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1. Introduction

Many problems in harmonic analysis and partial differential equations are related
to the study of Fourier or spectral multipliers for certain function spaces. We
start by recalling the classical Mihlin multiplier theorem. It says that if a func-
tion σ(ξ) defined on Rn\{0} has continuous derivatives up to (�n/2� + 1)-th order,
and satisfies

|∂α
ξ σ(ξ)| � Cα|ξ|−|α| (1.1)

for all ξ ∈ Rn\{0} and all multi-indices α ∈ Nn
0 with length |α| � �n/2� + 1, then

the Fourier multiplier operator Tσ associated with σ, initially defined for f ∈ S(Rn)
via

Tσf = F−1(σf̂),

extends to a bounded operator on Lp(Rn) for all 1 < p <∞. Hörmander [19]
improved this result by showing that the regularity condition on σ(ξ) could be
allowed to be of fractional order. More precisely he proved that if σ ∈ S ′(Rn)
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satisfies

sup
t>0

‖η(·)σ(t·)‖W 2
s (Rn) <∞ (1.2)

for some s > n/2, where η is a function in C∞
0 (Rn\{0}) such that |η(ξ)| � c > 0 on

some annulus {r1 < |ξ| < r2}, then Tσ extends to a bounded operator on Lp(Rn),
for all 1 < p <∞. Here W 2

s (Rn) denote the Sobolev spaces on Rn. It is well known
that condition (1.2) is weaker than condition (1.1). Calderón and Torchinsky [4]
extended Mihlin and Hörmander’s multiplier theorem to the case 0 < p � 1, proving
that if σ satisfies (1.2) for some s > n(1/p− 1/2), then Tσ is bounded on the Hardy
space Hp(Rn).

Multipliers for Lebesgue or Hardy spaces have also been studied extensively in
the context of Lie groups. For spectral multipliers on Lie groups associated to one
(or several) operators such as a sub-Laplacian, see, for example, [1, 5, 15, 18,
21–23] and the references therein. Note that the optimality of a Mihlin-Hörmander
condition in terms of the topological or homogeneous dimensions for spectral mul-
tipliers on stratified groups is a very difficult problem which has so far only been
solved in the case of 2-step [15, 21, 22, 24]. Concerning Fourier multipliers on Lie
groups, to our best knowledge, the first work was done by Coifman and Weiss in
[6], where they studied the Fourier multipliers of SU(2), see also [7]. After that,
investigations of Fourier multipliers on compact Lie groups have been focused on
the central multipliers [28–30], until the appearance of the recent works of the
third-named author and Wirth [26, 27] and Fischer [10]. The rest of the literature
concerning Fourier multipliers on Lie groups is restricted to the motion group [25]
and to the Heisenberg group [2, 8, 20].

Recently, Fischer and the third-named author [11] investigated Fourier multi-
pliers on graded Lie groups. One of their main results is the following Mihlin-type
Fourier multiplier theorem for Lp spaces on graded Lie groups. (Basic concepts con-
cerning graded Lie groups and representation theory, and the definition of difference
operators will be recalled in § 2.)

Theorem A (see [11, Theorem 1.1]). Let G be a graded Lie group with homo-
geneous dimension Q. Let σ = {σ(π), π ∈ Ĝ} be a measurable field of operators in
L∞(Ĝ). Assume that there exist a positive Rockland operator R (of homogeneous
degree ν) and an integer N > Q/2 divisible by the dilation weights v1, · · · , vn (see
§ 2 for their definition) such that

sup
π∈Ĝ

∥∥Δασ π(R)
[α]
ν

∥∥
L (Hπ)

<∞ (1.3)

and

sup
π∈Ĝ

∥∥π(R)
[α]
ν Δασ

∥∥
L (Hπ)

<∞, (1.4)

hold for all α ∈ Nn
0 with [α] � N . Then the Fourier multiplier operator Tσ defined

via

FG(Tσf)(π) = σ(π)f̂(π) (1.5)

is of weak type (1, 1), and is bounded on Lp(G) for all 1 < p <∞.
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Examining the proof of theorem A (given in [11]), we find that the condition
(1.3) is sufficient to give the weak (1, 1) estimate of Tσ. The latter along with
the L2(G)-boundedness of Tσ (which follows from the Plancherel theorem) and an
interpolation argument yields the Lp(G)-boundedness of Tσ for 1 < p � 2. Note that
T ∗

σ = Tσ∗ , where σ∗ = {σ(π)∗, π ∈ Ĝ}, and that if σ satisfies (1.4) then σ∗ satisfies
(1.3). Hence, if σ satisfies (1.3) and (1.4), then both Tσ and T ∗

σ are bounded on
Lp(G) for 1 < p � 2, which implies that Tσ is bounded on Lp(G) for all 1 < p <∞.

The purpose of the present paper is to extend theorem A to the case 0 < p � 1 by
investigating the Hp(G) → Lp(G) boundedness of Tσ, where Hp(G) is the Hardy
space on G. Our main results is the following

Theorem 1.1. Let G be a graded Lie group with homogeneous dimension Q. Let
σ = {σ(π), π ∈ Ĝ} be a measurable field of operators in L∞(Ĝ). Let 0 < p � 1.
Assume that there exist a positive Rockland operator R (of homogeneous degree ν)
and an integer N > Q(1/p− 1/2) divisible by the dilation weights v1, · · · , vn such
that

sup
π∈Ĝ

∥∥Δασ π(R)
[α]
ν

∥∥
L (Hπ)

<∞

holds for all α ∈ Nn
0 with [α] � N, Then the Fourier multiplier operator Tσ defined

by (1.5) is bounded from Hp(G) to Lp(G).

Some remarks concerning theorem 1.1 are in order.

(1) Taking p = 1 in theorem 1.1, we have the H1(G) → L1(G) boundedness of Tσ,
under the assumption that σ satisfies (1.3) for some integer N > Q/2 which
is divisible by the dilation weights v1, · · · , vn. Thus (by interpolation) our
result also implies the Lp(G)-boundedness of Tσ stated in theorem A under
the same assumptions.

