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On the short-wavelength three-dimensional
instability in the cylinder wake

Andrey I. Aleksyuk1,† and Matthias Heil1

1Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

(Received 11 April 2024; revised 8 August 2024; accepted 31 August 2024)

We examine the mechanisms responsible for the onset of the three-dimensional mode B
instability in the wake behind a circular cylinder. We show that it is possible to explicitly
account for the stabilising effect of spanwise viscous diffusion and then demonstrate that
the remaining mechanisms involved in this short-wavelength instability are preserved
in the limit of zero wavelength. Using the resulting simplified equations, we show
that perturbations in different fluid particles interact only through the in-plane viscous
diffusion which turns out to have a destabilising effect. We also show that in the presence
of viscous diffusion, the closed trajectories which had been conjectured to play a crucial
role in the onset of the mode B instability are not actually a prerequisite for the growth
of mode B type perturbations. We combine these observations to identify the three
essential ingredients for the development of the mode B instability: (i) the amplification of
perturbations in the braid regions due to the stretching mechanism; and the spreading of
perturbations through (ii) viscous diffusion, and (iii) cross-flow advection which transports
fluid between the two braid regions on either side of the cylinder. Finally, we develop
a simple criterion that allows the prediction of the regions where three-dimensional
short-wavelength perturbations are amplified by the stretching mechanism. The approach
used in our study is general and has the potential to give insights into the onset of
three-dimensionality via short-wavelength instabilities in other flows.

Key words: instability, vortex flows, wakes/jets

1. Introduction

The flow past circular cylinders is a widely studied canonical model for flows past bluff
bodies (Williamson 1996b; Zdravkovich 1997, 2003; Forouzi Feshalami et al. 2022).

† Present address: Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge
CB3 0HE, UK. Email address for correspondence: AAleksyuk@slb.com

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 999 A13-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:AAleksyuk@slb.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.894&domain=pdf
https://doi.org/10.1017/jfm.2024.894


A.I. Aleksyuk and M. Heil

One aspect of particular interest is the increasing complexity of the flow as the Reynolds
number Re (formed with the free stream velocity, U∞, the cylinder diameter, d, and the
kinematic viscosity, ν) increases, ultimately leading to the laminar–turbulent transition
of the flow in the wake. In the current paper, we focus on one particular stage of the
transition through the different flow regimes and examine the mechanisms responsible for
the development of three-dimensional vortical structures in the flow. The two-dimensional
time-periodic flow behind a circular cylinder (the von Kármán vortex street) is linearly
unstable to two modes of three-dimensional perturbations – modes A and B – arising at
critical Reynolds numbers ReA ≈ 190 and ReB ≈ 260, and critical wavelengths λA ≈ 4
and λB ≈ 0.8 diameters of the cylinder, respectively (Barkley & Henderson 1996). Since
ReA < ReB, three-dimensional perturbations of mode A appear earlier than mode B as the
Reynolds number is increased. Nevertheless, after an interval of mode A domination for
Re � 230, a transition between the two modes is observed in the range 230 � Re � 260
(Williamson 1988, 1996a). This transition has an intermittent nature with continuous
energy transfer from mode A to mode B as Re increases. We refer, e.g., to Williamson
(1996b), Henderson (1997), Barkley, Tuckerman & Golubitsky (2000) and Jiang et al.
(2016) for an analysis of these mode interactions. A further increase in Re then results
in the dominance of short-wavelength structures of mode B type, and it is this type of
instability that we focus on in this paper.

The study of ‘pure’ mode B instabilities is also relevant because the order in which
the different types of instabilities arise with an increase in Reynolds number depends on
the shape of the bluff body and on the boundary conditions applied on its surface. For
example, studies of the flow around a square cylinder (Sheard, Fitzgerald & Ryan 2009), a
rotating cylinder (Rao et al. 2015), a transversely oscillating cylinder (Leontini, Thompson
& Hourigan 2007) and an elliptic cylinder (Leontini, Lo Jacono & Thompson 2015; Rao
et al. 2017) show that the onset of three-dimensionality can occur through different modes.
Specifically, in the last two examples, the inception of three-dimensionality can occur
through modes B and B̂, respectively. (Here, mode B̂ perturbations have a wavelength
approximately three times larger than that of mode B, but otherwise have a similar
spatio-temporal structure.)

In numerical simulations of flows past circular cylinders, ‘pure’ mode B instabilities
can be computed by limiting the spanwise size of the computational domain and enforcing
periodic or symmetry boundary conditions in the spanwise direction. This allows a
detailed analysis of the nonlinear stages by excluding the (here undesired) unstable
large-wavelength perturbations of mode A. Such studies revealed that mode B instabilities
arise via a supercritical bifurcation (Henderson 1997) and showed that, unlike the
perturbations arising through the mode A instability, the mode B perturbations maintain
their characteristic spatio-temporal structure even in the nonlinear finite-amplitude regime
(Henderson 1997; Jiang et al. 2016; Aleksyuk & Shkadov 2018).

Barkley (2005) performed a confined Floquet stability analysis, which showed that the
source of the mode B instability is located in the vortex formation region just downstream
of the cylinder. This was later confirmed by a structural sensitivity analysis (Giannetti,
Camarri & Luchini 2010) and agrees with an earlier experimental study by Williamson
(1996a), which suggested that the mode B instability is related to an instability of the
braid shear layers. The region in which the mode B instability develops is, therefore,
reasonably well known, but the unsteady nature of the vortex formation process and the
presence of complex interactions between perturbations during their development make it
difficult to clearly identify the mechanism(s) responsible for the onset of the instability.
Possible mechanisms include the hyperbolic instability (Leweke & Williamson 1998), the
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Short-wavelength 3-D instability in the cylinder wake

centrifugal instability (Ryan, Thompson & Hourigan 2005; Aleksyuk & Shkadov 2019)
and the development of a local instability on closed trajectories in the vortex formation
region (Giannetti et al. 2010; Giannetti 2015; Jethani et al. 2018). All of these hypotheses
are based on strongly simplifying assumptions and typically ignore certain features of the
complex underlying flow. In particular, the ‘feedback’ mechanism, i.e. the process that
causes perturbations to amplify after each cycle of vortex shedding, is often disregarded.
In fact, only the studies by Giannetti et al. (2010), Giannetti (2015) and Jethani et al. (2018),
which analyse the growth of perturbations on certain closed trajectories in the base flow
and regard them as signatures of the mode B instability, explicitly incorporate this effect.

