
Proceedings of the Royal Society of Edinburgh, page 1 of 16

DOI:10.1017/prm.2024.46

Maximizing weighted sums of binomial coefficients
using generalized continued fractions

S.P. Glasby*
Center for the Mathematics of Symmetry and Computation, University
of Western Australia, Perth 6009, Australia
(Stephen.Glasby@uwa.edu.au)

G.R. Paseman
Sheperd Systems, UC Berkeley, USA (sheperdsystems@gmail.com)

(Received 30 December 2023; accepted 11 March 2024)

Let m, r ∈ Z and ω ∈ R satisfy 0 � r � m and ω � 1. Our main result is a
generalized continued fraction for an expression involving the partial binomial sum
sm(r) =

∑r
i=0

(m
i

)
. We apply this to create new upper and lower bounds for sm(r)

and thus for gω,m(r) = ω−rsm(r). We also bound an integer r0 ∈ {0, 1, . . . , m}
such that gω,m(0) < · · · < gω,m(r0 − 1) � gω,m(r0) and gω,m(r0) > · · · > gω,m(m).

For real ω �
√

3 we prove that r0 ∈ {�m+2
ω+1

�, �m+2
ω+1

� + 1}, and also r0 = �m+2
ω+1

� for

ω ∈ {3, 4, . . .} or ω = 2 and 3 � m.
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1. Introduction

Given a real number ω � 1 and integers m, r satisfying 0 � r � m, set

sm(r) :=
r∑

i=0

(
m

i

)
and g(r) = gω,m(r) := ω−rsm(r), (1.1)

where the binomial coefficient
(
m
i

)
equals

∏i
k=1

m−k+1
k for i > 0 and

(
m
0

)
= 1.

The weighted binomial sum gω,m(r) and the partial binomial sum sm(r) = g1,m(r)
appear in many formulas and inequalities, e.g. the cumulative distribution function
2−msm(r) of a binomial random variable with p = q = 1

2 as in remark 5.3, and the
Gilbert–Varshamov bound [6, Theorem 5.2.6] for a code C ⊆ {0, 1}n. Partial sums
of binomial coefficients are found in probability theory, coding theory, group the-
ory, and elsewhere. As sm(r) cannot be computed exactly for most values of r, it is
desirable for certain applications to find simple sharp upper and lower bounds for
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2 S.P. Glasby and G.R. Paseman

sm(r). Our interest in bounding 2−rsm(r) was piqued in [4] by an application to
Reed–Muller codes RM(m, r), which are linear codes of dimension sm(r).

Our main result is a generalized continued fraction a0 + Kr
i=1

bi

ai
(using Gauss’

Kettenbruch notation) for Q := (r+1)
sm(r)

(
m

r+1

)
. From this we derive useful approxi-

mations to Q, 2 + Q
r+1 , and sm(r), and with these find a maximizing input r0 for

gω,m(r).
The jth tail of the generalized continued fraction Kr

i=1
bi

ai
is denoted by Tj where

Tj :=
r

K
i=j

bi

ai
=

bj

aj +
bj+1

aj+1 +
bj+2

. . .
ar−1 +

br

ar

=
bj

aj + Tj+1
and 1 � j � r. (1.2)

If Tj = Bj

Aj
, then Tj = bj

aj+Tj+1
shows bjAj − ajBj = Tj+1Bj . By convention we

set Tr+1 = 0.
It follows from

(
m

r−i

)
=
(
m
r

)∏i
k=1

r−k+1
m−r+k that xi

(
m
r

)
�
(

m
r−i

)
� yi

(
m
r

)
for 0 � i �

r where x := 1
m and y := r

m−r+1 . Hence 1−xr+1

1−x

(
m
r

)
� sm(r) � 1−yr+1

1−y

(
m
r

)
. These

bounds are close if r
m is near 0. If r

m is near 1
2 then better approximations involve

the Berry–Esseen inequality [7] to estimate the binomial cumulative distribution
function 2−msm(r). The cumulative distribution function Φ(x) = 1√

2π

∫ x

−∞ e−t2/2 dt

is used in remark 5.3 to show that |2−msm(r) − Φ( 2r−m√
m

)| � 0.4215√
m

for 0 � r � m

and m �= 0. Each binomial
(
m
i

)
can be estimated using Stirling’s approximation as in

[10, p. 2]:
(
m
i

)
= Cm

i√
2πp(1−p)m

(
1 + O

(
1
m

))
where Ci = 1

pp(1−p)1−p and p = pi = i/m.

However, the sum
∑r

i=0

(
m
i

)
of binomials is harder to approximate. The preprint

[11] discusses different approximations to sm(r).
Sums of binomial coefficients modulo prime powers, where i lies in a congruence

class, can be studied using number theory, see [5, p. 257]. Theorem 1.1 below shows
how to find excellent rational approximations to sm(r) via generalized continued
fractions.

Theorem 1.1. Fix r, m ∈ Z where 0 � r � m and recall that sm(r) =
∑r

i=0

(
m
i

)
.

(a) If bi = 2i(r + 1 − i), ai = m − 2r + 3i for 0 � i � r, then

Q :=
(r + 1)

(
m

r+1

)
sm(r)

= a0 +Kr

i=1

bi

ai
.

(b) If 1 � j � r, then Tj = Rj/Rj−1 > 0 where the sum Rj := 2jj!
∑r−j

k=0

(
r−k

j

)(
m
k

)
satisfies bjRj−1 − ajRj = Rj+1. Also, (m − r)

(
m
r

)
− a0R0 = R1.

Since sm(m) = 2m, it follows that sm(m − r) = 2m − sm(r − 1) so we focus on
values of r satisfying 0 � r � �m

2 �. Theorem 1.1 allows us to find a sequence of
successively sharper upper and lower bounds for Q (which can be made arbitrarily
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Maximizing weighted sums of binomial coefficients using GCFs 3

tight), the coarsest being m − 2r � Q � m − 2r + 2r
m−2r+3 for 1 � r < m+3

2 , see
proposition 2.3 and corollary 2.4.

