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Abstract

In this paper, a compact two-element reconfigurable multiple-input multiple-output (MIMO)
antenna for 5G new radio sub-6 GHz is presented and discussed. The proposed MIMO antenna
has four frequency operating modes: a wideband operating mode (2.41-6 GHz), a wideband
operating mode with a notching band at 3.5 GHz (3.2-3.66 GHz), a low-pass filter mode that
filters the higher frequencies with a wide operating band from 2.41 GHz to 4.7 GHz, and a
dual-band mode with two operating narrow bands (2.41-3.16 GHz and 3.64-4.7 GHz). To
improve the isolation over the entire operating band, a strip line connecting the two ground
planes of the two antenna elements has been used. To validate the proposed approach, different
prototypes have been fabricated and measured. The simulation results are in good agreement
with the measurement results. The proposed antenna has good MIMO diversity performance
with a maximum gain of 4.64 dBi. The minimum isolation is 18 dB for the four operating
modes, while a measured envelope correlation coefficient of less than 0.008 is achieved. The
diversity gain is near 10 dB for various operating modes. The antenna is suitable for cognitive
radio and 5G sub-6 GHz applications.

Introduction

The fifth-generation new radio (5G NR) wireless communication technology below 6 GHz
can provide many advantages such as improved data throughput, better range than millimeter
waves, obtaining a very short latency time, and ensuring better connectivity compared to the
current 4G. According to 3GPP (3rd generation partnership project) [1], the frequency bands of
5G NR below 6 GHz are divided into several frequency bands, some of which are usually used by
previous standards (WiMAX, WLAN, etc.) as: n46 (5.15-5.925 GHz), n47 (5.855-5.925 GHz),
n77 (3.3-4.2 GHz), n78 (3.3-3.8 GHz), and n79 (4.4-5.0 GHz). In order to satisfy the require-
ments of 5G, compact wideband and ultra-wideband (UWB) antennas are necessary, which
have the advantage of low cost, increased channel capacity, low complexity, and high data rate.
However, the problem of a multipath channel environment degrades the performance of wide-
band systems. Multiple-input multiple-output (MIMO) technology plays an important role in
today’s wireless communication systems to improve the transmission quality and increase the
system capacity [2-4].

Using MIMO antennas, on a mobile terminal forces the antennas to be closely spaced. As
a result, these antennas suffer from high mutual coupling, which limits their performance.
Different techniques have been proposed to reduce mutual coupling between the MIMO ele-
ments. One of the most popular techniques is to etch slots [3] or integrate decoupling structures
[5-8], such as stubs. The neutralization line technique is also employed to achieve good isola-
tion [9, 10]. In [11, 12], 4 x 4 MIMO antenna elements are arranged perpendicular to each
other to achieve low mutual coupling. In [13], the authors use different types of radiating ele-
ments to obtain polarization diversity and good isolation without decoupling structures. In [14],
an electromagnetic bandgap structure is inserted between the two elements of the antenna,
and an isolation higher than 18 dB is achieved. High isolation can be also achieved by using
a split-ring resonator (SRR) [15]. In [16], metasurface with negative permeability is used for
mutual coupling reduction of a two-port MIMO antenna.

To avoid the problem of electromagnetic interference and noise from other systems for
UWB MIMO antenna devices, several MIMO antennas with band rejection have been devel-
oped [17-20]. All these antennas have a fixed filtering mechanism. Therefore, in the absence
of interferences, they cannot use the entire bandwidth. A better solution is to combine the
advantages of frequency reconfigurable antennas and the MIMO system [21]. In recent years,
many frequencies reconfigurable MIMO antennas have been proposed. In [22], a reconfig-
urable MIMO antenna for 4G and early 5G applications is proposed, using PIN diodes to
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connect two meandering radiating arms to the 50 € feedline. In
[23], a MIMO antenna with two monopole elements separated by
a multi-branch T-shaped stub, allows the rejection of WIMAX and
WLAN bands. In [24] and [25], reconfigurable 4 x 4 UWB MIMO
antennas, with a single notched band from 4.9 to 6.3 GHz and from
3.37 to 4 GHz are, respectively, proposed. In [26], a reconfigurable
MIMO antenna involving lumped elements for three operation
modes is presented. It can operate as a wideband antenna, a nar-
rowband frequency tunable antenna, or a wideband antenna with
a frequency tunable band notch.

