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We prove the existence of unbounded solutions of the asymmetric oscillation in the
case when each zero of the discriminative function is degenerate. This is the only
case that has not been studied in the literature.
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1. Introduction

We are concerned with the asymmetric oscillation
2 +axT bz = f(t), (1.1)

where 1 = max{z, 0}, z~ = max{—=x, 0}, a, b are two different positive constants,
and f(t) is a 2m-periodic function.

This equation models the suspension bridge [8] and has been widely studied.
Fucik [3] and Dancer [2] studied it in their investigations of boundary value prob-
lems associated to equations with ‘jumping nonlinearities’. For recent developments,
one can refer to [4, 5, 7, 16] and the references therein.

For Littlewood’s boundedness problem of the asymmetric oscillation (1.1), the
earliest contribution was due to Ortega [12]. In 1996, he considered the equation

2" +art—bx~ =1+¢eh(t),

where the smooth function h(t) is 2m-periodic. He proved that if |¢] is sufficiently
small, then all solutions are bounded. That is, if z(¢) is a solution, then it is defined
for all t € R and

sup(|z(t)| + |2/ (t)]) < +o0.
teR
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This result is in contrast with the well-known phenomenon of linear resonance that
occurs in the case a = b = n?. For example, for any £ # 0, all solutions of

2" 4+ n%x =1+ ecos(nt)

are unbounded.
For the asymmetric oscillation (1.1). Let wg := %(ﬁ + %)
If wy € R\Q, Ortega [14] in 2001 proved the boundedness of all solutions of

equation (1.1) under the condition fo% f(t)dt #0.
Recently, Hu et al. [6] established an invariant curve theorem and applied it
to equation (1.1), then they obtained the boundedness of all solutions with wy

satisfying the Diophantine condition, but without the assumption fo% f)ydt # 0.
Subsequently, we [10] also proved the boundedness of all solutions of equation

(1.1) without the assumption foQﬂ f(t)dt #0, but wg is assumed to satisfy an
approximation function condition.
If wy € Q, then there exist two positive integers m and n such that

wo = E (12)

Moreover, m and n are relatively prime.
Denote by C(t) the solution of the ‘homogeneous’ equation

2 +axt—brT =0

with the initial conditions C'(0) =1, C’(0) = 0. Then it is well known that C(t) €
C?(R) and can be given explicitly by the formula

cos v/altl, 0< < =,

Ct) = a ™ ™ m
— %5 -0 o < 2
\/;S““/B ('“ 2\/5> WA
Denote the derivative of C by S = C”, then S(t) € C(R) and

(1) C(=t) = C(t), S(=t) = =5(t);
(2) C(t) and S(t) are 2m ™-periodic functions;
(3) St)2+aCH(t)*+bC~()? =a.

For a given 2w-periodic function f(t). Let
2w m
O4(0) = /O C (59 +mt) f(mt)dt, 6€R,

and
A(f) ={0 eR: &;(0) =0}
Then ®;(0) is a 2m-periodic function and its derivative is

m

¥p(0) = = /027r S (%9 + mt) f(mt)dt, 6€R.
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On the one hand, if A =0, Liu [11] in 1999 proved that all solutions of equation
(1.1) are bounded. On the other hand, if A # () and all zeros of ®;(f) are non-
degenerate, that is, ®%(0) # 0 for all § € A, Alonso and Ortega [1] in 1998 proved
that there exists R > 0 such that every solution of (1.1) with

z(to)? + 2’ (to)> > R

for some ty € R is unbounded. Particularly, the proof of this result implies that if

there is a non-degenerate zero of ®;(f), then there exist unbounded solutions of

equation (1.1). We remark that the references [11] and [1] assume that ®£(0) # 0.
In 1998, Ortega [13] proposed an example

2 +4rT—27 = A+ cosdt, NER. (1.3)

In this example, wy = 3/4. Hence, the results of [1] and [11] can be applied. If |A| <
1/45, then all solutions with large initial conditions are unbounded. If |A| > 1/45,
then all solutions are bounded.

However, when |A| = 1/45, all zeros of ® () are degenerate. Therefore, the ref-
erences [1] and [11] can not be applied to this equation. In 2021, we [9] proved the
existence of unbounded solutions of equation (1.3) with A = +1/45.