The fact that the tails T1, . . . , Tr are all positive is unexpected as bi/ai is
negative if m+3i

2 < r. This fact is crucial for approximating T1 = Kr
i=1

bi

ai
, see

theorem 1.3. Theorem 1.1 implies that T1T2 · · · Tr = Rr/R0. Since R0 = sm(r),
Rr = 2rr!, Tj = bj

aj+Tj+1
and

∏r
j=1 bj = 2r(r!)2, the surprising factorizations below

follow c.f. remark 2.1.

Corollary 1.2. We have sm(r)
∏r

j=1 Tj = 2rr! and r!sm(r) =
∏r

j=1(aj + Tj+1).

Suppose that ω > 1 and write g(r) = gω,m(r). We extend the domain of g(r) by
setting g(−1) = 0 and g(m + 1) = g(m)

ω in keeping with (1.1). It is easy to prove that
g(r) is a unimodal function c.f. [2, § 2]. Hence there exists some r0 ∈ {0, 1, . . . , m}
that satisfies

gω,m(−1) < · · · < gω,m(r0 − 1) � gω,m(r0) and

gω,m(r0) > · · · > gω,m(m + 1). (1.3)

As g(−1) < g(0) = 1 and
(

2
ω

)m = g(m) > g(m + 1) = 2m

ωm+1 , both chains of inequal-
ities are non-empty. The chains of inequalities (1.3) serve to define r0.

We use theorem 1.1 to show that r0 is commonly close to r′ := �m+2
ω+1 �. We always

have r′ � r0 (by lemma 3.3) and though r0 − r′ approaches m
2 as ω approaches 1

(see remark 4.4), if ω �
√

3 then 0 � r0 − r′ � 1 by the next theorem.

Theorem 1.3. If ω �
√

3, m ∈ {0, 1, . . .} and r′ := �m+2
ω+1 �, then r0 ∈ {r′, r′ + 1},

that is

g(0) < · · · < g(r′ − 1) � g(r′), and g(r′ + 1) > g(r′ + 2) > · · · > g(m).

Sharp bounds for Q seem powerful: they enable short and elementary proofs
of results that previously required substantial effort. For example, our proof
in [4, Theorem 1.1] for ω = 2 of the formula r0 = �m

3 � + 1 involved a lengthy
argument, and our first proof of theorem 1.4 below involved a delicate induc-
tion. By this theorem there is a unique maximum, namely r0 = r′ = �m+2

ω+1 � when
ω ∈ {3, 4, 5, . . .} and ω �= m + 1, c.f. remark 4.2. In particular, strict inequality
gω,m(r′ − 1) < gω,m(r′) holds.

Theorem 1.4. Suppose that ω ∈ {3, 4, 5, . . .} and r′ = �m+2
ω+1 �. Then

gω,m(0) < · · · < gω,m(r′ − 1) � gω,m(r′) > gω,m(r′ + 1) > · · · > gω,m(m),

with equality if and only if ω = m + 1.

Our motivation was to analyse gω,m(r) by using estimates for Q given by the
generalized continued fraction in theorem 1.1. This gives tighter estimates than the
method involving partial sums used in [4]. The plots of y = gω,m(r) for 0 � r � m
are highly asymmetrical if ω − 1 and m are small. However, if m is large the plots
exhibit an ‘approximate symmetry’ about the vertical line r = r0 (see figure 1).
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Figure 1. Plots of y = gω,24(r) for 0 � r � 24 with ω ∈ {1, 3
2 , 2, 3}, and y = g3,12(r)

Our observation that r0 is close to r′ for many choices of ω was the starting point
of our research.

Byun and Poznanović [2, Theorem 1.1] compute the maximizing input, call it
r∗, for the function fm,a(r) := (1 + a)−r

∑r
i=0

(
m
i

)
ai where a ∈ {1, 2, . . .}. Their

function equals gω,m(r) only when ω = 1 + a = 2. Some of their results and
methods are similar to those in [4] which studied the case ω = 2. They prove
that r∗ = �a(m+1)+2

2a+1 � provided m �∈ {3, 2a + 4, 4a + 5} or (a, m) �= (1, 12) when

r∗ = �a(m+1)+2
2a+1 � − 1.

In Section 2 we prove theorem 1.1 and record approximations to our generalized
continued fraction expansion. When m is large, the plots of y = gω,m(r) are remi-
niscent of a normal distribution with mean μ ≈ m

ω+1 . Section 3 proves key lemmas
for estimating r0, and applies theorem 1.1 to prove theorem 1.4. Non-integral val-
ues of ω are considered in Section 4 where theorem 1.3 is proved. In Section 5 we
estimate the maximum height g(r0) using elementary methods and estimations, see
lemma 5.1. A ‘statistical’ approximation to sm(r) is given in remark 5.3, and it is
compared in remark 5.4 to the ‘generalized continued fraction approximations’ of
sm(r) in proposition 2.3.

2. Generalized continued fraction formulas

In this section we prove theorem 1.1, namely that Q := r+1
sm(r)

(
m

r+1

)
= a0 + T1 where

T1 = Kr
i=1

bi

ai
. The equality sm(r) = r+1

a0+T1

(
m

r+1

)
is noted in corollary 2.2.

A version of theorem 1.1(a) was announced in the SCS2022 Poster room, created
to run concurrently with vICM 2022, see [9].

Proof of theorem 1.1. Set R−1 = Qsm(r) = (r + 1)
(

m
r+1

)
= (m − r)

(
m
r

)
and

Rj = 2jj!
r−j∑
k=0

(
r − k

j

)(
m

k

)
for 0 � j � r + 1.