(2) In the abelian Euclidean setting, that is, (Rn, +) with the usual isotropic
dilation with R being the Laplace operator, (1.3) is equivalent to (1.4), and
each of them reduces to (1.1). Indeed, the Euclidean abelian setting, all the
dilations weights v1, · · · , vn are equal to 1, and π(R) reduces to |ξ|2, where
ξ is the (Fourier) dual variable.

(3) As we mentioned before, the optimality of the Mihlin–Hörmander condition
for multipliers on Lie groups is a very deep problem. It is known that on
any 2-step stratified group the sufficient and necessary condition for Lp-
boundedness of a spectral multiplier F (L) (where L is a sub-Laplaican) is that
F satisfies a scale-invariant smoothness condition of order s > n/2, where
n is the topological dimension of the group (see [22]). It is natural to ask
whether the condition N > Q(1/p− 1/2) in theorem 1.1 can be replaced by
N > n(1/p− 1/2). However, we do not indent to study this problem in the
present paper.

To prove theorem 1.1 we shall mainly use an atomic decomposition of Hp(G), the
Littlewood–Paley decomposition, and a Taylor formula with integral remainder on
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homogeneous groups which is due to Bonfiglioli [3]. Hulanicki’s theorem will also
play an important role in our proof.

This paper is organized as follows. In § 2, we recall basic notions concerning
graded Lie groups, basic representation theory, the group Fourier transform, Rock-
land operators and difference operators. In § 3, we recall some basic facts about
Hardy spaces on graded Lie groups, including their atomic decomposition. The
proof of our main theorem will be given in § 4.

Notation. We use N0 to denote the set of all nonnegative integers. For a non-
negative number s, we denote by �s� the largest integer less than or equal to s.
If H1 and H2 are two Hilbert spaces, we denote by L (H1, H2) the Banach space
of the bounded linear operators from H1 to H2. When H1 = H2 = H then we
write L (H1, H2) = L (H). The letter C will denote positive constants, which are
independent of the main variables involved and whose value may vary at every
occurrence. By writing f � g we mean that f � Cg. If f � g and g � f , we also
write f ∼ g.

2. Preliminaries

2.1. Graded Lie groups and their homogeneous structure

A Lie group G is said to be graded if it is connected and simply connected, and its
Lie algebra g is endowed with a vector space decomposition g = ⊕∞

k=1gk (where all
but finitely many of the gk’s are {0}) such that [gk, gk′ ] ⊂ gk+k′ for all k, k′ ∈ N.
Such a group is necessarily nilpotent, and the exponential map exp : g → G is a
diffeomorphism. Examples of graded Lie groups include the Euclidean space Rn,
the Heisenberg group Hn and, more generally, all stratified Lie groups.

We choose and fix a basis {X1, · · · , Xn} of g, so that it is adapted to the gra-
dation, i.e., {X1, · · · , Xn1} (possibly ∅) is a basis of g1, {Xn1+1, · · · , Xn1+n2}
(possibly ∅) is a basis of g2, and so on. Via the map

Rn � (x1, · · · , xn) → exp(x1X1 + · · · + xnXn) ≡ x ∈ G, (2.1)

each point (x1, · · · , xn) ∈ Rn is identified with the point x ∈ G. This map takes
the Lebesgue measure on Rn to a bi-invariant Haar measure μ on G. We denote
the group identity of G by e.

The Lie algebra g is equipped with a natural family of dilations {δr}r>0 which
are linear mappings from g to g determined by

δrX = rkX for X ∈ gk

For each j ∈ {1, · · · , n}, let vj be the unique positive integer such that Xj ∈ gvj
.

Then we have δrXj = rvjXj , j = 1, · · · , n. The associated group dilation is given
by

δrx = (rv1x1, · · · , rvnxn),
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for x = (x1, · · · , xn) ∈ G and r > 0. The integers v1, · · · , vn are referred to as
weights of the dilations {δt}t>0, and the positive integer

Q :=
∞∑

k=1

k(dim gk) =
n∑

j=1

vj

is called the homogeneous dimension of G.
A homogeneous quasi-norm on G is a continuous function x→ |x| from G to

[0, ∞) which vanishes only at e and satisfies that |x−1| = |x| and |δrx| = r|x| for
all x ∈ G and r > 0. An example of homogeneous quasi-norm on G is given by

|x|κ =

⎛⎝ n∑
j=1

x
2κ/vj

j

⎞⎠1/(2κ)

, (2.2)

where κ is the smallest common multiple to the weights v1, · · · , vn. Any two homo-
geneous quasi-norms on G are equivalent (see [14]). Henceforth we fix a homogenous
quasi-norm | · | on G. It satisfies a quasi-triangle inequality: there exists a constant
γ � 1 such that

|xy| � γ(|x| + |y|) (2.3)

for all x, y ∈ G.
There is an analogue of polar coordinates on homogeneous groups with the

homogeneous dimension Q replacing the topological dimension n, see [14]:

∀f ∈ L1(G)
∫

G

f(x)dμ(x) =
∫ ∞

0

∫
S

f(δry)rQ−1dσ(y)dr,

where dσ is a (unique) positive Borel measure on the unit sphere S := {x ∈ G :
|x| = 1}. This implies that for 0 < r < R <∞ and θ ∈ R,∫

r�|x|�R

|x|θ−Qdμ(x) =

{
Cθ−1(Rθ − rθ) if θ �= 0,
C log(R/r) if θ = 0.

(2.4)

Consequently, if θ > 0 then | · |θ−Q is integrable near the group identity e, and if
θ < 0 then | · |θ−Q is integrable near ∞.

