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The axisymmetric steady two-phase flow of a differentially heated thermocapillary liquid
bridge in air and its linear stability is investigated numerically, taking into account
dynamic interfacial deformations in the basic flow. Since most experiments require a
high temperature difference to drive the flow into the three-dimensional regime, the
temperature dependence of the material properties must be taken into account. Three
different models are investigated for a high-Prandtl-number thermocapillary liquid bridge
with nominal Prandtl number Pr = 28.8: the Oberbeck–Boussinesq (OB) approximation,
a linear temperature dependence of all material properties and a full nonlinear temperature
dependence of all material properties. For all models, critical Reynolds numbers are
computed as functions of the volume of the liquid bridge, its aspect ratio, its dimensional
size and as a function of the strength of a forced axial flow in the ambient air.
Under most circumstances the OB approximation overpredicts and the linear model
underpredicts the critical Reynolds number, compared with the model based on the full
temperature dependence of the material properties. Among the main influence factors are
the proper selection of the reference temperature and, at larger temperature differences,
the temperature dependence of the viscosity of the liquid.
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1. Introduction

Thermocapillary flows are driven by tangential shear stresses acting on non-isothermal
liquid–gas interfaces. They are due to the thermocapillary effect that describes the
variation of the surface tension with temperature (Scriven & Sternling 1960). These flows
are important in a number of applications, like crystal growth from the melt (Schwabe
1981), welding (Amberg & Do-Quang 2008) or droplet evaporation from inkjet printing
(Ristenpart et al. 2007). The flow in thermocapillary liquid bridges, originally devised as
a model system for the floating-zone crystal-growth process (Pfann 1962) has evolved as
a paradigm. In particular, the critical conditions for the onset of a time-dependent flow
in transparent high-Prandtl-number liquids has received considerable interest (Kuhlmann
1999), since an oscillator flow is known to cause crystal striation (Cröll et al. 1991). In
these model systems, an axisymmetric liquid bridge between two coaxial support discs is
heated differentially from the discs such that axial thermocapillary stresses drive a toroidal
vortex in the liquid.

Transparent liquids with a moderate Prandtl number, but still Pr > 1, tend to be volatile
that makes experimental investigations difficult (Simic-Stefani, Kawaji & Yoda 2006).
Therefore, molten salts (Preisser, Schwabe & Scharmann 1983) or silicone oils with a
high Prandtl number Pr = 28 or larger (Kamotani et al. 2003; Ueno, Tanaka & Kawamura
2003) are frequently used in experiments. Since the viscosity of silicone oils increases with
Prandtl number, the required temperature difference �T = Thot − Tcold to drive the flow
into the time-dependent regime increases. For length scales of millimetres and a Prandtl
number of Pr = 28, the critical temperature difference can easily amount to �Tc = 30 K
or larger. Under such temperature variation the thermophysical properties of the liquid may
vary considerably and the often used assumption of constant material parameters may no
longer yield reliable numerical results for the critical Reynolds number. The present work
is intended to overcome the limitations imposed by assuming constant material properties
by taking into account the full, in general nonlinear, dependence of all material properties
of the liquid and the gas on the temperature.

The first linear stability analysis of the flow in single-phase adiabatic thermocapillary
liquid bridges for variable material properties is due to Kozhoukharova et al. (1999).
For a liquid bridge with Pr = 4 under zero gravity and a radius-to-height ratio
of one, they numerically computed the critical Reynolds number for the onset of
three-dimensional (and oscillatory) flow, assuming a linear variation with temperature of
the kinematic viscosity ν(T) = ν∗ + ζ(T − T∗), with reference viscosity ν∗ = ν(T∗) and
ζ = (∂ν/∂T)T∗ . Evaluating the reference viscosity ν∗ at the arithmetic mean temperature
of the heaters T∗ = (Thot − Tcold)/2, they found the critical temperature difference �Tc,
or the critical Reynolds number Rec ∼ �Tc/ν

∗2, is typically reduced in liquids (ζ < 0)
as compared with the case of a constant kinematic viscosity (ζ = 0). The reduction of
�Tc (or Rec) for ζ < 0 was interpreted to be due to a reduction of the effective viscosity
that was taken as the kinematic viscosity averaged over the interface νS(ζ < 0) < ν∗.
Under the hypothesis that a modified Reynolds number R̃ec ∼ �Tc/ν

2
S using the effective

kinematic viscosity (mean surface viscosity) would be almost independent of ζ , they
suggested a correction factor (νS/ν

∗)2 to estimate the variable viscosity effect as Rec(ζ ) =
(νS/ν

∗)2Rec(ζ = 0). While this correction always yields a reduction of the critical
Reynolds number with Rec(ζ < 0) < Rec(ζ = 0), the estimate (νS/ν

∗)2Rec(ζ = 0) can
overpedict or underpredict the exact result Rec(ζ < 0) by about 10 %. (The right-hand
side of (34) in Kozhoukharova et al. (1999) is lacking a factor ν−2

0 .)
Shevtsova & Melnikov (2001) and Shevtsova, Melnikov & Legros (2001) investigated

the effect of a linear temperature dependence (LTD) of the kinematic viscosity on the
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Liquid bridges with temperature-dependent properties

critical temperature difference through numerical simulation for a liquid bridge with
Pr = 35. They also found a reduction of the critical temperature difference. Different from
Kozhoukharova et al. (1999), however, they defined the Reynolds number Re ∼ �T/ν2

cold
using a reference kinematic viscosity evaluated at the cold-wall temperature νcold =
ν(Tcold). This leads to a much larger reduction of the critical Reynolds number with ζ ,
because the correction of Rec(ζ = 0) is much stronger with 1 < (νS/ν

∗)2 < (νS/νcold)
2

for ζ < 0. In other words, the kinematic viscosity νcold is not a good estimate of the
effective viscosity, that is much better approximated by the mean viscosity ν∗. Regardless
of the viscosity contrast, both Kozhoukharova et al. (1999) and Shevtsova & Melnikov
(2001) found the instability arises as a hydrothermal wave (Smith 1986; Wanschura
et al. 1995). Owing to the influence of the viscosity variation on the critical temperature
difference, a linear dependence of ν on T was also employed in succeeding simulations
(see, e.g. Melnikov, Shevtsova & Legros 2004; Shevtsova, Melnikov & Nepomnyashchy
2009). Also Saifi, Mundhada & Tripathi (2022) and Shitomi, Yano & Nishino (2019) used
a temperature-dependent viscosity, albeit assuming an exponential dependence on T .

On the experimental side Ueno et al. (2003), as well as most other investigators (see,
e.g. Nishino et al. 2015; Yano et al. 2015), took into account an exponential variation of
the kinematic viscosity in order to determine the reference viscosity for the definition of
the Reynolds or the Marangoni number. Like Kozhoukharova et al. (1999) they selected
the reference viscosity ν∗, evaluated at the algebraic mean temperature.

While the critical Reynolds number of the thermocapillary flow in liquid bridges
depends on the temperature dependence of the kinematic viscosity, the critical Rayleigh
number in the Rayleigh–Bénard problem does not, because the basic flow is at rest.
However, the sign of ζ has a qualitative influence on the planform of the supercritical
convection. This was demonstrated experimentally by Tippelskirch (1956) who found
polygonal convection cells in open layers of liquid sulfur heated from below. In
temperature ranges in which the variation of the dynamic viscosity ∂Tμ < 0 the cells
had upflow in their centres, whereas for temperature ranges with ∂Tμ > 0, the flow in
the cell centres was directed downwards. The findings of Tippelskirch confirmed the
earlier observations of Graham (1933) for water and air according to which the flow in
the centre of the cells is always directed towards increasing viscosity. The flow direction
in the convection cells has been explained theoretically by Palm (1960) and Segel & Stuart
(1962). According to Busse (1978) and Busse & Frick (1985) the flow direction minimises
the viscosity in the highly strained region near the cell centres.

Except for Kozhoukharova et al. (1999) and Carrión, Herrada & Montanero (2020) most
stability analyses have been carried out assuming a constant viscosity (e.g. Wanschura
et al. 1995; Chen & Hu 1998; Nienhüser & Kuhlmann 2002; Stojanović, Romanò
& Kuhlmann 2022). Therefore, the influence of the temperature dependence of the
material properties on the critical conditions has not been thoroughly investigated. In
this work we extend the previous analyses by carrying out linear stability analyses for
the two-phase flow of a commonly used liquid–gas combination (2-cSt silicone oil and
air) confined to a cylindrical tube. The full (nonlinear) temperature dependence of all
thermophysical properties in the liquid and in the gas phase is taken into account.
The critical Reynolds numbers obtained are then compared with results for a linear
dependence of all thermophysical parameters and with those for the Oberbeck–Boussinesq
(OB) approximation. For all calculations, the basic state is computed for a dynamically
deforming interface.

In § 2 the geometry is described and the mathematic problem is formulated. The
numerical methods to solve the governing equations are discussed in § 3. In § 4 the
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Figure 1. Schematic of the axisymmetric thermocapillary liquid bridge including the coordinate system. The
sketch shows the situation when the liquid bridge is exposed to a hot gas stream with mean axial velocity
W̄g,in. The gravity vector g is always aligned with the negative z axis. The thermocapillary effect is illustrated
schematically through velocity vectors close to the interface.

reference parameters are defined and the temperature dependence of the fluid properties
are provided. Results are presented in § 5. In a first step the linear stability is computed
for a sealed cylindrical tube surrounding the liquid bridge. The effects of the volume
ratio of the liquid, the aspect ratio of the liquid bridge and the length scale are discussed
separately. Thereafter, the effect of an imposed axial flow in the gas phase on the linear
stability boundary is considered. Finally, the results obtained are summarised in § 6 and
conclusions are drawn.

2. Problem formulation

2.1. Set-up
We consider a droplet of an incompressible Newtonian silicone oil captured between
two coaxial, cylindrical discs of radius ri (i: inner) and length ds (s: support). The discs
supporting the liquid bridge are separated axially by a distance d as shown in figure 1.
Short liquid bridges can be hydrostatically stable, even in a terrestrial gravity field,
depending on the wetting conditions and the geometry. Here we consider an axisymmetric
geometry with the axial acceleration of gravity g = −gez, where ez is the axial unit vector,
while the liquid is heated from above. We assume the liquid bridge is pinned to the sharp
circular edges of the two support discs. The gas phase (air) is Newtonian as well and it
is bounded radially by a cylindrical tube of radius ro > ri (o: outer) and height 2ds + d,
placed coaxially around the liquid bridge and the support discs. The shield cylinder was
first used in experiments by Preisser et al. (1983) and, more recently, by, e.g. Simic-Stefani
et al. (2006) and Gaponenko et al. (2021). To a good approximation, it can be considered
thermally insulating. Thus, the geometry of the problem is characterised by

Γ = d
ri
, Γs = ds

ri
, η = ro

ri
, (2.1a–c)
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Liquid bridges with temperature-dependent properties

where Γ and Γs describe the aspect ratios of the liquid bridge and the discs, respectively,
and η is the radius ratio of the annular space between the tube and the support discs.

The support discs are kept at different but constant temperatures Thot = T̄ +�T/2
and Tcold = T̄ −�T/2, respectively, where �T = Thot − Tcold > 0 is an imposed
temperature difference. The mean temperature T̄ = (Thot + Tcold)/2 is used as the
reference temperature T∗ = T̄ . Owing to the imposed temperature difference the surface
tension σ(T) varies along the interface. Tangential surface tension gradients create
surface stresses (Levich 1962) that drive a flow on both sides of the interface via the
thermocapillary effect, as sketched in figure 1. Taylor expansion of σ(T) about T∗ yields
the surface tension gradient

∇‖σ(T) = ∂σ

∂T
∇‖T = ∂

∂T
[σ ∗ − γ ∗(T − T∗)+ . . .]∇‖T

= {−γ ∗ + O[(T − T∗)]}∇‖T, (2.2)

where ∇‖ = t(t · ∇) is the Nabla operator in the plane tangent to the interface, t an
arbitrary unit tangent vector, γ ∗ = −∂σ/∂T|T=T∗ is the negative linear surface tension
coefficient and σ ∗ = σ(T∗) is the reference (mean) surface tension. The asterisk indicates
reference values of temperature-dependent thermophysical properties evaluated at T∗.
The Taylor expansion in (2.2) is truncated after the linear term, since literature data
on the coefficients of the higher-order terms for silicone oil in air are lacking. Within
our modelling, we take into account the full temperature dependence of all other
thermophysical properties and neglect the pressure dependence, assuming reference
conditions far from phase-change critical points.

The flow in the liquid phase is driven by surface stresses that depend on the conditions
in the gas phase. Thus, imposing a gas flow allows us to passively control the flow in the
liquid phase by varying the temperature and velocity (magnitude, profile) of the forced
gas flow at the inlet, which is located either at the upper or the lower end of the tube.
Owing to the low viscosity of gases under standard conditions, the gas flow affects the
motion in the liquid phase primarily by altering the surface temperature and, thus, the
thermocapillary stresses, and to a lesser degree by mechanical stresses on the interface.
In addition, buoyancy forces drive the flow due to horizontal density gradients. For
very small liquid bridges, (thermocapillary) surface forces typically dominate (buoyant)
volume forces. But for millimetric liquid bridges investigated under terrestrial conditions,
buoyancy can significantly affect the interfacial shape and the fluid motion.

