L))

Check for
updates

Proceedings of the Royal Society of Edinburgh, 154, 424-444, 202/
DOI:10.1017/prm.2023.18

Existence of weak solutions to an anisotropic
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This work is devoted to the study of the sub-critical case of an anisotropic fully
parabolic Keller—Segel chemotaxis system. We prove the existence of nonnegative
weak solutions of (1.1) without restriction on the size of the initial data.
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1. Introduction

In this paper, we consider the following chemotaxis system with anisotropic porous
medium-type diffusion:

N , 1
0 Qumi u " ov ,
ut_;c’?xi<d1 oz; _X<'y—|—v> 89&) in $3r,
v =deAv—v+u in Qr, (1.1)
gu _dv _ 0 o0 x (0,T)
v v on T
u(z,0) = up(z), v(z,0) = vo(x) on Qx {0},

where Q7 = Q x (0,T), T > 0 is a fixed time, 2 is a bounded domain in RV, N > 3
with smooth boundary 02, ¢; > 2 and m~ > ¢; — % for all i = 1,.., N, such that

mt= max {m;}, and ¢*= max {¢;},

1<i<N 1<i<N
m~ = min {m;}, and ¢— = min {¢;}.
1<¢<N{ it 1<¢<N{ i}

The positive constant x is called the chemotaxis coefficient, di,ds > 0 are the
diffusion coefficients and v > 1.

In general, organism or cell moves from a lower concentration towards a higher
concentration of the chemo attractant, which is known as positive chemotaxis. In
the same way, the opposite movement of the organisms is known as negative chemo-
taxis. In particular, microorganisms use chemotaxis to position themselves within
the optimal portion of their habitats by monitoring the environmental concentration
gradients of specific chemical attractant (positive chemotaxis) and repellent ligands
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(negative chemotaxis). Famous examples of biological species experiencing chemo-
taxis are the flagellated bacteria Salmonella typhimurium and Escherichia coli, the
slime mould amoebae Dictyostelium discoideum and the human endothelial cells
(see [1, 4, 6]). Theoretical and mathematical modelling of chemotaxis phenomena
dates back to the pioneering works of Patlak in 1950s [20] and Keller—Segel in 1970s
[18]. A general form of Patlak—Keller-Segel model for chemotaxis is given by
ug = V. (Cb(ua ”U)V’U, - 1/)(% U)V”U) ) (1 2)
Tvr = dAv + g(u,v)u — h(u,v)v, '

where u denotes the density of cell population and v is the chemical attractant
concentration. The mobility function ¢(u,v) describes the diffusivity of the cells and
¥ (u, v) represents the chemotaxis sensibility, while the functions g(u,v) and h(u,v)
are kinetic functions that describe production and degradation of the chemical
signal, respectively. When ¢(u,v) = 1 and 7 > 0, system (1.2) becomes the classical
parabolic—parabolic Keller—Segel system, such system has been extensively studied,
see for example [27, 28, 32] and references therein. For the study of the parabolic-
elliptic Keller—Segel system of quasilinear type, namely 7 = 0, with general ¢(u,v)
in (1.2), we refer to [23-25] and references therein.

Equation (1.1) with m; =m and ¢; = ¢ is sometimes called the equation of
isotropic diffusion. In the case of degenerate diffusion, the model ¢(u,v) = mu™"*
and ¥(u,v) = u9~! in RY was studied by several authors. The existence of the weak
solutions was shown when ¢ —m < 0 in [25] and when ¢ —m < % in [13]. When
qg—m = % and the initial data (ug,vg) is small in some sense, the existence of the
weak solutions was proved in [14], whereas, if ¢ — m > % then blow-up of solutions
as in [30] was studied in [15, 16].

In the present work, we are interested in the anisotropic case where the diffusion
rates differ according to the direction x;. Despite the resemblance with the isotropic
cases presented in the previous mentioned works, the properties of the solutions to
anisotropic equations are in striking contrast with the properties of the classical
isotropic equations. The difficulties brought in by the anisotropy and the inhomo-
geneity of the diffusion operator are illustrated by the analysis of the self-similar
solutions of anisotropic porous medium and p-Laplacian types [2, 3, 5]. Unlike the
isotropic case where the typical geometry is defined in terms of balls in RV, in the
anisotropic case it is defined by parallelepipeds with the edge lengths related to the
exponents m; and ¢; .

