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Let m, r € Z and w € R satisfy 0 <7 <m and w > 1. Our main result is a
generalized continued fraction for an expression involving the partial binomial sum
sm(r) =321_o ("}'). We apply this to create new upper and lower bounds for s (1)
and thus for gu, m(r) = w™"sm(r). We also bound an integer ro € {0, 1, ..., m}
such that g%m(O) < << gw,m(ro — 1) < gw,m(TO) and gw,m(TO) > > gw,m(m)-
For real w > /3 we prove that ro € {L%j, LZ}TJ?J + 1}, and also rg = LTIEJ for
we{3,4,...} orw=2and 3tm.
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1. Introduction

Given a real number w > 1 and integers m, r satisfying 0 < r < m, set

) =30 (1) and 400) = () = ), (1.1)

=0

where the binomial coefficient (') equals [,_, =KL for i >0 and () = 1.
The weighted binomial sum g, ., (r) and the partial binomial sum $,,,(r) = g1,m (1)
appear in many formulas and inequalities, e.g. the cumulative distribution function
27™g.,(r) of a binomial random variable with p = ¢ = % as in remark 5.3, and the
Gilbert—Varshamov bound [6, Theorem 5.2.6] for a code C' C {0, 1}". Partial sums
of binomial coefficients are found in probability theory, coding theory, group the-
ory, and elsewhere. As s,,(r) cannot be computed exactly for most values of r, it is
desirable for certain applications to find simple sharp upper and lower bounds for
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$m(r). Our interest in bounding 27"s,,(r) was piqued in [4] by an application to
Reed-Muller codes RM(m, ), which are linear codes of dimension s,, (7).

Our main result is a generalized continued fraction ag + Kj_ 1@7: (using Gauss’

Kettenbruch notatlon) for Q := (r+1) (T +1> From this we derive useful approxi-

Sm (1)
mations to @, 2 + and s,,,(r), and with these find a maximizing input rq for
Juw, m(r)

The jth tail of the generalized continued fraction /C]_ —? is denoted by 7; where

+17

T b; b, b, )
7;— = —_ = J = J and 1 < ] < T. (1.2)
i=j % bj+1 a; + Tjn
! aj + b
a1+ It2
ar—1 + —
If 7, = %7 then 7; = aj:%ﬂ shows b;A; —a;B; = T;11B;. By convention we
set 7,41 = 4
It follows from (") = (") 1T = krfk that z* () < ([™,) < y'(7) for 0 <i <
r 7wr+1 m r+1
r where z:= = and y := =" Hence 55— (") < sn(r) < ! 74— (7)- These

bounds are close if ;- is near 0. If -~ is near % then better approximations involve
the Berry-Esseen inequality [7] to estimate the binomial cumulative distribution
function 27™s,, (r). The cumulative distribution function ®(z) = \/% ffoo e t/2dt

is used in remark 5.3 to show that [27"s,,(r) — @(%ﬁmﬂ < 0'4% for 0 <r<m

and m # 0. Each binomial ( ) can be estimated using Stirling’s approximation as in

[10,p.2]: (7) = L( + 0 (L)) where C; =

1

2mp(1—p)m pr(1—p)'=?

However, the sum Y ._, (T) of binomials is harder to approximate. The preprint
[11] discusses different approximations to s,,(r).

Sums of binomial coefficients modulo prime powers, where ¢ lies in a congruence
class, can be studied using number theory, see [5, p. 257]. Theorem 1.1 below shows
how to find excellent rational approximations to s,,(r) via generalized continued
fractions.

and p = p; = i/m.

THEOREM 1.1. Fizr, m € Z where 0 < r < m and recall that $,,(r) = Z::o (m)

(2

(a) If b; =2i(r+1—14), a; =m —2r + 3i for 0 <i < r, then

_(T—’_]‘)(T’Z-Ll) ao
=m0t K

(b) If1<j <, thenT; = R;j/R;j_1 > 0 where the sum R; := 27§15 11 o (" IS
satzsﬁes bjRj_1 — a]R = Rj1. Also, (m —r)(") —agRo = R1.

zla

Since sy, (m) = 2™, it follows that s,,(m —r) = 2™ — s, (r — 1) so we focus on
values of r satisfying 0 <7 < [%]. Theorem 1.1 allows us to find a sequence of
successively sharper upper and lower bounds for ) (which can be made arbitrarily
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tight), the coarsest being m — 2r < Q < m —2r + m for 1<r< mT'”, see
proposition 2.3 and corollary 2.4.

The fact that the tails 77, ..., 7, are all positive is unexpected as b; /aL is
negative if %31 < r. This fact is crucial for approximating 77 = K[_ lai, see

theorem 1.3. Theorem 1.1 implies that 775 -7, = R,/Ry. Since Ry = s, (r),

R, =2"rl,T; = aj_:%ﬂ and H§:1 b; = 27(r!)?, the surprising factorizations below

follow c.f. remark 2.1.