In this paper, a compact reconfigurable two-element MIMO
antenna, with four different operating modes is presented and
discussed. The proposed structure is simple to manufacture.
Parametric studies and experimental tests on prototypes with ideal
switches (presence/absence of perfect electrical conductor) and
real switches (PIN diodes) have been carried out. The presented
antenna is designed to operate in the frequencies below 6 GHz
(5G NR bands: n46, n47, n77,n78, n79). Two filtering mechanisms
are incorporated to an initial wideband antenna. The proposed
design with the notched band filter mechanism (rectangular RSR
[RSRR]) and the low-pass filter (LPF) mechanism (etched straight
slot in the ground plane) can operate in four different modes: wide-
band mode, wideband mode with the n78/WiMAX (3.3-3.8 GHz)
band rejection, LPF mode with the WLAN/n46 (5.15-5.925 GHz)
band filtering and finally dual-band mode with the rejection of the
WiMAX and the WLAN bands simultaneously. The dimensions of
the whole structure are 30 x 60 x 1.57 mm?®, the common ground
plane is designed to achieve low mutual coupling for all operat-
ing modes of the reconfigurable MIMO antenna (S;, < -18 dB).
Finally, the simulated and measured diversity performances from
S-parameters (envelope correlation coeflicient [ECC] and diver-
sity gain [DG]) of the proposed MIMO antenna are evaluated and
compared with other recently published works which confirm the
advantages of the proposed concept for wireless communications.
The rest of the paper is organized as follows. The detailed design of
the proposed antenna is discussed in second section. The experi-
mental results are presented in third section. The study of diversity
performance is provided in next section, followed by a compari-
son with recent works in fifth section. Finally, a brief conclusion is
given.

Antenna design and study

The designed antenna is fabricated on Rogers RT5880 substrate
with a dielectric constant (¢,) of 2.2, a thickness (h) of 1.57 mm,
and a loss tangent (tan J) of 0.0009. Commercial 3-D electromag-
netic simulator CST Microwave Studio with time-domain solver
was used for performing simulations. The MIMO structure con-
sists of two antenna elements and two filter mechanisms for each
antenna element. The different design steps of the single antenna
element, as well as the operation of the two reconfigurable filtering
mechanisms, are detailed in the following.

Single antenna element

The single antenna element is shown in Fig. 1. The overall dimen-
sions are 30 x 25 x 1.57 mm?>. It is composed of a 50 {2 microstrip
feedline etched on the top layer of the substrate. The bottom
layer contains the ground plane as shown in Fig. 1. In order to
achieve wide frequency band operation, different modifications
are made on the ground plane of the initial structure, as shown
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Figure 1. Layout of the single antenna element: (a) front view and (b) back view.

= =
e
Partial ground plane Gfx‘;gg s;?;anne Vertical open slot
Antenna 1 Antenna 2 Antenna 3

Figure 2. Geometric evolution of the single antenna element (ground plane).

05

Antenna 1
—— Antenna 2
---- Antenna 3

"
o
1

Syl (dB)
AN

254

-30 4

‘35 T T T T T T T
2,0 2,5 3.0 3,5 4,0 4.5 5,0 55 6,0

Frequency (GHz)

Figure 3. The evolution of the simulated reflection coefficient curve according to
the modifications.
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Figure 4. Layout of the reconfigurable antenna element: (a) top view and (b) back
view.
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Figure 5. Realized antenna element prototype with ideal switches (case of notched
band mode).

in Fig. 2. Initially, the ground plane consisted of partial rectangular
ground plane with dimensions 25 x 10 mm? as shown in Fig. 2. The
simulated reflection coeflicient in the case of a partial ground plane
(antenna 1) in Fig. 3 shows that the antenna operates at 4.2 GHz,
with an impedance bandwidth (IBW) of 1.7 GHz (relative band-
width of 40.5%). Then, the ground plane is modified by extending
its surface (antenna 2) as shown in Fig. 2. This new configura-
tion allows a frequency operation from 2.6 to 6 GHz as shown
in Fig. 3. Finally, further bandwidth improvement is achieved by
introducing a vertical open slot with dimensions 5 x 0.5 mm? in
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Table 1. Switches configuration for each mode
Switch Wideband Notched band LPF Dual band
S; OFF ON OFF ON
S, ON ON OFF OFF

the ground plane (antenna 3) as shown in Fig. 2 with an operating
range extending from 2.4 to 6 GHz as shown in Fig. 3.

