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Abstract. The problem of two gyrostats in a central force field is considered. We prove that the 
Newton-Euler equations of motion are Hamiltonian with respect to a certain non-canonical structure. 
The system posseses symmetries. Using them we perform the reduction of the number of degrees of 
freedom. We show that at every stage of the reduction process, equations of motion are Hamiltonian 
and give explicit forms corresponding to non-canonical Poissson brackets. Finally, we study the case 
where one of the gyrostats has null gyrostatic momentum and we study the zero and the second order 
approximation, showing that all equilibria are unstable in the zero order approximation. 

1. Introduction 

The problem of roto-traslatory motion of n-rigid bodies has been studied, amongst 
other authors by Duboshin (1972), Aboelnaga (1979), Barkin (1980), Wang (1990; 
1992), and by Maciejewski (1995). They considered the mutual interactions be­
tween orbital and rotational motion for artificial and natural bodies in the solar 
system. But the model of a rigid body to represent celestial bodies implies the 
absence of internal or relative motions. This is not always suitable, as was shown 
by Volterra in the study of variation of latitude on the Earth's surface. He explained 
the anomalies of the free rotation by means of internal or relative motions which 
do not modify the distribution of masses. A gyrostat is a mechanical system S 
composed of a rigid body S' and other bodies S" connected to it; these other bodies 
are either deformable or rigid, but their motion relative to S ' does not alter the 
distribution of masses of the system S. 

In this paper the problem of roto-translatory motion of two gyrostats in a central 
force field is considered following the papers of Maciejewski (7) and Wang (5). We 
prove that the Newton-Euler equations of motion are Hamiltonian with respect to a 
certain non-canonical structure. The system possesses symmetries and using them 
we perform the reduction of the number of degrees of freedom. We show that on 
every stage of this reduction process the equations of motion are Hamiltonian and 
we give the explicit form of corresponding non-canonical Poisson bracket. Finally, 
we restrict to the case where one of the gyrostats has null gyrostatic momentum and 
we study the zero and second order approximation. In the first case it is shown that 
only the Lagrangian equilibria can be obtained and furthermore those equilibria 
are unstable. In the second case we identify the Lagrangian equilibria. For the non-
Lagrangian case we find a rather intricate non-linear systems of equations, where 
solutions only can be obtained by numerical or perturbative methods in particular 
cases. We show that apart from the Lagrangian equilibria, it can be found non-

Celestial Mechanics and Dynamical Astronomy 73: 303-312, 1999. 
©1999 Kluwer Academic Publishers. Printed in the Netherlands. tt https://doi.org/10.1017/S0252921100072651 Published online by Cambridge University Press

mailto:fmalacid@plc.um.es
mailto:vigueras@plc.um.es
https://doi.org/10.1017/S0252921100072651


304 F. MONDEJAR, AND A. VIGUERAS 

Lagrangian configurations in contrast with the assert of Maciejweski in the second 
case (7). 

2. Two gyrostats problem 

2.1. NOTATION 

We will denote by bold italic letters vectors in Rs as geometrical objects.a, b, c. 
When a reference frame is fixed then the set of components of a vector x will be 
denoted by the corresponding bold Roman letter x, and will be considered as one 
column matrix, it is, x = [xi, X2, X3]r, where AT denotes the transposition of a 
matrix A. We use subscripts for numbering coordinates of a vector, and superscript 
for distinguishing vectors of different bodies. We will not distinguish the difference 
between x and x calling the last object coordinates vector. The standard scalar and 
vector products in I?3, and the length of a vector will be denoted respectively by 
< x,y > , (x x y and ||x|| = y/< x,x >. Gyrostatic motion is described in a 
chosen reference frame. The reference frames used in this paper are right handed 
and orthonormal. Here the special orthogonal group 50(3) will be identified with 
all 3 x 3 real orthogonal matrices with determinant+1. Its Lie algebra, denoted by 
so(3), is identified with all 3 x 3 anti-symmetric matrices. 

For a vector x we denote by x the image of x by the standard isomorphism 
between the Lie algebra R3 (with the vector product as the algebra multiplication) 
andso(3). 