COROLLARY 1.2. We have sy, (1) [[j=, T; = 2"r! and rlsp(r) = [Ti2 (@ + Tj41).

Suppose that w > 1 and write g(r) = gu.m (7). We extend the domain of g(r) by
setting g(—1) = 0and g(m + 1) = (m) in keeping with (1.1). It is easy to prove that
g(r) is a unimodal function c.f. [2, § 2]. Hence there exists some rg € {0, 1, ..., m}
that satisfies

gw,m(_l) << gw,m(ro - 1) < gw,m(’l"o) and
gw,m(TO) > > gw,m(m + 1) (13)

Asg(—1) < g(0) =1and (%)m =g(m)>gim+1) = %, both chains of inequal-
ities are non-empty. The chains of inequalities (1.3) serve to define .
We use theorem 1.1 to show that rg is commonly close to r’ := Lm+2j We always
m

have r’ < 7o (by lemma 3.3) and though ro — 7" approaches % as w approaches 1

(see remark 4.4), if w > V/3 then 0 < 79 — 7’ < 1 by the next theorem.

THEOREM 1.3. Ifw >3, me{0,1,...} and ' := ZLT—HZJ’ then rog € {r', ' + 1},
that is

g(0) < < g(r' =1) < g(r’), and g(r'+1)>g(r' +2)>--- > g(m).

Sharp bounds for () seem powerful: they enable short and elementary proofs
of results that previously required substantial effort. For example, our proof
n [4, Theorem 1.1] for w =2 of the formula ro = [%] + 1 involved a lengthy
argument, and our first proof of theorem 1.4 below involved a delicate induc-
tion. By this theorem there is a unique maximum, namely ro =7’ = Lm+2j when
we{3,4,5 ...} and w#m+1, c.f. remark 4.2. In particular, strict mequality
Gum (' — 1) < Gw,m(r") holds.

THEOREM 1.4. Suppose that w € {3, 4, 5, ...} and ' = LWTJ Then
gw,m(o) << gw,m(r/ - ]-) < gw,m( ) > gw m(r + 1) - > gw,m(m)a

with equality if and only if w =m + 1.

Our motivation was to analyse g, . (r) by using estimates for @) given by the
generalized continued fraction in theorem 1.1. This gives tighter estimates than the
method involving partial sums used in [4]. The plots of ¥ = gu.m(r) for 0 <r < m
are highly asymmetrical if w — 1 and m are small. However, if m is large the plots
exhibit an ‘approximate symmetry’ about the vertical line r = r¢ (see figure 1).
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Figure 1. Plots of y = gu,,24(r) for 0 < r < 24 with w € {1, % , 3}, and y = g3,12(7)

Our observation that rqg is close to v’ for many choices of w was the starting point
of our research.

Byun and Poznanovié [2, Theorem 1.1] compute the maximizing input, call it
r*, for the function frq(r) :== (1+a)~">i_, (7)a’ where a € {1, 2, ...}. Their
function equals gy, (r) only when w=1+a=2. Some of their results and
methods are similar to those in [4] which studied the case w = 2. They prove

that r* = L%J provided m ¢ {3, 2a + 4, 4a + 5} or (a, m) # (1, 12) when

% _ | a(m+1)+2 1
"= L 2.a+1 J T . . .
In Section 2 we prove theorem 1.1 and record approximations to our generalized

continued fraction expansion. When m is large, the plots of y = g, () are remi-
niscent of a normal distribution with mean p = o . Section 3 proves key lemmas
for estimating rg, and applies theorem 1.1 to prove theorem 1.4. Non-integral val-
ues of w are considered in Section 4 where theorem 1.3 is proved. In Section 5 we
estimate the maximum height g(r¢) using elementary methods and estimations, see
lemma 5.1. A ‘statistical” approximation to s,,(r) is given in remark 5.3, and it is
compared in remark 5.4 to the ‘generalized continued fraction approximations’ of
$m/(r) in proposition 2.3.

2. Generalized continued fraction formulas

In this section we prove theorem 1.1, namely that Q := S':(i) (,71) = ao + T1 where
T, = Kj_, 2. The equality s,,(r) = a7 (1) is moted in corollary 2.2.

A version of theorem 1. 1(a) was announced in the SCS2022 Poster room, created
to run concurrently with vICM 2022, see [9].