Clearly R0 = sm(r), Rr+1 = 0 and Rj > 0 for 0 � j � r. We will prove in the fol-
lowing paragraph that the quantities Rj , aj = m − 2r + 3j, and bj = 2j(r + 1 − j)
satisfy the following r + 1 equations, where the first equation (2.1) is atypical:

R−1 − a0R0 = R1, (2.1)

bjRj−1 − ajRj = Rj+1 where 1 � j � r. (2.2)

Assuming (2.2) is true, we prove by induction that Tj = Rj/Rj−1 holds for
r + 1 � j � 1. This is clear for j = r + 1 since Tr+1 = Rr+1 = 0. Suppose
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that 1 � j � r and Tj+1 = Rj+1/Rj holds. We show that Tj = Rj/Rj−1

holds. Using (2.2) and Rj > 0 we have bjRj−1/Rj − aj = Rj+1/Rj = Tj+1.
Hence Rj/Rj−1 = bj/(aj + Tj+1) = Tj , completing the induction. Equation
(2.1) gives Q = R−1/R0 = a0 + R1/R0 = a0 + T1 as claimed. Since Rj > 0 for
0 � j � r, we have Tj = Rj/Rj−1 > 0 for 1 � j � r. This proves the first half
of theorem 1.1(b), and the recurrence Tj = bj/(aj + Tj+1) for 1 � j � r, proves
part (a).

We now show that (2.1) holds. The identity R0 = 200!
∑r

k=0

(
m
k

)
= sm(r) gives

R−1 − a0R0 = (r + 1)
(

m

r + 1

)
− (m − 2r)

r∑
i=0

(
m

i

)

= (r + 1)
(

m

r + 1

)
−

r∑
i=0

(−i + m − i − 2r + 2i)
(

m

i

)

=
r∑

i=0

[
(i + 1)

(
m

i + 1

)
− (m − i)

(
m

i

)]
+ 2

r−1∑
i=0

(r − i)
(

m

i

)
.

As (i + 1)
(

m
i+1

)
= (m − i)

(
m
i

)
, we get R−1 − a0R0 = 2

∑r−1
k=0

(
r−k
1

)(
m
k

)
= R1.

We next show that (2.2) holds. In order to simplify our calculations, we divide
by Cj := 2jj!. Using (j + 1)

(
r−k
j+1

)
= (r − k − j)

(
r−k

j

)
gives

Rj+1

Cj
=

r−j−1∑
k=0

2(j + 1)
(

r − k

j + 1

)(
m

k

)

=
r−j∑
k=0

2(r − k − j)
(

r − k

j

)(
m

k

)

=
r−j+1∑

k=0

(j − k)
(

r − k

j

)(
m

k

)
−

r−j∑
k=0

(k − 2r + 3j)
(

r − k

j

)(
m

k

)

noting that the term with k = r − j + 1 in the first sum is zero as
(
j−1

j

)
= 0.

Using the abbreviation L =
∑r−j

k=0(k − 2r + 3j)
(
r−k

j

)(
m
k

)
and using the identity

j
(
r−k

j

)
= (r + 1 − j − k)

(
r−k
j−1

)
gives

Rj+1

Cj
=

r−j+1∑
k=0

[
(r + 1 − j − k)

(
r − k

j − 1

)
− k

(
r − k

j

)](
m

k

)
− L

=
r−j+1∑

k=0

[
(r + 1 − j)

(
r − k

j − 1

)
− k

(
r − k

j − 1

)
− k

(
r − k

j

)](
m

k

)
− L

=
r−j+1∑

k=0

[
(r + 1 − j)

(
r − k

j − 1

)
− k

(
r − k + 1

j

)](
m

k

)
− L.
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However, k
(
m
k

)
= (m − k + 1)

(
m

k−1

)
, and therefore,

r−j+1∑
k=0

k

(
r − k + 1

j

)(
m

k

)
=

r−j+1∑
k=1

(m − k + 1)
(

r − k + 1
j

)(
m

k − 1

)

=
r−j∑
�=0

(m − �)
(

r − �

j

)(
m

�

)
.

Thus

Rj+1

Cj
=

r−j+1∑
k=0

(r − j + 1)
(

r − k

j − 1

)(
m

k

)
−

r−j∑
k=0

(m − k)
(

r − k

j

)(
m

k

)
− L

=
r−j+1∑

k=0

(r − j + 1)
(

r − k

j − 1

)(
m

k

)
−

r−j∑
k=0

(m − k + k − 2r + 3j)
(

r − k

j

)(
m

k

)

=
r−j+1∑

k=0

(r − j + 1)
(

r − k

j − 1

)(
m

k

)
−

r−j∑
k=0

aj︷ ︸︸ ︷
(m − 2r + 3j)

(
r − k

j

)(
m

k

)

=

bj︷ ︸︸ ︷
2j(r − j + 1) 2j−1(j − 1)!

Cj

r−j+1∑
k=0

(
r − k

j − 1

)(
m

k

)
−

r−j∑
k=0

aj

(
r − k

j

)(
m

k

)

Hence Rj+1
Cj

= bjRj−1
Cj

− ajRj

Cj
for 1 � j � r. When j = r, our convention gives

Rr+1 = 0. This proves part (b) and completes the proof of part (a). �

Remark 2.1. View m as an indeterminant, so that r!sm(r) is a polynomial in
m over Z of degree r. The factorization r!sm(r) =

∏r
j=1(aj + Tj+1) in corollary

1.2 involves the rational functions aj + Tj+1. However, theorem 1.1(b) gives
Tj+1 = Rj+1

Rj
, so that aj + Tj+1 = ajRj+Rj+1

Rj
= bjRj−1

Rj
. This determines the numer-

ator and denominator of the rational function aj + Tj+1, and explains why we have∏r
j=1(aj + Tj+1) = R0

Rr

∏r
j=1 bj = r!sm(r). This is different from, but reminiscent

of, the ratio pj+1/pj described on p. 26 of [8]. 	