The main idea of [9] is as follows. First, the corresponding Poincaré map in action
and angle variables can be expressed by

1 1 1
01 = 0o + 2mm + —p1(6o) + —5k1(00) + —h1(00) + g1(0o,70),
To To To

r1 =1+ p2(bo) + %kz(ao) + %hz(%) + 92(6o,70)-
0
Then in equation (1.3) with A = £4=, for all §* € A, we have ®;(6*) = (") =
0. Thus, p1(f) has only degenerate zeros. However, in these two examples, the
function p(6, r) := p1(#) + Lk1(0) + 5h1(0) has some non-degenerate zeros. Then
an invariant set near the zero of p;(f) can be found, and each solution starting
from this invariant set is unbounded.

Unfortunately, this method to find the invariant set depends on the property
that the function p(#, r) has non-degenerate zero, and cannot deal with the other
cases, including that all zeros of p(f, r) are degenerate, or p(f, r) has no zero. In
this paper, we will obtain the existence of unbounded solutions of equation (1.1)
without considering the zero of p(6, r). More precisely, we will prove

THEOREM 1.1. Assume that the resonance condition (1.2) holds, f(t) is a real ana-
lytic 2m-periodic function such that ®;(0) # 0 and A(f) # 0. Then equation (1.1)
has unbounded solutions.

REMARK 1.2. When ®;(0) # 0, if A(f) =0, then all solutions of equation (1.1)
are bounded by [11]. If A(f) # 0, then equation (1.1) has unbounded solutions
by theorem 1.1. Therefore, theorem 1.1 together with the result of [11] completely
solves Littlewood’s boundedness problem for the asymmetric oscillation (1.1) in the
resonance case under the assumption ®(6) # 0.
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In fact, according to the result of Alonso and Ortega in [1], here we only need to
consider the situation that for all 0 € A(f), ®(0*) = 0. The main idea for proving
theorem 1.1 is similar to [15] and as follows. By means of a series of transformations,
the original system is transformed into a normal form, for which the twist condition
is violated. Then an invariant set will be found, and each solution starting from the
invariant set is unbounded.

The rest of this paper is organized in 4 sections as follows. In § 2, we will give
some examples to illustrate the main theorem. Section 3 is devoted to finding the
transformations and the normal form (for which the twist condition is violated).
Then in § 4, we will give some properties of the discriminative function ® (), which
is crucial in this paper. Finally, the proof of the existence of unbounded solutions
will be given in § 5.

2. Some remarks

We give several examples to illustrate theorem 1.1. The first two examples show
that theorem 1.1 is applicable.

EXAMPLE 2.1. For equation (1.3) with A = -, the discriminative function takes
the form

In view of theorem 1.1, this equation has unbounded solutions, which is consistent
with the result of [9].

ExAMPLE 2.2. Consider the equation
2 + 4zt —x7 =X\ + Ao cosdt + \g sin 4. (2.1)

The discriminative function of this equation takes the form
Os(0) = —4M + i/\2 cos 30 — i/\3 sin 30,
45 45
and the results of [1, 11] and theorem 1.1 can be applied.
e When Ay = A3 = 0, the discriminative function is of the form
Ds(0) = 4.
If Ay # 0, then all solutions are bounded. If A; = 0, then equation (2.1) becomes
2 +dxt -2 =0,

and all solutions are bounded. Thus, when A2 = A3 = 0, all solutions of (2.1)
are bounded.
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e When Ao =0, A3 # 0, the discriminative function is of the form
Dr(0) = —4A —i)\ in 36
f = 1 45 3 S1n .

If |32 > 45,

with large initial conditions are unbounded. If |/\—1| =
has unbounded solutions.

then all solutions are bounded. If ’/\—1| < 4% then all solutions

=, then equation (2.1)

e When Ay # 0, the discriminative function is of the form

4
Dp(0) = —4A + EMCOS(BH + ), a = arctan ;—z

Thus, if \/m > 45, then all solutions are bounded. If ‘ \//\’\%:_7)\% 45, then
all solutions with large initial conditions are unbounded. If ‘ \/Ahglixg 45, then

equation (2.1) has unbounded solutions.