Proof of theorem 1.1. Set R_1 = Q s, (1) = (r + 1)(TT1) =(m—r)(") and

r—j
Rj:ij!Z<rjk>(7:) for0<j<r+1.
k=0

Clearly Ry = s (r), Rr41 =0 and R; > 0 for 0 < j < r. We will prove in the fol-
lowing paragraph that the quantities RJ7 a; =m — 27" +3j, and b; = 2j(r +1 — j)
satisfy the following r + 1 equations, where the first equation (2.1) is atypical:

Rfl — aoRo = Rl, (21)
bjRj_l — ajRj = Rj-i-l where 1 g.] § T. (2.2)

Assuming (2.2) is true, we prove by induction that 7; = R;/R;_1 holds for
r+1>j>1. This is clear for j=r-+1 since 7,41 = R,4+1 =0. Suppose
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that 1<j<r and 741 =R;11/R; holds. We show that 7; =R;/R;_:
holds. Using (2.2) and Rj >0 we have bjijl/Rj —aj = j+1/Rj = 7}+1.
Hence R;/Rj_1=0b;/(a; +Tj+1) =7;, completing the induction. Equation
(2.1) gives Q =R_1/Ry=ao+ R1/Ry =ao+ 71 as claimed. Since R; >0 for
0<j<r, we have 7; = R;/Rj_1 >0 for 1< j <r. This proves the first half
of theorem 1.1(b), and the recurrence 7; = b;/(aj + 7;41) for 1 < j <r, proves
part (a).
We now show that (2.1) holds. The identity Ry = 2°0!>"; () = sm(r) gives

r

R_1 —agRy = (r—|—1)<r7:1> —(m—2r)) " <T>

i=0

:(r+1)<r7_7:1> —i(—i+m—i—2r+2z’)<7?>

=0

-S o0 0) oo ()] rege-o(7)

7

As (i + 1)(1111) = (m—14)(7), we get R_y —agRy = 2 Zz;é (Tzk) (") = Ru.
We next show that (2.2) holds. In order to simplify our calculations, we divide

by C; := 274!. Using (j + 1)(;;’;) =(r—k —j)(T;k) gives

I™Me

on(5)(E) S50

noting that the term with k=7 —j+ 1 in the first sum is zero as (7;1) =0.
Using the abbreviation L = Z;;%(k —2r + 3j)(T;k) () and using the identity

k
j(T;k) =(r+1—-j— k)(::’f) gives

r—j+1 -

Ty Lo () ()G -
“E e () () (6 -
=% e ()
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However, k( ) (m—Fk+ 1)( ) and therefore,
+

)R (76

Thus
r—j+1 r—j
%3 G0 (550
= r—j+1 - m—k ) - L
C; kZ:o ( ) j—1 k kZ:o( ) J k
ke r—k\ /m — r—k\ [(m
S () ks ()
I;) ( 1) Lk ];)( W)k
r—j+1 r—j 4
r—Fk\ /m r—Fk\ /m
= (r—j+1)( )( )— (m—27“+3j)( )( )
k=0 BRVANG k=0 k
bj
/_/% r p—
I ()£l )
= : B — ; ]
C; i TR k=0 J k
Hence Ré:fl =Y ?Jfl — ag;” for 1 <j<r. When j=r, our convention gives
R,11 = 0. This proves part (b) and completes the proof of part (a). O

REMARK 2.1. View m as an indeterminant, so that r!s,,(r) is a polynomial in
m over Z of degree r. The factorization r!s,,(r) = HJ 1(aj + Tj41) in corollary
1.2 involves the rational functions a; + 7;4+1. However, theorem 1.1(b) gives

T = R}];l so that a; + 7,4 = wfl +R7+1 — b RJ 1

ator and denommator of the ratlonal functlon a; + 7}+1, and explains why we have

H;:l(aj +7Ti) = RT szl bj = rlsy(r). This is different from, but reminiscent

of, the ratio pj1/p; described on p. 26 of [8]. o

. This determines the numer-

COROLLARY 2.2. Ifr, m € Z and 0 < r < m, then

Sm (1) = i <m> = M where Ty = IC?“ Zir+1-7) > 0.

— i m—2r+71, =lm —2r+3i

If r =0, then s,,(r) = % is true, but 7; = 521% =0.

We will need some additional tools such as proposition 2.3 and corollary 2.4 below
in order to prove theorem 1.3.

Since sy, (m — 1) = 2™ — 8 (r — 1) approximating s,,(r) for 0 < r < m reduces
to approximating s,,(r) for 0 <7 < |4 ]. Hence the hypothesis r < m—“’ in propo-
sition 2.3 and corollary 2.4 is not too restrictive. Proposition 2.3 generalizes 8,

Theorem 3.3].
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Let H; = ICf 10 b = denote the jth head of the fraction KC}_; 2=, where Hy = 0.