2.2. Governing equations and boundary conditions

2.2.1. Transport equations
Due to the axisymmetric geometry, we use cylindrical coordinates (r, ϕ, z) with the
corresponding unit vectors (er, eϕ, ez), and an origin centred in the middle of the liquid
bridge. The velocity field is represented as u = uer + veϕ + wez.

The fluid motion inside the liquid bridge is governed by the Navier–Stokes, continuity
and energy equations. For a Newtonian fluid with variable properties, they read in strong
conservative form

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇P + ρgez + ∇ · (μS), (2.3a)
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∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3b)

∂(ρcpT)
∂t

+ ∇ · (ρcpuT) = ∇ · (λ∇T), (2.3c)

where t is time, P is the pressure and S = ∇u + (∇u)T − (2/3)(∇ · u)I the deformation
rate tensor with the identity matrix I . In contrast to most previous numerical studies on
liquid bridges, we consider the dynamic viscosity μ(T), the density ρ(T), the specific heat
capacity cp(T) and the thermal conductivity λ(T) to be fully temperature dependent (FTD)
and call this the FTD approach in contrast to, e.g. the OB approximation. The equations
governing the gas phase are formally identical to (2.3). The material parameters relating
to the gas phase ρg, μg, λg and cpg are indicated by the subscript ‘g’.

Using the reference material parameters of the liquid (superscript ‘*’) evaluated at the
reference temperature T∗, (2.3) are made dimensionless by the length, time, velocity,
pressure and temperature scales d, d2ρ∗/μ∗, γ ∗�T/μ∗, γ ∗�T/d and �T , respectively.
This yields

∂(αρu)
∂t

+ Re∇ · (αρuu) = −∇p − Bd
αρ − α∗

ρ

ε
ez + ∇ · (αμS), (2.4a)

∂αρ

∂t
+ Re∇ · (αρu) = 0, (2.4b)

∂(αραcpϑ)

∂t
+ Re∇ · (αραcpuϑ) = 1

Pr
∇ · (αλ∇ϑ), (2.4c)

where p = (d/γ ∗�T)(P − ρ∗gz) is the reduced pressure and

ϑ = T − T∗

�T
(2.5)

the reduced temperature. The Reynolds, Prandtl and dynamic Bond numbers are
respectively defined as

Re = ρ∗γ ∗�Td
μ∗2 , Pr = μ∗c∗

p

λ∗
, Bd = ρ∗gβ∗d2

γ ∗ . (2.6a–c)

Equations (2.4) hold for both the liquid and the gas phase. They are distinguished
by the functions α(ϑ) and the parameter ε. The parameters ε = β∗�T and εg = β∗

g�T
measure the magnitude of the density variation in the respective phase, where β∗ =
−(1/ρ∗)(∂ρ/∂T)∗P and β∗

g are the thermal expansion coefficients of the liquid and gas,
respectively, evaluated at ϑ∗ = 0. As in Stojanović et al. (2022), the phase is distinguished
by selecting the respective set of thermophysical shape functions

α = [
αρ(ϑ), αμ(ϑ), αλ(ϑ), αcp(ϑ)

]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
ρ(ϑ)

ρ∗ ,
μ(ϑ)

μ∗ ,
λ(ϑ)

λ∗
,

cp(ϑ)

c∗
p

]
for the liquid phase,[

ρg(ϑ)

ρ∗ ,
μg(ϑ)

μ∗ ,
λg(ϑ)

λ∗
,

cpg(ϑ)

c∗
p

]
for the gas phase,

(2.7)

which represent the temperature-dependent material parameters, normalised by the values
that the parameters take in the liquid at the reference temperature. A shape function
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Liquid bridges with temperature-dependent properties

evaluated at the reference point is indicated by an asterisk, i.e. α∗
ρ = αρ(ϑ

∗) = 1 for the
liquid and α∗

ρ = ρ∗
g/ρ

∗ for the gas. The shape functions αj with j ∈ [ρ,μ, λ, cp] used
will be specified in § 4. Note that in (2.4a) (αρ − α∗

ρ)/ε = −ϑ + O(ϑ2), recovering the
buoyancy term in Boussinesq approximation at linear order. In a model assuming constant
material parameters,

α =

⎧⎪⎨⎪⎩
[1, 1, 1, 1] for the liquid phase,[
ρ∗

g

ρ∗ ,
μ∗

g

μ∗ ,
λ∗g
λ∗
,

c∗
pg

c∗
p

]
for the gas phase,

(2.8)

and the bulk equations only depend on Re, Pr and Bd.

2.2.2. Linear stability equations
For sufficiently small driving forces, measured either by the Reynolds number Re or
the Marangoni number Ma = RePr, an axisymmetric and time-independent solution
q0(r, z) = (u0, 0,w0, p0, ϑ0) (liquid) and qg0(r, z) = (ug0, 0,wg0, pg0, ϑg0) (gas) of (2.4)
exists. This basic flow is indicated by a subscript ‘0’. The shape of the interface h0(z),
separating the gas from the liquid phase, is part of the basic flow solution.

To investigate the linear stability of the basic flow, the dynamics of small deviations
from the basic solution must be considered. These deviations also concern the interfacial
shape. Recent experiments (Yano et al. 2018b) revealed that the dynamic interfacial
deformation caused by the perturbation flow is negligible. Therefore, we only consider
perturbations of q0 and qg0 within their domains separated by the phase boundary h0(z).
To carry out the linear stability analysis, the general three-dimensional and time-dependent
solution [q, qg] of (2.4) is decomposed into

q = q0(r, z)+ q̃(r, ϕ, z, t) and qg = qg0(r, z)+ q̃g(r, ϕ, z, t). (2.9a,b)

separating the perturbation flow [q̃, q̃g] (indicated by a tilde) from the basic flow [q0, qg0].
The linear dynamics is obtained by inserting (2.9a,b) in (2.4) and linearising all terms

with respect to all perturbation quantities, in particular, with respect to ϑ̃ . This requires
linearising the shape functions αj(ϑ) about their local values αj[ϑ0(r, z)] determined by
the basic flow. Taylor expansion about the local basic state temperature ϑ0(r, z) yields

αj(ϑ) = αj(ϑ0 + ϑ̃) = αj(ϑ0)+ ∂αj

∂ϑ

∣∣∣∣
ϑ0

ϑ̃ + O(ϑ̃2) = αj0 + α′
j0ϑ̃ + O(ϑ̃2), (2.10)

where the zeroth- and first-order Taylor coefficients αj0[ϑ0(r, z)] and α′
j0[ϑ0(r, z)] are

scalar fields that depend continuously on (r, z) through the basic temperature field ϑ0(r, z).
Using (2.10) we obtain the linearised version of (2.4) as

αρ0
∂ũ
∂t

+ α′
ρ0u0

∂ϑ̃

∂t
+ Re∇ ·

(
αρ0u0ũ + αρ0ũu0 + α′

ρ0u0u0ϑ̃
)

= −∇p̃ − Bd
ε
α′
ρ0ϑ̃ez + ∇ · (αμ0S̃ + α′

μ0S0ϑ̃), (2.11a)

α′
ρ0
∂ϑ̃

∂t
+ Re∇ · (αρ0ũ + α′

ρ0u0ϑ̃) = 0, (2.11b)
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[αρ0αcp0 + ϑ0(α
′
ρ0αcp0 + αρ0α

′
cp0)]

∂ϑ̃

∂t
+ Re∇ · (αρ0αcp0u0ϑ̃ + αρ0αcp0ϑ0ũ

+α′
ρ0αcp0ϑ0u0ϑ̃ + αρ0α

′
cp0ϑ0u0ϑ̃) = 1

Pr
∇ · (α′

λ0ϑ̃∇ϑ0 + αλ0∇ϑ̃), (2.11c)

where S̃ = ∇ũ + (∇ũ)T − (2/3)(∇ · ũ)I and S0 = ∇u0 + (∇u0)
T − (2/3)(∇ · u0)I .

The basic state solution enters parametrically in the linear disturbance equations for q̃.
Since (2.11) is linear in q̃ with coefficients that do not depend on ϕ and t, the general

solution q̃ of (2.11) can be constructed by a superposition of normal modes

q̃ =
∑
j,m

q̂j,m(r, z) exp(ψj,mt + imϕ)+ c.c., q̃g =
∑
j,m

q̂gj,m(r, z) exp(ψj,mt + imϕ)+ c.c.,

(2.12a,b)

where the complex conjugates terms (c.c.) render the solution real. The normal modes
are harmonic in ϕ with wavenumber m ∈ N0. The time dependence of each mode is
exponential with the complex growth ψj,m ∈ C. The index j numbers the discrete set of
solutions for fixed m that arise due to the finite domain in r and z. Inserting the ansatz
(2.12a,b) into (2.11) yields partial differential equations for the complex amplitudes q̂j,m
and q̂gj,m,

ψ
(

u0α
′
ρ0ϑ̂ + αρ0û

)
+ Re∇ ·

[
α′
ρ0ϑ̂u0u0 + αρ0(u0û + ûu0)

]
+ Re

αρ0iv̂mu0

r

= −∇p̂ − Bd
ε
α′
ρ0ϑ̂ez + ∇ ·

(
α′
μ0ϑ̂S0 + αμ0Ŝ

)
+

(
α′
μ0ϑ̂S0 + αμ0Ŝ − p̂

) imeϕ
r

(2.13a)

ψα′
ρ0ϑ̂ + Re∇ ·

(
αρ0û + α′

ρ0u0ϑ̂
)

+ Re
αρ0iv̂m

r
= 0, (2.13b)

ψ
[
ϑ0(α

′
ρ0αcp0 + αρ0α

′
cp0)+ αρ0αcp0

]
ϑ̂

+ Re∇ ·
[
(α′
ρ0αcp0 + αρ0α

′
cp0)ϑ0u0ϑ̂ + αρ0αcp0ϑ̂u0 + αρ0αcp0ϑ0û

]
+ Re

αρ0αcp0iv̂m
r

= 1
Pr

∇ ·
[
(α′
λ0ϑ̂∇ϑ0 + αλ0∇ϑ̂)− αλ0ϑ̂m2

r2

]
. (2.13c)

Discretisation of (2.13) leads to a large linear eigenvalue problem that must be solved to
determine the stability boundary (§ 3).

2.2.3. Boundary conditions
The equations for the steady two-dimensional basic flow q0 satisfying (2.4) and those for
the perturbation amplitudes q̂ according to the linear stability equations (2.11) must be
solved subject to boundary and coupling conditions.
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Liquid bridges with temperature-dependent properties

m = 0 : û = 0 v̂ = 0 ∂ŵ/∂r = 0 ∂ϑ̂/∂r = 0
m = 1 : ∂ û/∂r = 0 ∂v̂/∂r = 0 ŵ = 0 ϑ̂ = 0
m > 1 : û = 0 v̂ = 0 ŵ = 0 ϑ̂ = 0

Table 1. Boundary conditions for the perturbation flow on r = 0.

Solid walls: On all solid walls, the liquid and gas must satisfy the no-slip conditions

u0 = ug0 = 0 and û = ûg = 0. (2.14a,b)

In contrast to the outer shield, which is thermally insulated in the radial direction, the
cylindrical support discs are assumed to be perfect heat conductors, leading to

hot disc: ϑ0 = ϑg0 = 1/2 and ϑ̂ = ϑ̂g = 0, (2.15a)

cold disc: ϑ0 = ϑg0 = −1/2 and ϑ̂ = ϑ̂g = 0, (2.15b)

shield tube: ∂ϑg0/∂r = 0 and ∂ϑ̂g/∂r = 0. (2.15c)

The amplitudes of the temperature perturbations vanish on the hot and cold walls since the
imposed constant temperatures are taken care of by the basic state.

Axis of symmetry: On the axis r = 0 the symmetry of the basic state requires

u0 = ∂w0

∂r
= ∂ϑ0

∂r
= 0. (2.16)

The boundary conditions for the perturbation amplitudes depend on the azimuthal
wavenumber m and are given in table 1.

