above. This representation of A(r) we call an

"Association' of the tree U . We give a simple example below.
We note the following:

(i) The process is always possible since at every stage the

tree U(k) is an S¥%-tree on A(k) and hence has an
s-point which directly joins two a-points (in fact at
least 2 such s-points by the note following Lemma 1).
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(ii) It follows from (i) that every S-tree on A has an
association (certainly not an unique association).

(iii) At each stage length is preserved. Thusif P,Q are

the points of A(r)
original tree U .

PQ is equal to the length of the

(iv) No two S-trees on A have a common association.

EXAMPLE. In Fig.2, U is an S-tree on A = {1,2, 3,4, 5}

ith s-point , , .
wi s-points s,, s,, s,

((42)(13))

(42)¢

Figure 2

We '"pair'" the points 1 and 3 givin
P P g g

1 = ! 1 ) 5, ) ’4
A' = {(13),2,4,5} and U' with branches (13)s3 s, SZS3 Zs2 5,

Next we pair 4 and 2

A" ={(13),(42),5}, U" has branches (42)53, ('13)s3, 535 .

Finally we pair (13) and (42)
A™ = {((42)(13)),5} , U™ has branch ((42)(413))5 .

The underlined portion i.e., A™ without the set parentheses,
is an association of U . The length of U is the length of the
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branch of U™ .,

LEMMA 2. If it is known that U, an S-tree on A, has
a certain association o, we can construct U by a finite number
of Euclidean constructions.

Proof. The Lemma is true for n =3 . Assume it is true

for n= N and let AN+1={a1,...,aN+1} be any plane set of

N + 1 points on which U is an S-tree with association «.

Suppose the labelling of points in AN+1 is such that a,,a, in

this order in o« have no brackets or comma separating them. We
i h t A_= ) e ey t
now consider the se N {(aiaz), ay aN+1} From the

equilateral construction there exists U', an S-tree on AN ,

which has association o except that (aiaz) is now regarded as

a single point. By the inductive hypothesis we can construct U!'
by a finite number of Euclidean constructions. Let (aiaz)X , the

branch of U' connecting (a1a ) , be replaced by the branches

2

ais, a_s,sX, where s is the point of intersection of the circle

through (a ),a ,a_ with the line (aiaz)X . The resulting

1727 % %
tree U, by the equilateral construction, is the (unique by note iv)

S-tree on AN+1 with association o. Hence the Lemma by induc-

tion.

LEMMA 3. The set of all S-trees on A = {ai, ...,an}

is finite and may be constructed by a finite number of Euclidean
constructions.

Proof. Any combination of A = {a1, e, an} by the

above equilateral bracketing notation to form just two points, will
be called an association of A . Then the set of all associations

of all S-trees on A is a subset of the finite set 8 of all associa-
tions of A (in fact a proper subset for n> 3) . If for each b e&
we perform the finite number of Euclidean constructions (Lemma
2) that construct the S-tree on A with association b (if such a
tree exists), we shall construct all the S-trees on A . Hence

the Lemma.

THEOREM 1. For every n, there exists a finite number
of Euclidean constructions yielding all the minimising trees of the
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bl .
problem Sn

Proof. The minimising trees of S are S-trees on A .
- n

It is therefore sufficient to show that all S-trees on A can be
constructed by a finite number of Euclidean constructions.

Form the finite set ot of all divisions of A . Let
= ...,A ,  ,R.} . F h
01_i e 0t and suppose Oti {AM’ AiZ’ A1 ti 1} or eac

Aij € OLi we can construct, by a finite sequence of Euclidean
constructions, the finite set Cij of all S-trees on Aij (Lemma 3).
If during this procedure we find an Aij for which Ci' =, we
reject the division and move on to the next element of 0Ot.

Suppose now O(i e X is such that Cij ¢ for j= 1ot 5 we

call such a division '"acceptable''.