PROPOSITION 2.3. Let b; =2i(r +1—1i) anda; =m —2r + 3t for0 <i<r. Ifr <

m"'?’ then ag +H, = % can be approzimated using the following chain of

Znequalztzes "
ao+Ho<ag+Ha < <ag JFHQLT-/QJ <ap +H2L(7‘—1)/2J+1 <
< ag+Hs <apg+ Hi.

Proof. Note that r equals either 2|r/2] or 2| (r — 1)/2] 4 1, depending on its parity.

We showed in the proof of theorem 1.1 that % =ap+H, =a0+K]_,; a"

Since r < m;rg, we have a; >0 and b; >0 for 1 <i<r and hence & >0. A
stralghtforward induction (which we omit) dependlng on the parity of r proves that
Ho < Ha < - < Halrj2) < Ha|(r—1)/2)4+1 < -+ < H3 < H;. For example, if r = 3,
then

proves Ho < Ho < Hz < H; as the tails are positive. Adding ag proves the claim.
O

In asking whether g, ., (r) is a unimodal function, it is natural to consider the
ratio gy m (1 +1)/gw.m(r) of successive terms. This suggests defining

o (7“7-:1)7 Q
7S B e e R &

(2.3)

We will prove in lemma 3.1 that ¢(r) is a strictly decreasing function that
determines when g, () is increasing or decreasing, and t,,,(ro — 1) = w > t,,(70)
determines rg.

(r+1) ()

COROLLARY 2.4. We have m — 2r < T()forr 0, and
r+1)(™ )
Mgm—%—i—; for O<T<m+3.

Sm (1) m—2r+3

Hence Tj:f Ktm(r)+1 forr >0, and

m+ 2 m+ 2 2r m+3
<ty + 1< 0<r< .
r+1 n(r) r+1+(r+1)(m—2r—|—3) Jor "

Also Tj_rlz <tm(r)+1 for r>0, and the above wupper bound is strict for

1<r<mEs
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Table 1. Values of gw,m(r)

r 0 1 2 3 cee m— 2 m—1 m
1 2 2 34+5m+6 2™ —m—1 2m—_1 2
Goo,m (1) 1 =i motnd peAbpl o reomel o 2omL (A
(7'+1)(T)

Proof. We proved Q = =(m—2r)+ K. 2419 3y theorem 1.1

Sm (1) 1=1 m—2r+43i

Hence m — 2r % if =0 and m72r<% if 1< r<m+3

y proposition 2.3. Clearly m —2r <0< ———5—~ I 5= <r <m. Similarly
b ition 2.3. Clearl 2r <0< COGR) s Similarl
% m—2r+ —— 27+3 if =20, 1, and again proposition 2.3 shows that
r+D (1)

+3 . . . L.
o) < m— 2r + — 2 3 if 1 <7 < ™3, The remaining inequalities (and

equalities) follow similarly since t,,(r) +1 =2+ g”(lr) and 2 + = ﬁr = Tif .o

3. Estimating the maximizing input rg

Fix w > 1. In this section we consider the function g(r) = gum(r) given by (1.1).
As seen in table 1, it is easy to compute g(r) if r is near 0 or m. For m large and
r near 0, we have ‘sub-exponential” growth g(r) ~ . Similarly for  near m, we
have exponential decay g(r) ~ i—n: The middle values require more thought.

On the other hand, the plots y = g(r), 0 < r < m, exhibit a remarkable visual
symmetry when m is large. The relation s,,(m —r) = 2™ — s,,,(r — 1) and the dis-
torting scale factor of w™" shape the plots. The examples in figure 1 show an
approximate left—right symmetry about a maximizing input r = wiﬂ It surprised
the authors that in many cases there exists a simple exact formula for the max-
imizing input (it is usually unique as corollary 3.2 suggests). In figure 1 we have
used different scale factors for the y-axes. The maximum value of g, ., (r) varies
considerably as w varies (c.f. lemma 5.1), so we scaled the maxima (rounded to the
nearest integer) to the same height.

LEMMA 3.1. Recall that g(r) = w™"s;,(r) by (1.1) and t(r) = smlrtl) 4, (2.3).