Liquid–gas interface: The liquid and gas flow are coupled via the interface at r = h0(z)
that is assumed to be determined by the basic flow only. Therefore, we first consider the
basic flow. The continuity of the basic temperature and the basic heat flux requires

r = h0: ϑ0 = ϑg0, (2.17a)

r = h0: αλ0n · ∇ϑ0 = αλg0n · ∇ϑg0, (2.17b)

where

n = 1
N

(
er − dh0

dz
ez

)
with N =

√
1 +

(
dh0

dz

)2

, (2.18)

is the outward-pointing unit normal vector to the interface. The kinematic coupling
conditions

r = h0: u0 = ug0 and
u0

w0
= dh0

dz
(2.19a,b)

guarantee no slip on the interface and also enforce the basic streamlines to be parallel to
the interface h0(z).
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M. Stojanović, F. Romanò and H.C. Kuhlmann

The dynamic coupling condition is represented by the stress balance on the interface. It
is decomposed into a normal stress balance

− ( p0 − pg0)+ αμ0n · S0 · n +
(

1
Ca

− ϑ0

)
∇ · n

= −(αρ0 − αρg0)
Bo
Ca

z + αμg0n · Sg0 · n, (2.20a)

and a tangential stress balance

αμ0t · S0 · n = −t · ∇ϑ0 + αμg0t · Sg0 · n, (2.20b)

where t ⊥ n is the unit tangent vector, and the basic state shape functions, like αμg0(r, z),
depend on (r, z). In these non-dimensional equations

Ca = γ ∗�T
σ ∗ and Bo = ρ∗gd2

σ ∗ (2.21a,b)

denote the capillary number and the static Bond number, respectively. Since the term
(αρ0 − αρg0) in (2.20a) takes care of the static pressure distribution in the gas phase, the
reference density of the gas ρ∗

g does not enter Bo. This way, the non-dimensional material
parameter

τ = ρ∗β∗σ ∗

γ ∗ = Bd
Bo

= ε

Ca
(2.22)

serves as a proportionality factor between the dynamic and static Bond numbers and also
between ε and Ca.

Since the location h0(z) is part of the basic flow solution, it is obtained iteratively by
solving simultaneously the Navier–Stokes equations for both phases and imposing the
coupling and boundary conditions. To that end, we assume the contact lines are pinned
to the edges of the support discs, h0(±1/2) = 1/Γ , and impose the volume constraint

Γ 2
∫ 1/2

−1/2
h0(z)2 dz = V, (2.23)

where V = V/πr2
i d is the ratio between the volume V occupied by the liquid and the

upright cylindrical volume between the two support discs.
To assess the influence of the dynamic deformability of a dynamic interface (DI), we

also consider a static interface (SI) whose shape h0(z), instead by the normal stress balance
(2.20a), is determined by the solution of the Young–Laplace equation

�ph = ∇ · n
Ca

+ Bo
Ca

z, (2.24)

where �ph is a constant pressure jump across the interface. For more details, see
Stojanović et al. (2022).

Once the interface shape h0(z) and the basic state are computed, the coupling conditions
for the perturbation amplitudes

ϑ̂ = ϑ̂g, αλ0n · ∇ϑ̂ = αλg0n · ∇ϑ̂g, û = ûg (2.25a–c)

and
αμ0t · Ŝ · n = −t · ∇ϑ̂ + αμg0t · Ŝg · n (2.26)

can readily be imposed to solve the perturbation equations (2.13).
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Liquid bridges with temperature-dependent properties

Inlet and outlet conditions: The boundary conditions at the ends of the shield tube,
z = ±(1/2 + Γs/Γ ), depend on whether the tube is sealed or open. In the case of a sealed
tube, we prescribe no-slip and adiabatic conditions on both plane end walls, i.e.

ug0 = ûg = 0 and ∂ϑg0/∂z = ∂ϑ̂g/∂z = 0. (2.27a,b)

For an open tube, upflow in the positive z direction and downflow in the negative z direction
are distinguished by the sign of the Reynolds number Reg = W̄g,inρ

∗d/μ∗, defined as in
Stojanovic, Romanò & Kuhlmann (2023), which is taken positive for upflow and negative
for downflow. The inlet (zin) and outlet locations (zout) are thus defined as

zin = ± (1/2 + Γs/Γ ) = −zout for Reg ≶ 0. (2.28)

At the inlet, we prescribe a fully developed axial velocity profile

wg,in(r) = Reg

Re
2 ln(η)(

η2 + 1
)

ln(η)− η2 + 1

[
1 − Γ 2r2 +

(
η2 − 1

) ln(Γ r)
ln(η)

]
, (2.29)

where the factor Re−1 arises due to the scaling. The unconventional gas Reynolds number
Reg is defined combining the mean inlet velocity of the gas and the kinematic viscosity of
the liquid μ∗/ρ∗. The usefulness of Reg defined in this way is explained in Appendix A of
Stojanovic et al. (2023): it provides a better correlation of the critical Reynolds numbers,
because the instability arises in the liquid and not in the gas.

At the outlet, outflow conditions are used such that

z = zin: wg0 = wg,in(r) and ug0 = ûg = v̂g = ŵg = 0, (2.30a)

z = zout: ∂ug0/∂z = ∂wg0/∂z = 0 and ∂ ûg/∂z = ∂v̂g/∂z = ∂ŵg/∂z = 0. (2.30b)

Following Stojanović, Romanò & Kuhlmann (2023a), constant temperatures are imposed
at both ends of the tube

z = ± (1/2 + Γs/Γ ) : ϑg0 = ±1/2 and ϑ̂g = 0, (2.31a,b)

which are equal to the temperature of the respective adjacent support disc.

3. Numerical methods

All numerical calculations required to compute the basic flow and its linear stability are
carried out using the code MaranStable (Stojanović, Romanò & Kuhlmann 2023b). It is
written in MATLAB and is available as open source from https://github.com/fromano88/
MaranStable. The stability analysis implemented in MaranStable has been verified and
validated extensively for statically and dynamically deformed liquid bridges, for single-
and two-phase flows where the gas phase is confined to a cylindrical tube about the liquid
bridge being either closed or subject to through flow (Stojanović et al. 2022; Stojanovic
et al. 2023). Grid convergence of MaranStable has been proven for a Boussinesq fluid of
Pr = 28 (Stojanović et al. 2022). Additional verifications and validations of MaranStable
regarding the FTD properties are provided in Appendix B.

3.1. Basic flow
In MaranStable the governing equations (2.4) and the boundary and coupling conditions
are discretised by finite volumes using body-fitted coordinates. The physical mesh fitted to
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M. Stojanović, F. Romanò and H.C. Kuhlmann

the interface shape is mapped to an orthogonal computational mesh using the surface
shape h0(z). It is computed together with the flow field updating the physical and
computational meshes after every iteration step. The resulting set of nonlinear algebraic
equations is linearised and solved iteratively using the Newton–Raphson method. At the
kth iteration the known approximation q(k)0 is updated by the increment δq to obtain the
improved approximation

q(k+1)
0 = q(k)0 + δq. (3.1)

Within the present FTD parameter approach, the nonlinear shape functions as well need
to be linearised about their basic state value according to

αj

(
ϑ
(k+1)
0

)
= αj

(
ϑ
(k)
0 + δϑ

)
≈ αj

(
ϑ
(k)
0

)
+ ∂αj

∂ϑ

∣∣∣∣
ϑ
(k)
0

δϑ := α
(k)
j0 + α

′(k)
j0 δϑ, (3.2)

where the increment δϑ is contained in δq. Inserting (3.1) and (3.2) into (2.4) yields the
set of linear equations

J
(

q(k)0

)
· δq = −f

(
q(k)0

)
, (3.3)

where J (q(k)0 ) and f (q(k)0 ) are the Jacobian operator and the nonlinear residual of the
Navier–Stokes equations, respectively. This leads to the linearised momentum, continuity
and energy equations

Re∇ ·
[
α
(k)
ρ0

(
u(k)0 δu + δuu(k)0

)
+ α

′(k)
ρ0 u(k)0 u(k)0 δϑ

]
+ ∇δp + Bd

ε
α

′(k)
ρ0 δϑ − ∇ ·

(
α
(k)
μ0δS − α

′(k)
μ0 S(k)0 δϑ

)
= −Re∇ ·

(
α
(k)
ρ0 u(k)0 u(k)0

)
− ∇p(k)0 − Bd

ε

(
α
(k)
ρ0 ez − α∗

ρ

)
+ ∇ ·

(
α
(k)
μ0S(k)0

)
, (3.4a)

∇ ·
(
α
(k)
ρ0 δu + α

′(k)
ρ0 u(k)0 δϑ

)
= −∇ ·

(
α
(k)
ρ0 u(k)0

)
, (3.4b)

Ma∇ ·
[
α
(k)
ρ0α

(k)
cp0

(
u(k)0 δϑ + ϑ

(k)
0 δu

)
+

(
α

′(k)
ρ0 α

(k)
cp0 + α

(k)
ρ0α

′(k)
cp0

)
ϑ
(k)
0 u(k)0 δϑ

]
− ∇ ·

(
α

′(k)
λ0 δϑ∇ϑ(k)0 + α

(k)
λ0 ∇δϑ

)
= ∇ ·

(
α
(k)
λ0 ∇ϑ(k)0

)
− Ma∇ ·

(
α
(k)
ρ0α

(k)
cp0u(k)0 ϑ

(k)
0

)
,

(3.4c)

where δS = ∇δu + (∇δu)T − (2/3)(∇ · δu)I . An additional iteration loop arising from
the normal stress balance (2.20a) is embedded in the Newton–Raphson iteration that
updates the surface shape h0(z) after each iteration step. Neglecting terms of order O(ϑ2)
in σ(ϑ), the linearised normal stress balance becomes

− (δp − δpg)+ α
(k)
μ0n(k) · δS · n(k) + α

(k)
μ0n(k) · S(k)0 · δn + α

(k)
μ0δn · S(k)0 · n(k)

+ α
′(k)
μ0 n(k) · S(k)0 · n(k)δϑ +

(
1

Ca
− ϑ

(k)
0

)
∇ · δn − ∇ · n(k)δϑ +

(
α

′(k)
ρ0 − α

′(k)
ρg0

) Bo
Ca
δϑz

− α
(k)
μg0n(k) · δSg · n(k) − α

(k)
μg0n(k) · S(k)g0 · δn − α

(k)
μg0δn · S(k)g0 · n(k)

− α
′(k)
μg0n(k) · S(k)g0 · n(k)δϑ = p(k)0 − p(k)g0 −

(
α
(k)
ρ0 − α

(k)
ρg0

) Bo
Ca

z − α
(k)
μ0n(k) · S(k)0 · n(k)

−
(

1
Ca

− ϑ
(k)
0

)
∇ · n(k) + α

(k)
μg0n(k) · S(k)g0 · n(k), (3.5)
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Liquid bridges with temperature-dependent properties

where the surface increment
δh0 = h(k+1)

0 − h(k)0 (3.6)

is contained implicitly in the increment of the surface normal vector

δn = n(k+1) − n(k) (3.7)

with

δn = − 1

N(k)3
dh(k)0

dz
dδh0

dz
er − 1

N(k)

⎡⎣1 − 1

N(k)2

(
dh(k)0

dz

)2
⎤⎦ dδh0

dz
ez (3.8)

and its divergence

∇ · δn

= 1

h(k)
3

0 N(k)3

[
−h(k)

3

0
d2δh0

dz2 +
(

3h(k)
3

N(k)2
d2h(k)0

dz2 − h(k)
2

0

)
dh(k)0

dz
dδh0

dz
− h(k)0 N(k)

2
δh0

]
.

(3.9)

3.2. Linear stability analysis
MaranStable executes a linear stability analysis of the basic flow by discretising the
linear perturbation equations (2.13) for the amplitudes q̂j,m and q̂g;j,m on the same grid
and employing the same numerical scheme as used for the basic state. The resulting
large system of algebraic equations represents a generalised eigenvalue problem for the
spatial structure of the perturbation flow (eigenvector) and the complex growth rate ψj,m
(eigenvalue) for a given wavenumber m. The real growth rate Re(ψj,m) determines the
stability of the respective mode, whereas its imaginary partωc = Im[ψj,m(Rec)] represents
the angular frequency. The mode whose real growth rate vanishes at a particular Reynolds
number is called the neutral mode and the corresponding Reynolds number is identified
as the neutral Reynolds number Rej,m

n . The minimum value Rec = minj,m≥0 Rej,m
n defines

the critical Reynolds number Rec. To identify the eigenvalues with the largest real part, we
follow Stojanović et al. (2022) and use an implicitly restarted Arnoldi method provided by
ARPACK (Lehoucq, Sorensen & Yang 1998). The neutral curves are obtained by arclength
continuation (Keller 1977) for moderate step sizes of the dependent (Re) and independent
parameters (V , Γ , d or Reg).

3.3. Postprocessing: energetics
The Reynolds–Orr type of equations for the kinetic and thermal energies of the
perturbation flow can be obtained in the usual way. For variable material properties,
Stojanović et al. (2023a) have derived the rates of change of the total kinetic (dEkin/dt)
and the total thermal energy (dEth/dt) in the form

dEkin

dt
= −1 + Mr + Mϕ + Mz +

5∑
j=1

Ij + B + Kg +Λρ +Λμ +Λρμ︸ ︷︷ ︸, (3.10a)

dEth

dt
= −1 +

2∑
j=1

Jj + Hfs + Kg,th − dE′
th

dt
+Πρ +Πcp +Πλ︸ ︷︷ ︸, (3.10b)
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providing explicit expressions in dimensional from for all terms appearing on
the right-hand sides. Since the non-dimensionalisation of the energy budgets is
straightforward, we refrain from reproducing all expression here. Most terms in (3.10)
also arise in the OB approximation. They have the usual meaning (see, e.g. Nienhüser &
Kuhlmann 2002; Stojanović et al. 2022). The additional terms arising in the FTD model
are indicated by the underbraces in (3.10).