For each Aij € Oli we choose an element of Cij and join
up these trees to each other and the residual points Ri so as to
form an S-tree on A . (The S-trees on non-disjoint sets Ai ,

Aiq are automatically joined. The joining process involves

linking certain pairs of a-points to connect the graph but, of
course, must not contradict the S-tree properties P1-P5.) By
Lemma 1, if we take all the finite number of selections from the
Cij , use all the finite number of ways of joining them and the Ri

which form S-trees on A, and do this for all Oti in the finite

set of acceptable divisions of A, we shall construct all S-trees
on A by a finite number of Euclidean constructions. Hence the
Theorem.

Towards an Efficient Algorithm. Our first result shows
that a certain class of divisions of A are not '"acceptable'" and
hence need not be considered by the algorithm. Let

Ot= {A'l’ ey At,R} be a division of A and conv Ai be the

convex hull of Ai . If for any i, j, conv Ai - conv Aj is dis-

connected, then O is not acceptable, for in such a case there

are points a2, of Ai which are separated by conv Aj and

aj1, ajZ of Aj separated by Ai . The sequences of branches
joining these pairs in any tree constructed from this division of
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A will intersect, contradicting one of the properties P1, P2,
P3,

For each 1i,j, i%j let Lij be the set of points strictly

inside both the circles circumscribing the equilateral triangles
with aiaj as base. In order that (aiaj) may appear in the

association of an 8-tree on A, i.e. in order that a. and a‘j
i i

may be paired directly in a component, it is necessary that

A NL, .= ¢ . Assume to the contrary that a,, a,£ are linked
i i i j

directly to S in a minimum tree U and there exists a e Ain Lij .

Then the longer of the two branches aiS, a.S may be replaced by

J

K’ ajak, reducing the length of the

assumed minimum tree. Thus a large class of associations

cannot construct minimum trees and may be omitted from the

the shorter of the lines aia

algorithm.

If a set A, on which we are to construct the set of all
S-trees forms a'convex polygon, only adjacent vertices of the
polygon can be paired in an association for otherwise the con-
structed tree would be self intersecting.

Since we are only interested in minimum length S-trees
on subsets A, of A and the association method will evaluate
i

the length of an S-tree from an association before the s-points
are actually constructed, we do not need to construct the majority
of S-trees on each A, atall,

Finally we note that having constructed minimum length

S-trees on the sets A1, N At of a division of A, we wish to

join these and the residual set Ri so that the resulting S-tree
on A is of minimum length. An appropriate algorithm for this

joining process can be obtained from [3].

3. S in Euclidean m-space E (m > 3) .
n m_ =

THEOREM 2. The minimising trees of Sl’1 in Em(m > 3)

have the properties P1-P5 listed in Section 1.

Proof, We first show each vertex of a minimising tree U
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which has a-points a ,...,a and s-points s ,...,s has
1 n 1 n

valency < 3. For suppose U has a vertex x and branches
xx. along the directions of the unit vectors ui, i=1,...,4.
1

Then one of the angles at x (say ¥ x XXZ) is less than 120°

1
since u, * u, < - % for all i :i:J implies that
i =

4
u |7 = = u,2+2 = u,-u.<4+2.6.(-1)=—2
. 1 . 1 L. 1) 2
i=1 i=1 1%3
which is impossible. It follows (see [1]), that xx , xx, is not

1

the minimum length network connecting xx X, contrary to

assumption. Similarly branches of U may not intersect except
at a vertex.

Therefore U has properties P41, P3 and W(Si)ﬁ 3 for
i=4,..., k. But w(s.)> 3 or there would be no gain in intro-
2
ducing the additional vertex s, . Hence P2 . Property P5 is
i

immediate from [1]. It remains to prove P4 . The number of
branches leading to s-points (using P2) is > 3k/2 , the con-
nectivity of U assures us that the number of branches from
a-points is > n/2 , and a tree with n +k vertices has n+k -1
branches. Therefore (n +3k)/2< n+k -1 from which we deduce
k<n-2. Hence P4.