Two different filters are integrated into the antenna element.
The first is used to create a notched band at the WiMAX band
(3.3-3.8 GHz) by introducing a half-wavelength (A/2) RSRR etched
in the top layer of the substrate with dimensions L, x W,, as
shown in Fig. 4(a). The second is used to filter the higher frequen-
cies of the band (5.15-5.925 GHz) by introducing a horizontal
straight slot (LPF) on the back side of the antenna in the ground
plane with a length of 21 mm and a wide of 0.5 mm as shown
in Fig. 4(b).

The dimensions of RSRR and LPF that correspond to the filter-
ing at 3.5 and 5.15 GHz are calculated using equations (1) and (2),
respectively:
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Figure 6. Measured and simulated reflection coefficient of the proposed reconfigurable single antenna element: (a) wideband mode, (b) notched band mode, (c) LPF mode,

and (d) dual band mode.
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Figure 9. |S|-parameters of the antenna for each configuration (wideband case).

where Lpsr = 2 X I, + 2 X w, — g, is the length of the RSRR
at the desired notch frequency, L;pr = w; + g is the length of
the straight slot (LPF) at the desired filter frequency, and € is the
effective dielectric constant of the substrate. The photograph of the
realized prototype is shown in Fig. 5. Two switches S; and S, are
used for frequency reconfiguration. The role of each switch is to
enable/disable the filtering caused by the two mechanisms (RSRR
and straight slot in the ground plane). The antenna has four differ-
ent operating modes depending on the state of the two switches as
shown in Table 1.
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Operating modes of the proposed switchable single antenna
element

In a first simulation phase, we modeled the switch with a conduc-
tive strip (ideal case) before proceeding with the implementation
of the final prototype with PIN diodes. Both ON and OFF states
are modeled in the simulation by the presence/absence of a con-
ductive strip. The notch filter (RSRR) is activated when the switch
S, is in the ON state. The LPF is activated when switch S, is in
the OFF state. With this configuration, the antenna offers four dif-
ferent frequency operating modes summarized in Table 1. First,
the initial wideband operating mode is obtained when §; is in
the OFF state and S, is in the ON state (RSRR and LPF are dis-
abled). The reflection coefficient curve shows that the working
band at —10 dB is from 2.4 to 6 GHz for simulation and 2.55
to 6 GHz for measurement as shown in Fig. 6(a). Second, the
notched band mode at 3.5 GHz (WiMAX band) is obtained when
all switches are turned to ON state (RSRR is enabled, and LPF is
disabled). From the S-parameters, which are shown in Fig. 6(b),
we note that the simulated notched band is from 2.92 GHz to
4.06 GHz, whereas the measured band is from 3.1 to 3.86 GHz.
The filtering property, with a good insertion loss, can be noticed at
3.49 GHz (greater than —1 dB), in simulation as well as in measure-
ment. This notched band can be shifted by changing the electrical
length of the RSRR as shown in Fig. 7(a). Third, the LPF mode
is obtained when the switches (S; and S,) are in the OFF state.
The LPF mode gives a simulated reflection coefficient with band-
width at —10 dB from 2.43 GHz to 4.69 GHz (relative bandwidth
of 63.4%), where the measured bandwidth is from 2.68 GHz to
4.82 GHz (relative bandwidth of 58.07%) as shown in Fig. 6(c).
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Figure 10. Simulated |S|-parameters for the four operating modes with and without g
(c) LPF mode, and (d) dual band mode.

Table 2. Switches configuration for each mode of the proposed MIMO antenna

Switches Wideband Notched band LPF Dual band
(S1, S2) OFF ON OFF ON
(Ss3, S4) ON ON OFF OFF

The bandwidth can be reduced/increased by changing the elec-
trical length of the horizontal slot as shown in Fig. 7(b). Finally,
dual-band operation is obtained when S, is in the ON state and
S, is in the OFF state. As shown in Fig. 6(d), the antenna has two
frequency operating bands, the first from 2.4 to 2.85 GHz with a rel-
ative bandwidth of 17.7%, and the second from 3.9 to 4.7 GHz with
a relative bandwidth of 17.9%. For measured results, the antenna
operates in two bands of operation, 2.58-3.27 GHz (23.2%), and
3.86-4.58 GHz (17.06%). This last mode is used when WLAN and
WiMAX bands are filtered simultaneously. We can note a good
agreement between simulation and measurements. We only notice
a small shift in the bands, which is essentially due to the quality of
the manufacturing process.