Giannetti et al. (2010) discovered three closed trajectories (referred to as orbits 1–3)
of fluid particles in the vortex formation region and showed that throughout their
motion, these particles remain near areas where the Floquet exponents for modes A
and B exhibit high sensitivity to structural perturbations. This led to the hypothesis that
mode A and B arise through ‘local’ instabilities on fluid particles moving along these
orbits. Giannetti et al. (2010) and Giannetti (2015) investigated this hypothesis by means of
a WKBJ analysis (Lifschitz & Hameiri 1991) which considered the evolution of localised
zero-wavelength inviscid perturbations (governed by the linearised Euler equations) to a
time-periodic two-dimensional viscous base flow to show that at Re = 190 and 260, only
orbit 3 exhibits a synchronous instability, i.e. an instability in which perturbations have
the same period as the base flow. This led to the conjecture that orbit 3 is ‘responsible for
the generation of synchronous instabilities, like modes A and B’. In more recent work on
the subject, Jethani et al. (2018) found three additional closed trajectories (orbits 4–6) and
also showed that the growth rate on orbits 1 and 2 (which are identical up to a reflection
about the x-axis; see figure 1(c) for plots of these orbits) switches from being complex
(implying an asynchronous instability) to real (corresponding to a synchronous instability)
at Re ≈ 250, which is surprisingly close to ReB. This fact led to the conjecture that the
instability on orbits 1 and 2 is ‘a local signature of the emergence of mode B secondary
instability’, in contrast to the findings of Giannetti (2015).

The studies discussed above involve various plausible, but nevertheless ad hoc
assumptions, such as the assumption that the problem can be studied in the limit of a
zero wavelength and by considering only inviscid perturbations. This makes it difficult
to resolve the conflicting conclusions arising from those studies. The goal of our current
study is to elucidate the key mechanisms (including the ‘feedback’ process) that govern
the development of the mode B instability in a rational manner, starting from direct
numerical simulations in which no physical effects are neglected a priori. We then employ
scaling arguments to derive simplified equations that characterise the various physical
mechanisms in the limit of short spanwise wavelength. Comparisons against the full
numerical solutions allow us to confirm that the simplified equations correctly capture
the behaviour of the flow.

The paper is organised as follows. In § 2, we present the problem formulation and the
methodology used to obtain numerical results. In § 3, we review the general mechanisms
affecting the growth/decay of perturbations and show that the short-wavelength limit
contains all the key physical ingredients required to explain the mechanisms involved
in the mode B instability. In § 4, we analyse these mechanisms in the limit of short
wavelength; we evaluate the role of viscous diffusion and explore how it affects the
instability mechanism associated with the presence of closed trajectories in the base
flow. In § 5, we introduce a simple criterion for predicting the local amplification of
perturbations due to the stretching mechanism, one of the essential components discussed
earlier. Finally, in § 6, we summarise our findings and discuss their wider applicability.
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2. Simulation of mode B perturbations

2.1. Problem formulation
We perform a linear stability analysis of the two-dimensional flow of an incompressible
viscous fluid around a circular cylinder. In the Cartesian coordinate system x = (x, y, z),
the base-flow velocity vector U(r, t) = (U, V, 0) and pressure P(r, t) satisfy the
Navier–Stokes equations: ⎧⎨

⎩
∇ · U = 0, (2.1a)
DU
Dt

= −∇P + 1
Re

∇2U, (2.1b)

subject to the no-slip boundary condition U(r, t) = (0, 0, 0) on the surface of the cylinder
|r| = 1/2 and U(r, t) → (1, 0, 0) as r → ∞, where we have used the notation r for the
in-plane coordinates, so r = (x, y). Here, t is time and D/Dt = ∂/∂t + (U · ∇) is the
base-flow-based substantial derivative.

We are interested in the T-periodic near-wake flow at Re ∼ ReB, for which
U(r, t + T) = U(r, t) and P(r, t + T) = P(r, t). Hence, according to Floquet theory, we
seek small three-dimensional perturbations of the velocity u′(x, t) = (u′, v′, w′) and the
pressure p′(x, t) in the form

u′(x, t) = τ(t)
[
up(r, t) cos(γ z) + wp(r, t) sin(γ z)

]
,

p′(x, t) = τ(t)pp(r, t) cos(γ z). (2.2)

To ensure the validity of a linear analysis, we assume that τ(t) = τ0 exp(σ t) � 1,
τ0 = const.; and up(r, t) = (up, vp, 0), wp(r, t) = (0, 0, wp) and pp(r, t) are T-periodic
functions, which satisfy the linearised Navier–Stokes equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · up + γ wp = 0, (2.3a)

Dup

Dt
= −E · up − 1

2
Ω × up − ∇pp + 1

Re
∇2up −

(
σ + γ 2

Re

)
up, (2.3b)

Dwp

Dt
= γ pp + 1

Re
∇2wp −

(
σ + γ 2

Re

)
wp. (2.3c)

Here, σ = σr + iσi; E(r, t) and Ω(r, t) = Ω(r, t)ez are the base-flow strain rate tensor and
vorticity vector, respectively; we also used the relation (up · ∇)U = E · up + (Ω/2) × up.
Note that the operator ∇2 here is effectively two-dimensional because all the functions
involved are independent of z, and the spanwise diffusion of momentum (Re−1∂2u′/∂z2)
is represented by the terms −γ 2Re−1up and −γ 2Re−1wp. Perturbations are assumed to
satisfy homogeneous boundary conditions.