Finally, for equation (1.1), when ®¢(f) =0, there are no results which can be
applied to determine the boundedness of its solutions. The following examples show
that this situation can indeed happen.

ExamMPLE 2.3. Consider the equation
2" + axT —bx~ =cos(rnt),

where the resonance condition (1.2) holds, a # b and r is a positive integer. Then
the discriminative function is

B 2v/a(b—a)n T
Os(0) = (22 — @) (rZnZ = D) cos <2\/5> cos(rmf), 1?n% # a,b,

rn

and it is easy to see that when U is odd, we have ®(6) = 0.

ExAMPLE 2.4. Consider the equation
2’ +4xt -2~ =coskt,
where k is a positive integer. Then the discriminative function is
0, k=1,2,
®r(0) = {Méz_l)u +(=1)k) (cos (%” n %9) + cos <3’f7” n %9)) k>3
Thus, if k =4r, r =1, 2,3, ..., then

(1
(4r2 — 1)(16r2 — 1)

D(0) = cos(3rf),

andif k #4r,r=1,2,3, ..., then &;() =0.
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3. Transformations

‘We make a series of canonical transformations to obtain a normal form for which
the twist condition is violated.

3.1. Action and angle variables

Let y = 2/, then equation (1.1) is equivalent to the following planar system

w' =y,
{y' = —azt+bz™+f(t). (3.1)

The following result is standard.

LEMMA 3.1. For any (zo, yo) € R? and tq € R, the unique solution z(t) =
(x(tvth X0, yo)a y(t1t07 Zo, yO)) Of (31) SGtZSfyan Z(to) = (1'0, yO) exists on the
whole t-axis.

For r > 0, 0 (mod 27), define the following generalized polar coordinates I':
(r, 0) = (z, y) by

where p := ’/%' It is easy to check that I' is a symplectic transformation.

The Hamiltonian associated to the system (3.1) is expressed in Cartesian
coordinates by

Hw,y,1) = 597 + 5@ + 50— f(t)e.

In the new coordinates (r, 6), it becomes

H(r,0,t) = %r —pric (@9) F(b). (3.2)

n

Thus, the system (3.1) is transformed into

1
= R e
0 = H, ==~ pr 20 (20) f(1), y
. (3.3)
fe g =™ 5g (M
r' = —Hy o S(nﬁ)f(t),

which is a semilinear system.
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3.2. A sublinear system

First, introduce a new time variable 9 by ¢t = m% to eliminate the denominator
of the linear part of (3.2). Then, the system (3.3) is transformed into

49 = 271(7",9,19),
dr 0 '
@ = —%H(’I’,e,ﬁ%
where
H(r,0,9) =nr — mpr?C (@0) f(m2). (3.5)
n
For convenience, we can rewrite (3.5) and (3.4) respectively as
H(r,0,t) = nr — mprzC (%9) f(mt), (3.6)
and
de 0
a - aH(Ta 97 t)a
dr 0
a = 7%];[(7"79715)

Since m is a positive integer, then the new Hamiltonian H(r, 6, t) in (3.6) is 27-
periodic in € and t.

Next we introduce a rotation transformation to eliminate the linear part of the
Hamiltonian (3.6), which helps us to obtain a sublinear system.

Define the rotation transformation ®; : (11, 61, t) — (r, 6, t) by

{9 01 +Tlt,

r=7rT.

Then under @4, the original semilinear system determined by the Hamiltonian (3.6)
is transformed into a sublinear system given by the following Hamiltonian

Hy(ry,01,t) = —mprléC (%91 + mt) f(mt). (3.7)

It is worth to point out that the above transformations preserve the periodicity
and boundedness of solutions. In fact, if (r1(t+ 2w), 01(t + 27)) = (r1(t), 61(t)),
then for the Hamiltonian (3.5), r(¢ + 27) = r1 (9 + 27) = r1(9) = r(0), and O(V +
21) = 01 (9 4 27) + n(9 4 27) = 01 (9) + nd + 2nw = 6(9) + 2nw. Since t = md, for
the Hamiltonian (3.2), we have r(:Lt+27) =r(Lt), and 6(Lt+2m) =0(Lt) +
2nm. Thus for the original system (3.1), z(:Lt + 27r) = pr(Lt+ 2#)50(%9(%t+
2m)) = pr(%t)%C(%G(%t) +2mm) =x(tt), which leads to x(t+2m)=x(t).
Thus, the periodicity is preserved. Similarly, it is easy to verify that the boundedness
is also preserved.
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3.3. The normal form without the twist condition