2.2. EQUATIONS OF MOTION 

Let us consider two gyrostats S\ and 52 that interact mutually according to the 
universal law of gravitation. The quantities related to gyrostat (i) will be denoted, 
in coordinates, by a superscript i, and in vector notation by subscript i. We describe 
the motion of gyrostats with respect to an arbitrary inertial frame R = {«i, u2, u3}. 
The body fixed frame in each gyrostat .fti and Rz is attached to its mass center C,-, 
i = 1,2 and the first frame coincide with the principal axes of inertia of Si. We 
denote the versors of the inertial reference frame in the systems-ft, by a t , f3{ and 
7, respectively. Then the matrices 

K 
= 

" a\ a2 ot\ " 

p\ & Pi 
.7i 7l 73-

are called the attitude matrices or the direction cosines matrices. 
We have the following equations for the time dependence of the attitude matrices 

A,= Aiili i= 1,2, (2) 
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where fl{ is the body angular velocity of Si. Coordinates of this vector in the 
inertial frame i2 are UJ,=[U;},U4,U4]T = A,/2j, i = 1,2 and following equation is 
satisfied 

A,-= cD.-A,-. (3) 

We will denote by R,, i = 1,2 the position vector of each mass center C; in 
the frame R . If Q4 = [Q\, Q'2, Q\]T are the coordinates of a generic point of Si 
in the inertial frame R and q̂  = [q\, q2, q^]T are the coordinates in the frames i?,, 
i — 1,2, then the relations Q,- = Rt + Atqi( i = 1,2 are satisfied. 

The linear and the total angular momenta of the gyrostats are 

Pi = / ^{Ri + AjqJ dmi = m,- R,-, (4) 

t A 
U = J {Rt- + A,qJ x —{Ri + AtqJ drm = R,- x Pt + TT; + \n i = 1,2, (5) 

where 

m i = / dmi, 7T,- = Ailli, H\ = hS2i, 
JSi 

li= q^qf dm,-, \ri = ^ihri, Lri = / (q,-x q,-) drat, (6) 
JSi JSi 

are the masses of the gyrostats, the rotational angular momenta of the gyrostats 
considered as rigid bodies in the frame R and Ri, i = 1,2, the tensors of inertia 
and the gyrostatic momenta of the gyrostats in the framed and Ri (i.e. the rela­
tive angular momenta of the mobile parts of the gyrostats^), respectively. In the 
following we will assume that the Lri are known constants. 

The kinetic energy of the system is the sum of the kinetic energies of the 
individual gyrostats 

T = Ti + T2, 

Ti = T / 1% 2 drm = Tu + T2i + T„-, 
2 J Si » 

T« = < L ÎT1!!,- >,T2i = M + I < n^m >, (7) 

where Tr; are the relative kinetic energies of the gyrostats Si and we will assume 
that Tri are known functions of time. 

The gravitational potential energy of the system is given by 

,„ » ~ . N ~ f f dmi dmr 
Vfrl,Al;K2,A2) = -G / * 2 , 

JSi JSi Ri + Aiqj - R2 - A2q2|| 
(8) 
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where G is the universal gravitational constant, see (Cid and Vigueras, 1995). 
In the Newtonian description of motion, we choose as independent variables, the 

inertial coordinates of radii vectors of mass centers R,, the linear momenta Pt, the 
attitude matrices A; for i = 1,2, and describe the rotational motions with respect 
to each gyrostats reference frames using the rotational angular momenta 17',-. We 
denote by ftJ, m,j i, j = 1,2 the gravitational forces and the resultant torques 
acting on the gyrostat S, expressed in the inertial frame R. Newton equations have 
the following form 

R ; = - ^ , P8=fij, iT,-=(lT.- + Lr i)xir1iT,- + Mii, (9) 

At= Aitti i± j = 1,2 Mij = Ajmij. (10) 

The Newton equations have the classical first integrals 

ft = T2i + T22 + U, 7> = P i + P 2 , £ = U+U, 

and D,-=A,-Af i = 1,2, 

where H is the Jacobi integral, V and C are integrals of total linear and angular 
momenta respectively, and Vi are geometrical integrals, in fact Vi = E the identity 
matrix. 