4. Steiner Problem on a Surface D in E3 .

We shall assume that D has no singularities of any kind.
The main purpose of this section is to prove that minimising
trees of Sr1 in D have properties which are identical to those

in E_ . We first prove two results which show that the 120°
property of additional vertices (see [1]) holds in D .

Suppose A, B, C are distinct points in D and Pé {A,B, C}
minimises the sum p(P, A) +p(P,B) +p(P, C). We prove that the
angles at P between the geodesics PA, PB, PC are each 120° .
Let p(P,A) =a, p(P,B)=b and p(P, C) = c . Consider the

geodesic ellipse E (= the locus of points Z such that p(Z, A)
+p(Z,B) = a +b) and the geodesic circle p(Z, C) = c . These
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closed curves touch at P, for otherwise there would be a point
Y interior to both curves such that p(Y, A) +p(Y,B)< a +b and
p(Y, C) < ¢ contradicting the minimum property of P . Since
geodesic PC meets p(Z, C) = ¢ orthogonally, geodesic PC
meets E orthogonally. By a result of classical differential
geometry [4, page 120] E bisects the angle between the geodesic
parallels p(Z,A) =a and p(Z,B) =b and therefore, since the
geodesics AP, BP meet these circles orthogonally, the angles
o and B of Fig. 3 are equal. Therefore

Figure 3

(4) Y. APC= A BPC.

Similarly by considering the geodesic ellipse p(Z, A) +p(Z, C) =
a +c, we prove z¢_ APB = X BPC and this together with (4)
proves the result.

Secondly we show that if ABC is a geodesic triangle on D
with the angle at A less than 120° , then A does not minimise
the sum p(Z, A) +p(Z,B) +p(Z,C) . Let V be an e-neighborhood
of A sufficiently small so that for all r, se V there is only one
geodesic joining them. Let B(V) intersect the geodesics AB ,
AC in X and Y . Consider the following 41-1 mapping of the
geodesic triangle AXY onto the tangent plane at A . For Q in
the geodesic triangle AXY with p(A, Q) = q, the corresponding
point Q' is the point on the tangent line to the geodesic AQ at
A such that AQ! = g . Since the angle A of the plane triangle
AX'Y! is less than 120° , there exists P' in the tangent plane
such that AP' + X'P' + Y'P' < AX' + AY' (see [1]) and further-
more the difference is proportional to ¢ i.e.,

AX' + AY!' - (AP' + X'P' +Y'P') = ek1 for some k'1 .
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. . 1 1
- L
If ¢ is sufficiently small, for all Q,,Q,¢V, lQiQZ p(Qi,QZ)|< €

where L is constant (the proof of this is elementary but long) and
hence if Pe¢V corresponds to P' in the tangent plane,

W)

[(AP' +X'P'+Y'P') - {p(A,P) +p(X, P)+p (Y, P)} < kzez for some k, .

Therefore

{p(A, X) +p(A,Y)} - {p(A,P) +p(X,P) +p(Y,P)}

1]

(AX' + AY!') - (AP' + X'P' + Y'P')
+ (AP' + X'P' + Y'P') - {p(A,P) +p(X,P) +p(Y,P)}
> ke - k2e2 > 0 if ¢ is sufficiently small.
Therefore
P(A, X) +p(A, Y)>p(A,P) +p(X,P) +p(Y,P) .

If we now add p(X,B) +p(X, C) to each side and apply the triangle
inequality on the right we obtain

p(A,B) +p(A, C)>p(A,P) +p(B,P) +p(C,P)

showing that A does not minimise p(Z, A) +p(Z,B) +p(Z, C) as
required.