All terms in (3.10) are volume integrals over the space occupied by the liquid or gas,
or surface integrals over the interface or the inlet for the gas. The integrands represent
local production/dissipation rates of kinetic or thermal energy of the perturbation flow
that are often useful to understand the local physical mechanisms by which energy is
exchanged between the basic state and the perturbation. The spatial distribution of the
integrands thus serve a better understanding of the overall instability mechanism (see,
e.g. Wanschura et al. 1995; Nienhüser & Kuhlmann 2002). Stojanović et al. (2023a) have
shown that the instability mechanism for Pr = 28.8 is that of a hydrothermal wave and that
the mechanism as such is hardly influenced by the temperature dependence of the material
parameters. However, the critical Reynolds numbers can be significantly affected. We shall
make use of (3.10) to identify the regions of largest perturbation energy production and for
the analysis of a new instability in the gas phase in § 5.1.2.

4. Geometry, fluids and temperature dependence of their properties

Owing to the high-dimensional parameters space, we consider a common reference
geometry as the origin of all parameter variations to be made. Therefore, we adopt the
same geometry as in Romanò et al. (2017) with disc radius ri,ref = 2.5 mm, Γref = 0.66,
Γs,ref = 0.4, ηref = 4, Vref = 1, Reg,ref = 0 and Bdref = 0.363. Note the origin for the
parameter space made by the geometry and forcing parameters is indicated by the subscript
‘ref’, while the reference point for the temperature-dependent material properties is
denoted by the superscript ‘*’.

Owing its importance for experiments (Majima et al. 2001; Tanaka et al. 2006; Yano,
Hirotani & Nishino 2018a; Ueno 2021), we consider a liquid bridge made from 2-cSt
silicone oil (KF96L-2cs, Shin-Etsu Chemical Co., Ltd., Japan) in air under typical
experimental conditions for T∗ = T̄ = 25 ◦C. The functions ρ(T), μ(T), λ(T) and cp(T)
required in (2.3) can be obtained either through explicitly given correlations or by fitting
tabulated data to suitable ansatz functions. The functional dependencies used herein
are provided in Appendix A for each property of both the working fluids. Once the
continuous functions have been constructed, the reference quantities are evaluated (table 2)
and the non-dimensional shape function αj(T) defined in (2.7) are obtained for both
phases. Finally, the shape functions are expressed in terms of the reduced temperature:
αj(T) → αj(ϑ) such that α∗

j = αj(ϑ = 0). For the present liquid–gas couple, the shape
functions read

αρ(ϑ) =
⎧⎨⎩ξI − ξIICaϑ + ξIIICa2ϑ2,

ζI

1 + ζIICaϑ
,

(4.1a)

αμ(ϑ) =
{
(ξI − ξIICaϑ + ξIIICa2ϑ2) exp[ξIVCaϑ/(ξV + Caϑ)],
ζI + ζIICaϑ + ζIIICa2ϑ2 + ζIVCa3ϑ3 + ζVCa4ϑ4,

(4.1b)

αλ(ϑ) =
{
ξI + ξIICaϑ + ξIIICa2ϑ2,

ζI + ζIICaϑ + ζIIICa2ϑ2 + ζIVCa3ϑ3 + ζVCa4ϑ4,
(4.1c)
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Liquid bridges with temperature-dependent properties

Property KF96L-2cs air Dimension

ρ∗ 873.25 1.1837 (kg m−3)

μ∗ 1.7465 × 10−3 1.8460 × 10−5 (Pa s)
λ∗ 0.10904 2.6374 × 10−2 (W (mK)−1)

c∗
p 1800.76 1005.70 (J (kgK)−1)

β∗ 1.0879 × 10−3 3.3540 × 10−3 (1 K−1)

σ ∗ 18.3 × 10−3 (N m−1)

γ ∗ 7 × 10−5 (N (mK)−1)

Pr 28.84 0.704 —

Table 2. Reference quantities evaluated at T∗ = 25 ◦C.

αj ξI ξII ξIII ξIV ξV

αρ 1 0.2844 0.049714 — —
αμ 1 0.2844 0.049714 −5.892 1.1405
αλ 1 −0.6807 −0.004936 — —
αcp 1 0.2147 0.001134 — —

Table 3. Coefficients ξn appearing in the shape functions for 2-cSt silicone oil.

αj ζI ζII ζIII ζIV ζV ζVI

αρ 0.001356 0.876838 — — — —
αμ 0.010570 0.007286 −0.001378 0.00033808 −0.00003712 —
αλ 0.241886 0.180413 −0.026150 0.00627974 −0.00066962 —
αcp 0.561961 −0.101493 −3.4281 49.8238 −120.3466 98.8658

Table 4. Coefficients ζn appearing in the shape functions for air.

αcp(ϑ) =
{
ξI + ξIICaϑ + ξIIICa2ϑ2,

ζI + (ζII − ζI)G2(ϑ)
[
1 − F(ϑ)

(
ζIII + ζIVG(ϑ)+ ζVG2(ϑ)+ ζVIG3(ϑ)

)]
,

(4.1d)

where the first line of each subequation specifies the property of the liquid, while the
second line represents the property of the gas. The coefficients ξn and ζn (n = I, II, III, . . .)
in (4.1) are constants specific to the respective thermophysical property, and

G(ϑ) = cI + Caϑ
cII + Caϑ

, F(ϑ) = cII − cI

cII + Caϑ
, (4.2a,b)

with cI = 1.14046 and cII = 10.89048. All constant coefficients are collected in tables 3
and 4 for the liquid and gas, respectively. Except for αcp for the gas, all coefficients ζI
represent the reference quantities, e.g. ζI = α∗

ρ = αρ(0) = ρg(25 ◦C)/ρ(25 ◦C).
The shape functions αj of the four thermophysical parameters for the liquid and gas

are shown in figures 2(a) and 2(b), respectively. Shown is the relative variation within
each fluid phase of the density, viscosity, thermal conductivity and specific heat capacity
as a function of ϑ for a relatively large temperature difference of �T = 50 K. For
this temperature difference, most parameters vary almost linearly with a variation of
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αρ
∗
 = 0.001356 αμ

∗ = 0.01057 αλ
∗ = 0.241886 α∗
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ϑ

ϑ

(b)

(a)

Figure 2. Normalised shape functions αj/α
∗
j for 2-cSt silicone oil (α∗

j = 1) (a) and for air (b) evaluated at
the reference temperature T∗ = 25 ◦C and for �T = 50 K. The reference parameters α∗

j for air are shown as
subcaptions in (b).

about ≈10 %. An exception is the shape function αμ for the viscosity of the silicone
oil (figure 2a). It varies by ≈100 % relative to α∗

μ = 1 and has significant nonlinear
contributions. This observation indicates the need to take these variations into account.

Ideally, the full temperature dependence of all parameters as shown in figure 2 is taken
into account (FTD model). A less demanding approach is the LTD model in which all
thermophysical parameters are approximated by linear functions

αj(ϑ)

α∗
j

= 1 +
α′

j
∗

α∗
j
ϑ + O(ϑ2) (4.3)

and terms of O(ϑ2) are neglected. Within the well-known OB model only the density ρ(ϑ)
in the buoyancy term is approximated according to (4.3) while all the other parameters are
assumed constant. At times, we also investigate the influence of a single parameter only on
the stability boundary, as in Stojanović et al. (2023a), keeping the remaining parameters
constant.

A systematic quantification of the variability of the thermophysical parameters has
been provided by Stojanović et al. (2023a), in particular their tables 1 and 2. In linear
approximation (4.3), a maximum relative deviation of c/2 of a particular thermophysical
parameter leads to the requirement (ϑ ∈ [−0.5, 0.5]),∣∣∣∣∣α

′
j
∗

α∗
j

∣∣∣∣∣ < c. (4.4)
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Liquid bridges with temperature-dependent properties

The most severe restriction on �T is posed by the viscosity of the liquid. To satisfy (4.4)
with c = 0.1 (Gray & Giorgini 1976), for instance, restricts the allowable temperature
difference to �T = cμ∗/(∂μ/∂T)∗ ≤ 4.8 K.

5. Results

Originating from the reference values of the geometry and driving parameters (subscript
ref) the critical thermocapillary Reynolds number Rec is calculated as a function of the
relative volume V of the liquid bridge, the aspect ratio Γ , the size of the system (length
scale d) and the gas flow Reynolds number Reg. These parameters are varied over the
following ranges.

(i) The volume ratio is varied within V ∈ [0.66, 1.3] for Γ = Γref , Reg = Reg,ref and
Bd = Bdref .

(ii) The aspect ratio of the liquid bridge is changed in the range Γ ∈ [0.5, 1.8] by varying
the distance d between the discs for V = Vref and Reg = Reg,ref . The change of d
also affects the dynamic Bond number Bd ∼ d2. In order to enable a comparison of
the numerical results with laboratory experiments, by varying d we do not keep the
dynamic Bond number constant but simultaneously vary Bd ∈ [0.208, 3.70] such
that Bd = Bdref (Γ/Γref )

2.
(iii) The size of the system is varied by changing d ∈ [0.1, 3] mm for Γ = Γref , V = Vref

and Reg = Reg,ref . As for the variation of Γ , the dynamic Bond number varies ∼ d2

and we vary the Bond number accordingly in the range Bd ∈ [0.016, 1.20].
(iv) The strength of the gas flow is varied within Reg ∈ [−3500, 1500] for Γ = Γref ,

V = Vref and Bd = Bdref .

While the first, second and fourth variations are often conducted in experiments (see,
e.g. Melnikov et al. 2015; Yano et al. 2016; Gaponenko et al. 2021), the third variation
is intended to reveal the length scale below which the flow in the thermocapillary liquid
bridge becomes independent of buoyancy forces under terrestrial conditions.

5.1. Liquid bridge inside a sealed tube

5.1.1. Effect of the volume ratio on the stability boundary
Figure 3 shows the dependence of the critical Reynolds number Rec (a) and frequency
ωc (b) as a function of the volume ratio V taking into account a dynamically deforming
interface in the basic flow. Three different flow models are considered: (a) FTD
of all parameters (full lines), (b) LTD of all parameters (dashed lines) and (c) the
OB approximation (dash-dotted lines). In addition, the black dash-dotted curves are
reproduced from Stojanović et al. (2022) who used the OB model, but for slightly different
reference parameters and an indeformable, hydrostatic interface according to (2.24) (see
§ 5.1.2). Note that this line does not distinguish between different wavenumbers. Neutral
curves with Ren(V) > Rec(V) slightly above the critical curve are smooth, have similar
shapes as Rec(V) and typically possess a minimum that is very often larger than the
maximum critical Reynolds number arising in figure 3(a). The gross characteristics of
the neutral curves for a relatively low Reynolds number and all models considered here,
can be inferred from those provided by Stojanović et al. (2022) as functions of V , Γ and
Bd in the framework of the OB approximation.

The larger the temperature difference the larger are the deviations among the three
models. Based on the usual criterion c = 0.1 the OB approximation should be valid only
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Figure 3. (a) Critical Reynolds number Rec (left side) and critical temperature difference �Tc (right side) as
functions of the volume ratio V for Γ = 0.66, Bd = Bdref and a sealed tube: FTD model (full lines), OB model
(dash-dotted lines) and LTD model (dashed lines). The grey-shaded region indicates a deviation of ±5 % from
the FTD model. Critical wavenumbers are indicated by colour (see legend). Inserts show zooms into the regions
in which mc = 0. (b) Critical frequencies.

for temperature differences up to �T ≤ 4.8 K (due to the variability of μ). Nevertheless,
the OB approximation yields critical Reynolds numbers Rec that deviate less than ±5 %
(grey region in figure 3a) from those obtained using the FTD model as long as�T � 28 K.
The linearised model (LTD, dashed) compares overall better with the FTD model, yet the
dashed line (LTD) leaves the grey 5 % tolerance region in the range V ∈ [0.752, 0.785] at
�T ≈ 27 K. The difference in Rec between the linearised (dashed) and the FTD model
(full) becomes more significant in the range V ∈ [0.842, 0.898] for �T � 45 K.

The volume ratio V has a strong effect on the stability boundary. The slope of Rec(V)
is particularly large and changes its sign at the peak near V = 0.85. Moreover, the
wavenumber and the structure of the critical mode changes along the critical curve. This
indicates the value of Rec is sensitive with respect to small variations of V in this region.
This sensitivity exists in addition to the sensitivity of Rec with respect to the model (OB,
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Figure 4. Basic state streamlines (a) and isotherms (b) for (Γ,Reg,Bd) = (Γ,Reg,Bd)ref and V = 0.88 at
Rec = 1680 using the FTD model. In (b) the critical velocity field (arrows) and the critical temperature field
(colour) for mc = 3 is also shown in the (r, z) plane in which the local thermal production αρ0ϑ̃ ũ · ∇ϑ0 takes
one of its maxima (white crosses in (a,b) at (rmax, zmax) = (1.05, 0.19)). Colour in (a) indicates the local
viscosity deviation εν(ϑ0). The dashed lines show basic state streamlines and isotherms for the same set of
parameters, but using the OB approximation.