2.3. HAMILTONIAN STRUCTURE OF THE EQUATIONS OF MOTION 

From the expression of attitude matrices (1) we write the gravitational potential in 
the following form 

U(R1,a1,/31,71;R2,«2,/32,72)=/ / , „ . T ^ B ^ A « II" ( 1 1 ) 

JSi JS2 ||Ri + A i q t - R2 - A2q2 | | 

Trivially we obtain 

dV , dV „ dV . d\J dV „ n s 

Then the Newton-Euler equations (9)-(10) can be expressed as follows 

R ; = ^ , P i = ~ , (13) 
m, oRi 

f-iX T i-lX 7 QX 7 

IIi= (17; + Lri) X lJlIIi + <Xi x ^— + & x j-z- + 7i X — , (14) 
eta; 0/3,- cfy 

^i^a.xir1/!,, ^ = /3ixi-1ni, ^± = 7ixiT1ni. (15) 
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Denote z=[zf , z^] r with * = [Rf ,Pf, nj ,<xf,/3j , 7 f ] T G * 1 8 * = 1,2 
and define a twice contravariant skew-symmetric tensor field A on i?36 that in 
matrix form is 

A[z] = 
AiW 0 

0 A2[z] J 
,Ai[z] = Jr[z] 0 

o Jute] 
(16) 

Jr(z) = 
0 E 

- E 0 Jllfc) = 

77 j + L,ri Oti ft; % 
Si 0 0 0 
Pi 0 0 0 
li 0 0 0 

(17) 

This tensor field allows us to define Poisson bracket on U36 {•,•}, that for 

f, g € C~(l?36) {f, g}(z) = ( f | ) T A[z] ( | | ) . Then (tf36, {•, -}M) is a Pois-
son manifold. 

Let us consider the Hamiltonian function on R36 

«W = t,i^r + l< n^T'iii > \ + u(»). 
i=l 2m,-

(18) 

Then the Newton-Euler equations of motion (13)-(15) can be written in Hamiltonian 
dZ 
dt 

formasf = {z,H} (z). 

2.3.1. Relative coordinates I 

In the first step of the reduction process we use the fact that the interaction between 
gyrostats depends on the relative position of the bodies. We consider the relative 
variables 

r=Rx - R2, p= 
7712 mi 

m i + 77i2 T7il + 7712 
P2 

In these variables we can reduce the number of equations by six. The system of 30 
equations that we obtain is Hamiltonian with respect to the Poisson bracket in iR30 

define below. 
We now denote z r T n T _T 7 T r 5 P > L\ i *2 i Zj 

and define the Poisson bracket {., .}j in J?30 by 

««>'«-(i)r*M(s)"teB 

T aT „T W OL± 3* f* 

Ai[z] = 
Jr(z) 0 0 

0 J„jj(*i) 0 
0 0 Jn(z2) 

i= 1,2 

(19) 

(20) 
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In this Poisson structure the new equations are Hamiltonian in the form 

z={z,nI}I, 

with respect to the Hamiltonian 

•Hi = M - + \J2{< n^Hi >} + V(z). (21) 

The Poisson bracket defined by (19)-(20) is just the effect of reduction of the 
bracket defined by (16)-(17) with respect to the action of the group of traslations 
on the phase space. 

2.3.2. Relative coordinates II 

In this step of reduction process we will describe the whole motion of the system 
with respect to the frame fixed in the gyrostat S2. Then we introduce the new 
variables 

R = Â r, P = A^P, r1 = AIn1, r2 = n2, 

A = Af A2, A 
or 

7 

(22) 

(23) 

Now we denote v [ R T , P r , r f , r f , aT, /3T, 7 r ] € R21 and define the fol-
rp 

lowing Poisson bracket {., .}H in J?21, {f,g}7/ (v)= (f£) ^[v] (§f) for f, g e 

C°° (R21J where ^[v] is the Poisson tensor defined as follows 

A[y] 

0 E 0 
-E 0 0 
R P ATLn - A 
0 0 A 
0 0 - a 
00 -3 

R 
P 

A 
A + Lr2 

a 
3 

0 0 
0 0 

-a -3 
a 3 
0 0 
0 0 

0 
0 

- 7 
7 
0 
0 

0 0 - 7 0 0 0 

In this Poisson structure the equations of motion described in the new variables 
(22)-(23) are Hamiltonian with respect the Hamiltonian Tin defined by 