To reduce the power of term containing ¢ in the Hamiltonian (3.7), we make the

transformation ®s : (rq, 02, t) — (r1, 61, t) given by

oS
92 = 01 + 677”22(T2’91,t)’

oS
=72+ 8712(7"2,91,7?)

with the generating function Ss(rs, 61, t) determined by
t
o3 Mo _c (™
SQ(TQ,@],t) = —Mmpr, /0 [Cf] (nel) C(nel +ms) f(mS)dS,

where

[Cf] (%91) = % /0% C (%01 + mt) f(mt)dt.

Under ®,, the Hamiltonian H; in (3.7) is transformed into

855\ 2 s
HQ(T2792,t) = —mp (7“2 + 89?) C (%91 + mt) f(mt) + 67752
= —mprQ%C (%01 + mt) f(mt)
m 1 855\ 2 95,
053
ot
It is obvious that
1 m a5 1 m
—mpriC (gel n mt) F(mt) + =2 = —mpr3 [C <291> :

and thus,

Hy(r2,02,t) = — mm’é [Cf] (%91)

m 1y 955\ " ? 09,
— mpC’ (591 + mt) f(mt)/ 5 (7‘2 + 'LL891> 8791(1

0

Then by 92 = 91 + %(735 917 t)a we get

H2(r2,92,t) = —mpr2§ [Cf] (%92) + P1(927t) + PQ(T‘Q,QQ,t),

https://doi.org/10.1017/prm.2023.12 Published online by Cambridge University Press
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where
Pi(0s, 1) = —im?»nflp? /027r s (%92 n mt) F(mt) /Ot[()f] (%02)
-C (%92 + ms) f(ms)dsdt
+ %m%*lﬁc (%92 + mt) F(mt) /Ot[Sf] (%92)
-5 (%92 + ms) f(ms)ds,
and

1 - 27 t
Py(ra,02,t) = Em4n 2,02/ S <%92 +mt> f(mt)/
0 0

1 2m ol m m 059\ 059

1
—/ S (mQQ + ms — /Aﬂ%) asQf(ms)du) dsdt
0 n n Ory ) Org

I il A A g 082 (0521
PPULRL pr2/0 I S n92+mt s,unar2 I Ory f(mt)dsdpudt

1 4 —22.(m
—gmn pC<g02+mt>f(mt)

t 27 1
1 ;[ m m 0Sy\ 052
/0 (zﬂ/o /O s <;"2+m8—“;372> Gy { (ms)dpds

1
[ M m8S2 852

Lt [ (P 052 gy 052052
+2mn pry OS n92+mt Mnarg f(mt)ar2 aeldu

3
1 m,  madS Lot 95\ "2 [952\?

with

1Sf] (%9) - % /0% S (%9 + mt) F(mt)dt.

Then we have the following estimates, and the proof is elementary.

LEMMA 3.2. For ro large enough, 0o, t € St = R/(27Z), we have

) 1_
|08 8 Sa(r2,61,1) < Cr3 ", k+j<3,
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and

|6é2P1(927t)| < Ca .7 < 17

108 8 Py(ra,02,)] < Ory 2%, k4 i< 1,

2702

where C' is a constant larger than 1.

Finally, with the definitions of ® () and [Cf](%20), [Sf](*26), the Hamiltonian
Hy(ra, 02, t) in (3.8) can be rewritten as

1
H(r,0,t) = fﬂmpr%@f(e) + Py(0,t) + Py(r,0,1), (3.9)

and for r large enough, 6, t € S', one has

)P0, 1) <C, <1,
0F ) Po(r,0,8)] < Cr™27F k45 <1,

where C is a constant larger than 1.