To explore the behaviour of the perturbations in the short-wavelength limit, we expand
the solution of (2.3) in inverse powers of γ at γ 	 1, using the fact that the solution must
be invariant to changes in the sign of γ :

up(r, t) = u0(r, t) + γ −2u2(r, t) + O(γ −4), (2.4a)

wp(r, t) = γ −1w1(r, t) + γ −3w3(r, t) + O(γ −5), (2.4b)

pp(r, t) = p0(r, t) + γ −2p2(r, t) + O(γ −4), (2.4c)

σ ′ = σ + γ 2

Re
= σ0 + γ −2σ2 + O(γ −4). (2.4d)
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Short-wavelength 3-D instability in the cylinder wake

(This expansion is motivated by the relative behaviour of different components of the
perturbation velocity at large γ and discussed in § 2.2.) The spanwise momentum equation
(2.3c) implies that p0(r, t) = 0. Thus, for γ 	 1, the leading-order terms satisfy the
system ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · u0 + w1 = 0, (2.5a)

Du0

Dt
= −E · u0 − 1

2
Ω × u0 + 1

Re
∇2u0 − σ0u0, (2.5b)

Dw1

Dt
= p2 + 1

Re
∇2w1 − σ0w1. (2.5c)

Note that (2.5b) for the in-plane velocity u0 and the growth rate σ0 are uncoupled from the
other equations in (2.5). Furthermore, the spanwise flow, w1, can be seen to be generated
by u0 through the continuity equation (2.5a); the pressure distribution p2 is then explicitly
given as a function of w1 in (2.5c). We note that this is a key difference to the case of the
mode A instability at γ � 1, where the equation for the spanwise velocity is uncoupled
and is mainly driven by the base-flow pressure fluctuations (Aleksyuk & Heil 2023).

2.2. Dominant Floquet modes
We computed the base flow (U, P) and the small perturbations (u′, p′) using a
second-order stabilised finite-element method on a triangulated domain [−30, 50] ×
[−30, 30]. The dominant Floquet modes û(r, t) = τ(t)up(r, t), ŵ(r, t) = τ(t)wp(r, t) and
p̂(r, t) = τ(t)pp(r, t), and the growth rate σ were sought as a solution of the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · û + γ ŵ = 0, (2.6a)

Dû
Dt

= −E · û − 1
2
Ω̂ × û − ∇p̂ + 1

Re
∇2û − γ 2

Re
û, (2.6b)

Dŵ
Dt

= γ p̂ + 1
Re

∇2ŵ − γ 2

Re
ŵ, (2.6c)

with homogeneous boundary conditions, using Arnoldi iterations (Barkley & Henderson
1996). Details of the algorithms, computational parameters and validation are given by
Aleksyuk & Heil (2023). To prevent numerical issues that may arise at high values of γ

due to the γ 2 factor in the last terms of (2.6b) and (2.6c), we exploit that the solution of
(2.6) has the same periodic parts up, wp and pp (up to a constant factor) as the solution of
the equations ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · û + γ ŵ = 0, (2.7a)

Dû
Dt

= −E · û − 1
2
Ω̂ × û − ∇p̂ + 1

Re
∇2û, (2.7b)

Dŵ
Dt

= γ p̂ + 1
Re

∇2ŵ, (2.7c)

in which this term has been omitted. Physically, the change from (2.6) to (2.7) removes the
stabilising effect of the spanwise viscous diffusion (represented by the term −γ 2Re−1û)
and results in a change of the actual growth rate σ to σ ′ = σ + γ 2/Re. (Since the functions

999 A13-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.894


A.I. Aleksyuk and M. Heil

0

t = 0.0T 0.1T 0.2T

 0.3T 0.4T 0.5T
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0.6

0.2 0.4 0.6
λ = 2π/γ

σ′

0.8 1.0

0

0.5

1.0

1.5

Present work: Barkley & Henderson (1996):

Carmo et al. (2008):

Re = 240

Re = 260
Re = 280
Re = 300

Re = 259
Re = 280

Re = 300

2.0

0.2 0.4 0.6

μ

0.8 1.0

(a)

(b)

(c)

Orbit 1 Orbit 3

Orbit 2
Orbit 6

Figure 1. Examples of dominant Floquet modes: (a) the Floquet multiplier μ for 240 � Re � 300 and
comparison with the data by Barkley & Henderson (1996) and Carmo et al. (2008); (b) the modified growth rate
σ ′ = σ + γ 2/Re in the absence of spanwise viscous diffusion; (c) evolution of in-plane perturbation velocity
up (arrows) and its magnitude |up| (greyscale colour contours: the darker the colour, the greater the value) at
Re = 260 and γ = 7.5. In panel (c), cyan lines show closed trajectories in the base flow; solid black lines are
isolines κ = 1 (the boundaries of the elliptic regions). The time t = 0 corresponds to the maximum of the lift
coefficient.

involved in these equations are independent of z, the operator ∇2 does not produce terms
with z-derivatives.)

As an example, figure 1(a) shows the dependence of the dominant Floquet
multiplier μ = exp(σT) (which is real for mode B) on the wavelength λ = 2π/γ

at Re = 240, 260, 280 and 300. Since our focus is on mode B instability, we omit
Floquet multipliers associated with other modes, including large-wavelength mode A and
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Short-wavelength 3-D instability in the cylinder wake

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

χ χ
[ fit]  = 1.764λ +

 0.003

λ = 2π/γ

Figure 2. The ratio χ = ∥∥wp
∥∥/

∥∥up
∥∥ at Re = 260: the circles represent the values obtained from the

numerical simulations; the solid line is the linear fit to the first three non-zero points, χ [ fit] = 1.764λ+ 0.003.

quasi-periodic modes; see, e.g., Barkley & Henderson (1996). Figure 1(a) also compares
μ with the data by Barkley & Henderson (1996) and Carmo et al. (2008). If, for a given
Re, there is at least one λ with |μ| > 1, the flow is unstable. Over the range of wavelengths
considered here, the flow can be seen to be stable at Re = 240, (approximately) neutrally
stable at Re ≈ 260 and unstable at Re = 280 and 300.

The corresponding plot of the modified growth rate σ ′ in figure 1(b) shows that the flow
stabilisation at small wavelengths is solely due to the action of spanwise viscous diffusion
– without this effect, the flow would remain unstable as λ→ 0.