Since G has been identified with Rn via the map given in (2.1), functions on
G can be viewed as functions on Rn, and vise versa. This leads naturally to the
notions of test function classes D(G), S(G) and the distribution spaces D′(G),
S ′(G). For example, a function f is said to be in the Schwartz class S(G) if f ◦ exp
is a Schwartz function on Rn. The coordinate function G � x = (x1, · · · , xn) →
x1 ∈ R is denoted by x1. For a multi-index α = (α1, · · · , αn) ∈ Nn

0 , we define xα =
xα1

1 · · ·xαn
n , as a function on G. Similarly, we set Xα = Xα1

1 · · ·Xαn
n in the universal

enveloping Lie algebra U(g) of g. We shall follow the usual custom of identifying each
vector of g with a left-invariant vector field on G and, more generally, we identify the
universal enveloping Lie algebra of g with the left-invariant differential operators.
In what follows we keep the same notation for the vectors and the corresponding
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operators. By the Poincaré–Birkhoff–Witt theorem, the Xα’s form a basis for the
algebra of the left-invariant differential operators on G.

In a canonical way the dilations {δr}r>0 lead to the notions of homogeneity for
functions and operators. For instance the degree of homogeneity of the function xα

and the differential operator Xα is

[α] :=
n∑

j=1

vjαj .

A function P : G→ C is called a polynomial, if it is of the form

P (x) =
∑

α∈Nn
0

cαx
α

where all but finitely many of the complex coefficients cα vanish. The homogeneous
degree of the polynomial P is defined as max{[α] : cα �= 0}. For M ∈ N0, we set

PM := {all polynomials on G with homogeneous degree � M}.̂

We denote by X̃1, · · · , X̃n the corresponding basis for right-invariant vector
fields, that is,

X̃jf(x) =
d

dt
f
(
exp(tXj)x

)∣∣
t=0

, j = 1, · · · , n.

Also, for α ∈ Nn
0 , we set X̃α = X̃α1

1 · · · X̃αn
n .

If f and g are measurable functions on G, then their convolution is defined by

f ∗ g(x) =
∫

G

f(y)g(y−1x)dμ(y) =
∫

G

f(xy−1)g(y)dμ(y),

provided that the integrals converge. For any multi-index α ∈ Nn
0 and sufficiently

good functions f and g, we have (see [14, chapter 1])

Xα(f ∗ g) = f ∗ (Xαg), X̃α(f ∗ g) = (X̃αf) ∗ g, (Xαf) ∗ g = f ∗ (X̃αg).
(2.5)

2.2. Fourier analysis on graded Lie groups

The general theory of representation of Lie groups may be found in [9]. Here we
also refer to [12] for a description which is more adapted to our particular context.

A representation π of a Lie group G on a Hilbert space Hπ �= {0} is a homo-
morphism from G into the group of bounded linear operators on Hπ with bounded
inverse. More precisely,

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is bounded and has
bounded inverse;

• for every x, y ∈ G, we have π(xy) = π(x)π(y).
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A representation π ofG is called irreducible if it has no closed invariant subspaces.
π is called unitary if π(x) is unitary for every x ∈ G, and is called strongly continu-
ous if the mapping π : G→ L (Hπ) is continuous with respect to the strong operator
topology in L (Hπ). Two representations π1 and π2 are said to be equivalent if
there exists a bounded linear mapping A : Hπ1 → Hπ2 between their representa-
tion spaces with a bounded inverse such that the relation Aπ1(x) = π2(x)A holds
for all x ∈ G. In this case we write π1 ∼ π2, and denote their equivalence class by
[π1] = [π2]. The set of all equivalence classes of strongly continuous irreducible uni-
tary representations of G is called the unitary dual of G and is denoted by Ĝ. In
what follows, we will identify one representation π with its equivalent class [π].

For a unitary representation of G, the corresponding infinitesimal representation
which acts on the universal enveloping algebra U(g) of the Lie algebra g is still
denoted by π. This is characterized by its action on g:

π(X) = ∂t=0π(etX), X ∈ g.

The infinitesimal action acts on the space H∞
π of smooth vectors, that is, the space

of vectors v ∈ Hπ such that the function G � x → π(x)v ∈ Hπ is of class C∞.
The Fourier coefficients or group Fourier transform of a function f ∈ L1(G) at

π ∈ Ĝ is defined by

FGf(π) ≡ f̂(π) ≡ π(f) :=
∫

G

f(x)π(x)∗dμ(x).

It is readily seen that

‖f̂(π)‖L (Hπ) � ‖f‖L1(G).

For f, g ∈ L1(G), we also have

f̂ ∗ g(π) = ĝ(π)f̂(π).

There exists a unique positive Borel measure μ̂ on Ĝ, called the Plancherel mea-
sure, such that for any continuous function f on G with compact support, one
has ∫

G

|f(x)|2dμ(x) =
∫

Ĝ

‖FGf(π)‖2
HS(Hπ)dμ̂(π),

where ‖ · ‖HS(Hπ) denotes the Hilbert–Schmidt norm on the spaceHS(Hπ) ∼ Hπ ⊗
H∗

π of Hilbert–Schmidt operators on the Hilbert space Hπ. Since L1(G) ∩ L2(G) is
dense in L2(G), the Fourier transform FG extends to a unitary operator from L2(G)
onto L2(Ĝ).

By the general theory on locally compact unimodular groups of type I (see e.g.
[9]), if T is an L2-bounded operator on G which commutes with left-translations,
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then there exists a field of bounded operators T̂ (π) such that for all f ∈ L2(G),

FG(Tf)(π) = T̂ (π)f̂(π) a.e. π ∈ Ĝ.

Moreover, we have

‖T‖L (L2(G)) = sup
π∈Ĝ

‖T̂ (π)‖L (Hπ),

where the supremum here is understood as the essential supremum with respect
to the Plancherel measure μ. Conversely, given any σ = {σ(π), π ∈ Ĝ} ∈ L∞(Ĝ),
there is a corresponding operator Tσ given by

FG(Tσf)(π) = σ(π)f̂(π), f ∈ L2(G).

By the Plancherel theorem, Tσ is bounded on L2(G) with ‖Tσ‖L (L2(G)) =
‖σ‖L∞(Ĝ).

If π is a unitary irreducible representation of G and r > 0, we define r · π to be
the unitary irreducible representation such that

r · π(x) = π(δrx), x ∈ G.