LTD or FTD) used. For most volume ratios, the critical Reynolds number for the OB model
ReOB

c > ReFTD
c is larger than that of the FTD model that itself is slightly larger than that of

the LTD model. To the right of the peak, the critical oscillation frequencies in figure 3(b)
exhibit a similar trend as the critical Reynolds number. For lower volume ratios, however,
the critical frequencies are much lower.

As an example, we consider V = 0.88 (green square in figure 3) for which mc = 3 for all
models. We find that the structure of the basic flow (full and dashed lines in figure 4) and
of the respective most dangerous modes (comparison not shown) for all three parameter
models are almost identical for V = 0.88. The higher critical Reynolds number for the OB
model in comparison to those for the FTD and LTD models in this case might be related
to the strong variation of the local viscosity, more precisely, the local kinematic viscosity.
Owing to the relatively weak variation of αρ compared with αμ (cf. blue and green curve
in figure 2a) for the liquid, we focus on the local kinematic viscosity

ν(ϑ) = μ

ρ
= αμ

αρ
ν∗. (5.1)

Its relative deviation from the nominal value ν∗ = 2 × 10−6 m2 s−1 is given by

εν(ϑ) = ν − ν∗

ν∗ = αμ

αρ
− 1. (5.2)

From figure 4(a) the local kinematic viscosity ν near the cold wall is larger by more than
60 % than the nominal value, while near the hot wall and the free surface it is more than
20 % smaller than nominal, due to the high surface temperature ϑ > 0. As a result, the
azimuthal perturbation temperature variations associated with the hydrothermal wave lead
to larger azimuthal velocity gradients compared with those in the OB model in which the
kinematic viscosity on the interface is ν∗, or εν = 0. Since the azimuthal perturbation
velocity drives the hydrothermal wave (Wanschura et al. 1995), this effect enhances the
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Approximation Rec �Tc (K) εc (%)

FTD 1679 50.79 0
LTD 1572 47.53 −6.4
OB 2263 68.45 34.8
OB + ρ(T) 2218 67.09 32.1
OB + μ(T) 1716 51.89 2.2
OB + μL(T) 1717 51.93 2.2

Table 5. Critical Reynolds numbers Rec and critical temperature differences �Tc for V = 0.88 and different
model equations (approximations). The relative deviation εc = (Rec − ReFTD

c )/ReFTD
c is given in percent.

velocity field of the critical mode and, thus, may explain the lower critical Reynolds
number for the FTD model as compared with the OB model for V = 0.88.

The slightly lower critical Reynolds number of the LTD model in comparison to the
FTD model for V = 0.88 is consistent with the effective kinematic viscosity

νeff =
{∫

V
ρ[T0(x)]û2 dV

}−1 ∫
V
ν[T0(x)]ρ[T0(x)]û2 dV, (5.3)

which is defined as kinematic viscosity weighted by the kinetic-energy density of the
critical mode (see Appendix C). We find that the ordering of the critical Reynolds numbers
ReLTD

c < ReFTD
c < ReOB

c coincides with that of the effective viscosities νLTD
eff < νFTD

eff <

νOB
eff , namely 0.853ν∗ < 0.880ν∗ < ν∗ at the respective critical points of each model.

Comparing the three models for a constant Reynolds number at, e.g. Re = ReFTD
c = 1680

yields the same ordering with 0.832ν∗ < 0.880ν∗ < ν∗.
While the above interpretation seems plausible for V = 0.88, this argument cannot

generally be proven valid, because the critical curves for the OB approximation and
for the FTD model intersect. Thus, for certain ranges of V , the basic flow is slightly
more stable within the FTD model than within the OB model. This indicates that
the influence of the changed volume is much more important, not only changing the
critical Reynolds number, but also the structure and wavenumber of the critical mode.
Regardless of the explanation of the mechanisms at work, the results in figure 3
show that it is important to take into account the variation of the thermophysical
parameters (in particular that of the viscosity of the liquid) in order to arrive at accurate
critical data when the temperature difference is large, here approximately in the range
V ∈ [0.75, 0.95].

In table 5 we compare the critical data obtained for V = 0.88 using different
approximations. Within the OB + ρ(T) model, the temperature dependence of the fluid
densities is taken into account in all the governing equations (2.4) according to (2.10),
whereas the OB + μ(T) model combines the OB approximation with a FTD dynamic
viscosity, while the OB + μL(T) model indicates that only the liquid’s viscosity is FTD.
The OB + μ(T) and OB + μL(T) models yield the smallest deviation of the critical
Reynolds number from that of the FTD model. This confirms the importance of taking
into account the temperature dependence of μ(T) of the fluids, in particular that of the
liquid.
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Liquid bridges with temperature-dependent properties

5.1.2. Comparison with the results of Stojanović et al. (2022)
Stojanović et al. (2022) have also computed the linear stability boundary Rec(V) using
the OB approximation and the same geometry parameters. However, there are small
differences compared with the present investigation: (a) Stojanović et al. (2022) neglected
dynamic surface deformations and (b) the reference quantities αj differ slightly; in
the present work they are determined by quadratic least-squares fits of the discrete
manufacturer’s data (cf. § 4), while Stojanović et al. (2022) implemented the discrete
values specified for the reference temperature, except for the thermal expansion coefficient
that was taken from Romanò et al. (2017), because it is not contained in the data sheet
provided by the manufacturer.

Tests have shown that the dynamic surface deformation �h0 = h0,d − h0,s in the basic
flow, where h0,d and h0,s are the dynamic and static surface shapes, respectively, has a
weak influence on the critical Reynolds number near the peak of Rec(V) at V ≈ 0.9. For
these volume ratios, differences between the present results using the OB approximation
and those of Stojanović et al. (2022) are mainly due to the different reference values
αj used, in particular due to the difference in β∗ for the liquid phase: Stojanović et al.
(2022) used the same value for β∗ as did Romanò et al. (2017). This value is 11.4 %
larger than the current value used (table 2). The impact is visible from figure 3, where
the critical Reynolds number obtained by Stojanović et al. (2022) (black dash-dotted
line) significantly deviates from the current result using the OB approximation (coloured
dash-dotted line) for V � 1. In particular, an axisymmetric m = 0 mode is critical in
the present investigation in the narrow range V ∈ [0.8663, 0.8712] (brown dash-dotted
line, upper inset of figure 3a), whereas the axisymmetric critical mode arises for V ∈
[0.8917, 8983] in Stojanović et al. (2022) (full black line in their figure 17a). The different
thermophysical reference parameters are also responsible for the significant reduction of
the volume ratio range within which the wavenumber m = 4 is critical: V ∈ [0.871, 0.874]
(orange dotted line in figure 3a) as compared with V ∈ [0.898, 0.929] (full purple line in
figure 17(a) of Stojanović et al. 2022). The changes indicate the sensitivity of the critical
Reynolds number on the thermophysical reference parameters αj, not only for the OB
approximation but in general.

5.1.3. Effect of the aspect ratio on the stability boundary
The aspect ratio Γ = d/ri can easily be adjusted in experiments and is an important
parameter determining the critical wavenumber. Therefore, we vary the length d, as
in experiments, keeping ri = ri,ref constant. The Bond number is adjusted accordingly
Bd = Bdref × (Γ/Γref )

2. The dependence of the critical conditions on d is displayed in
figure 5(a), where the critical Reynolds number Rec is shown as a function of the aspect
ratio Γ for V = 1 and the three models employed (OB, LTD, FTP). Figure 5(b) shows the
corresponding critical frequencies. While the critical frequencies increase with the critical
Reynolds number to the left of the peak of Rec (small Γ ), the opposite behaviour is found
for the frequency of the critical m = 1 mode to the right of the peak of Rec (larger Γ ). In
addition, we reproduce in figure 5 Rec(Γ ) and ωc(Γ ) (black dash-dotted curves) obtained
by Stojanović et al. (2022) for the OB model, but for slightly different reference parameters
and an indeformable interface. Since, for the present parameter variation, �Tc ∼ Rec/d
scales differently from Rec, straight grey lines in 5(a) refer to constant values of �T .

For most aspect ratios, all present critical Reynolds numbers lie within the 5 % tolerance
level about the result for the FTD model (full line). However, similarly as for the variation
of V above, the OB model (coloured dash-dotted lines) overestimates the critical Reynolds
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Figure 5. (a) Critical Reynolds number Rec (left axis) and critical temperature difference �Tc (right axis) as
functions of the aspect ratio Γ for V = 1, Bd = Bdref × (Γ/Γref )

2 and a closed chamber. The curves related
to the left and right vertical axis, respectively, are indicated by the additional label in the right corner of the
graph. Results are shown for FTD (full lines), LTD (dashed lines) and OB (dash-dotted lines) models. The grey
shaded region indicates a deviation of ±5 % from the reference FTD model. (b) Critical frequencies.

number by more than 5 % in the range Γ ∈ [0.806, 1.086]. The sensitivity of the critical
Reynolds number on the reference parameters αj is again confirmed when comparing
the OB model of Stojanović et al. (2022) (black dash-dotted line) with the current OB
model results (coloured dash-dotted line). In Stojanović et al. (2022) buoyancy forces
have been overestimated due to the larger selected β∗. This also explains the increasing
discrepancy of Rec for long liquid bridges (large Γ ). Numerical tests have shown that
including dynamic surface deformations in the model of Stojanović et al. (2022) have only
a very minor effect on the black dash-dotted curves. The comparison thus underlines that
the selection of the reference quantities (here β∗) has a profound effect on Rec that can be
large when the slope of Rec(Γ ) is large.
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Figure 6. Same as figure 4 but for (V,Reg) = (V,Reg)ref , Γ = 0.93 and Rec = 1438.

As a minor detail, the OB approximation predicts the critical wavenumber mc = 2 (red)
within a very small window of Γ at the peak of Rec (inset of figure 5a), whereas the
FTD model yields mc = 3 (green). Likewise, the critical mode with mc = 2 does not arise
in the OB model used by Stojanović et al. (2022), but from their calculations neutral
modes with different wavenumbers arise at very close Reynolds numbers near the peak
of Rec(Γ ).

Close to the peak of Rec that coincides with a maximum of the critical temperature
difference, the distribution of the kinematic viscosity ν(x) exhibits a similar structure
as for (Γ,Reg,Bd) = (Γ,Reg,Bd)ref and V = 0.88. This is evident when comparing
figure 6(a) for Γ = 0.93 (green square in figure 5) with figure 4(a). Despite the
quantitative differences of ν, the effective viscosities based on the result for Re =
ReFTD

c (Γ = 0.93) = 1438 are ordered with νLTD
eff = 0.911 < νFTD

eff = 0.923 < νOB
eff = 1,

just like the Reynolds numbers are (ReLTD
c < ReFTD

c < ReOB
c ). The impact of the effective

viscosity is demonstrated in figure 6(b), where the basic state isotherms of the FTD model
(full black lines) are compared with those obtained by the OB model (dashed black lines)
at the same Reynolds number Re = ReFTD

c = 1438. At this Reynolds number the most
dangerous mode of the OB model (not shown) is linearly stable. The slightly stronger
basic flow in the FTD model compared with the OB model (cf. dashed and full white lines
in figure 6a) yields a slightly stronger basic state thermal advection (cf. dashed and full
black isotherms in figure 6b). This enhances the energy supply from the basic state to the
perturbation flow, which destabilises the flow.

5.1.4. Effect of the length scale on the linear stability boundary
The size of a liquid bridge, parameterised by the length scale d, is perhaps the most
important design parameter for experiments. It affects the static shape of the liquid bridge
through the hydrostatic pressure difference and determines its mechanical stability (see,
e.g. Meseguer, Slobozhanin & Perales 1995). Apart from these mechanical aspects, the
size affects the critical thermocapillary Reynolds number, because (a) the strength of
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Figure 7. Critical Reynolds number as a function of the size of the set-up expressed through d for constant
geometrical proportions Γ = 0.66, Γs = 0.4, η = 4 and V = 1. Different gravity conditions and flow models
are considered (see the legend). The grey hatched region corresponds to inaccessible critical temperature
differences with �Tc > 126 K. The grey shaded region indicates a deviation of 5 % from the zero gravity
reference case (blue lines). Full lines: critical Reynolds numbers. Dashed line: neutral Reynolds numbers close
to the intersection of critical curves. The wavenumber m is given for each segment of the critical curve.

buoyancy forces to thermocapillary forces depends on size, and (b) the range of variation
of the material parameters depends on size through the size dependence of the critical
temperature difference.