Corollary 2.2. If r, m ∈ Z and 0 < r < m, then

sm(r) :=
r∑

i=0

(
m

i

)
=

(r + 1)
(

m
r+1

)
m − 2r + T1

where T1 =Kr

i=1

2i(r + 1 − i)
m − 2r + 3i

> 0.

If r = 0, then sm(r) =
(r+1)( m

r+1)
m−2r+T1

is true, but T1 = Kr
i=1

2i(r+1−i)
m−2r+3i = 0.

We will need some additional tools such as proposition 2.3 and corollary 2.4 below
in order to prove theorem 1.3.

Since sm(m − r) = 2m − sm(r − 1) approximating sm(r) for 0 � r � m reduces
to approximating sm(r) for 0 � r � �m

2 �. Hence the hypothesis r < m+3
2 in propo-

sition 2.3 and corollary 2.4 is not too restrictive. Proposition 2.3 generalizes [8,
Theorem 3.3].
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Let Hj := Kj
i=1

bi

ai
denote the jth head of the fraction Kr

i=1
bi

ai
, where H0 = 0.

Proposition 2.3. Let bi = 2i(r + 1 − i) and ai = m − 2r + 3i for 0 � i � r. If r <

m+3
2 , then a0 + Hr =

(r+1)( m
r+1)

sm(r) can be approximated using the following chain of
inequalities

a0 + H0 < a0 + H2 < · · · < a0 + H2�r/2� <a0 + H2�(r−1)/2�+1 <

· · · < a0 + H3 < a0 + H1.

Proof. Note that r equals either 2�r/2� or 2�(r − 1)/2� + 1, depending on its parity.

We showed in the proof of theorem 1.1 that
(r+1)( m

r+1)
sm(r) = a0 + Hr = a0 + Kr

i=1
bi

ai
.

Since r < m+3
2 , we have ai > 0 and bi > 0 for 1 � i � r and hence bi

ai
> 0. A

straightforward induction (which we omit) depending on the parity of r proves that
H0 < H2 < · · · < H2�r/2� < H2�(r−1)/2�+1 < · · · < H3 < H1. For example, if r = 3,
then

H0 = 0 <
b1

a1 +
b2

a2

<
b1

a1 +
b2

a2 +
b3

a3

<
b1

a1
= H1.

proves H0 < H2 < H3 < H1 as the tails are positive. Adding a0 proves the claim.
�

In asking whether gω,m(r) is a unimodal function, it is natural to consider the
ratio gω,m(r + 1)/gω,m(r) of successive terms. This suggests defining

t(r) = tm(r) :=
sm(r + 1)

sm(r)
= 1 +

(
m

r+1

)
sm(r)

= 1 +
Q

r + 1
. (2.3)

We will prove in lemma 3.1 that t(r) is a strictly decreasing function that
determines when gω,m(r) is increasing or decreasing, and tm(r0 − 1) � ω > tm(r0)
determines r0.

Corollary 2.4. We have m − 2r � (r+1)( m
r+1)

sm(r) for r � 0, and

(r + 1)
(

m
r+1

)
sm(r)

� m − 2r +
2r

m − 2r + 3
for 0 � r <

m + 3
2

.

Hence m+2
r+1 � tm(r) + 1 for r � 0, and

m + 2
r + 1

� tm(r) + 1 � m + 2
r + 1

+
2r

(r + 1)(m − 2r + 3)
for 0 � r <

m + 3
2

.

Also m+2
r+1 < tm(r) + 1 for r > 0, and the above upper bound is strict for

1 < r < m+3
2 .
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Table 1. Values of gw,m(r)

r 0 1 2 3 · · · m − 2 m − 1 m

gω,m(r) 1 m+1
ω

m2+m+2
2ω2

m3+5m+6
6ω3 · · · 2m−m−1

ωm−2
2m−1
ωm−1 ( 2

ω )m

Proof. We proved Q =
(r+1)(m

r )
sm(r) = (m − 2r) + Kr

i=1
2i(r+1−i)
m−2r+3i in theorem 1.1.

Hence m − 2r =
(r+1)( m

r+1)
sm(r) if r = 0 and m − 2r <

(r+1)( m
r+1)

sm(r) if 1 � r < m+3
2

by proposition 2.3. Clearly m − 2r < 0 � (r+1)( m
r+1)

sm(r) if m+3
2 � r � m. Similarly

(r+1)( m
r+1)

sm(r) = m − 2r + 2r
m−2r+3 if r = 0, 1, and again proposition 2.3 shows that

(r+1)( m
r+1)

sm(r) < m − 2r + 2r
m−2r+3 if 1 < r < m+3

2 . The remaining inequalities (and

equalities) follow similarly since tm(r) + 1 = 2 + ( m
r+1)

sm(r) and 2 + m−2r
r+1 = m+2

r+1 . �

3. Estimating the maximizing input r0

Fix ω > 1. In this section we consider the function g(r) = gω,m(r) given by (1.1).
As seen in table 1, it is easy to compute g(r) if r is near 0 or m. For m large and
r near 0, we have ‘sub-exponential’ growth g(r) ≈ mr

r!ωr . Similarly for r near m, we
have exponential decay g(r) ≈ 2m

ωr . The middle values require more thought.
On the other hand, the plots y = g(r), 0 � r � m, exhibit a remarkable visual

symmetry when m is large. The relation sm(m − r) = 2m − sm(r − 1) and the dis-
torting scale factor of ω−r shape the plots. The examples in figure 1 show an
approximate left–right symmetry about a maximizing input r ≈ m

ω+1 . It surprised
the authors that in many cases there exists a simple exact formula for the max-
imizing input (it is usually unique as corollary 3.2 suggests). In figure 1 we have
used different scale factors for the y-axes. The maximum value of gω,m(r) varies
considerably as ω varies (c.f. lemma 5.1), so we scaled the maxima (rounded to the
nearest integer) to the same height.