2.3. Rockland operators

Let G be a graded Lie group. A left-invariant differential operator R on G is
called a Rockland operator if it is homogeneous of positive degree and for each
unitary irreducible non-trivial representation π of G, the operator π(R) is injective
on H∞

π . Rockland operators may be defined on any homogeneous group, however
it turns out that the existence of a Rockland operator on a homogeneous group
implies that (the Lie algebra of) the group admits a gradation. This is the reason
why we and the authors in [11] consider the setting of graded Lie groups. On any
graded Lie group G, the operator

n∑
j=1

(−1)
ν0
vj cjX

2
ν0
vj

j

with cj > 0 is a Rockland operator of homogeneous degree 2ν0 if ν0 is any common
multiple of v1, · · · , vn.

We will mainly consider positive Rockland operators. A Rockland operator R is
said to be positive, if ∫

G

Rf(x)f(x)dμ(x) � 0

for all f ∈ S(G). If a Rockland operator R is positive then R and π(R) admit
self-adjoint extensions on L2(G) and Hπ, respectively. We use the same notation
for their self-adjoint extensions. By the spectral theory, we have

R =
∫ ∞

0

λdER(λ) and π(R) =
∫ ∞

0

λdEπ(R)(λ),

where ER(λ) (resp. Eπ(R)(λ)) is the resolution of the identity associated to R (resp.
π(R)).
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For any bounded Borel function ϕ on [0, ∞), the operator

ϕ(R) =
∫ ∞

0

ϕ(λ)dER(λ)

is bounded on L2(G), and commutes with left translations. Thus, by the Schwartz
kernel theorem, there exists a distribution Kϕ(R) ∈ S ′(G) such that

ϕ(R)f = f ∗Kϕ(R), ∀f ∈ S(G).

Note that the point λ = 0 may be neglected in the spectral resolution, since the
projection measure of {0} is zero (see [17] or [12, remark 4.2.8]). Consequently we
should regard ϕ as a function on (0, ∞) rather than on [0, ∞).

We now recall Hulanicki’s theorem, which will play an important role in the proof
of our main result.

Theorem 2.1 Hulanicki [16]. Let G be a graded Lie groups and let R be a pos-
itive Rockland operator on G. For any M1 ∈ N and M2 � 0, there exist C =
C(M1, M2) > 0 and k = k(M1, M2), k′ = k′(M1, M2) ∈ N0 such that, for any ϕ ∈
Ck(0, ∞), the convolution kernel Kϕ(R) of ϕ(R) satisfies

∑
[α]�M1

∫
G

|XαKϕ(R)(x)|(1 + |x|κ)M2dμ(x) � C sup
λ∈(0,∞)


∈{0,1,··· ,k}

′∈{0,1,··· ,k′}

(1 + λ)
′
∣∣∣∣ d


dλ

ϕ(λ)

∣∣∣∣ .

The same result with the right-invariant vector fields X̃j’s instead of the left-
invariant vector fields Xj’s also holds.

Corollary 2.2. Let R be a positive Rockland operator on a stratified Lie group
G. If ϕ is a function on (0, ∞) such that ϕ = ϕ̃|(0,∞) for some ϕ̃ ∈ S(R), then
Kϕ(R) ∈ S(G).

2.4. Difference operators

The Mihlin condition (1.1) is formulated in terms of the derivatives with respect
to the Fourier variable ξ. However, for a field σ = {σ(π), π ∈ Ĝ} of operators, there
is no direct way to define an analogue of derivatives with respect to the Fourier
variable π. To generalize the symbolic conditions to the setting of graded Lie groups,
Fischer and Ruzhansky [12] introduced the so-called difference operators, whose
definition we now recall.

For a, b ∈ R, we denote by LL(L2
a(G), L2

b(G)) the subspace of all T ∈
L (L2

a(G), L2
b(G)) which are left-invariant. Here L2

a(G) is the Bessel potential space
(fractional Sobolev space) defined in [13]. Define

Ka,b(G) :=
{
K ∈ S ′(G) : the operator S(G) � f → f ∗K extends to

a bounded operator from L2
a(G) to L2

b(G))
}
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and define L∞
a,b(Ĝ) to be the space of all fields σ = {σ(π), π ∈ Ĝ} such that

‖σ‖L∞
a,b(Ĝ) := sup

π∈Ĝ

‖π(I + R)
b
ν σ(π)π(I + R)−

a
ν ‖L (Hπ) <∞.

From [12, proposition 5.1.24] we see that, if σ ∈ L∞
a,b(Ĝ) then the Fourier multiplier

operator Tσ corresponding to σ belongs to LL(L2
a(G), L2

b(G)) with

‖Tσ‖L (L2
a(G),L2

b(G)) = ‖σ‖L∞
a,b(Ĝ).

Conversely, if T ∈ LL(L2
a(G), L2

b(G)), then there exists a unique σ ∈ L∞
a,b(Ĝ) such

that

FG(Tf)(π) = σ(π)f̂(π), f ∈ L2(G).

In this case, denoting by K ∈ Ka,b(G) the convolution kernel of T , we define

FGK = σ and F−1
G σ = K.

This extends the definition of Fourier transform to the space Ka,b(G). See [12,
definition 5.1.25].

For α ∈ Nn
0 and σ = {σ(π), π ∈ Ĝ} ∈ L∞

a,b(Ĝ), the difference operator Δα acting
on σ is defined according to the formula (see [12, definition 5.2.1])

Δασ(π) = FG(qαF−1
G σ)(π) for a.e. π ∈ Ĝ,

where qα(x) = xα. Analogously to the derivatives in the Euclidean setting, the
operator Δα satisfies the Lebnitz rule [12, section 5.2.2]:

Δα(στ) =
∑

α1+α2=α

Cα1,α2Δ
α1(σ)Δα2(τ), σ, τ ∈ L∞

a,b(Ĝ). (2.6)

3. Hardy spaces on graded Lie groups

A comprehensive theory of Hardy spaces on general homogeneous groups was built
by Folland and Stein [14]. Since all graded Lie groups are homogeneous, the theory
in [14] applies to our setting.

In what follows, G is always a graded Lie group with homogeneous dimension Q.