Two-element MIMO Antenna design

The reconfigurable MIMO antenna consists of two reconfigurable
single antenna elements, arranged symmetrically relative to the
y-axis and shares a common ground plane, with an edge-to-edge
distance of 10 mm, as shown in Fig. 8. The MIMO antenna is fed
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round plane modifications: (a) wideband mode, (b) notched band mode,

by two 50 €2 SMA connectors. To improve the isolation between
the two ports of the reconfigurable MIMO antenna, while keep-
ing a compact structure, some modifications are introduced to the
common ground plane as shown in Fig. 9, to obtain the final result.
Due to the symmetry of the element S;; = S,, and S;, = S,;. For
the study, the mode without filtering with the largest bandwidth
at —10 dB was chosen (mode wideband). We can note a clear
improvement in the isolation inside the operating band of the
antenna thanks to the modifications made to the ground plane. The
superposed simulated scattering parameters of the MIMO antenna
with and without isolation (configurations A and B) for the four
operating states are presented in Fig. 10.

These simulation results demonstrate that with the modifica-
tions made to the common ground plane, the minimum isolation
in the operating bands has been improved by at least 6 dB for both
wideband and notched band modes.

For the other two modes, the minimum isolation has increased
from 11 to 19 dB. We can also see that the lowest operating fre-
quency returns to its initial value of 2.43 GHz (single antenna
element) for all operating modes, as shown in Fig. 10. The switch
states for each operating mode are listed in Table 2.

To better understand the physical operation of the antenna,
a study of the surface current distributions has been carried
out. Surface current distributions of the proposed reconfigurable
MIMO antenna are observed in the four operating modes at
3.5 GHz (WiMAX) and 5.2 GHz (WLAN), to understand the
operation of the two mechanisms of filtering (RSRR and LPF).
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Figure 11. Surface current distribution: (a) wideband mode at 3.5 GHz, (b) wideband mode at 5.2 GHz, (c) notched band mode at 3.5 GHz, (d) notched band mode at
5.2 GHz, (e) LPF mode at 3.5 GHz, (f) LPF mode at 5.2 GHz, (g) dual band mode at 3.5 GHz, and (h) dual band mode at 5.2 GHz.
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Figure 12. Layout of the two-element reconfigurable MIMO antenna with PIN diodes and biasing circuit: (a) front view and (b) back view.
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Figure 13. Photographs of the realized prototype with PIN diodes and bias circuit:
(a) front view and (b) back view.

Figure 11 shows the surface current densities for wideband mode,
notched band mode, LPF mode, and dual-band mode, respec-
tively. The surface current distributions for wideband mode (RSRR
and LPF are disabled) are shown in Fig. 11(a) and (b) at 3.5 and
5.2 GHz, respectively.

For both frequencies, there is a current concentration on the
feedline and the ground plane, which proves that the antenna
works at these frequencies. In notched band mode at 3.5 GHz in
Fig. 11(c), it can be noticed that a strong current distribution exists
on the RSRR, which proves that the filtering mechanism (RSRR) at
3.5 GHz works.

We can also see that the current distribution is normally dis-
tributed between the feedline and the ground plane at 5.2 GHz,
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as shown in Fig. 11(d). For the LPF mode, there is a strong current
concentration along the right slot in the ground plane at 5.2 GHz,
as shown in Fig. 11(f). This concentration disappears at 3.5 GHz,
as shown in Fig. 11(e), which proves that the horizontal slot in
the ground plane filters the high frequencies of the working band
(the LPF filtering mechanism is activated). Finally, in dual-band
mode (RSRR and LPF are enabled), we can see a high current dis-
tribution on the RSRR in Fig. 11(g), and along the horizontal slot
in Fig. 11(h), which confirms that the two filters operate simul-
taneously, respectively at 3.5 and 5.2 GHz. We also notice very
good isolation between the two ports for all modes of operation,
with very low surface current distribution on the second antenna
element as shown in Fig. 11.

Implementation with Pin diodes

Figure 12 shows the layout of the reconfigurable MIMO antenna
with the integration of real switches and the bias circuit necessary
for the operation of the PIN diodes. The type of diode that is used is
BAR50-02 V from the manufacturer’s Infineon. To take their effect
into account in the simulations its S-parameters (s2p file) down-
loadable from the manufacturer’s website have been inserted in
the antenna with CST Microwave Studio software. For the bias-
ing of the diodes, decoupling capacitors of 100 pF and inductors
(RF chokes) of 100 nH were used. Photographs of the realized
prototype with PIN diodes are shown in Fig. 13.