Lemma 3.1. Recall that g(r) = ω−rsm(r) by (1.1) and t(r) = sm(r+1)
sm(r) by (2.3).

(a) t(r − 1) > t(r) > m−r
r+1 for 0 � r � m where t(−1) := ∞;

(b) g(r) < g(r + 1) if and only if t(r) > ω;

(c) g(r) � g(r + 1) if and only if t(r) � ω;

(d) g(r) > g(r + 1) if and only if ω > t(r);

(e) g(r) � g(r + 1) if and only if ω � t(r);

(f) if ω > 1 then some r0 ∈ {0, . . . , m} satisfies t(r0 − 1) � ω > t(r0), and this
condition is equivalent to

g(0) < · · · < g(r0 − 1) � g(r0) and g(r0) > · · · > g(m).
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Proof. (a) We prove, using induction on r, that t(r − 1) > t(r) >
(

m
r+1

)
/
(
m
r

)
holds

for 0 � r � m. These inequalities are clear for r = 0 as ∞ > m + 1 > m. For real
numbers α, β, γ, δ > 0, we have αδ − βγ > 0 if and only if α

β > α+γ
β+δ > γ

δ ; that is,
the mediant α+γ

β+δ of α
β and γ

δ lies strictly between α
β and γ

δ . If 0 < r � m, then by
induction

t(r − 1) >

(
m
r

)(
m

r−1

) =
m − r + 1

r
>

m − r

r + 1
=

(
m

r+1

)(
m
r

) .

Applying the ‘mediant sum’ to t(r − 1) = sm(r)
sm(r−1) >

( m
r+1)
(m

r ) gives

sm(r)
sm(r − 1)

>
sm(r) +

(
m

r+1

)
sm(r − 1) +

(
m
r

) =
sm(r + 1)

sm(r)
= t(r) >

(
m

r+1

)(
m
r

) .

Therefore t(r − 1) > t(r) >
(

m
r+1

)
/
(
m
r

)
= m−r

r+1 completing the induction, and prov-
ing (a).

(b,c,d,e) The following are equivalent: g(r) < g(r + 1); ωsm(r) < sm(r + 1); and
ω < t(r). The other claims are proved similarly by replacing < with �, >, �.

(f) Observe that t(m) = sm(m+1)
sm(m) = 2m

2m = 1. By part (a), the function
y = t(r) is decreasing for −1 � r � m. Since ω > 1, there exists an integer
r0 ∈ {0, . . . , m} such that ∞ = t(−1) > · · · > t(r0 − 1) � ω > t(r0) > · · · >
t(m) = 1. By parts (b,c,d,e) an equivalent condition is g(0) < · · · < g(r0 − 1) �
g(r0) and g(r0) > · · · > g(m). �

The following is an immediate corollary of lemma 3.1(f).

Corollary 3.2. If t(r0 − 1) > ω, then the function g(r) in (1.1) has a unique
maximum at r0. If t(r0 − 1) = ω, then g(r) has two equal maxima, one at r0 − 1
and one at r0.

As an application of theorem 1.1 we show that the largest maximizing input
r0 for gω,m(r) satisfies �m+2

ω+1 � � r0. There are at most two maximizing inputs by
corollary 3.2.

Lemma 3.3. Suppose that ω > 1 and m ∈ Z, m � 0. If r′ := �m+2
ω+1 �, then

g(−1) < g(0) < · · · < g(r′ − 1) � g(r′), and g(−1) < · · · < g(r′ − 1) < g(r′)

if r′ > 1 or ω �= m + 1.

Proof. The result is clear when r′ = 0. If r′ = 1, then r′ � m+2
ω+1 gives ω �

m + 1 or g(0) � g(1). Hence g(0) < g(1) if ω �= m + 1. Suppose that r′ > 1. By
lemma 3.1(c,f) the chain g(0) < · · · < g(r′) is equivalent to g(r′ − 1) < g(r′), that is
t(r′ − 1) > ω. However, t(r′ − 1) + 1 > m+2

r′ by corollary 2.4 and r′ � m+2
ω+1 implies

m+2
r′ � ω + 1. Hence t(r′ − 1) + 1 > ω + 1, so that t(r′ − 1) > ω as desired. �

Proof of theorem 1.4. Suppose that ω ∈ {3, 4, . . .}. Then g(0) < . . .
< g(r′ − 1) � g(r′) by lemma 3.3 with strictness when ω �= m + 1. If ω = m + 1,
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then r′ = �m+2
ω+1 � = 1 and g(0) = g(1) as claimed. It remains to show that

g(r′) > g(r′ + 1) > · · · > g(m). However, we need only prove that g(r′) > g(r′ + 1)
by lemma 3.1(f), or equivalently ω > t(r′) by lemma 3.1(d).

Clearly ω � 3 implies r′ � m+2
ω+1 � m+2

4 . As 0 � r′ < m+3
2 , corollary 2.4 gives

m + 2
r′ + 1

+
2r′

(r′ + 1)(m − 2r′ + 3)
� t(r′) + 1.

Hence ω + 1 > t(r′) + 1 holds if ω + 1 > m+2
r′+1 + 2r′

(r′+1)(m−2r′+3) . Since ω + 1 is
an integer, we have m + 2 = r′(ω + 1) + c where 0 � c � ω. It follows from
0 � r′ � m+2

4 that 2r′
m−2r′+3 < 1. This inequality and m + 2 � r′(ω + 1) + ω gives

m + 2 +
2r′

m − 2r′ + 3
< r′(ω + 1) + ω + 1 = (r′ + 1)(ω + 1).