3.1. Definition of Hardy spaces on G

We first introduce some maximal functions. Given a function Φ ∈ S(G), we
defined the nontangential maximal function MΦf and the radial maximal function
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M0
Φf of f ∈ S ′(G) by

MΦf(x) := sup
|x−1y|<t

|f ∗ Φt(y)| and M0
Φf(x) := sup

t>0
|f ∗ Φt(x)|,

respectively, where Φt(x) := t−QΦ(δt−1x). We then define the grand maximal
function M(N)f for each N ∈ N by

M(N)f(x) := sup
Φ∈S(G),‖Φ‖(N)�1

MΦf(x),

where

‖Φ‖(N) := sup
|α|�N,x∈G

(1 + |x|κ)(N+1)(Q+1)|X̃αΦ(x)|.

Moreover, given N ∈ N, we define the grand maximal function M(N)f of f ∈ S ′(G)
by

Definition 3.1. For 0 < p <∞, the Hardy space Hp(G) is defined as

Hp(G) :=
{
f ∈ S ′(G) : M(Np)f <∞}

,

where

Np := min{[α] : α ∈ Nn
0 with [α] > Q(1/p− 1)}.

The quasi-norm on Hp(G) is defined by

‖f‖Hp(G) := ‖M(Np)f‖Lp(G).

The Hardy spaces Hp(G), initially defined via grand maximal function, can
be characterized by radial maximal function and nontangential maximal function
equivalently. To recall these maximal characterizations, we need the notion of com-
mutative approximate identities introduced in [14]. A commutative approximate
identity onG is a function Φ ∈ S(G) such that

∫
G

Φ(x)dx = 1 and Φs ∗ Φt = Φt ∗ Φs

for all s, t > 0. On a graded Lie group it is easy to construct a commutative approxi-
mate identity. Indeed, if R is a positive Rockland operator on G, and ϕ ∈ S(R) such
that ϕ(0) = 1, then the convolution kernel of the operator ϕ(R) is a commutative
approximate identity.

Proposition 3.2 [14, corollary 4.17]. Suppose 0 < p <∞ and Φ is a commutative
approximate identity. Then for f ∈ S ′(G), the following are equivalent:

(i) M0
Φf ∈ Lp(G);

(ii) MΦf ∈ Lp(G);

(iii) M(Np)f ∈ Lp(G).

Moreover, we have

‖M0
Φf‖Lp(G) ∼ ‖MΦf‖Lp(G) ∼ ‖M(Np)f‖Lp(G)

with the implicit constants depending only on Φ and p.
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Remark 3.3. If 1 < p <∞, the spaces Hp(G) and Lp(G) coincide with equivalent
norms. See [14, p. 75].

3.2. Atomic decomposition

Atomic decomposition is a very useful tool for the study of boundedness of oper-
ators on Hardy spaces. Analogously to the Euclidean case, Hardy spaces on graded
Lie groups also admit an atomic decomposition, which we now recall. See [14] for
more details.

A triplet (p, q, M) is said to be admissible, if 0 < p � 1 � q � ∞, p �= q and
M ∈ N0 with M � max

{
[α] : α ∈ Nn

0 with [α] � Q(1/p− 1)
}
.

Definition 3.4. Given an admissible triplet (p, q, M), we say that a function a on
G is a (p, q, M)-atom, if it is a compactly supported Lq function such that

(i) there is a ball B such that supp a ⊂ B and ‖a‖Lq � μ(B)1/q−1/p;

(ii) for every P ∈ PM ,
∫

G
a(x)P (x)dμ(x) = 0.

The atomic decomposition of Hp(G) can be stated as follows.

Proposition 3.5 [14]. Let (p, q, M) be an admissible triplet. Then there is a
constant c1 > 0 such that for all any (p, q, M)-atom a, one has

‖a‖Hp(G) � c1.

Conversely, given any f ∈ Hp(G), there exist a sequence {aj}∞j=1 of (p, q, M)-
atoms and a sequence {λj}∞j=1 of complex numbers such that f =

∑∞
j=1 λjaj with

convergence in S ′(G) and

⎛⎝ ∞∑
j=1

|λj |p
⎞⎠1/p

� c2‖f‖Hp(G),

where c2 is a constant independent of f .

4. Proof of main result

We need the following Taylor’s formula with integral remainder on homogeneous
groups, due to Bonfiglioli (see [3, theorem 2]). Note that in [3] it is assumed that
v1 = 1, in which case one has �M� = M .

Lemma 4.1. Suppose f ∈ CM+1(G) for some M ∈ N0. Let y → P f
x,M (y) denote the

right Taylor polynomial of f at x of homogeneous degree M . Then there exists a
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positive group constant CM such that

f(yx) − P f
x,M (y) =

∑
|α|��M�
[α]�M+1

X̃αf(x)

⎛⎝ ∑
β:[β]=[α]

Cα,βy
β

⎞⎠

+
∑

|α|��M�+1
[α]�M+1

⎛⎝ ∑
β:[β]=[α]

C ′
α,βy

β

⎞⎠∫ 1

0

(X̃αf)(y(t)x)
(1 − t)M

M !
dt,

where

y(t) := exp

⎛⎝ n∑
j=1

tyjXj

⎞⎠ ≡ (ty1, · · · , tyn),

�M� := max{|α| : α ∈ Nn
0 with [α] � M}, and Cα,β , C

′
α,β are constants.

Lemma 4.2. Suppose that σ = {σ(π), π ∈ Ĝ} is a measurable field of operators, R
is positive Rockland operator (of homogeneous degree ν), and N is an integer, all
of which satisfy the hypothesis of theorem 1.1. Let ϕ ∈ S(R) such that suppϕ ⊂
[2−ν , 2ν ] and ∑

j∈Z

ϕ(2−νjλ) = 1 ∀λ ∈ (0,∞).