The chemotaxis model with anisotropic porous medium diffusion type is moti-
vated from a biological point of view [26]. It is worthy of mentioning that the
porous medium type diffusion can represent population pressure in cell invasion
models [21], which initially arises from the ecology literature [12, 31]. In fact,
experimental investigation has shown that the diffusion coefficient depends on the
bacterial density [29]. In the bacterial experiments done by Ohgiwari, Matsushita
and Matsuyama [19], they recognized that cells located inside the bacterial colonies
move actively, but cells became sluggish at the outermost front with apparently
low cell density. This phenomenon indicates that bacteria become active as the
cell density u increases. Thus, a natural choice of the bacterial diffusion coeffi-
cient is ¢(u,v) = myu™~! with m; > 1 for all i = 1,.., N, and this porous medium
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type bacterial diffusivity is based on the degenerate diffusion model proposed by
Kawasaki et al. [17]. To our knowledge, Keller—Segel system with anisotropic porous
medium diffusion models has not been studied specially and systematically.

2. Preliminary and main result

2.1. Imbedding and technical lemmas

To derive our existence and regularity results, we will need the following

THEOREM 2.1. [9], Theorem 1.1. Let N >2, o; € (0,1), 1<p<gq and p; > 1,

N
j=1,..,N, be such that Z
j=1
Sobolev-Liouwville space) the inequality

> 1. Then, foru € W():@2)(RN) (The fractional

@jDj

o) < 0% ullfen, T |z

j=1

2.1
L () (2.1)

hold provided My > 0 and

where

The following lemma will show that theorem 2.1 holds true even for the case
where 0 <p<1landp; =2, Vj=1,..,,N.

LEMMA 2.2. Let Q C RN with N > 3 be a bounded domain with smooth boundary,

and 0 < p <1< q< 2. Then, forallueHl(Q) we have
N ap
uld0 ) < o7 [lull%) (2.2)
La() S o) L 81‘] .
24N
where p = ooy, and § = GAlGGoN 2wy
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Proof. By Holder’s inequality , we get that

a(1=p) (g—=1)p
lullLr) = [ |u| == |u[ =+ dz
Q

(g—1)p a(1—p)

<Hull iy lullpig,) -

Then, by using theorem 1 of section 5.4 in [10] and applying theorem 2.1 for p =1
and p; =2, Vj = 1,.., N, we obtain

ou
lull ooy < o7 llullinies TT || 5—
e ©e j=1 O L2(Q)
e N (2.3)
T —1) (1 p) — 4N po 8u
<o Il Iulzih | Do)
{ L@ L@ ]1;[1 9 || L2(q)
1
where pg = N(lgj_;)- Then from (2.3) we get (2.2) with
N 2
2(q — 1 -p)(2+ N
. g-p) qlo_ @-pE+N) 0
q(p(2 = N) +2N) B (¢=1)(p2-N)+2N)

Possible references on the theory of anisotropic Sobolev spaces are in [7, 8] and
references therein. Next, we give some fundamental estimates of solutions to the
following Cauchy problem for inhomogeneous linear heat equations:

(2.4)

zr=A0Az—z+ f inQx(0,7T),
2(z,0) = zo(x), x €.

The following lemma can be found in [14].

LEMMA 2.3. Let Q@ C RN with N € N be a bounded domain with smooth boundary,
T>0,1<p<ooandz € LP(Q). If f € L'(0,T; LP(Q)), then (2.4) has a unique
mild solution z € C(]0,T); LP(Y)) given by

¢
2(t) = e~ tetP +/ e (t=9)et=9A r(5) ds, t € [0,T), (2.5)
0

where (e f)(z,t) = (4rt)~ fQ y,t) dy. Moreover, the following esti-
mates hold.

e Letl <g<p<ooand % — % < % Assume further that zg € W2P(Q) and f €
L0, T; WH4(Q)). Then for every t € (0,71,

lz(E) e ) < llzollLe @) + Coll fll Lo (0,7512(02))5 (2.6)
IV2(t)llr) < IV20llLr @) + Coll fllLo0,1;L9(2))5 (2.7)
|Az(t)| ey < |Az0||l e ) + CollVfllLoe(0,1:09(2))> (2.8)

where Cy is a positive constant depending on p,q and N.
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e Let 1 <p<ooand f e LP(0,T;LP(Q)). Then for everyt € [0,T7],

1

Az Lr 0,20 @) < 1A20|Le) (1 =€) " + CllfllrmiLry,  (29)
where Cy is a positive constant depending on N and p.

2.2. Formulation of the problem and main result

Throughout this paper, we deal with weak solutions of (1.1). Our definition of
the weak solutions now reads

DEFINITION 2.4. A pair of nonnegative functions (u,v) is said to be a weak solution
of (1.1) if and only if for alli =1,.., N we have

u € L®(Qr), u™ € L*(0,T; HY(Q)), and v € L>(0,T; H'(Q)),

such that (u,v) satisfies the equations in the sense of distribution, i.e., that

N T ) qi—1
ou™ Oy U v Oy
;/0 /Q{dl Or; Om; <’Y+U> Ox; O —ugot} dedt

- / uo(z)p(x,0) dz,
Q

T
/ / {doaVo. Vo +vp —up —vpe} dadt = / vo(z)p(z,0) da,
0o Jo Q

for any continuously differentiable function ¢ with compact support in € x [0,T).