Thus ω + 1 > m+2
r′+1 + 2r′

(r′+1)(m−2r′+3) � t(r′) + 1, so ω > t(r′) as required. �

Remark 3.4. The proof of theorem 1.4 can be adapted to the case ω = 2. If m + 2 =
3r′ + c where c � ω − 1 = 1, then 2r′

m−2r′+3 = 2r′
r′+c+1 < 2, and if c = ω = 2, then

a sharper H2-bound must be used. This leads to a much shorter proof than [4,
Theorem 1.1]. 	

4. Non-integral values of ω

In this section, we prove that the maximum value of g(r) is g(r′) or g(r′ + 1) if
ω �

√
3. Before proving this result (theorem 1.3), we shall prove two preliminary

lemmas.

Lemma 4.1. Suppose that ω > 1 and r′ := �m+2
ω+1 �. If m+2

r′+1 �
√

3 + 1, then

g(−1) < g(0) < · · · < g(r′ − 1) � g(r′), and g(r′ + 1) > g(r′ + 2) > · · · > g(m).

Proof. It suffices, by lemma 3.1(f) and lemma 3.3 to prove that
g(r′ + 1) > g(r′ + 2). The strategy is to show ω > t(r′ + 1), that is ω + 1 > t(r′ +
1) + 1. However, ω + 1 > m+2

r′+1 , so it suffices to prove that
m+2
r′+1 � t(r′ + 1) + 1. Since r′ + 1 � m+2√

3+1
< m+2

2 , we can use corollary 2.4 and just

prove that m+2
r′+1 � m+2

r′+2 + 2r′+2
(r′+2)(m−2r′+1) . This inequality is equivalent to m+2

r′+1 �
2r′+2

m−2r′+1 . However, m+2
r′+1 �

√
3 + 1, so we need only show that

√
3 + 1 � 2(r′+1)

m−2r′+1 ,
or equivalently m − 2r′ + 1 � (

√
3 − 1)(r′ + 1). This is true since m+2

r′+1 �
√

3 + 1
implies m − 2r′ + 1 � (

√
3 − 1)r′ +

√
3 > (

√
3 − 1)(r′ + 1). �

Remark 4.2. The strict inequality g(r′ − 1) < g(r′) holds by lemma 3.3 if r′ > 1
or ω �= m + 1. It holds vacuously for r′ = 0. Hence adding the additional hypothesis
that ω �= m + 1 if r′ = 1 to lemma 4.1 (and theorem 1.3), we may conclude that
the inequality g(r′ − 1) � g(r′) is strict.
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Remark 4.3. In lemma 4.1, the maximum can occur at r′ + 1. If ω = 2.5 and
m = 8, then r′ = � 10

3.5� = 2 and m+2
r′+1 = 10

3 �
√

3 + 1 however g2.5,8(2) = 740
125 <

744
125 = g2.5,8(3). 	

Remark 4.4. The gap between r′ and the largest maximizing input r0 can be
arbitrarily large if ω is close to 1. For ω > 1, we have r′ = �m+2

ω+1 � < m+2
2 . If

1 < ω � 1
1−2−m , then g(m − 1) � g(m), so r0 = m. Hence r0 − r′ > m−2

2 .

Remark 4.5. Since r′ � �m+2
ω+1 � < r′ + 1, we see that r′ + 1 ≈ m+2

ω+1 , so that
m+2
r′+1 ≈ ω + 1. Thus lemma 4.1 suggests that if ω �

√
3, then gω,m(r) may

have a maximum at r′ or r′ + 1. This heuristic reasoning is made rigorous in
theorem 1.3. 	

Remark 4.6. Theorem 1.1 can be rephrased as tm(r) = sm(r+1)
sm(r) = m−r+1

r+1 + Km(r)
r+1

where

Km(r) =
r

K
i=1

2i(r + 1 − i)
m − 2r + 3i

=
2r

m − 2r + 3 +
4r − 4

m − 2r + 6 +
6r − 12

. . .
m + r − 3 +

2r

m + r

.

(4.1)
The following lemma repeatedly uses the expression ω > tm(r + 1). This is equiva-
lent to ω > m−r

r+2 + Km(r+1)
r+2 , that is (ω + 1)(r + 2) > m + 2 + Km(r + 1). 	

Lemma 4.7. Let m ∈ {0, 1, . . .} and r′ = �m+2
ω+1 �. If any of the following three

conditions are met, then gω,m(r′ + 1) > · · · > gω,m(m) holds: (a) ω � 2, or (b)
ω � 1+

√
97

6 and r′ �= 2, or (c) ω �
√

3 and r′ �∈ {2, 3}.

Proof. The conclusion gω,m(r′ + 1) > · · · > gω,m(m) holds trivially if r′ + 1 � m.
Suppose henceforth that r′ + 1 < m. Except for the excluded values of r′, ω, we
will prove that gω,m(r′ + 1) > gω,m(r′ + 2) holds, as this implies gω,m(r′ + 1) >
· · · > gω,m(m) by lemma 3.1(f). Hence we must prove that ω > tm(r′ + 1) by lemma
3.1(d).

Recall that r′ � m+2
ω+1 < r′ + 1. If r′ = 0, then m + 2 < ω + 1, that is ω > m + 1 >

t(1) as desired. Suppose now that r′ = 1. There is nothing to prove if m = r′ + 1 =
2. Assume that m > 2. Since m + 2 < 2(ω + 1), we have 2 < m < 2ω. The last line
of remark 4.6 and (4.1) give the desired inequality:

ω >
m

2
� m − 1

3
+

4

3
(

m − 1 +
4

m + 2

) = tm(2).