Sm (1)
(a) tr—1) > t(r) >

< r < m where t(—1) := oo;

)
(b) g(r) < g(r+1) if and only if t(r) > w;
(c) g(r) < g(r+1) if and only if t(r) > w;
(d) g(r) > g(r+1) if and only if w > t(r);
e) g(r) = g(r+1) if and only if w > t(r);
)

(
(f) if w>1 then some rog € {0, ..., m} satisfies t(ro — 1) = w > t(ro), and this
condition is equivalent to

g(0) <~ < g(ro—1) < g(rg) and g(rg) >--- > g(m).
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Proof. ( ) We prove, using induction on r, that ¢(r — 1) > t(r) > (TTJ/(M) holds
for 0 < r < m. These inequalities are clear for » =0 as oo > m + 1 > m. For real
numbers a, B, 7,0 >0, we have ad — By > 0 if and only if O‘ 6+A’ > 1 that is,

the mediant 22 of O‘ and ¥ lies strictly between % and If 0 < r < m, then by

B+
induction

m m
tr—1) > () _m-r+l L L)

(") r r+l (7))
Applying the ‘mediant sum’ to t(r — 1) = s:?r(i)l) > (&“)) gives
Sm(r) Sm(’l") + (Tibl) o Sm(r + 1) _ t(T) > (’I‘Tl)

Sm(r—1) - sm(r—1)+ ()  sm(r)

Therefore t(r — 1) > t(r) > (TT1)/(T) =2
ing (a).

(b,c,d,e) The following are equivalent: g(r) < g(r + 1); WS, (r) < sm(r +1); and
w < t(r). The other claims are proved similarly by replacing < with <, >, >.

()

completing the induction, and prov-

(f) Observe that ¢(m)= % =z2-=1. By part (a), the function
y =t(r) is decreasing for —1 <r < m. Smce w > 1, there exists an integer
ro €{0, ..., m} such that oo=1¢#(=1)>- - >t(r 0—1) w>t(r0) > >
t(m) =1. By parts (b,c,d,e) an equivalent condition is ¢g(0) < --- < g(ro —1) <
g(ro) and g(ro) > --- > g(m). O

The following is an immediate corollary of lemma 3.1(f).

COROLLARY 3.2. If t(rg — 1) > w, then the function g(r) in (1.1) has a unique
maximum at ro. If t(ro — 1) = w, then g(r) has two equal mazima, one at ro — 1
and one at rq.

As an application of theorem 1.1 we show that the largest maximizing input
ro for g., m(r) satisfies Z—ﬁj < rg. There are at most two maximizing inputs by
corollary 3.2.

LEMMA 3.3. Suppose that w > 1 and m € Z, m > 0. If r' := LZ’ 21| then

9(=1) < g(0) <--- <g(r' =1) <g(r), and g(-1)<---<g(r'—1) <g(r)
if ' >1o0orw#m+1.

Proof. The result is clear when ' =0. If ' =1, then 7’ < m;"f glves w <
m+1 or ¢g(0) < g(1). Hence g(O) g(1) if w ;ém—|—1 Suppose that " > 1. By
lemma 3.1(c,f) the chain g(0) < --- < g(r’) is equivalent to g(r’ — 1) < g(r"), that is
t(r' — 1) > w. However, t(r' — 1) +1 > 242 by corollary 2.4 and r’ < m+2 implies
142 >+ 1. Hence t(r' — 1) + 1 >w+1 so that t(r' — 1) > w as desured O
Proof of theorem 1.4. Suppose that we{3 4, ...} Then g9(0) < ...
< g(r'—1) < g(r') by lemma 3.3 with strictness when w # m + 1. If w =m + 1,
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then ' = LZ}TJFIQJ =1 and g¢(0) =g¢(1) as claimed. It remains to show that
g(r')y > g(r' +1) > --- > g(m). However, we need only prove that g(r’) > g(r' + 1)
by lemma 3.1(f), or equivalently w > ¢(r’) by lemma 3.1(d).
Clearly w > 3 implies 1’ < ZIT+12 < mT“. As0<r' < WT%, corollary 2.4 gives
m+ 2 2r'

r+1 Jr(r’—i—l)(m—2r’—&—3)

>t(r') + 1.

Hence w+1>¢(r')+ 1 holds if w+l>%+m.

an integer, we have m+2=17'(w+1)+c¢ where 0 <c<w. It follows from
0 < r' < 22 that _ 2" 1. This inequality and m + 2 < 7'(w + 1) + w gives

Since w+1 is

4 m—2r'+3
+2+ 2 <r'w+D)+w+1=("+1)(w+1)
m ——— <7 (w w =(r w .
m—2r' +3
Thusw+1>f}—ﬁ+er_2w+3)>t(r’)+l, so w > t(r') as required. O

REMARK 3.4. The proof of theorem 1.4 can be adapyed tothecasew =2.If m +2 =
3r' + ¢ where ¢ <w — 1 =1, then m—22:~/+3 = r/-s2-rc+1 < 2, and if ¢ = w = 2, then
a sharper Hao-bound must be used. This leads to a much shorter proof than [4,

Theorem 1.1]. o

4. Non-integral values of w

In this section, we prove that the maximum value of g(r) is g(r’) or g(+’' + 1) if
w > /3. Before proving this result (theorem 1.3), we shall prove two preliminary
lemmas.