Tin = 
2m 

+ Hr+U(v), (24) 
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w h e r e U ( v > = - G / s ^ | s ^ 

andHr = \ < I ^ A ^ A A > +\ < r2,l^r2>. Then in (l?21, {•,•}//) the 

induced Hamiltonian equations become ^ = {z, Hu}n (v). 
Finally, we note that the Poisson bracket {•, •} / / is degenerated, i. e., there 

are non-constant Casimir functions: six geometrical integrals and the total angular 
momentum of the system 

Ci = }fLTCL, C2 = aT/3, C3 = a T
7 , C4 = ^(3T(3, C5 = /3T~f, 

C6 = ^7 T 7 , T = ^LLT, L = A + ATLn + T2 + R x P. 

3. Relative Equilibria 

The relative equilibria of our system are the equilibria for the Hamiltonian dynamic 
generated by Hu on Mu, i.e. ve e Mu such that {v,Hu}MlI (ve) = °- Using 
vector algebra in the first equations of the Poisson system we show that there exists 
A e R such that we can write the conditions for the equilibria as 

\\n\\2R-<R,n>n--^ = o, (25) 
moR 

(r 2 + Lr2) x n + fi2 = o, (26) 
A + A T L n + r2 + Lr2 - m < R, n > n - Xn = 0, (27) 

<xTct = pTf3 = 7
T 7 = 1, aT /3 = a T 7 = / 3 T

7 = 0, (28) 

with/i2 = - G /Sl /52 g2X Htf2 - R - ATtfi)/ R + Ar9i - g2|| J dm(qx)dm(q2) 

and P = m/2 x R , f i i = A/22 and Q = J22. 
Using the expression of Pin the equilibria we obtain trivially L=fA+m ||R||2J f2, 

so L is parallel to Q. 
There are two types of equilibria, the Lagrangian equilibria where R is or­

thogonal to 1? and the non-Lagrangian equilibria where < R, fi >^ 0. In the 
first case we have ||r|| = ||R|| = cte and < r,u> >=< R, Q >= 0. Then the 
gyrostat Si describes a circular orbit with respect to the gyrostat S2 in a plane 
orthogonal to the vector u>. In the non-Lagrangian case ||r|| = ||R|| = cte and 
< r,u> >=< R, Q > / 0, so the projection of r over the vector u> is constant. 
Then the gyrostat S\ describes, with respect to the gyrostat S2, a circular orbit in a 
cone of axis u>. 

Finally, we note that we have adopted the names of Lagrangian and non-
Lagrangian equilibria as Maciejewski suggests in (Maciejewski, 1995). The results 
obtained here for the two gyrostats problem are similar to the ones obtained by 
Maciejewski for the two rigid bodies. 
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4. Approximations 

In the present section we consider two approximations of the gravitational poten­
tial U based on Taylor series in a neighborhood of s = (nominal dimension of 
gyrostats)/(orbital radius). The Taylor series expression of U is 

U(v) = U0 + U1 + o(||R||5), Uo = ^ p , 

U l = ~T^ WTrlj + mxTrl2} + 
2 I I R I I 
3G 

5 {m2 < AR, IxAR > +mx < R, I2R >} . 
2||Rl, 

We will consider therefore two approximate Hamiltonians 

W0 = P - + Hr + U0, Wi=W0 + Ui. (29) 

In the following we will consider that the gyrostatic momentum of 52 is null, i. 

4.1 . ZERO ORDER APPROXIMATION 

Let us consider the dynamic generated by Ho. Then the condition for equilibria 
(25)-(28) can be written 

\\ft\\2R- < R,n > ft = ^ p p R , A x ft = o, 

A -(- ArLn +r2-m < R,ft>ft-\ft = 0,Ae 50(3). 

Taking cross product in the above first equation by R we obtain that R is 
orthogonal to ft in the equilibria (because we exclude the trivial case P=0), then 
in the zero order approximation only the Lagrangian equilibria are possible. Now 
from the second above equation we deduce that r 2 is parallel to ft, and so ft is 
an eigenvector of I2. Then R, P and ft form a triad in the equilibria, and without 
loss of generality we assign 

fte = \\fte\\el Re = ||Re||ef, Pe = m\\fte\\ ||Re||e2 x e|, 

where {e2, e ,̂ e2} is the basis of the frame R2. We describe the equilibria in this 
basis and trivialy we have 

r 2 e = | | « e | | / 1
2 e ? , A e H l ^ e H A ^ A e e 2 , I 2 = 

rJi 
0 

. 0 

0 
i? 
J 

0 1 
J 
iU 
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such that (IiAeef + LH) x Aee
2 = 0, m \\f2e\\

2 = SjgS* where Ae€SO(3). 