Let σj(π) := σ(2j · π)ϕ(π(R)) and Kj := F−1
G σj for j ∈ Z. Then for any α ∈ Nn

0 ,
there exits a constant C (depending on α) such that∫

G

(1 + |x|)2N |X̃αKj(x)|2dμ(x) � C. (4.1)

Proof. Let ψ ∈ S(R) such that ψ = 1 on [2−ν , 2ν ]. Then ϕ(λ) = ϕ(λ)ψ(λ) for all
λ ∈ R. Consequently

σj(π) = σj(π)ψ(π(R)).

Letting Ψ be the convolution kernel of ψ(R), it follows that

X̃αKj(x) = X̃α
(
Ψ ∗Kj

)
(x) = (X̃αΨ) ∗Kj(x),

where we used (2.5). From the quasi-triangle inequality (2.3) we have

(1 + |x|)N � (1 + |xy−1|)N (1 + |y|)N ,

which yields

(1 + |x|)N
∣∣(X̃αΨ) ∗Kj(x)

∣∣ �
[
(1 + | · |)N |X̃αΨ|] ∗ [(1 + | · |)N |Kj |

]
(x)

By Hulanicki’s theorem (see corollary 2.2), we have Ψ ∈ S(G), which implies

(1 + | · |)N |X̃αΨ| ∈ L1(G).
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Hence by Young’s inequality,∫
G

(1 + |x|)2N |X̃αKj(x)|2dμ(x)

�
∥∥∥[(1 + | · |)N |X̃αΨ|] ∗ [(1 + | · |)N |Kj |

]∥∥∥2

L2(G)

�
∫

G

(1 + |x|)2N |Kj(x)|2dμ(y)

∼
∫

G

(1 + |x|2κ
κ )N/κ|Kj(x)|2dμ(y),

(4.2)

where | · |κ is the homogeneous quasi-norm defined by (2.2).
Since N is a common multiple of the dilation weights v1, · · · , vn and κ is the

smallest such common multiple, (1 + |x|2κ
κ )N/κ of the form

(1 + |x|2κ
κ )N/κ =

∑
[β]�N

cβ(xβ)2.

Inserting this into (4.2), and using the Plancherel theorem and the Lebniz rule
(2.6), we have ∫

G

(1 + |x|)2N |X̃αKj(x)|2dμ(x)

�
∑

[β]�N

∥∥Δβ
[
σj(π)ϕ(π(R))

]∥∥
L2(Ĝ)

�
∑

[β′]+[β′′]�N

∥∥∥(Δβ′
σj)(π)Δβ′′[

ϕ(π(R))
]∥∥∥

L2(Ĝ)
.

(4.3)

Inserting the powers π(R)[β
′]/ν , each term in the above sum can be estimated as

follows:∥∥∥(Δβ′
σj)(π)Δβ′′[

ϕ(π(R))
]∥∥∥

L2(Ĝ)

�
∥∥∥(Δβ′

σj)(π)π(R)[β
′]/ν

∥∥∥
L∞(Ĝ)

∥∥∥π(R)−[β′]/νΔβ′′[
ϕ(π(R))

]∥∥∥
L2(Ĝ)

=: E1 · E2.

(4.4)

For the factor E1, we have

E1 = sup
π∈Ĝ

∥∥∥(Δβ′
σj)(π)π(R)[β

′]/ν
∥∥∥

L (Hπ)

= sup
π∈Ĝ

∥∥∥2j[β′](Δβ′
σ
)
(2j · π)π(R)[β

′]/ν
∥∥∥

L (Hπ)
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= sup
π∈Ĝ

∥∥∥(Δβ′
σ
)
(2j · π)

[
(2j · π)(R)

][β′]/ν
∥∥∥

L (Hπ)

= sup
π∈Ĝ

∥∥∥(Δβ′
σ
)
(π)

[
π(R)

][β′]/ν
∥∥∥

L (Hπ)

� Cβ′ , (4.5)

where the last inequality follows from the Mihlin-type condition (1.3).
Using Hulanicki’s theorem (2.2) and the fact that ϕ vanishes near the origin, one

can show that (see the proof of proposition 4.9 in [11] for details)

E2 =
∥∥∥π(R)−[β′]/νΔβ′′[

ϕ(π(R))
]∥∥∥

L2(Ĝ)
� Cβ′,β′′ . (4.6)

Combining (4.3) through (4.6) yields the desired estimate (4.1). �

Now we give the proof of our main result.

Proof of theorem 1.1. Let 0 < p � 1 and let σ, R and N satisfy the hypothesis of
theorem 1.1. We fix an integer M such that

M � max
{
[α] : α ∈ Nn

0 with [α] � Q(1/p− 1)
}

(4.7)

and
Q

2
+ (M + 1) −N > 0. (4.8)

The condition (4.7) means that (p, 2, M) is an admissible triplet. Hence, to prove
that Tσ is bounded from Hp(G) to Lp(G), by proposition 3.5 it suffices to show
that there exists a constant C such that for an arbitrary (p, 2, M)-atom a,

‖Tσa‖Lp(G) � 1. (4.9)

Suppose a is a (p, 2, M)-atom associated to a ball B = B(x0, r). Since Tσ com-
mutes with left translations, we may assume without loss of generality that x0 = e,
i.e., the ball B is centred at the group identity e. Let c be a sufficient large positive
constant. We write

‖Tσa‖p
Lp(G) =

∫
B(e,cr)

|Tσa(x)|pdμ(x) +
∫

B(e,cr)c

|Tσa(x)|pdμ(x)

=: I1 + I2.

First we estimate I1. Indeed, by the Plancherel theorem and Hölder’s inequality,

I1 � ‖Tσa‖p
L2(G)|B(e, cr)|1− p

2 � ‖σ‖p

L∞(Ĝ)
‖a‖p

L2(G)|B(e, cr)|1− p
2 � 1. (4.10)

Next we estimate I2. Choose a function ϕ ∈ S(R) such that suppϕ ⊂ [2−ν , 2ν ]
and ∑

j∈Z

ϕ(2−νjλ) = 1 ∀λ ∈ (0,∞).
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By the spectral theorem (recalling that 0 can be neglected in the spectral
resolution),

a =
∑
j∈Z

ϕ(2−νjR)a in L2(G).