LEMMA 4.1. Suppose that w > 1 and r' := L"Z—ﬁj If f}if >3 +1, then

g(=1) < g(0) < - < g’ =1) < g(r"), and g +1)> g +2)> > g(m).

Proof. 1t suffices, by lemma 3.1(f) and lemma 3.3 to prove that
g(r'+1) > g(r’" + 2). The strategy is to show w > ¢(r' + 1), that is w + 1 > ¢t(r’ +

1)+ 1. However, w-+1> :fif, so it  suffices to  prove  that

:fjﬁ >t(r'+1)+ 1. Since ' + 1 IS \7}%121 < ™42 we can use corollary 2.4 and just
prove that :rfif > :}ig + % This inequality is equivalent to ;’fj:f >
%. However, :}—ﬁ >3+ 1, so we need only show that V3+1> nPQL(j27:_’1+)17
or equivalently m — 2/ + 1> (v3 —1)(+’ +1). This is true since 242 > /341
implies m — 21’ +1 > (V3 — 1) + V3> (V3 -1)(r' +1). O

REMARK 4.2. The strict inequality g(r’ — 1) < g(r’) holds by lemma 3.3 if ' > 1
or w # m + 1. It holds vacuously for v’ = 0. Hence adding the additional hypothesis
that w #m+1 if ¥’ =1 to lemma 4.1 (and theorem 1.3), we may conclude that
the inequality g(r’' — 1) < g(r') is strict.
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REMARK 4.3. In lemma 4.1, the maximum can occur at r’ + 1. If w = 2.5 and

m =8, then /= |10] =2 and 22 =10 > VB 11 however ga55(2) = M <

Eg = g2.5,3(3). o

REMARK 4.4. The gap between 7’ and the largest maximizing input ry can be
. . . . 2 2
arbitrarily large if w is close to 1. For w > 1, we have v’ = [Z73] < 32 If

l<w< —2

m—2
T—2—m>

then g(m — 1) < g(m), so ro = m. Hence rg — 1’ > ™5

REMARK 4.5. Since 1’ < LZ’T?J <r'+1, we see that " +1=~ ’Zj—ﬁ, so that
m—+2

w4 ~w+ 1. Thus lemma 4.1 suggests that if w2 V3, then g, ,.(r) may
have a maximum at r’ or 7/ + 1. This heuristic reasoning is made rigorous in
theorem 1.3. o

Sm(r+1) _ m—r41 + Kon (1)
Sm, (1) r+1 r+1

REMARK 4.6. Theorem 1.1 can be rephrased as t,,(r) =
where
"L 2(r + 1 — 1) o

Kn(r) = - =
(r) ng—2r+31 m— 231 dr —4

6r —12

m—2r +6+
. 2r

m—+r
(4.1)
The following lemma repeatedly uses the expression w > t,,(r + 1). This is equiva-

lent to w > Mor 4 KmCHD that is (0 4 1)(r +2) > m+ 2+ Ko (r + 1). S

‘m+r—3+

LEMMA 4.7. Let m € {0, 1, ...} and ' = L%J If any of the following three
conditions are met, then gy m(r’' +1) > -+ > gy m(m) holds: (a) w>=2, or (b)

w)HT\/ﬁ and ' #2, or  (c) w >3 and ' ¢ {2, 3}.

Proof. The conclusion gy ., (1" +1) > -+ > gy.m(m) holds trivially if 7' +1 > m.
Suppose henceforth that 7’ + 1 < m. Except for the excluded values of ', w, we
will prove that g m(r’ +1) > gum (' +2) holds, as this implies g, (r' +1) >
-+ > gu.m(m) by lemma 3.1(f). Hence we must prove that w > ¢,,, (" + 1) by lemma
3.1(d).

Recall that v’ < T—ﬁ <r' +1.Ifr=0,thenm+2 <w+ 1, thatisw >m+1 >
t(1) as desired. Suppose now that r’ = 1. There is nothing to prove if m ="' 4+ 1 =
2. Assume that m > 2. Since m + 2 < 2(w + 1), we have 2 < m < 2w. The last line
of remark 4.6 and (4.1) give the desired inequality:

m m—1 4
2

3 3 1—&-74 —e
mn m—+ 2

In summary, gy m(r’' +1) > -+ > g, m(m) holds for all w > 1 if »' € {0, 1}.