RN | . ,
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25 30 35 40 45 50
Frequency (GHz)
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Figure 14. Simulated and measured |S|-parameters for all operating modes of the reconfigurable MIMO antenna: (a) wideband mode, (b) notched band mode, (c) LPF

mode, and (d) dual band mode.
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Figure 15. Radiation pattern measurement setup (anechoic chamber).

Experimental results and discussions

The simulated and measured S-parameters of the proposed recon-
figurable MIMO antenna are shown in Fig. 14. For wideband mode,

Figure 16. Simulated and measured radiation patterns: (a)
wideband mode at 5.2 GHz, (b) notched band mode at 5.2 GHz,
(c) wideband mode at 3.5 GHz, (d) LPF mode at 3.5 GHz, (e)
LPF mode at 4.5 GHz, and (f) dual band mode at 4.5 GHz.

https://doi.org/10.1017/51759078723001289 Published online by Cambridge University Press
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the simulated IBW is from 2.41 to 6 GHz, with a relative bandwidth
of 84.4% and a minimum isolation of 17 dB between the two ports.
It is also observed, that the measured IBW of the realized prototype
is from 2.51 to 6 GHz with a relative bandwidth of 82.70%, and
a minimum isolation of 18 dB over the operating band as shown
in Fig. 14(a). A good result is obtained in notched band mode as
shown in Fig. 14(b), with a notched band from 3.2 to 3.66 GHz
at —10 dB to reject the WiMAX frequency band.

At the rejection band, the reflection coefficient has a peak of
about -2 dB at 3.5 GHz, which signifies a strong and reliable rejec-
tion band. In LPF mode, as shown in Fig. 14(c), the simulated IBW
is 2.4-4.7 GHz (relative bandwidth of 63.3%), and the measured
is 2.61-4.53 GHz (relative bandwidth of 53.7%). The isolation is
greater than 19 and 18 dB over the operating frequencies for simu-
lation and measurement results, respectively. In dual-band mode,
it is observed in Fig. 14(d) from simulated results that the antenna
has two frequency operating bands: the first one is from 2.41 to

E-plane simulated —— E-plane measured
H-plane simulated —-—- H-plane measured
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Table 3. Simulated and measured realized gain at different frequencies for all
operating modes

Operating f Simulated Measured
Modes band (GHz) (GHz) gain (dBi) gain (dBi)
Wideband 2.41-6 5.2 5.09 4.64
Notched band 2.41-3.2/3.66-6 5.2 5.09 4.43
LPF 2.4-4.7 4.5 4.72 4.45
Dual band 2.41-3.16/3.64-4.7 3/4.5 2.88/4.78 2.51/4.53

3.16 GHz (relative bandwidth of 29.18%), and the second one is
from 3.64 to 4.7 GHz (relative bandwidth of 24.31%) with isolation
greater than 23, and 18 dB for the two frequency bands, respec-
tively. For the measured results of the manufactured prototype, the
antenna supports two bands of operation 2.47-3.08 GHz (23.10%)
and 3.59-4.34 GHz (19.09%). The isolation is greater than 20 and
18 dB for the two frequency bands, respectively. A good agreement
is observed between simulation and measurement results for the
different modes with small shifts of the bands, which are essentially
due to manufacturing errors and electric wires.

During the measurement, port 1 was excited, whereas port 2
was terminated with a 50 Q2 matched load as shown in Fig. 15. The
measured and simulated radiation patterns (E-plane and H-plane)
of the reconfigurable MIMO antenna at 3.5, 4.5, and 5.2 GHz for
each mode are shown in Fig. 16. The measurement results show that
the proposed antenna has an omnidirectional radiation pattern in
the H-plane and bidirectional radiation in the E-plane. Table 3
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Table 4. Simulated and measured values of ECC and DG for each mode
ECC DG (dB)
Mode Simulated Measured Simulated Measured
Wideband <0.005 <0.003 >9.99 >9.99
Notched band <0.003 <0.005 >9.99 >9.99
LPF <0.001 <0.005 >9.99 >9.99
Dual band <0.001 <0.008 >9.99 >9.99

gives the simulated and measured realized gain for the different
states of the proposed reconfigurable MIMO antenna at differ-
ent operating frequencies. A good agreement is observed between
simulation and measurement results.