Consequently (using the L2-boundedness of Tσ) we have

Tσa(x) =
∑
j∈Z

Tσϕ(2−νjR)a(x), a.e. x ∈ G. (4.11)

We set

σj(π) := σ(2j · π)ϕ(π(R)),

σ̃j(π) := σj(2−j · π) = σ(π)ϕ(2−j · π(R)),

Kj := F−1
G σj ,

K̃j := F−1
G σ̃j .

Then (4.11) can be rewritten as

Tσa(x) =
∑
j∈Z

Tσ̃j
a(x) =

∑
j∈Z

∫
B(e,r)

K̃j(y−1x)a(y)dμ(y) =
∑
j∈Z

Fj(x),

where

Fj(x) :=
∫

B(e,r)

K̃j(y−1x)a(y)dμ(y).

Using (
∑

j uj)p �
∑

j |uj |p (0 < p � 1) and Hölder’s inequality, it follows that

∫
B(e,cr)c

|Tσa(x)|pdμ(x) =
∫

B(e,cr)c

∣∣∣∣∣∣
∑
j∈Z

Fj(x)

∣∣∣∣∣∣
p

dμ(x)

�
∑
j∈Z

∫
B(e,cr)c

|Fj(x)|p dμ(x)

=
∑
j∈Z

∫
B(e,cr)c

|x|−pN |x|pN |Fj(x)|p dμ(x)

�
∑
j∈Z

(∫
B(e,cr)c

|x|− 2pN
2−p dμ(x)

)1− p
2
(∫

B(e,cr)c

|x|2N |Fj(x)|2dμ(x)

) p
2

∼
∑
j∈Z

r
(2−p)Q

2 −pN

(∫
B(e,cr)c

|x|2N |Fj(x)|2dμ(x)

) p
2

.

(4.12)

Here we also used the assumption that N > Q(1/p− 1/2), which implies 2pN
2−p > Q

and hence the function | · | 2pN
2−N is integrable on B(e, cr)c.
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Let j0 be the unique integer such that 2−j0 � r < 2−j0+1 (i.e., r ∼ 2−j0). To
estimate the last integral in (4.12), we shall consider two cases: j � j0 and j < j0.

Case 1: j � j0. Observe that |x| ∼ |y−1x| whenever x ∈ B(e, cr)c and y ∈
B(e, r). Hence for all x ∈ B(e, cr)c,

|x|N |Fj(x)| = |x|N
∣∣∣∣∣
∫

B(e,r)

K̃j(y−1x)a(y)dμ(y)

∣∣∣∣∣
∼
∫

B(e,r)

|y−1x|NK̃j(y−1x)||a(y)|dμ(y)

� ‖a‖L2(G)

(∫
B(e,r)

|y−1x|2N |K̃j(y−1x)|2dμ(y)

) 1
2

� |B(e, r)| 12− 1
p

(∫
B(e,r)

|y−1x|2N |K̃j(y−1x)|2dμ(y)

) 1
2

.

It follows by Fubini’s theorem, the fact that K̃j(x) = 2jQKj(δ2jx), and lemma 4.2
that∫

B(e,cr)c

|x|2N |Fj(x)|2dμ(x)

� |B(e, r)|1− 2
p

∫
B(e,cr)c

(∫
B(e,r)

|y−1x|2N |K̃j(y−1x)|2dμ(y)

)
dμ(x)

= |B(e, r)|1− 2
p

∫
B(e,r)

(∫
B(e,cr)c

|y−1x|2N |K̃j(y−1x)|2dμ(x)

)
dμ(y)

� |B(e, r)|1− 2
p

∫
B(e,r)

(∫
G

|y−1x|2N |K̃j(y−1x)|2dμ(x)
)
dμ(y)

= |B(e, r)|1− 2
p

∫
B(e,r)

(∫
G

|x|2N |K̃j(x)|2dμ(x)
)
dμ(y)

= |B(e, r)|2− 2
p

∫
G

|x|2N |K̃j(x)|2dμ(x)

= |B(e, r)|2− 2
p 2j(Q−2N)

∫
G

|x|2N |Kj(x)|2dμ(x)

� r(2−
2
p )Q2j(Q−2N).

(4.13)

Case 2: j < j0. Let P
K̃j

x,M be the right Taylor polynomial of K̃j at x of
homogeneous degree M . By the vanishing moments of a, we have, for each
x ∈ B(e, cr)c,

Fj(x) =
∫

B(e,r)

[
K̃j(y−1x) − P

K̃j

x,M (y−1)
]
a(y)dμ(y) (4.14)
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Using lemma 4.1 we can write

K̃j(y−1x) − P
K̃j

x,M (y−1) =
∑

|α|��M�
[α]�M+1

X̃αK̃j(x)Pα(y)

+
∑

|α|��M�+1
[α]�M+1

P ′
α(y)

∫ 1

0

(X̃αK̃j)
(
(y−1)(t)x

) (1 − t)M

M !
dt,

(4.15)
where both Pα and P ′

α are polynomials on G of homogeneous degree [α], and

(y−1)(t) := exp

⎛⎝−
n∑

j=1

yjXj

⎞⎠ ≡ (−ty1, · · · ,−tyn).

Inserting (4.15) into (4.14), and using the Cauchy–Schwarz inequality and the size
condition of atoms, we have

|Fj(x)| �
∑

|α|��M�
[α]�M+1

∫
B(e,r)

∣∣∣X̃αK̃j(x)Pα(y)a(y)
∣∣∣ dµ(y)

+
∑

|α|��M�+1
[α]�M+1

∫
B(e,r)

∣∣∣∣P ′
α(y)

∫ 1

0
(X̃αK̃j)

(
(y−1)(t)x

) (1 − t)M

M !
dt

∣∣∣∣ |a(y)|dµ(y)

�
∑

|α|��M�
[α]�M+1

r
( 1
2− 1

p
)Q

(∫
B(e,r)

∣∣∣X̃αK̃j(x)Pα(y)
∣∣∣2 dµ(y)

)1/2

+
∑

|α|��M�+1
[α]�M+1

r
( 1
2− 1

p
)Q

(∫
B(e,r)

∣∣∣∣∫ 1

0
P ′

α(y)(X̃αK̃j)
(
(y−1)(t)x

) (1 − t)M

M !
dt

∣∣∣∣2 dµ(y)

)1/2

=: F
(1)
j (x) + F

(2)
j (x).