Motivated by the works mentioned in the previous section, our paper extends the
results in [14, 25] to the system (1.1) with anisotropic nonlinear diffusion. Now we
state the main result of this paper. To be precise, we will assume the initial data
(up,vp) to satisfy

{uo € C%(Q) with ug >0 in Q, (2.10)

vy € W2°°(), with vy > 0 in Q.

THEOREM 2.5. Letq; > 2 andm™ > q; — % foreveryi=1,.N,QC RN for N >3
be a bounded domain with smooth boundary. Then for all (ug,vg) satisfying (2.10),
the system (1.1) possesses at last one weak solution in the sense of definition 2.4.

3. Approximated equations

The first equation of (1.1) is a quasilinear parabolic equation of degenerate type.
Therefore, we cannot expect the system (1.1) to have a classical solution at the point
where u vanishes. In order to prove theorem 2.5, we use a compactness method and
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introduce the following approximated equation of (1.1):

N L,
0 mi—10Ue (ue + &) “ue Ove .
- dym; i e el e QO

Ue t ; o, < 1mi(ue +€) e, X o)1 oz, in Qrp,

Vet = da Ave — ve + ue in QT,

Oue _ Ove =0 on 90 x (0,T)
o ov o
ue(z,0) = ug(z), ve(z,0) = vo(x) on Q x {0},

(3.1)
where ¢ € (0,1).
3.1. Existence of weak solutions of (3.1)

We are going to give an existence result of (3.1) under the condition that there
exists a positive constant k such that

K
fyqi*17

d = min{dym;e™ " dy} > Vi=1,.,N. (3.2)

THEOREM 3.1. Assume that (3.2) holds. If ug,vo € L*(), then (3.1) possesses a
nonnegative weak solution (ue,v.) such that

ue,ve € L®(0,T; L2(Q)) N L*(0,T; HY()), ueys,vey € L2(0,T; (WH(Q))),
such that u. has the conservation law

[ue(®)llr(@) = lluollzr @), ¢ €[0,T). (3-3)

Proof. The existence of the weak solution to (3.1) can be obtained by using
Schauder’s fixed point theorem, a priori estimates and using the compactness
results. We start by introducing for a small number § > 0 the following

F .
F5 = m, Wlth F(S,t) = —t+8,

+
S
_ : +_
fs(s) = T3t with sT=max{0, s},
such that we have 0 < fs5(s) < min{s™, +} for any s € R and f5(s) — s pointwise
in R as § — 0. Therefore, we can conclude that there exists a positive constant K
such that

(fzi(ue) + S)qi72f5(us) <
(v+ fo(ve))ui=t 7y
K
= 7%*1 ’

(min{ul, 671 + 1)% 2 min{ut, 671}
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Let ., v. € L?(Qr) be given and consider the linear problem

7

N
0 ou, ove\
Ue t — ; (97% (auaxi + a126m> =0,
N

0 Ou, v, S
Vet — ; 87531 (am(‘?x- + &zzax) = F&(UE » Ve )7

7 7

where the diffusion matrix A; = (a;i); is given by

R ) 4 g)miml oy Us@) )t s ()
Ai(U57Ue):(dlml(f&(u6)+€) X e )
2

Moreover, the matrix A; is uniformly positive definite, since for any X = (z,y) € R?
we have

fs(@e) + E)qi_1f5(ﬂs)xy
(v + fo(ve)) !

(z* +9°)

XTA X = 22dymi(f5(Te) + €)™ 1 + doy? — X(

(fs(@c) + )4 f5(uc)
2(y + f5(vc))s—1

K
- 7‘11‘71)('%‘2 + yQ) >0,

>d(z® +y°) — x

where we used (3.2) and the fact that zy = 2(z 4+ y)? — 2 (2® + 3?) > —1(2? + %)
and —zy = 3(z —y)? — 2 (2® + y?) > —1(z* + y?). Hence, the desired existence

result is guaranteed by theorem 1 in [11]. O

3.2. A priori estimates

In order to prove theorem 2.5, we state and prove two key propositions which
control L"— and L —estimates of the solution (u.,v.) of (3.1).