In summary, gω,m(r′ + 1) > · · · > gω,m(m) holds for all ω > 1 if r′ ∈ {0, 1}.
We next prove gω,m(r′ + 1) > gω,m(r′ + 2), or equivalently ω > tm(r′ + 1) for

r′ large enough, depending on ω. We must prove that (ω + 1)(r′ + 2) > m + 2 +
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Km(r′ + 1) by remark 4.6. Writing m + 2 = (ω + 1)(r′ + ε) where 0 � ε < 1, our
goal, therefore, is to show (ω + 1)(2 − ε) > Km(r′ + 1). Using (4.1) gives

Km(r′ + 1) =
2(r′ + 1)

m − 2(r′ + 1) + 3 + T =
2(r′ + 1)

(ω + 1)(r′ + ε) − 2(r′ + 1) + 1 + T

where T > 0 by theorem 1.1 as r′ > 0. Rewriting the denominator using

(ω + 1)(r′ + ε) − 2(r′ + 1) = (ω − 1)(r′ + 1) − (ω + 1)(1 − ε),

our goal (ω + 1)(2 − ε) > Km(r′ + 1) becomes

(ω + 1)(2 − ε) [(ω − 1)(r′ + 1) − (ω + 1)(1 − ε) + 1 + T ] > 2(r′ + 1).

Dividing by (2 − ε)(r′ + 1) and rearranging gives

(ω2 − 1) +
(ω + 1)(1 + T )

r′ + 1
>

2
2 − ε

+
(ω + 1)2(1 − ε)

r′ + 1
.

This inequality may be written (ω2 − 1) + λ > 2
2−ε + μ(1 − ε) where λ =

(ω+1)(1+T )
r′+1 > 0 and μ = (ω+1)2

r′+1 > 0. We view f(ε) := 2
2−ε + μ(1 − ε) as a function

of a real variable ε where 0 � ε < 1. However, f(ε) is concave as the second deriva-
tive f ′′(ε) = 4

(2−ε)3 is positive for 0 � ε < 1. Hence the maximum value occurs at
an end point: either f(0) = 1 + μ or f(1) = 2. Therefore, it suffices to prove that
(ω2 − 1) + λ > max{2, 1 + μ}.

If 2 � 1 + μ, then the desired bound (ω2 − 3) + λ > 0 holds as ω �
√

3. Sup-
pose now that 2 < 1 + μ. We must show (ω2 − 1) + λ > 1 + μ, that is ω2 − 2 >

μ − λ = (ω+1)(ω−T )
r′+1 . Since T > 0, a stronger inequality (that implies this) is

ω2 − 2 � (ω+1)ω
r′+1 . The (equivalent) quadratic inequality r′ω2 − ω − 2(r′ + 1) � 0 in

ω is true provided ω � 1+
√

1+8r′(r′+1)

2r′ . This says ω � 2 if r′ = 2, and ω � 1+
√

97
6 if

r′ = 3. If r′ � 4, we have

1 +
√

1 + 8r′(r′ + 1)
2r′

=
1

2r′
+

√
1

4(r′)2
+ 2

(
1 +

1
r′

)
� 1

8
+

√
1
64

+
5
2

<
√

3.

The conclusion now follows from the fact that 2 > 1+
√

97
6 >

√
3. �

Proof of theorem 1.3. By lemma 4.1 it suffices to show that g(r′ + 1) > g(r′ + 2)
holds when r′ + 1 < m and ω �

√
3. By lemma 4.7(a), we can assume that√

3 � ω < 2 and r′ ∈ {2, 3}. For these choices of ω and r′, we must show that
ω > tm(r′ + 1) by lemma 3.1 for all permissible choices of m. Since (ω + 1)r′ �
m + 2 < (ω + 1)(r′ + 1), when r′ = 2 we have 5 < 2(

√
3 + 1) � m + 2 < 9 so that

4 � m � 6. However, tm(3) equals 16
15 , 31

26 , 19
14 for these values of m. Thus

√
3 > tm(3)

holds as desired. Similarly, if r′ = 3, then 8 < 3(
√

3 + 1) � m + 2 < 12 so that
7 � m � 9. In this case tm(4) equals 40

33 , 219
163 , 191

128 for these values of m. In each
case

√
3 > tm(4), so the proof is complete. �
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Remark 4.8. We place remark 4.4 in context. The conclusion of theorem 1.3
remains true for values of ω smaller than

√
3 and not ‘too close to 1’ and m

is ‘sufficiently large’. Indeed, by adapting the proof of lemma 4.7 we can show
there exists a sufficiently large integer d such that m > d4 and ω > 1 + 1

d implies
g(r′ + d) > g(r′ + d + 1). This shows that r′ � r0 � r′ + d, so r0 − r′ � d. We omit
the technical proof of this fact. 	

Remark 4.9. The sequence, a0 + H1, . . . , a0 + Hr terminates at r+1
sm(r)

(
m

r+1

)
by theorem 1.1. We will not comment here on how quickly the alternating
sequence in proposition 2.3 converges when r < m+3

2 . If r = m, then a0 =
−m and m+1

sm(m+1)

(
m

m+1

)
= 0, so theorem 1.1 gives the curious identity Hm =

Km
i=1

2i(m+1−i)
3i−m = m. If ω is less than

√
3 and ‘not too close to 1’, then we believe

that r0 is approximately �m+2
ω+1 + 2

ω2−1�, c.f. remark 4.8.

5. Estimating the maximum value of gω,m(r)

In this section we relate the size of the maximum value gω,m(r0) to the size of
the binomial coefficient

(
m
r0

)
. In the case that we know a formula for a maximizing

input r0, we can readily estimate gω,m(r0) using approximations, such as [10], for
binomial coefficients.

Lemma 5.1. The maximum value gω,m(r0) of gω,m(r), 0 � r � m, satisfies

1
(ω − 1)ωr0

(
m

r0 + 1

)
< gω,m(r0) � 1

(ω − 1)ωr0−1

(
m

r0

)
.