To investigate these influence factors, we consider Γ = 0.66, Γs = 0.4, η = 4, V = 1
and take into account the dynamic surface shape of the liquid bridge in the basic
state. While the FTD model is the most realistic one, it is instructive to compare the
size dependence of the critical Reynolds number of the different models with the OB
approximation under zero gravity conditions (OB-0g). For zero gravity and in the absence
of a forced gas flow, deviations of the shape from cylindrical are only due to the basic flow
(DI). If dynamic deformations are suppressed (SI), the length scale and the temperature
difference would only appear in the Reynolds number Re ∼ �Td. Therefore, the stability
boundary for the OB-0g model and a SI is simply Rec(d) = 627 = const. with�Tc ∼ d−1.
In the present case of a DI the effect of the dynamic surface deformation in the basic state
only becomes relevant for small values of d, thus large values of �Tc, because a high
temperature difference significantly increases the capillary number entering the normal
stress balance (2.20a), which makes the interface more deformable dynamically. The effect
is visible in figure 7 by the minute reduction of ReOB-0g

c (black curve, DI) from Re = 627
(SI) for d � 0.25 mm. The critical wavenumber for the case OB-0g is mc = 2 in the full
range of d investigated.

The critical Reynolds number ReOB-0g
c (d) for OB-0g represents the reference. The grey

strip indicates a ±5 % deviation from ReOB-0g
c . The effect of the terrestrial gravity level

and of the full temperature dependence of the material parameters on the critical Reynolds
number when the length scale d is varied is shown in figure 7 for the OB and FTD models
and for 0g and 1g.
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Liquid bridges with temperature-dependent properties

In the framework of the OB approximation (OB-1g) the buoyancy force in the liquid
phase in (2.4) becomes in our scaling

−Bd
αρ − α∗

ρ

ε
= ρ∗gβ∗d2

γ ∗ ϑ = Udiff

UTC
Raϑ, (5.4)

where Udiff = λ∗/(ρ∗c∗
pd) and UTC = γ ∗�T/μ∗ are the characteristic velocity scales for

thermal diffusion in the liquid and for thermocapillary convection, respectively, and

Ra = gβ∗�Td3

(λ∗/ρ∗c∗
p)(μ

∗/ρ∗)
(5.5)

is the Rayleigh number. Due to the dependence Ra ∼ d3, buoyancy forces rapidly diminish
in the liquid phase as the length scale d is reduced and if approximately �T ∼ d−1.
Therefore, the critical Reynolds number Rec under terrestrial gravity within the OB
approximation (OB-1g, green in figure 7) approaches the zero gravity case (OB-0g, black)
in the limit of vanishing d. As d increases beyond d ≈ 0.4 mm, the basic flow first
becomes slightly stabilised due to buoyancy within the OB-1g model. The change of the
critical wavenumber from mc = 2 to mc = 3 at d = 0.65 mm leads to a slight reduction
of the critical Reynolds number below that for the case OB-0g until, for d � 1.6 mm,
buoyancy forces again strongly stabilise the basic flow. Further increasing d the critical
Reynolds number grows significantly and a more complicated switching of critical modes
arises. Based on the OB approximation, the influence of buoyancy forces on the critical
Reynolds number for the present couple of fluids and geometry remains less than ≈4.5 %
as long as d < 1.6 mm. A relation similar to (5.4) holds for the buoyancy force in the gas
phase. However, the Rayleigh number would not scale like ∼d3 for the present parameter
variation with constant values of Γs and η.

The picture changes when the full temperature dependence of the material parameters
are taken into account. Under zero gravity, the FTD model (FTD-0g, blue) yields a critical
Reynolds number larger than ReOB-0g

c for d � 0.37 mm. Figure 8 shows the critical mode
using the FTD-0g model (a) and the OB-0g model (b) for d = 1 mm. The isotherms of
the basic state (black lines) indicate again a higher temperature close to the free surface
for FTD-0g. However, in contrast to the case shown in figure 4, the FTD-0g model is
more stable than the OB-0g model, i.e. ReFTD-0g

c > ReOB-0g
c . This finding is consistent

with figure 3 (for V = 1) in the presence of buoyancy forces.
The difference between OB-0g and FTD-0g vanishes asymptotically as d becomes

larger, because the critical temperature difference decreases ∼d−1, provided Rec ≈ const.
Therefore, the material properties hardly vary anymore within their respective domains.
This also becomes clear when taking the limit �T → 0 in (2.7) in which the shape
functions for the liquid reduce to αj ≡ 1. Asymptotically, Ca ∼ d−1 such that the Laplace
pressure dominates and the liquid bridge takes a perfect cylindrical shape. If, on the
other hand, the size of the bridge is reduced, the critical wavenumber for the FTD-0g
model changes from mc = 2 to mc = 3 at d = 0.84 mm. For even smaller sizes, the basic
flow is strongly destabilised for d < 0.25 mm within the FTD-0g model. This effect
is due to the increased range of variation of the material properties when the critical
temperature difference increases due to the reduction of the length scale. In this region
(grey hatched in figure 7) other effects like evaporation become important that are not
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Figure 8. Linear stability results for (V, Γ,Reg) = (V, Γ,Reg)ref , Bd = 0 and d = 1 mm using the FTD
model (a) and the OB model (b). Shown are the critical velocity field (arrows) and critical temperature field
(colour) in the (r, z) plane in which the local production αρ0ϑ̃ ũ · ∇ϑ0 takes one of its maxima (white crosses)
in the bulk. Black lines indicate isotherms of the basic state. Results are shown for (a) Rec = 676, mc = 2;
(b) Rec = 627, mc = 2.

taken into consideration here. In any case, the maximum theoretical temperature difference
is bounded by the pour point and the boiling temperature that, for 2-cSt silicone oil,
are −120 ◦C and 88 ◦C, respectively. The latter restricts the experimentally realisable
temperature differences to �T < 2 × (88 − 25) ◦C = 126 ◦C, assuming that the mean
temperature is kept at 25 ◦C. Temperature differences above this threshold fall into the
grey hatched region.

For small length scales 0.35 mm ≤ d � 0.5 mm, deviations of Rec from the reference
case ReOB-0g

c are primarily caused by the temperature dependence of the material
properties and not by either buoyancy or dynamic deformations of the interface. Therefore,
the critical Reynolds number under terrestrial gravity conditions for the FTD model
(FTD-1g, red) hardly deviates from Rec under zero gravity (FTD-0g, blue) for d � 0.5 mm
with mc = 3. For larger system sizes, the critical Reynolds number for FTD-1g remains
closer to the results for OB-0g and OB-1g and the critical wavenumber mc = 3 for the
FTD-1g model does not change before Rec for the terrestrial conditions (red, green) starts
increasing strongly from the 0g cases (black, blue) for d � 1.6 mm.

In summary, the critical data (Rec and mc) under terrestrial gravity modelled by the
FTD-1g model (red) is comparable (up to 5 %) to the OB-1g model (green) as long as d ≥
0.69 mm. For smaller lengths, the OB-1g model yields a different critical wavenumber mc.
For zero gravity conditions, the critical Reynolds numbers of the FTD-0g model (blue) can
be predicted by the simpler OB-0g model (black) with an accuracy better than 5 % if d ≤
1.64 mm. Moreover, in the range d ∈ [0.35, 1.5] mm, all four models yield comparable
results since Rec is almost constant and bounded by Rec ∈ [615, 683]. It is remarkable that,
for d ≥ 1.64 mm, the large critical Reynolds numbers and the mode switching leading to
the peak of Rec for the OB-1g and FTD-1g models are essentially caused by the increasing
buoyancy forces in the bulk when heating from above and by the increasing static shape
deformation (Bo ∼ d2). Dynamic deformation are of minor importance for increasing d,
indicated by the small deviation of ReOB-0g

c (black in figure 7) from the constant value
ReOB-0g,SI

c = 627.
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Liquid bridges with temperature-dependent properties

5.2. Effect of temperature-dependent thermophysical properties in the presence of an
axial gas flow

A concentric circular tube about the liquid bridge, originally designed to minimise ambient
air effects on the flow in the liquid, can be utilised to impose an axial flow in the gas phase
that bears some potential to control the onset of a time-dependent and/or three-dimensional
flow in the liquid phase (Shevtsova, Gaponenko & Nepomnyashchy 2013; Shevtsova
et al. 2014; Yano et al. 2016, 2017; Yasnou et al. 2018; Stojanovic & Kuhlmann 2020;
Gaponenko et al. 2021). Following Stojanovic et al. (2023), we impose an axial gas flow
at the inlet of the annular space around the liquid bridge. The velocity profile wg,in(r) is
fully developed according to (2.29) and its strength is measured by the gas flow Reynolds
number Reg = W̄g,inρ

∗d/μ∗ as defined in Stojanovic et al. (2023). The gas at the inlet has
a homogeneous temperature corresponding to that of the adjacent support disc. Thus, for
an upward flow with Reg > 0, the gas is cold (ϑ0,in = −0.5), while for a downward flow
with Reg < 0, it is hot (ϑ0,in = 0.5).

Critical Reynolds numbers Rec and frequencies ωc as functions of the gas flow Reynolds
number Reg are shown in figure 9(a,b) for the FTD (solid), LTD (dashed) and OB model
(dash-dotted line). The sensitivity of the critical Reynolds number with respect to the
gas flow for small values |Reg| � 50 has been explained by Stojanovic et al. (2023). The
critical curves for all models behave qualitatively similar as reported in figure 2(a) of
Stojanovic et al. (2023) for an extended OB model that almost agrees with the current
standard OB model. Also for upward flow (Reg � 50) and strong downward flow (Reg �
−2000), the critical Reynolds numbers are almost independent of Reg and in the range of
Rec ≈ 400. For these conditions, the three models yield comparable results well within
the 5 % tolerance margin (grey). However, for downward flow in the intermediate range
of −2000 � Reg � −50, the three material parameter models yield very different results
(table 6). This is due to the large critical temperature difference for which the dependence
of the thermophysical parameters on the flow becomes important.

The critical Reynolds numbers obtained using the OB approximation (dash-dotted
line) are typically much larger in the range −2000 � Reg < −50 than the reference
data for FTD. An exception is the m = 1 OB mode that is responsible for a local
minimum ReOB

c (m = 1) = 1727 of the critical Reynolds number at Reg = −480. Within
Reg ∈ [−767,−345] the critical Reynolds number for the OB model is even slightly less
than that for the FTD model, ReOB

c < ReFTD
c . Despite similar critical Reynolds numbers

near Reg = −480, the wavenumbers, oscillation frequencies and flow structures of the
critical modes of the two models differ. The linear LTD model (dashed) represents a better
approximation to the FTD model (full) than the OB model (dash-dotted line). Like for the
FTD model, the critical curve ReLTD

c (Reg) is unique and has the same shape as ReFTD
c (Reg).

However, the LTD model underestimates the critical threshold by more than 10 % in the
range Reg ∈ [−1705,−32]. Noteworthy, there exists a considerable range of Reg around
Reg ≈ −500 in which the most dangerous mode of the FTD model is axisymmetric (brown
line). Furthermore, a critical mode with wavenumber mc = 4 can be critical within the
FTD model, but not for the other models.

The larger critical Reynolds numbers for the OB model (except for the m = 1 mode)
and the smaller ones for the LTD model as compared with ReFTD

c are caused by the
considerable viscosity variation for large�T . For most values of Reg, we find the effective
kinetic-energy-weighted viscosity (5.3) is ordered like νLTD

eff < νFTD
eff < νOB

eff . Therefore, it
is reasonable to assume that the perturbation flow experiences the most dissipation for the
OB model and the least for the LTD model. But also the magnitude of the streamfunction
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Figure 9. Left panels: (a) critical Reynolds number Rec (black axis labels) and critical temperature difference
�Tc (purple axis labels) and (b) critical frequencies as functions of the gas flow Reynolds number Reg for
Γ = 0.66, V = 1 and Bd = Bdref . Results are shown for the FTD model (full lines), the LTD model (dashed
lines) and the OB approximation (dash-dotted lines). The grey-shaded region indicates a deviation of ±5 %
from the reference FTD model. The wavenumbers are coded by colour. Right panels: (a) full neutral Reynolds
numbers and (b) neutral frequencies for individual wavenumbers.

extrema of the basic flows for a constant Reynolds number Re = 1500 provided in table 7
show the same ordering. Thus, a higher Reynolds number is required in the OB model
to establish the characteristic internal temperature gradients by advection, from which the
hydrothermal wave can draw its thermal perturbation energy. This effect is assisted by the
lower surface temperature in the OB model as compared with the FTD model at the same
thermocapillary Reynolds number as shown in figure 10.
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Liquid bridges with temperature-dependent properties

Reg ReFTD
c ReLTD

c ReOB
c εLTD

c (%) εOB
c (%)

−1500 1616 1351 2185 −16.4 35.2
−500 1853 1670 1728 −9.9 −6.7
−250 1813 1642 1860 −9.4 2.6

Table 6. Critical Reynolds number Rec and critical temperature difference �Tc for Reg = −1500, Reg =
−500 and Reg = −250. Results are given for different approximations. The relative deviation εc = (Rec −
ReFTD

c )/ReFTD
c is given in percent.