PROPOSITION 3.2. Assume that (2.10), and (3.2) hold. Let N > 3, ¢; > 2 and m~ >
qi — % foralli=1,..,N. Then (ue,v:) satisfies the following estimates

sup [Juc(t)|nr) < C, for all r € [1,00), (3.4)
0<t<T

sup v (t)[lwr. () < C, (3.5)
0<t<T

where C' is a positive constant independent of e.
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Proof. By taking r € (1, 00), multiplying the first equation in (3.1) by u’~! and
integrating by parts, we get
10 a Ju ou
T _ o d ; m;—12%€ 1 T72. €
Ol = 30| [ e+ G
(ue + €)% 2ul~1 Q. Ou,
—1 .
Xt )/Q (v +ve)u=t O Ox;
N 2
(r4+a—1)>2 axz L2()
(T — I)X qi—2, r—1 aus 6UE
+ ﬁ Q(UE + 6) U, 81;1 axZ
i[ ddym~(r —1) Hauw;l ? n (r— 1)X[]
Pt 7’ + o — 1) ox; L2(Q) ’Yq772 ik
where
o= m, ?f (ue +¢) > 1, (3.7)
m*, if (ue +¢€) < 1.
Next, we set
Fi(s) :/ (t4+e)u 27" dr, s >0,
0
such that
r+q;—2 5"
F; < 94i—2 S -
() [r+q¢2+r}
Therefore, I; becomes
6’05 827}6
/ 8% .. dxr = —/QFi(uE).—ani dx
20~ 0%v 20" 2 0*v (3.8)
< r+qi—2 °ld / r cld
7“—1—(1_—2/QuE 0%x; Tt Que 0%x; .

4.

Next, we are going to integrate I/ over (0,t) for ¢ € (0,T) such that

N t 2(1 _
I/ r+q;—2
;/o () ds = —22//

gt —
2 {// r+q" 2| Av,| dxds+/ / |Av,| dxds}
r+q-

riq

q— r++1
<——— 2 {(// -1 dxds) ’
r+q-

8115

92z, dads

//\
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1
¢ P
X </ /|AUE|T+(I+71 dxds)
o Ja

+ AU6||Lr+q+1(o7t;Lr+q+1(9))}
21" —2( (rbat 1)\ TTeF T
< W{HA’UM Lr+at-1(q) (1 —e (r+q 1)t) +qt -1
y+1 2
(] fre o)
+ C<r+q+_1>/ / u§+q+_1 dxds
o Ja
L7'+q+—l(Q) (1 - €_(T+q+_1)t) T+q1+71
t e
+Crggr—1> (/ /u£+q+_1 dxds) }
0o Ja

2q+—20 +q7—1 +
- - r r4q +-1
S5 +q -2 {HAUOHUHJr o T1 "‘/ / dﬂCdS}

(3.9)

+ [[Avol

where we used Holder’s inequality, (2.9) and Young’s inequality.
Next, we are going to simplify the last integral in the right-hand side of (3.9) by
using lemma 2.2. As a consequence, by letting r > ro=max{a — 2¢* +1, § (¢t — )

— gt +1, 2870

7‘+o¢ 12(r+qt—1) t

// T+q 1d.’L'dS—// rhasl dxds:/
0

+q¢t—-1)(1—

ccf {| el ™

r+a—1 [ r+qt =2
2 r+qt—1

1+ J(r+a-2)

a}, we have the following

2(r+qt—1)
r+a—1 r+a—1

Ue

ds

2(r+qt—1)
L vFa=T ()

2p(r+qtT —1)

r+(x 1 r+a—1

8x2 L2(Q)

(3.10)
where

p:

We can replace the geometric mean on the right-hand side of (3.10) by an arithmetic
mean. Indeed, by the inequality between geometric and arithmetic means we get

2p(r4+qt = 1 [ N@+gt-2)
ﬁ 0 r+<;—1 7-+o<71 N 7-+a 1| N ( 1+%(,,+a,2)>
Ue
i 11 0w L2(Q) i=1 L2(Q)
N(r+qt-2)
N r+a L 1+ Y (rta—2)
E 8 (3.11)
— 931 L2(Q)
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Since, we took ¢q; < % +m~ < % +aaforalli=1,..,N. Then we get

, 2N(r+q"-2)
2+ N(r+a-2)

< 2. (3.12)

Therefore, by using (3.11), (3.12), Young’s inequality and the mass conservation
law (3.3), we obtain

+
24 _20 r+qt—1
[ 2 [

t 2(r+qt — D(A=Np)

+C) HuOHLl(Q) = (3.13)

2
ds} .
L2(Q)