We next prove gu m(r’ + 1) > gum(r’ +2), or equivalently w > ¢, (r’ + 1) for
r’ large enough, depending on w. We must prove that (w+1)(r' +2) >m+2+
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Ko (r" 4+ 1) by remark 4.6. Writing m + 2 = (w+ 1)(r' + ) where 0 < e < 1, our
goal, therefore, is to show (w +1)(2 —¢&) > K (7’ + 1). Using (4.1) gives

2(r' + 1) B 200" + 1)

Kn(r'+1) = =
(r'+1) m=20"+1)+3+7 (wH+1)("+¢e)=20"+1)+1+7T

where 7 > 0 by theorem 1.1 as ’ > 0. Rewriting the denominator using
W+ +e)=20r"+1)=(w—-10"+1) — (w+1)(1 —¢),
our goal (w+1)(2 —¢) > K, (" + 1) becomes
wW+D)2=8)|[(w—1D0F"+1) = (w+ 1)1 —e)+1+T] >2(r" +1).

Dividing by (2 — €)(’ + 1) and rearranging gives

) (w+1)(1+17) 2 (w+1)?1—¢)
-1 .
(w )+ 41 >2—5+ 41
This inequality may be written (w? —1)+A> 2= +pu(l—¢) where A=
% >0 and p= (0;,4;11)2 > 0. We view f(e) := 32= + p(1 — ) as a function

of a real variable € where 0 < € < 1. However, f(¢) is concave as the second deriva-

tive f"(e) = ﬁ is positive for 0 < € < 1. Hence the maximum value occurs at

an end point: either f(0) =1+ p or f(1) = 2. Therefore, it suffices to prove that
(w? = 1) + X > max{2, 1 + u}.

If 2> 1+ p, then the desired bound (w? —3) + A >0 holds as w > /3. Sup-
pose now that 2 < 1+ . We must show (w? — 1)+ X > 1+ p, that is w? —2 >

h— A= %ﬁ_ﬂ Since 7 >0, a stronger inequality (that implies this) is
w2 —2> (ﬁtrliw The (equivalent) quadratic inequality 7'w? —w —2(r' +1) > 0 in

. . 1+4/1487 (7 +1) vy . :
w is true provided w > %ﬁ(rﬂ This says w > 2if 7' =2, and w > ‘HE/EW if
' =3.If ' > 4, we have

T+87(+1) 1 1 1) 1 1 5
QT,( )=+\/+2(1+T,><+ — 4+ - <V

2r 4(r")? 8 64 2
The conclusion now follows from the fact that 2 > HT‘/W > /3. O

Proof of theorem 1.3. By lemma 4.1 it suffices to show that g(r' + 1) > g(’' +2)
holds when 7’41 <m and w >+/3. By lemma 4.7(a), we can assume that
V3 <w< 2 and v € {2, 3}. For these choices of w and 7/, we must show that
w >ty (r' + 1) by lemma 3.1 for all permissible choices of m. Since (w+ 1)1’ <
m+2 < (w+1)(r" 4+ 1), when 7/ =2 we have 5 < 2(v/3+1) <m +2 < 9 so that

4 < m < 6. However, t,,,(3) equals 15, 2L 19 for these values of m. Thus v/3 > t,,,(3)

holds as desired. Similarly, if ' =3, then 8 < 3(\/§—|— 1) <m+2< 12 so that
7<m < 9. In this case ¢,,(4) equals %, %, % for these values of m. In each
case V3 > tm(4), so the proof is complete. O
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REMARK 4.8. We place remark 4.4 in context. The conclusion of theorem 1.3
remains true for values of w smaller than v/3 and not ‘too close to 1’ and m
is ‘sufficiently large’. Indeed, by adapting the proof of lemma 4.7 we can show
there exists a sufficiently large integer d such that m > d* and w > 1 + é implies
g(r' +d) > g(r' + d+ 1). This shows that v’ < rg <7’ +d, so ro — r’ < d. We omit
the technical proof of this fact. o

REMARK 4.9. The sequence, ag+ Hi, ..., ap + H, terminates at SrJr(i) (Tfl)

by theorem 1.1. We will not comment here on how quickly the alternating
sequence in proposition 2.3 converges when r < m“. If r=m, then ag =

—m and %(mﬁl) 0, so theorem 1.1 gives the curious identity H,, =

Ky 2UmHL=0) gy If w s less than v/3 and ‘not too close to 1’, then we believe

3i—m
that rg is approximately | ™2 4 |, c.f. remark 4.8.

w+1 w2 1

5. Estimating the maximum value of g., m ()

In this section we relate the size of the maximum value g, ., (r¢) to the size of
the binomial coefficient (T ) In the case that we know a formula for a maximizing
input rg, we can readily estlmate Yo, m(ro) using approximations, such as [10], for
binomial coefficients.

LEMMA 5.1. The mazimum value Gy m(10) 0f gum(r), 0 < r < m, satisfies

1 m - (ro) < 1 m
(w—=1)wro \rg+1 JuomATO) (w—1wro=1\ry)"

Proof. Since g(rg) is a maximum value, we have g(ro — 1) < g(ro). This is equivalent
m m

to (w—1)sm(ro—1) < (ro) as sm(ro) = $m(ro—1) (7“0) Adding (w—1)(" )

both sides gives the equivalent inequality (w — 1)s,,(r9) < w( ) This proves the

upper bound.