4. Some properties of ®(0)

We present several lemmas for the discriminative function ® (), which will be used
in the proof of the existence of unbounded solutions.

First, we prove that under the assumptions of theorem 1.1, ® /() is an ana-
lytic function, and thus for any 6* € A, there exists an integer k& > 2 such that

o (%) # 0.

LEMMA 4.1. Under the assumptions of theorem 1.1, for any 0* € A, there exists an
integer k > 2 such that ®5(0%) = ®(0") = --- = @Sckfl)(e*) =0, q>§,k)(9*) £ 0.

Proof. Since f is real analytic and 2m-periodic in ¢, then it can be written as a
uniformly convergent Fourier series

)= fre™, teR,

kez
where the Fourier coefficients

1 2 et
= — t)e "'dt, k€ Z.
fk o 0 f( )6 ) €

Moreover, f can be analytically extended into a complex domain {t € C : |Im¢t| < r},
with >0 a small constant, and we have |fi| < | fl-e”¥I", where | fl, =

Sup|Imt|<r |f(t) | :
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Then it is obvious that the series

¢ (%9 +mi) (Z fkeikmt> =) fiC (%9 + mt) et
kEeZ kEZ

= Z fxC (%9 + mt) (cos(kmt) 4 i sin(kmt))
kez

is also uniformly convergent to C(**0 + mt) f(mt). Thus,

o (0) = /027r c (%9 + mt) F(mt)dt

27 27
= c(™e kmt)dt + i c(™e in(kmt)d
ge:ka/O (n —|—mt>cos( mt)dt + gezsz/o (n —|—mt>sn( mt)dt
= [r®Pak(0) +i Y [xPor(0),
keZ kez

where

2m
D, (0) = / C (T@ + mt) cos(kmt)dt,
0

n

n

27
Dy (0) = / C (@9 + mt) sin(kmt)dt.
0

The periodicity of C' and f yields that

2T

27
D, (0) = / C (ﬂH + mt) cos(kmt)dt =
0

m
- C'(mt) cos (kmt - kge) de

0

e (FT0R) m
= Z /l C(mt) cos (kmt - kg9> dt,

where
B+
/ Ve C(mt) cos (kmt — km9> dt
) "
et T
= / VeV (=1)' cos (\/ﬁmt — l\/gﬂ') cos <kmt - kmﬁ) dit

L(LJFL) b n
mtyva Vb

sin [ Vbmt — (21 + 1)7r> cos (kmt - km0> dt
n

w (et T7)
+ Ve (—1)"" cos (\/Emt -+ 1)\/%71') cos (lcmt — k%@) dt.
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By some calculations, when k = ++/a, we get

(I)ak (0) -

le\/a sin (\/6%9) + 4m7:/5 Cos (\/&%9) (l\)[— 2 sin (\f 9)

+;(—1)l+127§f ((z+1)\[7r— Va— 9)
sk o220
+ (—1)"4757\/a cos (n\/gﬂ - ﬁfa)
+ (—1)"+1m(ﬁa) sin (n\/gw - \/&7:0> .
When k = 4v/b, similarly we have
Bop(0) = (f 5 oin (f 9) (*/B_b)(—n” sin <n\/§w - \/137:9>
Sy (1 37 - i)

When k # ++/a, £v/b, we also obtain

n—1

NM
El
ﬁ

s oo ) 2580
+cos<lk(\7/%+;5) ]iwf Ly 9))

Thus, for all k € Z, ®,,,(f) can be analytically extended to ®,4(0) in {# € C
| Im 6| < o'}, with " <72t and it is easy to see that

2+nm 2va a—r'
+ no, k==+va
<2m\/6 m|b—a|)6 va

1B,1(0)] < ( 2vb \/Emr) e\/gﬁrl

k=+Vb;
mlb — al T omb ’ Vb
m
2Valb—aln  |k—'
n k # ++/a,£Vb.
mlk? — a|lk? —b|° #EVa, £V
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Similarly, for all k € Z, ®;(0) can also be analytically extended to @y (6) in {0 €
C:|Im#6| < '}, and

24 2Va fm/
nm a a—r
+ no, k==+va
(Qm\/fz mb—a|>6 va

m
= PAVA)) Vb—r’
|q)bk(9)‘< ( \[ +\/E7’L7T>e n' k:j:\/l;,

mlb—al  2mb

m
2Valb —aln  kl—+
m|k? — al|k? — 0|

: k # +\/a, £Vb.