Proof. Since g(r0) is a maximum value, we have g(r0 − 1) � g(r0). This is equivalent
to (ω − 1)sm(r0 − 1) �

(
m
r0

)
as sm(r0) = sm(r0 − 1) +

(
m
r0

)
. Adding (ω − 1)

(
m
r0

)
to

both sides gives the equivalent inequality (ω − 1)sm(r0) � ω
(

m
r0

)
. This proves the

upper bound.
Similar reasoning shows that the following are equivalent: (a) g(r0) > g(r0 + 1);

(b) (ω − 1)sm(r0) >
(

m
r0+1

)
; and (c) gω,m(r0) > 1

(ω−1)ωr0

(
m

r0+1

)
. �

In theorem 1.3 the maximizing input r0 satisfies r0 = r′ + d where d ∈ {0, 1}.
In such cases when r0 and d are known, we can bound the maximum gω,m(r0) as
follows.

Corollary 5.2. Set r′ := �m+2
ω+1 � and k := m + 2 − (ω + 1)r′. Suppose that r0 =

r′ + d and G = 1
(ω−1)ωr0−1

(
m
r0

)
. Then

0 � k < ω + 1, d � 0 and 1 −
1 + d − d+2−k

ω

r0 + 1
<

gω,m(r0)
G

� 1.

Proof. By lemma 3.3, r0 = r′ + d where d ∈ {0, 1, . . .}. Since r′ = �m+2
ω+1 �, we have

m + 2 = (ω + 1)r′ + k where 0 � k < ω + 1. The result follows from lemma 5.1 and
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m = (ω + 1)(r0 − d) + k − 2 as
(

m
r0+1

)
= m−r0

r0+1

(
m
r0

)
and m−r0

r0+1 equals

ω(r0 − d) − d + k − 2
r0 + 1

= ω − ω + ωd + d + 2 − k

r0 + 1
= ω

(
1 −

1 + d + d+2−k
ω

r0 + 1

)
.

�

The following remark is an application of the Chernoff bound, c.f. [11, Section 4].
Unlike theorem 1.1, it requires the cumulative distribution function Φ(x), which
is a non-elementary integral, to approximate sm(r). It seems to give better
approximations only for values of r near m

2 , see remark 5.4.

Remark 5.3. We show how the Berry–Esseen inequality for a sum of bino-
mial random variables can be used to approximate sm(r). Let B1, . . . , Bm be
independent identically distributed binomial variables with a parameter p where
0 < p < 1, so that P (Bi = 1) = p and P (Bi = 0) = q := 1 − p. Let Xi := Bi − p
and X := 1√

mpq (
∑m

i=1 Xi). Then

E(Xi) = E(Bi) − p = 0, E(X2
i ) = pq, and E(|Xi|3) = pq(p2 + q2).

Hence E(X) = 1√
mpq (

∑m
i=1 E(Xi)) = 0 and E(X2) = 1

mpq (
∑m

i=1 E(X2
i )) = 1. By

[7, Theorem 2] the Berry–Esseen inequality applied to X states that

|P (X � x) − Φ(x)| � Cpq(p2 + q2)
(pq)3/2

√
m

=
C(p2 + q2)
√

mpq
for all m ∈ {1, 2, . . .} and x ∈ R,

where the constant C := 0.4215 is close to the lower bound C0 = 10+
√

3
6
√

2π
= 0.4097 · · ·

and Φ(x) = 1√
2π

∫ x

−∞ e−t2/2 dt = 1
2

(
1 + erf

(
x√
2

))
is the cumulative distribution

function for standard normal distribution.
Writing B =

∑m
i=1 Bi we have P (B � b) =

∑�b�
i=0

(
m
i

)
piqm−i for b ∈ R. Thus X =

B−mp√
mpq and x = b−mp√

mpq satisfy

∣∣∣∣P (B � b) − Φ
(

b − mp
√

mpq

)∣∣∣∣ � C(p2 + q2)
√

mpq
for all m ∈ {1, 2, . . .} and b ∈ R.

Setting p = q = 1
2 , and taking b = r ∈ {0, 1, . . . , m} shows∣∣∣∣2−msm(r) − Φ

(
2r − m√

m

)∣∣∣∣ � 0.4215√
m

for m ∈ {1, 2, . . .}.

Remark 5.4. Let a0 + Hk be the generalized continued fraction approximation to
(r+1)( m

r+1)
sm(r) suggested by theorem 1.1, where Hk := Kk

i=1
bi

ai
, and k is the depth of
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Table 2. Upper bounds for |em,r,k| and Em,r for m = 104

r |em,r,3| |em,r,5| |em,r,21| Em,r

1000 2.3 × 10−17 6.6 × 10−25 5.7 × 10−79 1

4500 1.3 × 10−7 2.5 × 10−10 7.1 × 10−27 0.018
5000 0.93 0.86 0.24 0.008

.

the generalized continued fraction. We compare the following two quantities:

em,r,k := 1 −
(r + 1)

(
m

r+1

)
(a0 + Hk)sm(r)

and Em,r :=

∣∣∣∣∣1 −
2mΦ( 2r−m√

m
)

sm(r)

∣∣∣∣∣ � 0.4215 · 2m

√
msm(r)

.

The sign of em,r,k is governed by the parity of k by proposition 2.3. We shall assume
that r � m

2 . As 2m

sm(r) ranges from 2m to about 2 as r ranges from 0 to �m
2 �, it is

clear that the upper bound for Em,r will be huge unless r satisfies m−ε
2 � r � m

2
where ε is ‘small’ compared to m. By contrast, the computer code [3] verifies that
the same is true for Em,r, and shows that |em,r,k| is small, even when k is tiny, when
0 � r < m−ε

2 , see table 2. Hence the ‘generalized continued fraction’ approximation
to sm(r) is complementary to the ‘statistical’ approximation, as shown in table 2.
The reader can extend table 2 by running the code [3] written in the Magma [1]
language, using the online calculator http://magma.maths.usyd.edu.au/calc/, for
example.
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