Reg LTD FTD OB

—ψ̌min| νeff /ν
∗ |ψ̌min| νeff /ν

∗ |ψ̌min| νeff /ν
∗

−250 1.147 0.8320 1.084 0.9135 0.9746 1
−500 1.123 0.8444 1.058 0.8406 0.9450 1
−1000 1.155 0.8219 1.083 0.8981 0.9498 1
−1500 1.263 0.8124 1.178 0.8499 0.9995 1

Table 7. Scaled streamfunction extrema |ψ̌min| = |ψmin| × 103 of the basic flow and effective viscosities νeff
for Re = 1500 and different Reg for the three models LTD, FTD and OB.

LTD
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Figure 10. Tangential velocity ut0 = t · u0 (blue) and temperature distribution ϑ0 (red) of the basic flow along
the free surface (parameterised by z) for (Reg,Re) = (−1500, 1616). The models FTD, LTD and OB are
distinguished by line type (see legend). The insets show the velocity peaks near the hot and cold corners.

Figure 11 shows the most important integral thermal energy production terms J1 (blue)
and J2 (red) for the FTD model as functions of the gas flow Reynolds number. We
note the heat transfer through the interface is always negligible compared with the bulk
thermal production rates J1 and J2, since −1.3 × 10−3 < Hfs < 0. For Reg < −1750 and
for Reg > 0, the critical Reynolds number is low and the thermal perturbation energy is
almost entirely provided by radial advection of the basic state temperature described by
the term J1 (blue). The variation of the relative importance of J1 and J2 indicates changes
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Figure 11. Normalised thermal perturbation energy production rates J1 (blue) due to radial advection and J2
(red) due to axial advection in the liquid phase according to (3.10b) as functions of Reg along the critical curve
of the FTD model (full lines in figure 9a). The vertical dotted lines indicate changes of the critical wavenumber
mc as indicated.

of the model structure or the critical wavenumber. The changes of the critical mode along
Rec(Reg) are illustrated in the supplementary movie for the FTD model available at https://
doi.org/10.1017/jfm.2023.998. For strong downward flow of the hot gas (Reg = −3500),
the region of basic state temperature gradients (full black lines) is located at about one half
of the radius of the liquid bridge (r ≈ 1/2Γ ). The temperature perturbation spots extend
from top to bottom and the perturbation flow arises in the form of six vortices (m = 3) that
are almost aligned with the z axis. In this region the temperature perturbation spots are
almost exclusively created by the radial perturbation flow such that J1 ≈ 1 and J2 ≈ 0. By
increasing Reg from −1750 to −1500 the basic flow becomes more stable (figure 9a). Due
to the larger critical temperature difference at the critical point the hot fluid transported
along the free surface downward to the cold end of the bridge has an increasing tendency
to rise due to buoyancy. As a result, the basic state temperature gradients move closer to the
interface and become thinner. This is accompanied with a structural change of the critical
mode (see also figure 11) such that the temperature perturbations increasingly spiral about
the axis. In the cross-section shown in the movie this is visible by the temperature spots of
alternating sign that seem to grow out of the cold corner as Reg increases.

In the plateau region of Rec, approximately for Reg ∈ [−1500,−300], the basic
temperature field does not change much. But the critical wavenumber changes
monotonically from m = 3 to m = 0. With each reduction of m the importance of J2
(axial advection) over J1 grows (figure 11). Due to the radially quite localised basic
state temperature gradients also the critical modes are confined to this radial region. The
radial confinement of the critical modes may explain why the azimuthal wavenumber
(if not too large) is not very important for the instability such that the segments of the
critical curve in figure 9(a) merge relatively smoothly. In the range Reg ∈ [−300, 230],
the perturbation temperature spots widen again radially owing to the decreasing basic state
temperature gradients such that for Reg � 230 the perturbation mode resembles the mode
for Reg � −1750. This is due to the reduced heating from the free surface (even cooling
for Reg > 0) and a reduction of the buoyant rise of the return flow in the bulk.

We shall now focus on the region between Reg ≈∈ [−2000, 0], where most of the
deviations between the OB, LTD and FTD models are observed. For a given Reg, the basic
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Liquid bridges with temperature-dependent properties

flow structure remains qualitatively very similar upon a change of the model (either OB,
LTD or FTD), however, the critical thermocapillary Reynolds number can be significantly
different. The difference in Rec between the FTD and LTD model can be explained via
the effective viscosity for all modes, except for the m = 1 mode of the OB model. In
this sense the m = 1 OB mode is atypical and has a much lower frequency than all other
modes. To investigate more in depth the difference between the OB m = 1 instability and
the peculiar plateau of the critical stability curve for the FTD and LTD models, figures 12
and 13 compare the basic state isotherms (lines) and the perturbation velocity (arrows)
and temperature (colour) fields of the OB for m = 1 and the FTD model for m = 0 (at
criticality) and for m ∈ [1, 4] at Reg = −500 and Re = Rec = 1853 (brown square in
figure 9a). It is observed that the most dangerous mode for the OB model (m = 1) is
qualitatively different from the other modes observed for the FTD perturbations. The most
dangerous m = 1 mode of the OB model is promoted by a radially narrow perturbation
vortex near the top right corner of the liquid bridge. This cannot well exploit the basic
state temperature gradient, hence, it requires a perturbation temperature developed over a
thicker annular region in order to produce enough energy to feed the mc = 1 hydrothermal
wave perturbation (see figure 12f ). On the other hand, for FTD (as well as for LTD, not
shown), the velocity perturbation is strongest where the basic state temperature gradient is
most intense. This allows the most dangerous perturbation to concentrate its temperature
peaks in a thin toroidal blade (see figure 12a–e). The radial confinement of the temperature
perturbation is illustrated by the green lines in figures 12 and 13 indicating the projection
of the isosurfaces ϑ̃ = 0.5 × max(ϑ̃) onto the respective planes. As the radial extension
of the production region for FTD and LTD (not shown) is relatively small, the instability
mechanism becomes almost insensitive to the perturbation wavenumber. This explains
the plateau of the neutral stability curves (see panels on the right of figure 9) for the
FTD and LTD models, that signifies that the flow in the liquid bridge can be driven
towards an unstable state at Re ≈ 1850 for FTD and Re ≈ 1700 for LTD for all azimuthal
wavenumbers m considered. The supplementary movie confirms this interpretation.

6. Discussion and conclusions

The linear stability of a differentially heated thermocapillary liquid bridge has been
investigated numerically. Three distinct models were analysed for a silicone oil liquid
bridge in air: the OB approximation, a LTD of all material properties and a full nonlinear
dependence of all material parameters on temperature (FTD). The critical stability curves
have been computed as functions of the volume ratio V of the liquid bridge, its aspect
ratio Γ , its size d and for a forced axial flow in the surrounding air measured by Reg. The
OB approximation tends to overestimate the critical Reynolds number, while the linear
model underestimates it. This trend can be explained by an effective viscosity νeff , because
the viscosity is by far the most temperature-dependent material property. If the effective
viscosity rules the critical onset, then the modified Reynolds number of the FTD model
(ν∗/νeff )

2ReFTD
c ≈ ReOB

c should be comparable to that of the OB model. This correlation
holds true approximately if νeff is defined as the perturbation kinetic-energy-weighted
kinematic viscosity of the FTD model at criticality. Defining νeff this way was found
to be more suitable than the surface-averaged viscosity proposed by Kozhoukharova
et al. (1999), because the surface-averaged viscosity only accounts for the driving of the
basic and perturbation velocity fields, but does not take care of the thermal perturbation
energy production of the hydrothermal wave due to the advection across basic state
temperature gradients in the bulk. Unlike Kozhoukharova et al. (1999) and Shevtsova &
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(b)(a) (c)

(e) ( f )(d )

Figure 12. Basic state isotherms (black lines), perturbation temperature field (colour) and perturbation
velocity field (arrows) in the plane ϕ = const. in which the local thermal production αρ0ϑ̃ ũ · ∇ϑ0 is maximised
(white crosses). Shown are (a) the critical mode with m = 0 of the FTD model for (V, Γ,Bd) = (V, Γ,Bd)ref ,
Reg = −500 and Rec = 1853 (brown square in figure 9a). Also shown for the same parameters are the stable
modes with m = 1 to m = 4, in (b–e), and the unstable most dangerous mode with m = 1 for the OB model in
( f ). The dashed black lines indicate horizontal cuts shown in figure 13. The green lines represent the isosurfaces
ϑ̃ = 0.5 × max(ϑ̃) projected onto the respective plane.

(b)(a) (c)

(e) ( f )(d )

Figure 13. Same as figure 12 but for constant z. The grey arrows indicate the direction of propagation of the
mode. Results are shown for (a) m = 0 (FTD), (b) m = 1 (FTD), (c) m = 2 (FTD), (d) m = 3 (FTD), (e) m = 4
(FTD) and ( f ) m = 1 (OB).
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Melnikov (2001) who have reported a reduction of Rec due to the linearly
temperature-dependent viscosity, we have found parameter ranges where this general
conclusion is not valid. Therefore, a Reynolds number based on the effective viscosity
cannot correlate the critical points for all governing parameters, but it represents a rough
estimate in most cases considered.

The variable material properties have a particularly strong effect on the critical Reynolds
number when the liquid bridge is heated or cooled from the gas phase by an imposed
axial gas flow. For a hot downward gas flow in the range Reg ∈ [−1750,−250], the critical
curves for all three models exhibit broad maxima. The maximum values differ significantly
due to the high critical temperature difference. In the range of Reg the segments of the
critical curve that belong to different azimuthal wavenumbers merge almost smoothly. This
can be explained by the production of the thermal perturbation energy of the hydrothermal
wave being confined to a narrow radial zone. Therefore, the neutral Reynolds numbers
for different (not too large) azimuthal wavenumbers do not vary much. Owing to the
crowding of neutral modes in this range of Reg a complex interplay between these modes
can be expected slightly supercritically. The only exception to the smooth merging of
critical modes is the m = 1 mode of the OB model within Reg ∈ [−1960,−250]. This
perturbation mode is extended towards the liquid bridge axis and the energy production is
more widespread inside the (r, z) plane travelling at untypical low rotational frequencies.

From a practical perspective, the dependence of the critical Reynolds numbers on the
length scale d, shown in figure 7 for various models, could be useful for experimentalists
who aim to predict Rec and mc for zero gravity conditions by conducting experiments
on the ground. Our results show that a reliable prediction of the critical wavenumber
under zero gravity by using the same experimental set-up on the ground requires the size
of the liquid bridge not to exceed d = 0.8 mm (for the parameters selected). Based on
the FTD model this size restriction should also keep the deviation between the critical
Reynolds numbers for 1g and 0g below 5 %, e.g. for d = 0.75 mm �Tc(1g) = 40.6 K,
while �Tc(0g) = 42.7 K. For smaller length scales d, the relative deviations diminish,
but the large absolute value of �Tc may lead to technical or safety issues for 0g space
experiments and create undesired side effects. For this reason and for a better optical
access, space experiments are typically carried out using large liquid bridges (d > 3 mm).
Due the dependence of the material properties on T similarity cannot be exploited
for predictions by small-scale terrestrial experiments. According to our linear stability
analysis, the hydrothermal wave instability for FTD-0g for d > 3 mm cannot be predicted
by simply employing smaller liquid bridges on the ground (FTD-1g): the wavenumber of
the critical mode under 0g is mc = 2 for d � 0.84 mm, while on the ground the critical
wavenumber is mc = 3 for d � 2.1 mm.