The behaviour of the eigenfunction over half of the period is illustrated in figure 1(c)
for Re = 260 and γ = 7.5. The boundary between stretching- and rotation-dominated
regions (also called hyperbolic and elliptic regions) is shown by the solid black line, which
corresponds to the isoline κ = 1, where κ = 2S/|Ω|, S being the positive eigenvalue
of the base flow strain rate tensor E . The magnitude |up| shows that the perturbations
mainly concentrate in stretching-dominated regions. After each cycle of the base-flow
oscillation, the pattern of the perturbations is repeated, while their magnitude is changed
by a constant factor, the Floquet multiplier μ; see (2.2). In figure 1(c), we also show
the closed trajectories 1, 2, 3 and 6 in the base flow using the enumeration adopted by
Giannetti et al. (2010), Giannetti (2015) and Jethani et al. (2018). (We omitted orbits 4
and 5 (located closer to the body) to ensure a clearer visualisation.) The figure shows that
particles that move along trajectories 2 and 3 are passing through the braid regions where
perturbations are known to undergo significant amplification (Williamson 1996a; Leweke
& Williamson 1998; Thompson, Leweke & Williamson 2001; Aleksyuk & Shkadov 2018).
In figure 1(c), this amplification is evidenced by the intensive darkening of the greyscale
contours, representing the magnitude of the in-plane perturbation velocity |up| over the
interval 0.1 � t � 0.4.

Our numerical results allow us to check the consistency of the expansion (2.4). For
this purpose, we show in figure 2 that the ratio χ = ∥∥wp

∥∥/
∥∥up

∥∥ does behave as a
linear function of λ as λ→ 0, as implied by (2.4a) and (2.4b) (‖·‖ is the L2-norm
calculated in the rectangle [0.5, 2] × [−1.5, 1.5], the region where the perturbations grow
most rapidly). This is of particular interest since in the inviscid centrifugal instability
mechanism, which is one of the existing hypotheses for the onset of the mode B
instability, the perturbations are predicted to have a different asymptotic behaviour, namely∥∥w′∥∥ /

∥∥u′∥∥ = O(γ −1/2) and σ ′ = σ0 + σ1γ
−1 + . . . as γ → ∞; see Bayly (1988) and

Sipp, Lauga & Jacquin (1999).
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3. Key mechanisms governing the development of mode B perturbations

3.1. Overview of basic mechanisms
We discuss the physical mechanisms that govern the development of small
three-dimensional perturbations in terms of the in-plane perturbation vorticity ζ . For this
purpose, we represent the three-dimensional perturbation velocity, u′, and its vorticity
(ω′ = ∇ × u′) as

u′ (x, t) = τ0

[
v cos(γ z) + γ −1vz sin(γ z)

]
exp

(
−γ 2

Re
t
)

, (3.1)

ω′ (x, t) = τ0
[
γ ζ sin(γ z) + (∇ × v) cos(γ z)

]
exp

(
−γ 2

Re
t
)

, (3.2)

where v(r, t) = (vx, vy, 0), vz(r, t) = (0, 0, vz) and ζ (r, t) = (ζx, ζy, 0). The γ -factors are
introduced to reflect the expected order of the terms for γ 	 1, so that the vectors v, vz
and ζ are of order O(1) (see § 2.1). According to the relations in (2.2), these vectors can
also be expressed as a product of time-periodic functions and the exponential function
exp (σ ′t). Note that we use the modified growth rate σ ′ since the factor exp(−γ 2t/Re) in
(3.1) and (3.2) already accounts for the effect of spanwise viscous diffusion, effectively
eliminating the corresponding terms from the equations below (similar to the change from
(2.6) to (2.7) above).

The perturbations to the in-plane vorticity, ζ , and velocity, v, satisfy the vorticity
transport equation

Dζ

Dt
= E · ζ︸︷︷︸

stretching

+1
2
Ω × ζ︸ ︷︷ ︸

rigid rotation

+ 1
Re

∇2ζ︸ ︷︷ ︸
viscous diffusion

−Ωv︸ ︷︷ ︸
tilting

(3.3)

and the relation
ζ = (vy, −vx, 0) + γ −2∇ × vz, (3.4)

which follows from the definition of the vorticity. Each term on the right-hand side of (3.3)
has a clear physical interpretation: vortex stretching by the base flow strain field E; a rigid
body rotation of a fluid particle by (half of) the base flow vorticity Ω; in-plane viscous
diffusion of the perturbation vorticity; and base flow vortex tilting due to spanwise shear.

One can interpret the linearised equation using a Lagrangian point of view: specifically,
(3.3) describes the physical mechanisms which contribute to perturbations of the vorticity
of a fluid particle. The action of the first two mechanisms (stretching and rigid rotation)
are purely local. Spatial interactions between perturbations only arise through the viscous
diffusion and tilting mechanisms. The former depends on the local distribution of
perturbations, while the latter describes non-local interactions since v is affected by ζ
everywhere in the flow (in a manner similar to Biot–Savart induction; see Aleksyuk &
Heil (2023) and § 3.2 below).

Among the mechanisms governing the evolution of perturbations, only the spanwise
viscous diffusion and the tilting mechanism explicitly depend on γ . The stabilising
effect of the spanwise viscous diffusion is taken into account by the relations (3.1) and
(3.2). Consequently, the dependence of σ ′ on the wavelength λ = 2π/γ in figure 1(b)
is determined exclusively by the tilting mechanism. As already discussed, without the
spanwise viscous diffusion, the flow would be unstable (σ ′ > 0) for the whole range of λ
and Re considered, and would, in fact, tend to be more unstable at shorter wavelengths;
see figure 1(b). Hence, the suppression of short-wavelength perturbations can be attributed
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Short-wavelength 3-D instability in the cylinder wake

λ = 0 0.18 0.39

0.840.63 0.97

Figure 3. The spatial distribution of mode B perturbations at Re = 260 and 0 � λ < 1: in-plane (z = 0)
perturbation velocity v (arrows) and its magnitude v (greyscale colour contours: the darker the colour, the
greater the value). Solid lines are isolines κ = 1 (the boundaries of the elliptic regions). The perturbation
velocity is normalised so that the maximum of v equals one. All plots are snapshots at t = 0.1T .

solely to the stabilising contribution of the spanwise diffusion, which tends to infinity as
λ→ 0. Conversely, for larger wavelengths (λ > λB), the tilting mechanism contributes to
the stabilisation of the flow: σ ′ decreases with an increase in λ; see figure 1(b).

3.2. Short-wavelength limit
Figure 3 shows snapshots of the distribution of the in-plane perturbation velocity at
Re = 260 for various λ. We note that, despite the profound variation of the Floquet
multiplier μ with λ, the spatial pattern of perturbations remains similar over the whole
range of λ where mode B dominates, including the limiting case λ = 0. This is partially
explained by the fact that, as discussed above, the spanwise viscous diffusion, which we
have just shown to be a key factor influencing μ in the limit as λ→ 0, does not affect the
spatial distribution of the perturbations. The change in wavelength only has a modest effect
on the distribution of the perturbations immediately downstream of the cylinder; the main
effect of a reduction in λ is to make the perturbations slightly more localised. However, the
overall pattern remains remarkably insensitive to changes in λ, particularly in the region
highlighted with the yellow box within which the perturbations are intensively amplified.