Using these 120° properties and a proof identical to that of
Theorem 2 we deduce that U, a minimising tree of Sn in D
with extra vertices Si’ ey sk , has the properties P41, P2, P3,

P4 listed in Section 1 and the following analog of P5 :

P'5: For each i=1,...,k if {si} contains points
pi’ qi’ r, then each of the angles at si between the geodesics
i

s., q.S., r s is 120° .
I91 i q1 i ii

5. The Steiner Problem in Plane Minkowski Metric Spaces.

Let X be a centrally symmetric convex surface in E

with centre 0 . The m-dimensional Minkowski Metric Space
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M associated with X is obtained by defining the distance
m
p(x,y) for x,yecE as follows., If x=vy, p(x,y)=0. If x:lty
m

let the ray with initial point 0 which is parallel to xy meet Z

at P . Then p(x,y) = xy/OP where xy and OP are usual

Euclidean distances. M is a metric space satisfying conditions
m

1, 2, 3 of the introduction. In this section, for brevity, we omit
most of the proofs which depend only on the following easily veri-
fied properties of Mm (see [5], page 21). x and y are to be

considered as m-dimensional vectors. For all x, yeMm
(i) p(x,vy) =p(0,x-y) and more generally, any translation
is an isometry.

(ii) The triangle inequality is strict provided that X is
strictly convex and the three points involved are non-
collinear.

(iii) For X strictly convex
p (0, x+y) < p(0,x) +p(0,y)
and this inequality is strict unless 0,x,y are collinear
with x,y lying on the same side of 0 .
For the remainder of this section by M2 we shall mean a

plane Minkowski metric space the defining curve of which is
strictly convex.

PROPOSITION 1. Given any n distinct non-collinear

points a,,...,a in M_ , there exists a unique point z
1 n 2 n
minimising the function f(z) =X p(z,a,) .
i=1 !
Proof. A simple compactness argument shows that a
minimum exists and it is easily verified that for all zy zzeM2 s
z +z
1 2 1 1
£( > ) < 2f(z1)+2f(zz).

Hence £(z) is strictly convex and has an unique minimum.

PROPOSITION 2. Let A,P be any two points in M2 .
Then there exist two points B , one on either side of the line AP,
each having the following properties:
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1. P minimises the function f(z) =p(z, A) +p(z,B) +p(z, P) .

2. For any point C strictly within the angle APB, P does
not minimise the function p(z, A) +p(z, C) +p(z, P) .

The angles APB of Proposition 2 are called Critical Angles.
For the Euclidean Metric each critical angle is 120° . In
Minkowski spaces critical angles will vary in their Euclidean
magnitude.

PROPOSITION 3. Let A,B,C be any three distinct

points in M2 and suppose P minimises p(z, A) tp(z, B) tp(z, C) .

Then either
(i) Pe{A,B,C} ,
or

(ii) there exists an unique point X at which the sides of
the triangle subtend critical angles and P = X .

PROPOSITION 4. Let angles APB , BPC be supplemen-
tary angles. Then P cannot minimise both of the functions

1

fi(Z) p(z, A) +p(z,B) +p(z, P)

and

"

£,(z) =p(z, C) +p(2,B) +p(z,P) .

At this point we digress and state the following fact which will be
used in the next section. Suppose A, B, C are distinct points in
an m-dimensional Minkowski Metric Space with strictly convex
defining surface S and let the plane w defined by A, B, C meet

S in the curve X . Then the above theory holds in the plane
Minkowski Space defined on w by Z i.e., we can apply Proposi-
tions 1-4 to three points ABC in an m-dimensional Minkowski
Metric Space.

THEOREM 3. Let U be a minimising tree of S in
n
M2 with additional vertices S'l’ e ee, sk . Then U has the
properties P1-P4 of Section 1 and the following analog of P5 :
P"5: For each i=1,...,k, s, minimises p(z, a)
i
+p(z,b) +p(z,c) where a,b,c are the points of {Si} and each

angle as b, bs.c, cs.,a is a critical angle.
i i i
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Proof. Suppose the branches AB, CD intersected at P
(not a vertex of U). Then for some pair of points from A,B, C,D
say A,B the point which minimises p(z, A) +p(z,B) +p(z, P) is
X $ P (Proposition 4) and a replacement of AP,PB by the three
lines XP, XA, XB shortens the assumed minimising tree,which
proves P1. A similar argument shows that no vertex x of U
can have w(x) > 3. Thus U satisfies P3 and has the property
w(si)g 3 forall i=1,...,k. Also w(siw 3 (hence P2) and

P4 holds, the proofs being identical to those given in Theorem 2;
finally P'"5 is immediate from Proposition 3.