The integral I/ can be controlled by the same way as I/ for all i = 1,.., N. Con-

sequently, we omit that Z fo I ds satisfy the same estimation as in (3.13).
Therefore, by integrating (3.6) over (0,t) and using the previous estimates, we

arrive at
S ddym(r—1) [P 9 atr|?
lue N7y < lluollpr @y — ““““"/ﬁ v -
e Lr(Q) S L™ () 12=:1 (r+a-— 1)2 o || 0x; L2(Q)
tat
C2q+,gx(r 1) vy a1 2’<+4271;<1NP) de i1
¥ 2(r4+q- —2) I HL7'+4+*1<Q>+ HUOHU(Q) o
+i 02q 72)((7’—1)1/ /‘t 5} % 2 4
e XN TP U S
2 2+ —2) Jo |5 p2(o)
. 2(r+qt —1)(1-Np)
CQq QX(T—I)t +71 - o_,7
< HUOHE"(Q)J’_m {”AUOHTLJ;Zﬁ,l(Q)+H'LL0||L1(Q) 2=p +1},

(3.14)

e .
ddim 7" (rta —2) \[greover, by letting r > 7 = {ro, 8 —

20T —2Cx (r+a—1)2
gt +1} for f >> 1, we obtain that

where we took v =

C2q+_2x(r - )T
VA r g

[nAvoV*q 15

5 el o) < { Iuoll; o lunlzrca) + il

2
5 2(r+q T —1)(1-Np)
27
HlAwla +llm 4]} =C

(3.15)
where C' is a positive constant independent of ¢.
Now, for the case 1 < r < r; we have the following
lue (@)l Lr0) < lluollrr@) + llue()llLr (o), for every t € (0,T), (3.16)

where we used Holder’s inequality, the mass conservation law (3.3) and Young’s
inequality. Hence, (3.15) and (3.16) give us the desired estimation for every r €
[1, 00).
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Finally estimation (3.5) is a direct consequence of (2.6), (2.7) and (3.4) with
r=N+1. ]

We conclude this section with the proof of L*°-estimates of the approximated
solutions.

PROPOSITION 3.3. Let the same assumptions as those in proposition 3.2 hold. Then,
there exists a positive constant C independent of € such that

SUP e ()|l Loy < C. (3.17)

0<t<
Proof. We begin by multiplying the first equation in (3.1) by uZ~! such that

N

18 m,—1 0 20U
;{/ﬂd1mi(us+s) R - T
(ue +€)%2 dv, 1 Oue
—_— — Dul™ d
+X/Q (v +ve)ai—t 31‘1( Jue or, "
N 2
Z{ Adym=(r — 1) H 25 (r—1)x Havs
= (r4+a—1)>2 aml L2(9) ~1T=2 || Oz Lo(9)

ou ou
qi+r—3 € r—1 =
</Q e Ox; et /sz e Ox; dxﬂ 7
(3.18)

where « is defined in (3.7). Next, we are going to simplify the last two integrals in
the right-hand side of (3.18). Then, for all i = 1,.., N we have

7(T_,E)2X Havs (/ uditr 3 Qe d:c+/ ug_laus daz)
~4 Oz [ 1o () \Ja ox; Q 0x;
_ r+2¢;—a—3 adr—
_ (r 71))( Ove 2 /Us . 9 atro 4
e -2 Ox; Lo () r+a—1|/q 8.(81

r—at1l () atr—1
+ | us 2 us 2 dx
Q Ox;

2v o air-1]? Cw)x% ||ov.||?

<or—1)|—X [ | LT deg X 3.19

(r ){(7’+04—1)2 0| 0w 334’72((,—72) 9 || oo () 19

(/ ué’”qi*a*g dx—|—/ u;’*aﬂ dx)}

Q Q

2dym~ (r — 1 § oroi|® 2(r—1)  ||ov.|]?
[ (10 el g, XOoD o

(r+a—12 Jo|0z; dym—~2la 0 || oo ()

+2q; —a—3 +1
(a2 ) + el ) |

where we used Young’s inequality and choose v accordingly.
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We will deal only with the norm [[uc||; 724, "%73 ) in the right-hand side of (3.19),
because the last norm can be controlled by the same way. Furthermore, we are going
to study the following two possible cases.

Case 1: ¢; > 3 — %, Vi=1,.,N.
Let [ be a natural number which is chosen later. Therefore, by applying lemma
2.2, we obtain

2(r42q;—a—3)

+2q¢;—a—3 rta—1 r+a—1
Juel 32 = a2
L et SR -Np) Nl g g | T
<o ||ue ® 2r H ‘ ——Ue
Lirre=m () j=1 O L2(Q)
2N p; (r+2g; —a—3)
< 0—51 ” H<T+2q1_a 3)(1—Np; 7+(2x 1 rta—1
SN el 63@7 L2(€) ’
(3.20)
for r>rg = max{3a — 4¢; + 5, — 5 (o — 1) + %(2% —a—3),a—2¢ +3},1>1,
+a—1 ((r4+2¢i—a=3)—r 2(r+2q;—a—3) 2
- g < r(r+2¢;—a—3) ) (2 + N) ( r+a—1 - l(r+£71))
PP Nilr+a—-1)—71)’ and f; = 2(r+2g;—a—3) 2r(2—N) :
2r ( r+a—1 - ]') (l(rJrafl) + 2N)