The fact that the spatial distribution of the perturbations changes very little as λ→ 0
suggests that the limiting solution v0 can be used to explain the key mechanisms
driving the instability. According to (2.5b) (and the connection u0 = v0 exp (−σ0t)), v0
is governed by the equation

Dv0

Dt
= −E · v0 − 1

2
Ω × v0 + 1

Re
∇2v0. (3.5)

Using the fact that ζ 0 = (v0y, −v0x, 0) (see (3.4)), we can rewrite this in terms of the
in-plane vorticity ζ 0 as

Dζ 0

Dt
= E · ζ 0 − 1

2
Ω × ζ 0 + 1

Re
∇2ζ 0. (3.6)
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A.I. Aleksyuk and M. Heil

Comparing this equation with (3.3) for finite values of γ shows that in the limit
γ → ∞, there are no non-local interactions due to tilting: the tilting mechanism becomes
completely localised and results in a switch in the direction of the rigid rotation, i.e. the
sign of Ω in the second term on the right-hand side changes.

We can visualise the disappearance of the tilting-related non-local interactions with
increasing γ by considering the equation describing the variation of ζ 2 = ζ · ζ ,

1
2
Dζ 2

Dt
= ζ · E · ζ︸ ︷︷ ︸

stretching

+ 1
Re

(
ζ · ∇2ζ

)
︸ ︷︷ ︸

viscous diffusion

+
∫

D
T (r, r′, t) dr′

︸ ︷︷ ︸
tilting

, (3.7)

which follows from (3.3). Here, we expressed the action of the tilting mechanism
(−Ωζ · v) using the function T (r, r′, t),

T (r, r′, t) = −Gγ (r, r′)Ω(r, t)ζ (r, t) ·
[
γ 2ζ⊥

(
r′, t

) + ζΔ

(
r′, t

)]
, (3.8)

which depends on Green’s function Gγ (r, r′) of the screened Poisson equation

∇2v − γ 2v = γ 2ζ⊥ + ζΔ, (3.9)

where

ζ (r, t) = (ζx, ζy, 0), ζ⊥(r, t) = (
ζy, −ζx, 0

)
, ζΔ(r, t) =

(
−∇ · ∂ζ

∂y
, ∇ · ∂ζ

∂x
, 0

)
;

(3.10a–c)

see Aleksyuk & Heil (2023) for details. Equation (3.7) shows that at fixed t, the function
T (r, r′, t) describes the contribution that perturbations at point r′ make to the growth or
decay of the magnitude of the perturbations ζ at point r.

We can, therefore, use (3.8) to elucidate how the non-local tilting mechanism affects the
magnitude of ζ at fluid particles that move along the closed trajectories Γ i(t) (i = 1, 2, . . .)
in the base flow. (Recall that in the inviscid analysis of Giannetti et al. (2010), Giannetti
(2015) and Jethani et al. (2018), some of these orbits are interpreted as a signature of the
instability.) We do this in figure 4 for the particle (shown by the cyan symbol) that moves
along the trajectory Γ 3(t), for a Reynolds number of Re = 300. The black lines in figure 4
show the isoline of the periodic part of the perturbations to the vorticity, ζ/ exp (σ ′t),
for γ = 7.5. The five snapshots (covering half a period of the time-periodic base flow) in
figure 4(a) show the spatial distribution of T (Γ 3(t), r′, t) as a function of r′, using red/blue
contours for positive/negative values of T . The plot shows that the regions from which the
tilting mechanism significantly affects the growth of ζ 2/2 at point Γ 3(t) are close to that
point; regions of positive and negative influence alternate, and both regions are elongated
and aligned with the narrow region in which the perturbations are largest.

The fact that only perturbations in the neighbourhood of Γ 3(t) significantly affect the
growth of perturbations at that point can be attributed to the rapid decay of Green’s
function Gγ (r, r′) with the distance |r − r′| in (3.8). This is illustrated by the red
lines in figure 4, which represent isolines Gγ (Γ 3(t), r′) = c for c = −2 × 10−3 (inner
line) and c = −2 × 10−5 (outer line), respectively. The isolines are nearly circular and
approximately centred at Γ 3(t); their spacing shows that, for the parameter values chosen
here, a doubling of the distance from Γ 3(t) reduces the strength of the tilting effect by two
orders of magnitude.
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Short-wavelength 3-D instability in the cylinder wake

t = 0.0T 0.1T 0.2T 0.3T 0.4T

γ = 7.5 10 30 50

(a)

(b)

Figure 4. The contribution of perturbation to their growth or decay at a given fluid particle (point r marked by
a white circle) through the non-local tilting mechanism at Re = 300: (a) time evolution at γ = 7.5; (b) effect
of γ at t = 0.1T . Black lines are isolines of the periodic part of perturbations to the vorticity, i.e. ζ/ exp (σ ′t);
blue and red colour contours show the periodic part of the contribution due to tilting, i.e. T (r, r′, t)/ exp (2σ ′t)
(red/blue colour indicates positive/negative contribution). Red lines highlight the isolines of Green’s function
Gγ (r, r′) = −2 × 10−3 and −2 × 10−5; the cyan line shows orbit 3.

To assess the effect of variations in γ , the plots in figure 4(b) show the same information
as in figure 4(a); however, we now show the snapshots at the same fixed time (t = 0.1T),
but for different values of γ . As γ increases, the magnitude of T decreases, and the isolines
can be seen to contract. This indicates a stronger localisation of the tilting effect, which
ultimately leads to the disappearance of the non-local interactions, consistent with our
predictions from the limiting case for γ → ∞, where tilting acts as a rigid rotation and
does not contribute to the change in the magnitude of the perturbations.