In [6] an example is given where the defining convex curve
of the Minkowski Metric is not strictly convex. The property
w(x) < 3 for each vertex x of a minimising tree of Sn does not

hold.
6. The Problem S
no By
Consider the following generalisation of the Steiner Problem:
S Given three non-negative real numbers o, B, y and n
noBy
distinct points ai, ey an e M to find an integer k and k points
S'l’ . sk ¢ M and to construct the tree(s) U on the vertices
a1, , an, Si’ . sk so as to minimise the sum
n k
T=LU)+a = wl(a,)+p = w(s.) +vk.
j=1 J j=1 J
DEFINITION. U is a p-treeon A = {ai,...,an} if U
is a tree with vertices ai, cees an, s1, ceey Sk and
(i) w(si)z3 , 1i=1,...,k.
(ii) 0<k<n-2.
PROPOSITION 5. If a solution of sna/ﬁy exists, it is a

p-tree on A .

Proof. W(Si) > 2 for each i=1,...,k . Suppose W(Si)':Z

1"

for some i and {si} {x,vy} . Then the tree formed by replacing
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branches 8%, sy by the branch xy has a smaller value of T .

Hence (i), and (ii) is proved exactly as in Theorem 2.

DEFINITION. Let U be a p-treeon A= {ai, .. .,an}

with additional vertices s,,..., s

1 k-’

By the association of U we mean the integer k and the

sets {ai} and {s.} (i=1,...,n, j=1,...,k).
J
THEOREM 4. The problem S 5 is reducible to a
na By

finite number of minimum length problems.

Proof. The relation ""has the same association as' on
the set of all p-trees on A is an equivalence relation. We show
that the number of equivalence classes is finite. Suppose there

are k additional vertices. Then we have n +k points on which
to construct a tree i.e., n +k - 1 branches must be selected

from the possible (n;k) geodesics. Thus the number of associa-

tions with k extra vertices is not greater than

n+k)

2

g(n, k) = )

n+k-1

n-2

and the total number of associations is not greater than X g(n,k)
k=0

and hence is finite.

Let the equivalence classes be C1, R CN and let Ci be

any one of these classes. The tree(s) which minimise T in Ci

are precisely the tree(s) of minimum length of Ci since the

association common to all the tree(s) of C. fixes the other three
i

terms of T i.e., for all Ue C,
i

n k
o 2 w(a)+p Z w(s,) +yk is constant .
i=1* j=1 7
The minimising trees of Sn 6 are a subset of the trees belonging
apy
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to C,,..., CN (Proposition 5). Therefore each minimising tree
of Sna/ v is a solution to one of the following N minimum length
problems: For i=1,...,N to construct the tree(s) U ¢ Ci
which minimise L(U) .

The next Theorem and its Corollary prove the existence of
all minimising trees mentioned in this paper.

THEOREM 5. Let Ce {C1, ceey CN} ; there exists a
tree of minimum length in C .
Proof. The association of trees in C stipulates which of

the pairs s,aj, sisj, aiaj will be joined by geodesics as branches
i
of treesin C. We exclude the case k = 0 for which the Theorem

is obvious. Let A {a 1 3y e ai)\'} = {at : ate A and

5.2, is a branch of trees in C} . Let Ri’RZ be sets of un-

ordered pairs of integers, defined as follows:
R1 ={(,]): 5.8, is a branch of trees in C}
J
R2 = {(i, j) : a.a, is a branch of trees in C}
J

Then the length of a tree in C is

A

k i
f(s1,...,sk)= bR p(sl,a )
i=1 j=1

+ = p(si, s.)+ = p(ai, a.) .
(i, j)eR, TR, J

Suppose L is the length of the shortest tree with vertices

3y e only. Let Z ={z:zeM and m1n p(z, a)< L} .