Proceeding as Wang (1990), let us consider now the following solutions of the 
Hamiltonian system dy/dt = {v, Wo}n(v) 

A(t) = r l e , r2(<) = r2e, A«Aa) = A e» 

U(f\ — pvn 1 f . -

pf^ m 11 j 
r(JJ - m I t 

k 

k 

^ ^ 2 . | 

17^2 Re 

exp t 
I 2 -^ 2e 

I9 ^ e I7 - f ^ R e 

(30) 

(3D 

(32) 

verifying the modified formula (k+ 117* T2e ) = & ^ . 

The above solutions represent a pertubation of the above zero order relative 
equilibria and it is easy to prove that the solutions escape from any small neigbor-
hood of the relative equilibria in finite time. Therefore we have instability. 

4.2. SECOND ORDER APPROXIMATION 

We now take the dynamic generated by the Hamiltonian Hi. The equilibria condi­
tions (25)-(28) read now 

m \\f2\\2R -m<R,f2> n= °™2™2R+ 

3G 

2||R|| 

15G 

in 

3 {{m2Trli + miTrI2} R + 2m2A
TIiAR + 2miI2R-

j {m2 <,IaAR, Jj > aAR > + m\ < R,I2R>} R, 2 PL 

r 2 x n + ti2 = 0 with fi2 
3Gm2 

2IIRH5 R x I2R, 

[ATIiA/2 + ATLn + l2S2 - m < R, fi > fl]\n = 0. 

(33) 

(34) 

(35) 

The above system is a cumbersome non-linear system. Nevertheless, we can al­
ways find numerically solutions for specific values fixed of the parameters, or 
introducing a small parameter, we can use perturbative techniques. An example 
of Non-Lagrangian equilibria was found numerically by Wang (1990) in the case 
of a rigid body in a central Newtonian force field. Here, we will restrict to the 
Lagrangian case. 
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a 
-b 

L 0 

b 0] 
a 0 
o ij 

As in the previous subsection we will denote the equilibria solutions with 
subscripts e. We choose {Qe/ \\fie\\ ,P e / ||Pe|| ,Re/ ||Re||} as the reference frame 
i?2- Using the equations (34) it is easy to show that the inertial tensor I2 is diagonal 
on this basis. 

Now from equation (35) we have that IiAe/2e+Lri is parallel to Af2e. Taking 
cross product in (33) by R we obtain Ii AeRe parallel to AeRe. Since Ae G SO (3) 
and takes eigenvectors of I2 into eigenvectors of Ii we deduce Ae belong to 

,a2 + b2= 1; 0,6 e « | . (36) 

Taking scalar product in (34) by Re, and since Ae takes e3 into e, j e {1,2,3}, 
we obtain 

| | ^ e | | 2 = " jj3 { " l i m 2 + m 2 / 3 + m i / 3 } + 

^ j p {MTrh - SI}) + mi(TrI2 - 5lj)} . (37) 

Then if ||Re|| is large enough it is clear that there exist solutions of the above 
equation. Denoting Ln = [«i,6i,ci]T, and since IiAeJ2e + L n is parallel to 
AJ?e we obtain ||i?e|| (if

 _ 1̂ )a^ ~ ^a -aib-0, c\ = 0. 
If we choose {Pe/ ||Pe||, fte/ \\S2e\\ ,Rg/ ||Re||} as the reference frame R2 we 

obtain 

Ae = 
0 0 1 
1 0 0 
0 1 0 

,Lri =[0,bh0f 

verifying the formula (37) as in the previous case. 
Finally, we observe that in the case of two rigid bodies (see (7)) the equilibrium 

configurations are all the possible combinations between the vector Re, Pe, and f2e 

as elements of the reference frame R2', and the matrix Ae can be any of the matrices 
which represent a permutation between the elements of the base. However, in the 
case considered in this paper, for each choice of the base only special cases of the 
matrix Ae can be choosen. 
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