4. The role of in-plane viscous diffusion

We have now established that the pattern of the perturbations can be understood using the
limiting solution v0 as γ → ∞. In this limit, the non-local spatial interactions are absent,
and only stretching and in-plane viscous diffusion can cause the growth of perturbations
in the flow. While it is well known (Williamson 1996a; Leweke & Williamson 1998;
Thompson et al. 2001; Aleksyuk & Shkadov 2018) that stretching plays a vital role
in amplifying mode B perturbations in braid shear layers, the role of in-plane viscous
diffusion remains unclear.

Equation (3.5) shows that, in the limit γ → ∞, viscous diffusion is solely responsible
for the interaction of perturbations in different fluid particles. This is because in the
absence of viscous diffusion, i.e. when the in-plane perturbations to the velocity satisfy
the equation

Dv0

Dt
= −E · v0 − 1

2
Ω × v0, (4.1)

the perturbations in each individual particle develop independently. Given the convective
nature of the flow, all initial perturbations are then swept downstream, except those
developing on fluid particles that are advected along closed trajectories in the base flow,
where they can continue to grow – this is the essence of the analyses by Giannetti (2015)
and Jethani et al. (2018).
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While the presence of closed trajectories in the base flow thus allows the development
of short-wavelength instabilities in the absence of viscous diffusion, it is not clear if the
reverse is true too. To assess this possibility, we analyse the growth of perturbations
employing a variant of Barkley’s (2005) confined Floquet stability analysis in which
we solve (2.7) in a finite domain containing the region of interest – here, the region
immediately downstream of the cylinder. For this purpose, we perform the Floquet
analysis of (2.7) using the pre-computed numerical solution for the base flow, but
only analyse the development of perturbations in the subdomain shown by the blue
boundaries in figure 5(b) along which we impose homogeneous boundary conditions
for the perturbations, thus isolating this region from perturbations generated elsewhere
in the domain. To assess the importance of the closed trajectories in the development
of perturbations, we introduce two artificial splitter plates (of non-dimensional thickness
0.05, located on the symmetry line y = 0) that only act on the perturbations by imposing
v0 = 0 on their surface, thus suppressing the advection and diffusion of perturbations
across them. We position the splitter plates such that they leave a gap between the upper
and lower halves of the fluid domain, but place them so that they intersect the orbits.
The equation for the rate at which the magnitude of the perturbation velocity, v0 = |v0|,
changes follows from (3.5) and is given by

D ln v0

Dt︸ ︷︷ ︸
advection

= −v0 · E · v0

v2
0︸ ︷︷ ︸

stretching

+ 1
Re

v0 · ∇2v0

v2
0︸ ︷︷ ︸

viscous diffusion

. (4.2)

It shows that in the limit as γ → ∞, only viscous diffusion remains as the mechanism
by which growing perturbations can remain localised near the cylinder, rather than being
advected downstream.

The two columns in figure 5 illustrate the evolution of the perturbations (in terms of
the periodic part of perturbations u0 = v0 exp(−σ0t)) in the full domain (left) and in
the confined domain with the perturbation splitter plates (right) at a Reynolds number
of Re = 260. The pale blue and red regions in figure 5(a) identify the elliptic regions
(κ > 1) to illustrate the position of the shed vortices in the base flow. The hatched green
regions in figure 5(a) show where −v0 · E · v0/v

2
0 � 1.6, and thus identify the regions

where stretching contributes strongly to an increase in the magnitude of the perturbations.
The regions can be seen to be located primarily in the braid shear layers which form
during the vortex separation process in the base flow (when 0.1T � t � 0.4T during the
half-period shown in figure 5). This is consistent with the results by Williamson (1996a),
Leweke & Williamson (1998), Thompson et al. (2001) and Aleksyuk & Shkadov (2018)
referred to above.

The greyscale contours in figure 5(a) illustrate how the combination of advection,
diffusion and amplification (by stretching) distributes the perturbations throughout the
domain. The orange line (duplicated in the right column to facilitate a comparison) is an
isoline of the magnitude of the periodic part of the perturbation velocity, |u0| = const.

The right column in figure 5(b) shows the results of the confined Floquet analysis of (2.7)
in the domain with the perturbation splitter plates. The base flow velocity vectors shown
as insets illustrate the direction in which perturbations are advected by the base flow. The
regions where the perturbations grow most rapidly due to stretching are again identified by
hatched green areas. They remain similar to those observed without the splitter plates,
whose main effect is the suppression of advection and diffusion of the perturbations
between the upper and lower halves of the domain. While this disrupts the pattern of the
perturbations downstream of the gap between the splitter plates (compare the greyscale
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Short-wavelength 3-D instability in the cylinder wake

Orbit 1 Orbit 3

Orbit 2

Orbit 6

Amplification

due to stretching

t = 0.0T 0.0T

0.1T

0.2T 0.2T

0.3T 0.3T

0.4T

0.5T 0.5T

0.4T

0.1T

(a) (b)

Figure 5. Floquet stability analysis in the (a) entire and (b) confined domains at Re = 260 and γ →
∞: greyscale colour contours show the magnitude of the periodic part of the perturbation velocity
|u0| = |v0| exp(−σ0t) (the darker the colour, the greater the value); orange lines show an isoline |u0| = const
obtained with the Floquet analysis in the entire domain. The actual boundaries of the computational domains
are shown by blue lines — in panel (b), the Floquet analysis is carried out in the region [0.5, 5] × [−1.5, 1.5]
with two perturbation splitter plates [0.5, 1.0] × [−0.025, 0.025] and [1.45, 5] × [−0.025, 0.025]. Hatched
green regions indicate intensive growth of perturbations due to stretching: −v0 · E · v0/v

2
0 � 1.6. Elliptic

regions, κ > 1, are shown in pale blue and red colour, corresponding to negative and positive Ω , respectively.
Thin solid lines are orbits 1, 2, 3 and 6. The insets in panel (b) show the base-flow velocity field near the gap
between the perturbation splitter plates.
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Figure 6. Conceptual scheme highlighting the periodic amplification of perturbations linked by advective
and diffusive transfer (feedback).

contours representing the magnitude of the perturbations with the orange isoline, which
is copied from the results of the full Floquet analysis in the left column), this has little
overall effect on the instability – in this part of the domain, the perturbations are simply
advected downstream by the base flow without providing any feedback to the region further
upstream. The key observation is that, even though the splitter plates disrupt the advection
of the perturbations along the orbits in the base flow, viscous diffusion leads to sufficient
spreading of the perturbations so that there are volumes of fluid that are advected between
the upper and lower halves of the domain in a way that exposes them to stretching-induced
growth during both halves of the vortex-shedding period. The presence of the perturbation
splitter plates reduces the modified growth rate from σ ′ = 0.37 without the splitter plates
to σ ′ = 0.05 > 0, implying that, in the presence of viscous diffusion, the advection of the
growing perturbation along orbits is not necessary to reproduce both the mode B pattern
after each cycle of the base flow oscillations and its instability.