With an increasing temperature difference the deviations among Rec for the three
thermophysical models (OB, LTD, FTD) become larger. Furthermore, a large temperature
difference typically requires an increased maximum temperature Thot. Under these
conditions evaporation of the liquid can become significant. Using acetone (Pr = 4.3)
as the liquid phase, evaporative cooling can strongly stabilise the basic flow by reducing
radial temperature gradients in the liquid phase (Simic-Stefani et al. 2006). Therefore,
it is expected that including evaporative cooling in the modelling will reduce the
difference between the OB, LTD and FTD models. Since the FTD model accounts for
higher-order corrections of all thermophysical properties, it would be desirable to also
include higher-order terms in the temperature dependence of the surface tension (for an
example, see Villers & Platten 1988). To do so, corresponding accurate measurements of
σ(T) for the present fluids are required. Finally, it would be of interest to extend the present
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models to include dynamic surface deformation due to the perturbation flow. It is expected
that dynamic deformation due to the perturbation flow lead to only small corrections to the
hydrothermal wave instabilities, but this approach would be more general, also allowing
for surface wave instabilities. To date, surface wave instabilities in thermocapillary flows
have been only observed in plane layers of low-Prandtl-number liquids (Smith & Davis
1983) and in flat migrating droplets (Hu, Zhang & Chen 2023).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.998.
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Appendix A. Temperature dependence of the working fluids

Polynomials of second order have been fitted to the discrete data of ρ, λ and cp for
2-cSt silicone oil provided by Shin-Etsu (2004) using least squares. The low polynomial
order was employed to avoid non-physical oscillations of the fit function. The functional
dependence of μ(T) is constructed from the quadratic fit of the density and an exponential
temperature dependence of the kinematic viscosity (as in Ueno et al. 2003). The explicit
functions read

ρ(T) = ρ∗[1 − β∗(T − T∗)+ 7.27 × 10−7(T − T∗)2] kg m−3, (A1a)

μ(T) = μ∗ exp[−5.892(T − T∗)/(T + 273.15)]

× [1 − β∗(T − T∗)+ 7.27 × 10−7(T − T∗)2] Pa s, (A1b)

λ(T) = λ∗[1 − 0.0026(T − T∗)− 7.22 × 10−8(T − T∗)2] W (m K)−1, (A1c)

cp(T) = c∗
p[1 + 0.000821(T − T∗)+ 1.66 × 10−8(T − T∗)2] J (kg K)−1, (A1d)

where T is measured in ◦C. The reference quantities for T∗ = 25 ◦C denoted by the asterisk
are given in table 2. Since the manufacturer does not specify the temperature dependence
of the surface tension σ , we assume the linear dependence

σ(T) = σ ∗ − γ ∗(T − T∗) (A2)
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Figure 14. Temperature dependence of the thermophysical properties of the working liquid (a) and working
gas (b). The coloured horizontal dashed lines represent the reference values specified in table 2. The vertical
black dashed lines represent the reference mean temperature T∗ = 25 ◦C. (a) 2-cSt silicone oil and (b) Air.

provided by Romanò et al. (2017) and also specified in table 2. The functional dependence
of the gas properties

ρg(T) = ρ∗
g

T∗ + 273.15
T + 273.15

kg m−3, (A3a)

μg(T) = μ∗
g[1 + 0.0026(T − T∗)− 1.9 × 10−6(T − T∗)2

+ 1.78 × 10−9(T − T∗)3 − 7.51 × 10−13(T − T∗)4] Pa s, (A3b)

λg(T) = λ∗g[1 + 0.0028(T − T∗)− 1.58 × 10−6(T − T∗)2

+ 1.28 × 10−9(T − T∗)3 − 5.91 × 10−13(T − T∗)4] W (m K)−1, (A3c)

cpg(T) = 1011.96 − 1194.72G2

× [1 − F(−3.428 + 49.824G − 120.35G2 + 98.867G3)] J(kg K)−1, (A3d)

are based on explicit formulae of VDI e.V. (2010), where

G(T) = T + 273.15
T + 2822.08

and F(T) = 2548.93
T + 2822.08

. (A4a,b)

In figure 14 all functions (A1) and (A3) are evaluated and plotted in the range T ∈
[−20, 70] ◦C.
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Figure 15. Critical Reynolds numbers Rec (blue symbols) and critical oscillation frequencies ωc (red symbols)
as functions of α′∗

μ under weightlessness conditions with Γ = 1, V = 1 and Pr = 4. Squares: data taken from
Melnikov et al. (2002); circles: results of MaranStable. The critical wavenumber is mc = 2.

Appendix B. Verification and validation of the linear stability analysis for
temperature-dependent material properties

For the verification of the LTD model, we adopt the set-up of Melnikov, Shevtsova &
Legros (2002), where the liquid’s viscosity αμ(ϑ) = α∗

μ + α′∗
μϑ is assumed to be a linear

function of the temperature. The remaining thermophysical properties ρ, λ and cp are
assumed to be constant. In figure 15 a comparison is made between the critical data Rec
and ωc obtained by MaranStable (circles) and Melnikov et al. (2002) (squares). Results
are given as functions of the non-dimensional viscosity variation α′∗

μ . A good agreement
is found for all α′∗

μ considered. The critical Reynolds numbers Rec reported by Melnikov
et al. (2002) (blue squares) are about 5 % larger than those obtained by MaranStable (blue
circles), but the slopes with respect to α′∗

μ agree very well. The maximum deviation of
2 % in ωc is even smaller than for Rec. The slightly higher critical Reynolds numbers
found by Melnikov et al. (2002) might be related to their numerical treatment of the
problem, using a three-dimensional time-dependent simulation rather than a stability
analysis. Their mesh of 24 × 16 grid points in the (r, z) plane was much coarser than
the one used in MaranStable. Furthermore, some regularisation of the thermocapillary
stresses near the hot and cold corners might have been applied, as was done by Wanschura
et al. (1995).

We are not aware of numerical investigations taking into account the full temperature
dependence of all thermophysical parameters. Therefore, we compare the results from
MaranStable for the basic flow with those from the code of Romanò et al. (2017) in which
only the full temperature dependence of the kinematic viscosity (main effect) and of the
thermal diffusivity were taken into account. Figure 16 shows the basic temperature ϑ0
(a) and the basic axial velocity component w0 (b) on the free surface. The parameters
have been selected according to Barmak, Romanò & Kuhlmann (2021), i.e. d = 5 mm,
Γ = 1, Γs = η = 3 mm, T∗ = 25 ◦C, �T = 40 K and a closed gas tube. The present
results are shown as red dots, while those of Romanò et al. (2017) are represented by
black lines. Both results agree up to the line’s thickness, even when using different grid
resolutions in the z direction. Also shown are the surface quantities obtained using the
OB approximation (blue dots). Their deviation from the FTD approach demonstrates

978 A17-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.998


Liquid bridges with temperature-dependent properties

0.4

0.2

−0.2

−0.4

0.5

0

0.4

0.2

−0.2

−0.4

0z

z

0−0.5

−0.50

−0.49

z

−0.50

−0.49

0

0−0.1 −0.05

0−0.10 −0.05

Romanò et al. (2017)
MaranStable

ϑ0

ϑ0

w0

w0

(b)(a)

Figure 16. Basic state surface temperature ϑ0 (a) and axial component of the surface velocity w0 (b) for
d = 5 mm, Γ = 1, Γs = η = 3 mm, T∗ = 25 ◦C, �T = 40 K, a closed gas tube and an indeformable upright
cylindrical interface. Sown are results of Romanò et al. (2017) (full line), present FTD results (red dots) and
present OB results (blue dots).

the importance of taking into account the temperature dependence of the material
properties.

To validate the linear stability analysis for the FTD approach, the geometry was adapted
to match the experimental set-up of Yano et al. (2016). We consider two liquid bridges
made of 2-cSt and 5-cSt silicone oil, but the same geometry with d = 2.5 mm and Γ = 1.
Both liquid bridges are surrounded by air in a tube with Γs = 4.8 and η = 5. Figure 17
shows the neutral and critical Marangoni numbers as functions of the volume ratio V for a
closed tube (figure 17a) and for a hot vertically downward gas flow through an open tube
(figure 17b,c). In the experiments of Yano et al. (2016) the air enters the tube through
a porous medium. Therefore, we prescribe in the numerics a constant gas velocity at
the inlet with the same mean velocity wg(r) ≡ w̄g = −35 mm s−1 as in the experiment,
corresponding to Reg = 43.75. To demonstrate the importance of using the FTD model
(full lines), we also include in figure 17 the results of the LTD (dashed lines) and the OB
models (dash-dotted lines).

Considering the 2-cSt liquid bridge (figure 17a,b), the numerical critical Marangoni
numbers obtained with the linearised model and with the FTD model agree very well
with the experimental data within the experimental error bar for both, closed and open
gas tubes. Merely for V = 1 some deviations exist owing to the huge slope of the critical
curve for m = 1 with respect to V . For moderate temperature differences �T , the OB
approximation is sufficient to predict the critical Marangoni number. However, for the
largest measured�T in figure 17(a), i.e.�T ≈ 27 ◦C for V = 0.95, the critical Marangoni
number predicted by the OB approximation would be too large.

For the 5-cSt liquid bridge, the critical temperature differences are larger (see
figure 17c), resulting in more significant deviations among the critical Marangoni numbers
obtained using different material laws. For V < 1, the FTD model yields results closest to
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M. Stojanović, F. Romanò and H.C. Kuhlmann

Man

�
T 

(K
)

6

(×104)

(×104)(×104)

4

2

0

Man

6

4

2

0

0

40

�
T 

(K
)

0

40

m = 1

m = 2

m = 1

m = 1 & 2

m = 2

0.8 0.9 1.0 1.1

0.8 0.9 1.0 1.1

4

2

0 0

40

80

0.8 0.9 1.0 1.1

(b)

(a)

(c)

Figure 17. Neutral Marangoni numbers (lines) and temperature difference�T as functions of the volume ratio
V for a liquid bridge of 2-cSt (a,b) and 5-cSt (c) silicone oil in air with d = ri = 2.5 mm, ds = 12 mm and
ro = 12.5 mm under normal gravity conditions. The gas tube is closed in (a) and open in (b,c) with w̄g =
−35 mm s−1. Shown are the experimental data taken from figures 6(a) and 6(b) of Yano et al. (2016) (dots) in
comparison to the FTD model (full lines), the LTD model (dashed lines) and the OB model (dash-dotted lines).
Colour indicates the neutral wavenumber: m = 1 (blue) and m = 2 (red).

the experimental data. However, for V � 0.97, the FTD model predicts a critical mode
with m = 2, whereas m = 1 is found in the experiments. This indicates that certain
influence factors are not accounted for within the FTD model. Possible candidates are
evaporative cooling effects or experimental imperfections (a slightly non-axisymmetric
gas flow could have also favoured an m = 1 mode).

In view of the very good agreement with the results of Melnikov et al. (2002)
and Romanò et al. (2017) our code can be considered verified. Despite the relatively
large error bar of the experimental data of Yano et al. (2016) our code can also be
considered validated for 2-cSt silicone oil that is used as the working liquid in the present
work.

Appendix C. Correlation between the variable-material-property effect and an
effective kinematic viscosity

Since the dynamic viscosity of the liquid phase has the largest range of variation in the
FTD calculations, it is tempting to correlate the difference between the critical Reynolds
numbers for the FTD and the OB approaches with a suitably defined effective kinematic
viscosity νeff of the liquid, similar as in Kozhoukharova et al. (1999). It is based on
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the assumption that the modified Reynolds number R̃e based on the critical temperature
difference �TFTD

c and on the effective kinematic viscosity νeff yields the same critical
Reynolds number as the OB approach. This leads to the hypothesis

R̃ec := γ ∗d
ρ∗

�TFTD
c

ν2
eff

=
(
ν∗

νeff

)2

ReFTD
c

!= ReOB
c . (C1)

From the space-dependent variable viscosity ν[T0(x)] of the liquid in the basic flow
at the critical point ReFTD

c different mean kinematic viscosities can be constructed.
Among these are the volume-averaged viscosity νV , the volume-averaged viscosity
with kinetic-energy weighting νE and the surface-averaged viscosity νS (used by
Kozhoukharova et al. 1999), defined as

νV = 1
V

∫
V
ν[T0(x)] dV, (C2a)

νE =
{∫

V
ρ[T0(x)]û2 dV

}−1 ∫
V
ν[T0(x)]ρ[T0(x)]û2 dV, (C2b)

νS = 1
S

∫
S
ν[T0(x)] dS. (C2c)

The corresponding relative mean liquid viscosities νi/ν
∗ (i ∈ [V,E, S]) are shown in

figure 18 for three parameter variations carried out in the main text. Quite generally, we
find that νV > ν∗ and νE, νS < ν∗.

Given ReFTD
c and ReOB

c , (C1) can be tested using the above effective viscosities. Since
typically ReOB

c > ReFTD
c , the effective viscosity should satisfy νeff < ν∗. Therefore, νV

does not qualify for an effective viscosity. Using νeff = νS we find the shift of ReFTD
c is

too large. The modified Reynolds number based on the kinetic-energy-weighted kinematic
viscosity R̃ec = γ ∗d�TFTD

c /(ρ∗ν2
E) is shown in figure 19 for the volume variation. The

general trend and the order of magnitude of the shift R̃ec − ReFTD
c is well captured in

some ranges of V , while the correction is too strong in other ranges of V (e.g. where
mc = 1). Obviously, other factors like the temperature dependence of other thermophysical
parameters, the dependence of the basic flow on �T or the structure of the perturbation
flow on r and ϕ are not taken into account. The qualitative agreement between R̃ec and
ReOB

c suggests, however, that an important reason for the difference between the critical
Reynolds number is the reduced dissipation the perturbation flow experiences in regions
where the perturbation flow is significant, i.e. where the kinetic-energy-weighting factor
in (C2b) is large.

We mention that the correction factor (ν∗/νeff )
2 has the right order of magnitude also

in the case of an imposed flow in the gas phase (not shown), except for the range of Reg
in which the critical m = 1 mode arises for the OB model (figure 9a). In this range the
structures of the critical curves ReFTD

c (Reg) and ReOB
c (Reg) are too different to allow for the

simple correlation according to (C1). Regarding the aspect ratio variation the correction
R̃ec − ReFTD

c (Γ ) is too large for Γ � 0.95 but fits nicely for Γ � 0.95.
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Figure 18. Different relative mean liquid viscosities according to (C2) evaluated on the stability boundary
ReFTD

c .
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Figure 19. Prediction of ReOB
c (dash-dotted lines) by Re

OB,νeff
c (black lines) based on ReFTD

c and the
kinetic-energy-weighted viscosity νeff , for all non-zero critical wavenumbers.
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