Then every s-point of a tree of shortest length in C isin Z for
otherwise the length of the tree would necessarily be greater than

L.
Thus if {s1, e, Sk} is a set of s-points of a minimum
length tree of C then {81, cee sk} is an element of the cartesian
447
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product Z . Now since Z is closed and bounded and M is
finitely compact, Z is compact implying by the Tychonoff

k
Theorem that Z is compact. But f(si, ce Sk) is continuous

on Z and so has a minimum value on Zk . Hence the Theorem.
COROLLARY. There exist minimising trees of S 5
nafy

Proof. Immediate from this Theorem and Theorem 4.

THEOREM 6. If M is a Minkowski Metric space Mrn

for which the defining surface X is strictly convex, then there
is an unique tree of minimum length in C e {C1, R CN}

Proof. Suppose to the contrary that f has minima,
value ¢ , at {Si"”’sk} and {ti""’tk} where ti%s. for
i

some 1. Consider the set

s1+t1 Sk-l-tk
_—2 y o e e —2

Using Properties (i) - (iii) of Minkowski Spaces (Section 5)

/Si+ti \ ( 5.2 t'-aij
ij i
P > aij p |0, +

2 2

IA

s.-a,. t-a,.
P 0, 12 1! + P 0, 1 21

1 1

= —p(0 - + —p(0, t-a..
2P( » s, aij) 2p( ; alj)
1 1

= = =p(t .
2P(si, aij)+ zp(i, aij)

This inequality is strict unless a,j, s., t. are collinear with
i

i i
Si’ t. on the same side of a,j . Therefore
i i
k )\i s+t 1 k )\i
T T (=, a. )<= Z X {p(s.,a..) + p(t,a.. )}
i=1 j=1 2 ij 2 i=1 =1 it ij i ij
448
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and the inequality is strict unless for each i=1,...,k, a_i,
i
.y e-.ya. ,s.,t are collinear with s, t. oc i itabl
a5 AT A cupying sui e

i
positions on the line. Such a situation cannot occur in a minimum
length tree of C. Assuming n> 2 (otherwise the problem is

trivial), there exists i for which \,>2 and s,  joins only one
i— i
other s-point. If \ > 2 a simple application of the triangle in-
i

equality proves that the assumed tree could not be minimum length
in C; the case \, = 2 is disposed of using Proposition 4. Thus
i

we can conclude
kN s 4. , K N , K N

5) = = o 121,a,, <5 T Zoplspal)ty; TOOT (t,al).
i=1 j=1 1 i=1 j=1 J i=1 j=1 * Y

By a similar use of the properties of Mrn we can show

s, tt. s .+t 1 1
= P 12 : —-'%‘1 < > = p(si, S_)+“2‘ > p(ti,t.).
(i, j)eR : (i,j)eR / (i, j)eR
1 1 1
Adding this to (5) and = p(a,, a.) to both sides we obtain
1)

(i,j)eRZ

s +t s+t
11 k. Kk 1 1 _
f/ e T )<2 fs oo een s JE5E(E ot ) =

which contradicts the minimum property of £ .

COROLLARY. In M , S and S have a finite number
m  nafy n

of minimising trees.
Proof. Immediate from Theorems 4, 5 and 6.

F itabl 1 f o, , 1), S d st
or suitable values of o, B, y (see [1]) Ny reduces to

..,a in M,

the problem P : Given any n distinct points 2, - n
n

n
to find the point z which minimises X p(z,a.) . Work is currently
. i
i=1
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in progress on a proof, using Galois Theory, that in the plane
P (and hence S ) is in general not solvable by Euclidean
n nafBy

Constructions.
Similar proofs to those given in this section may be used

to establish identical results when the function to be minimised
is

n k

F I(U), Z w(a.), Z w(s.), k
. i . j
i=1 j=1

where F is any positive function which is strictly increasing in
each of its four variables.
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