Hence, the conceptual explanation of the mechanisms underlying the mode B instability
can be reduced to three components: (i) the amplification of perturbations on both sides of
the wake (in the braid regions where the rotation-dominated region, κ < 1, breaks into two
parts); and the feedback composed of (ii) transverse advection and (iii) viscous diffusion,
which jointly interlink the amplification events. This is schematically depicted in figure 6.

To assess the significance of the transverse advection of the perturbations, figure 7 shows
the growth rates from further numerical experiments in which we use a single perturbation
splitter plate occupying the region xs � x � xe. In figure 7(a), we keep xs = 0.5, thus
keeping the left end of the splitter plate attached to the cylinder while increasing its
length; conversely, in figure 7(b), we keep the right end at xe = 1.8 (the downstream
end of the region within which we perform our confined Floquet analysis) and move
the plate’s left end towards the cylinder. The yellow-shaded regions show the streamwise
extent of the various orbits in the base flow. We find that the modified growth rate of
the instability decreases significantly when the transverse advection is suppressed in the
region 1 � x � 1.6, identifying this as the key region for the periodic advective transport
of the growing perturbations between the regions of strong stretching.

We note that the trajectories of the particles moving along orbits 1, 2 and 3 (identified
as the signatures of the mode B instability in the analyses by Giannetti (2015) and Jethani
et al. (2018)) capture two key components of mode B instability: (i) amplification and
(ii) transverse advection. Indeed, the cross-stream advection by the base flow transfers
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Short-wavelength 3-D instability in the cylinder wake

0.5 1.0

Orbit 6 Orbits 1, 2 Orbit 3 Orbits 1, 2 Orbit 3Orbit 6

xe

xexs xexs

1.5

0

0.2

0.4

0.5 1.0
xs

1.5

0

0.2

0.4

σ′

Entire domain

Two splitter plates

[0.5, 1.0] & [1.45, 5]

(a) (b)

Figure 7. Confined Floquet stability analysis in the region [0.5, 5] × [−1.5, 1.5] with a single perturbation
splitter plate [xs, xe] × [−0.025, 0.025] at Re = 260 and γ → ∞. Panels (a,b) show the dependence of the
growth rate on the location of the right (xe) and left (xs) edges, while fixing xs = 0.5 and xe = 1.8, respectively.
Blue and red thick lines show the values of σ ′ for the Floquet analysis in the entire domain and in the confined
domain with two splitter plates (see figure 5), respectively. Yellow shading indicates x-ranges of orbits 1, 2, 3
and 6.

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

σ′

λ = 2π/γ

(Re, Re′) = (300, 300)

(Re, Re′) = (300, 240)

(Re, Re′) =  (240, 240)

(Re, Re′) = (240, 300)

Figure 8. The effect of independent variation of the base flow (Re) and the intensity of viscous diffusion
(Re′) on the growth rate σ ′(Re, Re′, λ). Black lines correspond to the actual growth rates, i.e. when Re = Re′.

these particles between the upper and lower halves of the flow field so that particles, whose
perturbation velocity v0 has increased while being located in a region of strong stretching
below the centreline during the first half of the periodic vortex shedding process, either
enter (orbit 3) or come near (orbit 2) the equivalent region above the centreline during the
second half of the period.

It is worth noting that although the in-plane viscous diffusion of perturbations plays
a crucial role in shaping the spatial pattern of the instability, it does not significantly
contribute to the flow destabilisation with an increase in Re. To see this, we note that an
increase in the Reynolds number has two distinct effects on the instability: (i) it changes the
base flow and (ii) it reduces the intensity of viscous diffusion of the growing instabilities.
Both effects can be assessed independently using the approach which introduces two
separate Reynolds numbers, Re and Re′, see, e.g., Aleksyuk & Heil (2023). The former
is the Reynolds number in (2.1) that determines the base flow, U , which then features
in (2.7). The second Reynolds number, Re′, is the one that appears explicitly in (2.7),
where it controls the strength of viscous diffusion of the perturbations. Figure 8 shows how
independent changes to Re and Re′ affect the modified growth rate σ ′. The growth rates for
the actual flow (for which Re = Re′) at Reynolds numbers Re = 240 and 300 are shown in
black. The two additional cases (represented by red lines) with (Re, Re′) = (240, 300) and
(Re, Re′) = (300, 240) demonstrate that variations in the intensity of the viscous diffusion
(characterised by Re′) have a significantly smaller contribution to flow destabilisation
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than the changes in the base flow (characterised by Re). Interestingly, for the case where
Re = 240, there is a regime at small wavelength where the red line (for Re′ = 300) is
below its black counterpart (for Re′ = Re = 240), implying that an increase in Re′ can
lead to a more stable flow. This highlights the dual nature of viscous diffusion, which can
act as a stabilising (mainly through dissipation) and destabilising (through the spreading
of perturbations) factor.

5. Regions of perturbation amplification by stretching

In the previous sections, we stressed the role of the braid regions as the regions within
which perturbations to the base flow are amplified by the inviscid stretching mechanism;
see, e.g., figure 5(a). The significance of these regions was already highlighted in previous
studies by, e.g., Williamson (1996a), Leweke & Williamson (1998), Thompson et al.
(2001) and Aleksyuk & Shkadov (2018). Here, we elucidate why these regions foster
the growth of perturbations, and derive a simple criterion that allows their location to be
predicted directly from quantities associated with the base flow without having to perform
a Floquet analysis.