By simple computation, we find that W <2 and % < 6 for every

r > 1o and ¢ = 1,.., N. Therefore, by Young’s inequality we get

Y(r—1) ‘81}5 2 [N S
dim @) (|0 || oy BT @)
x(r—1) ’3% ? QH |7+ 20— a=D(A-Npi)
S dym—~2@ =2) || 9z Loy NV Yell Lt )
N g it e
Z 25" o (3.21)
N g 2
22: r—1) axj 2 oy +CW)(r—1)
(C X2 ‘3% ’ >§HII |(r#20—a=B(-Npoga
dim~—~2a"=2) || Oz; Lo () Yell L (o ’

where

r+a-—1
(r+a—1)—Npi(r+2¢ —a—-3)

1, =
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1
Next, by taking v = (7‘+a 1)2, then C'(v) = ————, where
qi(vpi)¥i
r+a—1 r+a—1
qi = and p =

(r+a—1) = Npi(r+2¢; —a—3)’ Npi(r+2g; —a—3)

Then, (3.21) becomes

2
Xz(r B 1) 87.)5 H ||r+2qi7a73
d1m_72(q__2) 8$Z Lo () eliprt2aima=3(q)
(r—Ddym= || 8 a1
U + C(r — 1)z
g (r+a—1)2 laxj : L2(Q) ( ) (3.22)
2 i1
C;;;ji;;ﬁ Ove g | 20— =Npi i
dlm_72(q7_2) 83;1 L>(Q) Ue LT(Q) ?

where

Npi(r+2¢; —a —3)
(r+a—1)—Npj(r+2¢q —a—23)
Next, for [ > 1, r > rg and for every i = 1,..N, we have

o=

3(1-1)
Npl‘ — W as 7 —— OQ. (323)
PACEE N
Consequently, we obtain that
La—1)- 34 La
M < Np; < M, Vr >rg and every i = 1,..,N.  (3.24)
=1+« sU—1)+

Then, by (3.24) we get the following estimations
&1 < NI+2, and &9 < NI for all r > .

Therefore, (3.22) becomes

XP(r—1)

2
Ove r+2gq;—a—3
W (97331 Lo (@) ||u€|LT'+2q,i7(173(Q)
(r—1dym~ || 0 rta—t ||? .
Z s | 1 Cr o0 Nas
Jj=1 to- x] L2(Q)

(3.25)
Next, we are going to simplify the last term in the right-hand side of (3.25). For
this reason, we choose [ to verify

l>max{1,2((q+§[_ (_11’___;)4_(&_1)(1_]{[))}, foralli=1,..,N
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such that

g+x-3 _30-1)—
a—1 %(171)+N

< Np;, foralli=1,..,N.

Therefore, by taking

(Np; + 1)(a—1)(2¢; — o — 3)
(2¢; —a—3) — Np;(a — 1)

r>r1:max{r0,

we get that

r
i3 = >1, foralli=1,..,N.
573 (7"—’-2(]1 —Oé—?))(l _Npi)gi,l

437

}7 foralli=1,..,N,

By simple computation, we get also §; 3 < NI+ 2 for all i =1,.., N. To this end,
we apply Young’s inequality on the last term in the right-hand 51de of (3.25) such

that
2
Xz(r - 1) dve H“ | r+2¢i—a—3
dlm—,yZ(q*—2) 89@ Loo() ellpr+2a;—a=3(Q)
’r‘ -1 dlm 0 rho—1 2 C r
— 1+C r
NZ (r+a—1)>2 8:6]-“5 L2(9)+ rer HUEHLZ(Q)
By the same method, we get also that
2
X2(7’ — ]') Ove HU | r—a+l
dym—~2=2) || dx; L) ellpr—a+1(q)
1 (r—1)dym™ || 0 rte=t 2 c ”
— — 1+C r
Nz:: r+a—1)>2 axjus LQ(Q)+ +or HUEHLZ(Q)’

for every r > r1. Then, by putting (3.26) and (3.27) into (3.18) we obtain

1 8
<24 Cr9|ue|? -

LT(Q)
Integrating (3.28) from 0 to ¢, we obtain

sup (el oy < [l + 207 + OTe sup el .

Since
r=1 1 ,
uollzr () < ||u0||L;(Q)Hu0H£1(Q) <O

Then,

1 c
sup Hu5||LT(Q) < C(T)7r+ max{C’, sup [l (2 )||L%(Q)}, for any r > ry.