Then with || < |f]l,e~ 5", where |[£l, = supjmyj<, |F(2)], and since ' < r,
we have

£l (“’” 2va

, k=Eva;
) Ve

| f1@ar(0)], [ifr@or ()] < |f||7-< 26 +\/‘3’”>, k= +v/b;

m|b — a| 2mb

2/alb — aln
k # +/a,+Vb.
e # £,
By Weierstrass M-test, since the series ;:Z m is convergent, then in
k#+/a, £vVb

the domain {6 € C: |[Im#| < r'}, the series

D fi®ar(0) +i> ) frPur(0)

keZ kEZ

uniformly converge to ®;(0), which is a complex extension of ®¢(f). Since all
P4 (0), Ppr(0) are analytic, then by Weierstrass’s Theorem, ®¢(#) is also analytic
in the domain {# € C: [Im 6| < r'}. .
Finally, under the assumptions of theorem 1.1, for any 6* € A, we have ®;(0*) =
P (07) =0, @%(0%) = @%(6*) = 0. Then with the isolation of zeros for analytic func-
tions, for any * € A, there exists an integer k > 2 such that ®;(6*) = &)}(0*) =
5 (k—1 * 5 (k * * * k—1 *
o= 00 (07) =0, 91 (07) £ 0. Thus, ®4(07) = @4(0%) = - = 2§V (97) = 0,
o1 (67) # 0. O

By lemma 4.1, choose some 6* € A. Without loss of generality, we can assume
that (Dgck) (6*) > 0, otherwise, make a time change ¢ — —t.

In the following, for a fixed 6* € A and the corresponding integer k > 2, some
estimates of ® () near §* are given.

LEMMA 4.2. Assume that there exist 0* € R and 2 < k € N such that ®(0*) =
() == @;k_l)(ﬁ*) =0, @Sck) (0*) > 0. Then there exists 61 > 0 such that for
all §:0 <0 — 0% <01, one has ©5(0) > 0, ¥4(0) > 0.
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Proof. This lemma can be easily proved by properties of the derivative, so we omit
the details here. O

Let 7 =6 — 0*. Then ®;(0) = ®;(7 4 0*), and we get the following lemma.

LEMMA 4.3. Assume that there exists 2 <k € N such that ®5(0%) = @%(6") =

f@(k_l)(G*) =0, <I>(k)(9*) > 0. Then there exists 61 >0 such that for all
7:0 <71 <01, we have <I>f(7+0*) >0, ®%(1+6%) > 0.

LEMMA 4.4. Assume that the function g(x) i4s analytic at x =0, and
g(0)=0, j=0,1,...,k—1, g (0) > 0. Then there exists 6y >0 such that
forall z : 0 <z < b2, one has

C1 C2
glx) € | a"g™(0), aFg™(0)|,

k! k!
where
o Okt o Gk+12
YTk r1l T Gkt

Proof. On the one hand, let

hi(@) = g(2) = g @ (0).

Then hy(0) = hy(0) =--- = A 7(0) = 0, and A{"(0) = (1 - c1)g™(0) = gl
g(k)(O) > 0, so there exists d3 > 0 such that for all z : 0 < z < 3, we have hq(x) > 0,
which leads to
c
g(x) > "™ (0).

On the other hand, let

ha() = g(2) = 9@ (0).

Then hy(0) = h5(0) = - = h$" "V (0) = 0, and A5 (0) = (1 — e2)g™(0) = 574y
g(k)(O) < 0, so there exists 04 > 0 such that for all z : 0 < z < d4, we have ho(x) < 0,
which leads to

C
g(x) < "9 ™(0).

Let d3 = min{d3, d4} > 0. Then for all x : 0 < x < d2, we have
glw) € | Takg™ (0), Eakg™M(0)]
k! ’ kl ’

where

6k+10 Gk +12

A= Gkl S
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Applying lemmas 4.1-4.4 to ®;(7 +6*) and <I>’f(7' + 60*). Then we can easily
obtain the following result.