Similar reasoning shows that the following are equivalent: (a) g(ro) > g(ro + 1);
(b) (w—1)sm(ro) > (,O+1) and (¢) gw,m(ro) > m(,oﬁl) U

In theorem 1.3 the maximizing input ry satisfies ro =’ + d where d € {0, 1}.
In such cases when 79 and d are known, we can bound the maximum g, ., (o) as
follows.

COROLLARY 5.2. Set 7= "2 | and k:=m+2— (w+ 1)r'. Suppose that ro =

w+1
" 4+d and G = Then

(w— 1)w’”0 1( )

14 d— d+2=k o
<k<w+1,d>0 and 1-— o Yoml(ro)
ro+1 G

<1

Proof. By lemma 3.3, rog = r’ + d where d € {0, 1, ...}. Since v’ = LTT?J, we have

m+2=(w+1)r +k where 0 < k < w+ 1. The result follows from lemma 5.1 and
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m=(w+1)(ro—d)+k—2as (m’il) =T (;’;) and = equals

wiro—d)—d+k-2 _ wtwdtd+2-k _ [ 14+d+HFE
o+ 1 N ro+1 B ro+ 1

O

The following remark is an application of the Chernoff bound, c.f. [11, Section 4].
Unlike theorem 1.1, it requires the cumulative distribution function ®(z), which
is a non-elementary integral, to approximate s,,(r). It seems to give better
approximations only for values of 7 near %, see remark 5.4.

REMARK 5.3. We show how the Berry-Esseen inequality for a sum of bino-
mial random variables can be used to approximate s,,(r). Let By, ..., B,, be
independent identically distributed binomial variables with a parameter p where
0<p<1,sothat P(Bij=1)=p and P(B;=0)=qg:=1—p. Let X;:=B; —p
and X := ﬁ(zgl X;). Then

E(X;)=E(B;)—p=0, E(X})=pq, and E(X;[’)=pq(p®+¢*).

Hence E(X) = \/1—(2211 E(X;)) =0 and E(X?)= #m(zgl E(X?))=1. By

mpq
[7, Theorem 2] the Berry—Esseen inequality applied to X states that

P(X <) — a(a)] < SR

(pg)3/2y/m
2 2
:M for all m € {1,2,...} and z € R,

v/ mpgq
where the constant C' := 0.4215 is close to the lower bound Cy = lg%/%g =0.4097---
and ®(z) = \/% I e /24t = : (1 + erf (%)) is the cumulative distribution
function for standard normal distribution.
Writing B = 27| B; we have P(B < b) = Y1) (M)pig™ i for b € R. Thus X =

7

]\3/;1%7 and z = i’/%% satisfy
_ 2., .2
’P(ng)—cp(b mp)’ <O HD) o aime(1,2 .} andbeR.
mpq mpq
Setting p = q = %, and taking b =r € {0, 1, ..., m} shows

for m e {1,2,...}.

2 — 421
’2—msm(r)—q>( " m)‘ < 04215

vm vm
REMARK 5.4. Let ag + Hy be the generalized continued fraction approximation to

% suggested by theorem 1.1, where Hy := Kf=1%7 and k is the depth of
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Table 2. Upper bounds for |ep, r 1| and Em,r for m = 104

T lem,r,3l lem,r,5] lem,r,21] Em,r
1000 2.3 x 10717 6.6 x 1072° 5.7x 1077 1

4500 1.3x 1077 2.5 x 10719 7.1 x 10727 0.018
5000 0.93 0.86 0.24 0.008

the generalized continued fraction. We compare the following two quantities:

r1)(™ 2mP(2) | 4015 . 9m
emTkzzl—M and F,, ., :=11— vm \O 0 .
T ’ Sm(7) VM S (1)

(ao + Hi)sm/(r)
The sign of e,, . is governed by the parity of k£ by proposition 2.3. We shall assume

that r < 2. As Siw ranges from 2™ to about 2 as r ranges from 0 to [Z2'], it is
clear that the upper bound for E,, , will be huge unless r satisfies 5= <r < %

where € is ‘small’ compared to m. By contrast, the computer code [3] verifies that
the same is true for E,, ,, and shows that |e,, , x| is small, even when k is tiny, when
0 <r < ™5=, see table 2. Hence the ‘generalized continued fraction” approximation
to $m(r) is complementary to the ‘statistical’ approximation, as shown in table 2.
The reader can extend table 2 by running the code [3] written in the MAGMA [1]
language, using the online calculator http://magma.maths.usyd.edu.au/calc/, for
example.
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