0<t<
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We are now in a position to derive the claimed L°°—estimate. Therefore, we set

Ap = max{C’, sup |luc(t)||pw(q)}, for any p > 1. (3.32)
0<t<T
Thereafter, we take r = (P in (3.31) which leads to

Cp
Ay = C(T)™ 1S max{C’, sup l[ue ()l pir—1 ) }
o<t<T (333)

C
L

<C(M)™I@" A, 4,
since p < 2P for p > 1. By induction, we get
A, < O(T)Th= 1O () " A,

Then, by using the mass conservation law (3.3), taking [ > 2 and letting p — oo,
we arrive at

sup |Jue(t)|| g0y < C(T)I°Ag = C”, (3.34)
0<t<T

where C” is a positive constant independent of ¢.

Case2:2< g <3- 2, Vi=1,.,N.
Knowing that ¢; < o + %, then 2¢g; < o + 3 for every i = 1,.., N. Therefore,

r—a+2q; —3 r
e 722073 ) < ol oy + el ey
Then, (3.18) becomes
N 2
10 2dym=(r—1) || 0 etr—1
HUEHLT(Q) h z[ (r4+a—1)2 | 0, e L2(Q)
2
(r—1)x2 ‘81}6 ( }
_— = 2|uoll L1 eqy + 2||ue||7- ) .
sl v . luollz1 (o) + 2lluellLr (o)
(3.35)
Thereafter, by applying lemma 2.2 once again we obtain
o
ez @) = Hug i erﬁ(ﬂ)
a+r 1 T'i]\lj;rfl (3'36)
~ H el ;
L2(Q)
where
3 -1 3 -1
p= (rta ) , and 0 = (rta ) < 1.

9N (% —1ly 2<r+a71)> 7(24+3N)+4N(a —1)

r
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It is easy to verify that r2+J\Z—p1 < 2and % < 6 for suitable > 0. Then, by using the

same method we used to get (3.27), we obtain

2
2(r —1)x? || 0ve el
dim 2@ || 0 || gy @)
2 X (r—1 dlm 9 a1 (3:57)
— — e 2 + 207 |Jue|| = oy + 2,
NJ:1 T4+ o — 1 oz, c L2(Q) clL1(Q)

for suitable r > 0. Hence, by putting (3.37) into (3.35) and applying similar

arguments of the case ¢ > 3 — % we get the desired L°°—estimate. (]

We complete this section by discussing some uniform estimates (with respect to €)
of u. and v..

LEMMA 3.4. Forq; > 2 andm™ > q; — % foralli=1,..N, there exists a constant C

such that
%(Ue +e) =52 dedt < C, (3.38)
Q i
) 2
%(ug +e)m dadt < C, (3.39)
Q i
T
R I—ye (3.1
and,
T
/ HatUEH(WLNH(Q))/ dt < C, (3.41)
0

for each € € (0,1) and B a big enough positive constant.

Proof. We multiply the first equation of (3.1) by u. and integrate over Q x (0,7")

such that
Z / / 4d1 m;
(m; +1)2

T
X g2 Ov. Ou,
+ 2 i /0 /Q(ug + )iy, 9z, De dzdt

1
< §||UO||2L2(Q) + C(D)[|Avell L2 0,7:0> ()

2

8

mitl L
(Us +¢e)7 2 dzdt < §||UO||%2(Q)
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where we used the same method we introduced to get (3.8), applying proposition
3.17 and for A >> 1. Therefore, by (2.9) we get (3.8). Moreover, we note that

2
dzdt

9 m
o 87%(’1115 +E>

2
mi+l

(ue +¢) 2 dzdt.

<03 (hetimor+ ™ [ [ |2

Then, (3.39) follows from (3.38).
Next, taking ¢ € C>(Qr), multiplying the first equation of (3.1) by Bu? =1, and

integrating by parts, we obtain

= '/ 8tu§<p dz
Q
,6’*280

< ﬁ:{’/g dym;B(8 — 1) (ue + )™l

'/ ,Bug_lcpatug dz
Q

871/5 2
8:1:,-

dz

1 g—10ue O
* /dlmvﬁ(“ﬁe)ml tu? 1axj 8:2 a

n / B(p x(ue + )% 2uf 71 oo 8u€
—|—v5)‘11 1 ox; 8%

ﬁxu +e)% 2y 8115 Op
— dx
(y+ve)a—t Oz Oz

dx

+

Y™ da

N
<cz{uwsnmm+e)"*mf1/9|so| .