Diversity performance

To evaluate the diversity performance of the proposed reconfig-
urable MIMO antenna, parameters were calculated and analyzed
from the simulated and measured S-parameters [27]. The results
obtained were then compared with other work recently reported
in the literature.

Envelope Correlation Coefficient (ECC)

The ECC is used to determine the correlation between the var-
ious antenna elements in a MIMO antenna system. In practice,
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Figure 17. Simulated and measured ECC and DG results of the proposed reconfigurable MIMO antenna: (a) wideband mode, (b) notched band, (c) LPF mode, and (d) dual

band mode.
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Table 5. Comparison between performances of the proposed MIMO antenna and other reported works

Ref. NP Size (mm?3) Substrate R NOM MG (dBi) MI (dB) ECC
[8] 2 50 x 40 x 1.59 FR-4 No 1 6.4 15 <0.024
[11] 4 52 x52 x 1.6 FR-4 No 1 4.5 18 <0.09
[16] 2 65 x 33.862 x 11 FR-4 No 1 6.79 44 <0.01
[17] 2 19 x 30 % 0.8 FR-4 No 1 291 18 <0.13
[18] 2 26 x 15 x 1.6 FR-4 No 1 7.5 24 <0.03
[19] 2 18 x 34 x 1.6 FR-4 No 1 7 22 <0.01
[20] 4 40 x 40 x 1.6 FR-4 No 1 5.11 20 <0.02
[22] 2 120 x 60 x 1.2 Rogers RO4003C Yes 2 4.2 12 <0.0056
[23] 2 40 x 20 x 1.6 FR-4 Yes 3 4 15 <0.3
[24] 4 25 x50 x 1.6 FR-4 Yes 2 5.5 17 <0.15
[25] 4 51.8x51.8x1.6 Rogers RO4350 Yes 3 1.5 15 <0.5
Proposed 2 30 x 60 x 1.57 Rogers RT5880 Yes 4 4.64 18 <0.008

NP = number of ports, R = reconfigurable, NOM = number of frequency operating modes, MG = maximum gain, Ml = minimum isolation.

ECC values should be less than 0.5. It is possible to calculate it
from the S-parameters [27], using equation (3) or from the far-
field radiation using equation (4). The simulated and measured
ECC using S-parameters of the proposed antenna is illustrated in
Fig. 17. A good agreement between simulations and measurements
is obtained. It is less than 0.008 in the whole operating band for the
various modes which means a very low correlation between the
two antenna elements. The ECC value increases at filtered frequen-
cies (WiMAX/WLAN) while maintaining a good value as shown
in Fig. 17(b-d). This indicates a good decoupling between the two
ports even inside the filtered bands:

. . 2
S11812 + $318
ECC — 11912 T 921 22| 3)

(1 — (|S11|2 + |321|2>)(1 — (|Szz|2 + \812\2» ’
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Diversity Gain (DG)

Figure 17 shows simulated and measured DG for the four operating
modes. It can be calculated using the following equation [17]:

DG = 104/1 — (0.99ECC)’. (5)

It can be observed that the DG of the MIMO antenna is greater
than 9.9 for the four modes of operation. This value changes only
in the filtering bands related to the WiMAX and WLAN bands as
shown in Fig. 17(b-d). These results validate the good diversity per-
formances of the MIMO structure. Table 4 gives the simulated and
measured ECC and DG for the different operating modes of the
antenna.

Comparison with recent work

The proposed two-element reconfigurable MIMO antenna is com-
pared to other recently published MIMO antenna structures.
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The comparison is presented in Table 5 based on several param-
eters. It can be easily observed from the table that the proposed
design approach has a more flexible frequency profile, good isola-
tion, low complexity, and low ECC value, what makes this structure
very interesting.

Conclusion

In this paper, a compact reconfigurable two-element MIMO
antenna is presented and its performances are discussed. The
MIMO structure is endowed with two filtering mechanisms. By
using PIN diodes to enable/disable each filter, the antenna pro-
vides four different operating modes. Isolation greater than 18 dB is
achieved for the four operating modes. Additionally, diversity per-
formance is calculated and compared to recently reported designs
that demonstrate the advantages of the proposed concept. The
ECC of the proposed antenna is less than 0.008 with a high DG
(DG > 9.99) for the four operating modes. All the results obtained
from the study of the structure indicate that the MIMO antenna is
suitable for cognitive radio and 5G NR sub-6 GHz applications.

Competing interests. None declared.
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