Thus,

∫
B(e,cr)c

|x|2N |Fj(x)|2dμ(x) �
∫

B(e,cr)c

|x|2N |F (1)
j (x)|2dμ(x)

+
∫

B(e,cr)c

|x|2N |F (2)
j (x)|2dμ(x).
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We first estimate
∫

B(e,cr)c |x|2N |F (2)
j (x)|2dμ(x). Indeed, by Minkowski’s inequal-

ity and Fubini’s theorem,∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dμ(x) �

∑
|α|��M�+1
[α]�M+1

r(1−
2
p )Q

∫
B(e,cr)c

|x|2N

(∫
B(e,r)

∣∣∣∣∫ 1

0

P ′
α(y)(X̃αK̃j)

(
(y−1)(t)x

) (1 − t)M

M !
dt

∣∣∣∣2 dμ(y)

)
dμ(x)

�
∑

|α|��M�+1
[α]�M+1

r(1−
2
p )Q

∫
B(e,cr)c

|x|2N

⎡⎣∫ 1

0

(∫
B(e,r)

∣∣∣P ′
α(y)(X̃αK̃j)

(
(y−1)(t)x

)∣∣∣2 dμ(y)

)1/2

dt

⎤⎦2

dμ(x)

�
∑

|α|��M�+1
[α]�M+1

r(1−
2
p )Q

⎡⎣∫ 1

0

(∫
B(e,cr)c

|x|2N

∫
B(e,r)

∣∣∣P ′
α(y)(X̃αK̃j)

(
(y−1)(t)x

)∣∣∣2 dμ(y)dμ(x)

)1/2

dt

⎤⎦2

=
∑

|α|��M�+1
[α]�M+1

r(1−
2
p )Q

[∫ 1

0

(∫
B(e,r)

|P ′
α(y)|2

∫
B(e,cr)c

|x|2N
∣∣∣(X̃αK̃j)

(
(y−1)(t)x

)∣∣∣2 dμ(x)dμ(y)

)1/2

dt

⎤⎦2

.

Note that if y ∈ B(e, r), x ∈ B(e, cr)c and t ∈ [0, 1], then |(y−1)(t)x| ∼ |x|. Thus,
for every y ∈ B(e, r) and t ∈ [0, 1],∫

B(e,cr)c

|x|2N
∣∣∣(X̃αK̃j)

(
(y−1)(t)x

)∣∣∣2 dμ(x)

∼
∫

B(e,cr)c

|(y−1)(t)x|2N
∣∣(X̃αK̃j)

(
(y−1)(t)x

)∣∣2dμ(x)

�
∫

G

|x|2N
∣∣(X̃αK̃j)(x)

∣∣2dμ(x)

= 2j(Q+2[α]−2N)

∫
G

|x|2N
∣∣(X̃αKj)(x)

∣∣2dμ(x)

� 2j(Q+2[α]−2N),
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where for the last line we used lemma 4.2. Inserting this estimate yields∫
B(e,cr)c

|x|2N |F (2)
j (x)|2dμ(x)

�
∑

|α|��M�+1
[α]�M+1

r(1−
2
p )Q2j(Q+2[α]−2N)

⎡⎣∫ 1

0

(∫
B(e,r)

|P ′
α(y)|2dμ(y)

)1/2

dt

⎤⎦2

�
∑

|α|��M�+1
[α]�M+1

r(1−
2
p )Q2j(Q+2[α]−2N)

∫
B(e,r)

|y|2[α]dμ(y)

∼
∑

|α|��M�+1
[α]�M+1

r(2−
2
p )Q+2[α]2j(Q+2[α]−2N).

With a similar but easier argument, we get the analogous estimate∫
B(e,cr)c

|x|2N |F (1)
j (x)|2dμ(x) �

∑
|α|��M�
[α]�M+1

r(2−
2
p )Q+2[α]2j(Q+2[α]−2N).

The details are left to the interested reader.
Therefore, we have∫

B(e,cr)c

|x|2N |Fj(x)|2dμ(x) �
∑

|α|��M�+1
[α]�M+1

r(2−
2
p )Q+2[α]2j(Q+2[α]−2N). (4.16)

Inserting (4.13) and (4.16) into (4.12), and using that r ∼ 2−j0 , we obtain∫
B(e,cr)c

|Tσa(x)|pdμ(x)

�
∑
j∈Z

r
(2−p)Q

2 −pN

(∫
B(e,cr)c

|x|2N |Fj(x)|2dμ(x)

) p
2

�
∑
j�j0

r
(2−p)Q

2 −pN
[
r(2−

2
p )Q2j(Q−2N)

] p
2

+
∑
j<j0

∑
|α|��M�+1
[α]�M+1

r
(2−p)Q

2 −pN
[
r(2−

2
p )Q+2[α]2j(Q+2[α]−2N)

] p
2

∼
∑
j�j0

2(j−j0)p(Q
2 −N) +

∑
j<j0

∑
|α|��M�+1
[α]�M+1

2(j−j0)p( Q
2 +[α]−N).
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Since N > Q(1/p− 1/2) > Q/2, we have∑
j�j0

2(j−j0)p(Q/2−N) � 1.

Note that the index set I := {α ∈ Nn
0 : |α| � �M� + 1, [α] � M + 1} has finite ele-

ments. Moreover, the condition (4.8) implies that Q
2 + [α] −N > 0 whenever α ∈ I.

Thus ∑
j<j0

∑
|α|��M�+1
[α]�M+1

2(j−j0)p( Q
2 +[α]−N) � 1.

Therefore,

I2 =
∫

B(e,cr)c

|Tσa(x)|pdμ(x) � 1, (4.17)

Combining (4.10) and (4.17), we obtain

‖Tσa‖L2(G) � 1.

This completes the proof of Theorem 1.1. �
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