i=1

+lhuel3 ey |

+ (luellpos () +¢

0
8xi

Oy
axi

dzx

(UE + €)mi

I,

Oy
6:101-

Ove| [| 0

axi 8%
a'Ug

daz}
2
d:B(IIsoILoom) 4 (] )
Loo(Q)

where we used proposition 3.3, the embedding of WHN*1(Q) into L>(f2), and
(3.38). Thus, we get (3.40). Also, by the same method and using (3.5) and (3.17)

we get (3.41). O

)Qi+ﬁ*mi*2 (ue +5)

+ (luellpoe (@) +¢)

I
ox;

my

UE+€

< C||<P||(W1~N+1(Q))u
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4. Proof of theorem 2.5
The goal of this section is to prove theorem 2.5. In the proof, we need the strong

convergence of u. and v.. Then, from (3.18), (3.19), proposition 3.3 and integrating
over (0,7T), we get

N 2

2d1m7(7ﬂ_]—) 0 % 1
Y 19 ||a U < ol
> T o L, € el
4.1
S 2 (4.1)
X (7’— ]-) a’UE r2qi—a—3 I
dom=2T D || 32, || e ) e 28>+ e |
i=1 .

for suitable r. Therefore, by taking r =28 —-a+1 in (4.1) and using (3.5)

and proposition 3.3 we get that u? € L2(0,T; H'(Q)) while d;u? is bounded in

LY0,T; (WENH1(Q))) by lemma 3.4. Since H!(€2) is compactly embedded in L%(2)

and L?(€) is continuously embedded in (WHN*1(Q))’, it follows from corollary 4
1

in [22] that u? is compact in L?(0,T; L?(2)). Since u. —— uZ is Hélder continuous
with exponent %, we get that u. is compact in L27(0, T'; L??()). Thus, there exist
a function u € L2#(0,T; L?>?(Q)) and a subsequence (£,),>1 such that

u., — u Strongly in L*(0,T; L*(Q)). (4.2)
This gives
U, — w a.e. in Qp. (4.3)

On the other hand, by proposition 3.3 we get that

sup [Jue||pee ) < M. (4.4)
0<t<T
As a consequence, we get that
/ |ue|P dedt < C(T)MP, for any 1 < p < 0. (4.5)
Qr

Therefore, by using Lebesgue dominated convergence theorem, (4.3) and (4.5), we
obtain

u. — u Strongly in LP(0,T; LP(Q)) for any 1 < p < oc. (4.6)
By using the following inequality
| XM — Y™ | < m? max{ | X 2D [y ROy X — Y2 Vi=1,..,N, (4.7)

we get

/ lum™i — ™| dzdt < C/ lue, —ul? dzdt — 0, (4.8)
Qr " Qr

https://doi.org/10.1017/prm.2023.18 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.18

442 H. El Bahja
where we used (4.6) for p = 2. Then, we get that

u™ — u™ Strongly in L?(0,T; L*(2)). (4.9)

En

Since 85;? is bounded in L?(0,T; L?(2)) by (3.39), and using (4.9) we arrive at

m;

—(ue, +ep)™ — Weakly in L%(0,T; L*(Q2)), (4.10)

8.Z’i €T

for any ¢ = 1,.., N. Thereafter, by using (3.5), (3.41) and the same method we used
to get (4.6), we obtain

ve, — v Strongly in LP(0,T; LP(Q)), for any 1 < p < oo, (4.11)
and
0 0
307 - ;’ Weakly in L2(0, T; L2(Q2)). (4.12)
Using (4.6), (4.11), (4.7) for g¢; — 1 instead of m;, and since ¢; > 2 and v > 1 we get
that

(ue, +en)%2ue, u
—
¥+v

qi—1
) Strongly in L*(0,T; L*(Q)). (4.13)

Integrating (3.1) with respect to = and ¢, we see that (uc, ,v., ) satisfies
N T _9
0 0o (ue, +eEn)t U, Qu., Op
di— en) ™. - n_—n, - dadt
;/0 /Q{ Yo, (e, +n) 0x; (v +wve,)4"t Ox; Ox; tenptp OF

:/wwmmmdm
Q

T
/ / {V’UETL.V@ + Ve, 0 — Ue, P — Uengot} dadt = / vo(z)p(x,0) dz,
0o Ja Q

for any continuously differentiable function ¢ with compact support in © x [0, 7).
Wherefore, by using (4.6), (4.9), (4.10), (4.11), (4.12), (4.13) and by the standard

convergence argument we obtain

N T ) qi—1

ou™i Oy U dv Oy
E d . — . — dxdt
i_1/0 /Q{ " 0w O (’V+U) dz; Ox; Wt} ’

:Awuwmmda

T
/ / {V?].V(p + v — up — vcpt} dxdt = / vo(x)e(x,0) dz,
0o Ja Q

where ¢; > 2 and m™ > ¢q; — % for any ¢ = 1,.., N. Hence, we conclude the proof
of theorem 2.5.
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