Given that the stretching mechanism is inviscid and that it does not depend explicitly
on γ , we focus on the behaviour of inviscid perturbations in the limit γ → ∞. Such
perturbations are governed by (4.1), which we rewrite in polar form, using a coordinate
system that is aligned with the eigenvectors e1 and e2 of the rate of strain tensor in the base
flow, E . Using Φ(r, t) to denote the angle between the x-axis and the principal stretching
direction e1 (the eigenvector associated with the eigenvalue S > 0 of E), (4.1) becomes⎧⎨

⎩
1
v0

v̇0 = −S cos(2θ), (5.1a)

θ̇ = −R + S sin(2θ), (5.1b)

where

R = Φ̇ + Ω

2
. (5.2)

Here, θ(r, t) is the angle between the principal stretching direction, e1, and the perturbation
velocity, v0, and v0 = |v0|; see Aleksyuk & Shkadov (2018) and Aleksyuk & Heil (2023).

Equation (5.1a) shows that the instantaneous growth rate σstretch = v̇0/v0 of inviscid
perturbations due to stretching depends on their orientation θ(t) which evolves according
to (5.1b). Here, σstretch varies between S (for perturbations aligned with e2; θ = π/2)
and −S (for perturbations aligned with e1; θ = 0). While it is, therefore, not possible to
make a general statement about the growth rate of arbitrary perturbations, we note that if
|R/S| < 1, the reorientation of the perturbations according to (5.1b) has four fixed points:
two unstable ones at θ1 = (1/2) arcsin(R/S) and θ2 = θ1 + π, and two stable ones at
θ3 = π/2 − θ1 and θ4 = θ3 + π. (If |R/S| > 1, (5.1b) has no fixed points and the
orientation of the perturbations continues to change.) If |R/S| < 1, all perturbations
(whether currently growing or decaying) therefore reorient towards θ3 or θ4 where they
grow at a rate σstretch = (S2 − R2)1/2. Assuming the perturbations grow sufficiently
quickly relative to the rate at which the base flow (and thus R and S) changes, any initial
perturbation (irrespective of its orientation) will, therefore, ultimately grow at the rate

σ ∗
stretch ≈

√
S2 −

(
Φ̇ + Ω

2

)2

. (5.3)
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Short-wavelength 3-D instability in the cylinder wake

1.2 1.4 1.6 1.8 2.0

t = 0.0T 0.1T 0.2T 0.3T 0.4T

t = 0.0T 0.1T 0.2T 0.3T 0.4T
(a)

(b)

Figure 9. Regions favourable for perturbations amplification at Re = 260 and γ → ∞ determined by (a) the
actual growth rate of perturbations due to stretching −v0 · E · v0/v

2
0; (b) the growth rate σ ∗

stretch defined by
(5.3). For ease of comparison across different cases, the isoline where −v0 · E · v0/v

2
0 = 1.6 is marked with

blue dashed lines. Black lines are isolines κ = 1 (the boundaries of the elliptic regions).

To assess to what extent σ ∗
stretch provides an estimate for the growth rate of perturbations

due to stretching, figure 9 compares the growth rates due to stretching for the actual
perturbations, represented by the first term on the right-hand side of (4.2), −v0 · E · v0/v

2
0,

with the distribution of σ ∗
stretch. The colour contours indicate the magnitude of the growth

rates in regions where they exceed an arbitrarily selected threshold of 1.2, chosen because
our frozen-coefficient-like analysis is only applicable in regions where the growth rate
is sufficiently large relative to the rate of change of the base flow. The figure shows that
σ ∗

stretch not only identifies the key regions of perturbation amplification in the braid region,
but also provides a good quantitative estimate for the local growth rates due to stretching.

It is interesting to note that σ ∗
stretch provides an extension of the well-known expression

for the growth rate σ ∗ of inviscid three-dimensional perturbations in a steady unbounded
base flow with constant vorticity and strain rate, for which, in regions where S > |Ω|/2,
we have

σ ∗ =
√

S2 − (Ω/2)2, (5.4)

see, e.g., Lagnado, Phan-Thien & Leal (1984).

6. Conclusions

We have examined the mechanisms responsible for the onset of three-dimensional
mode B instabilities in the cylinder wake. For this purpose, we formulated the Floquet
analysis for the equations governing small-amplitude perturbations to the two-dimensional
time-periodic base flow (the von Kármán vortex street). We showed that the spatial pattern
of the perturbations is not affected by spanwise viscous diffusion, allowing us to account
for this (stabilising) effect explicitly and to remove it from the subsequent analysis. We
then used a scaling analysis to determine the form of the perturbation equations in the
limit of short spanwise wavelength and showed that the spatial pattern of the perturbation
is maintained in the limit γ → ∞. In this limit, the equations were found to become
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‘pressureless’, allowing for a decoupling of the in-plane projection of the momentum
equations for the perturbations. We showed how, as γ → ∞, non-local interactions due to
the tilting mechanism degenerate and become purely local; furthermore, they affect only
the orientation of the perturbation, but not their magnitude. This implies that in this limit,
in-plane viscous diffusion becomes the sole mechanism for spatial interactions between
perturbations. Using a confined Floquet stability analysis, similar to the one employed by
Barkley (2005), we then showed that the mode B instability results from the combined
effect of (i) the amplification of perturbations by the stretching mechanism, operating
within the braid regions, and (ii) a feedback loop, driven by transverse advection and
in-plane viscous diffusion, that transfers perturbations between the braid regions on either
side of the cylinder. This causes instabilities that have grown on one side of the cylinder
during the first half of the period to grow yet further when entering the braid region on the
other side during the second half-period; see figure 6 for an illustration. Viscous diffusion
was found to play an important role in spreading perturbations spatially, leading to the
counterintuitive result that viscous effects can help to destabilise the flow. Furthermore,
our confined Floquet analysis showed that because of the presence of viscous diffusion,
the existence of closed trajectories which were attributed a key role in the studies of
Giannetti et al. (2010), Giannetti (2015) and Jethani et al. (2018) is not a prerequisite
for the development of the mode B instability. Thus, our findings clarify the mechanisms
for the mode B instability, while adding rigour to the ideas and hypotheses proposed in
previous studies (see § 1).

Finally, we derived a simple criterion that can be evaluated based only on quantities
associated with the time-periodic base flow, which allows the prediction of the regions in
which three-dimensional perturbations of short spanwise wavelength are amplified by the
stretching mechanism.

The approaches developed in our study are sufficiently general that they may also
be useful for examining short-wavelength three-dimensional instabilities in other flows.
Additionally, our criterion for the identification of regions in which such instabilities are
amplified by the stretching mechanism may be of utility in the design of strategies for
controlling the transition to three-dimensionality and ultimately to turbulence.
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