LEMMA 4.5. Under the assumptions of theorem 1.1, there exists § > 0 such that for
all 7:0 <7 < 0, we have ®¢(7 4+ 60%) > 0, (7 +60*) > 0, and

* c & *
Oy(1+0%) € [kl' ol (67), k’f ol (0 )}

C1

(k—1)!

®(r+0%) € [ e g, 2 Tk—1¢§k>(9*)],

(k— 1)

where ¢; = gﬁﬁ? <1, o= giﬁf > 1.

5. The existence of unbounded solutions

In this section, we prove that the Hamiltonian system with the Hamiltonian (3.9)
has unbounded solutions.
The system with the Hamiltonian (3.9) is given by

1

60 OH T
@ _oH 1 5

at ~ or 47rm/”"1 D4(0) + 0, Pa(r,0,1), .
dr OH 1 -

dr OH 1 oo, B

T g = 2. wr22y(0) — 0pPu(0,t) — Oea(r,6,1).

Let 7 = 6 — 6*. Then the system (5.1) is transformed into

1
L o 20 (4 07) + 0, Par.7 + 0%, 1)
ar -~ A T P (5.2)
d 1
L= —mpr2®(7 4 0%) — 8, Pi(r + 0%,1) — 8, Pa(r, T + 6%, 1).
at ~ or
For fixed 2 <k €N from lemma 4.1 and ¢ from lemma 4.5, choose r* > 1
satisfying
(1) > fl;

1

(2) 2(r*) 38 < 0;

* 1

(3) ﬁﬁmp(%)ﬂ%*l)@yﬂ)w*) > 1, where ¢; = g:ﬂ?.

Give an initial point (r(0), 7(0)) € D := {(r, T): P T K 3k} and
r(0) > r*.

First, the second equation in (5.2) implies that 4 = O(rz + 1), thus r(t) > %1 *
for any t € [0, 2] by r* > | f||. Also the first equation in (5.2) implies 42 = O(r~2),
hence 0 < 7(t) < 2(r*)~ 3 for any ¢ € [0, 27]. Thus, lemma 4.5 can be applied in
the following.
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We claim that if the initial point (r(0), 7(0)) € D and r(0) > r*, then
(r(t), 7(t)) € D for any t € [0, 2n]. Otherwise, let ¢ :=sup{t: (r(s), 7(s)) €
D, 0<s<t}<2r It is obvious that (r(t1), 7(t1)) € 9D, which leads to
r(t)lr(ty) =1 with I = 5745 or 5r.

By a direct computation, we get

(r()'7 () [t=t:
= Ur(t)! 1 ()7 (1) + ()7 (1),

1

= Ir(t)" "1 (t) (27Tmpr(t)é(l>’f(7'(t) +6%)

—8.,-P1(T(t) + 9*,t) - 8.,.P2(7“(t),7'(t) + 9*7t))

t=t1

+r(t)! (—;mpr(t)—%cpfmt) +0%) + 0, Py(r(t), 7(t) + 67, t))

t=t1

= Jl + J2.
Since 7(t1) 7 (t1) = 1,7(t) = 1r* and 0 < 7(t) < 2(r*) 5% < §fort € [0, 27], then
we get
1 1
Ji = l’l’(tl)l_lT(tl) <2ﬂ_mpr(t1)2<1>’f(7(t1) +6%) — 0, P (7(t)
107, Oty — O, Pa(r(8), 7(0) + 0%, 1) 1—1,)
1 1
= %mplr(tl)_i@/f(T(tl) +0%) +O(r(t1) ™),
and

Jo = 7r(ty)! (—;mpr(h)éq’fﬁ(tl) +0%) 4+ 0, Po(r(t), 7(t) + a*at)|t=t1)

= —mmpr(n)E () (r(e1) +0°) + O (r(0) )

Now it is a position to apply lemma 4.5 to J; and J>. On the one hand, if | = ﬁ,
then we have

1 \
J+ Jo = %mplr(tl)_iq)/f(T(tl) +0%)+0(r(t) ™)

- %mpr(tl)iér(tl)lq)f(T(tl) +09+0 (r(t) )

1 1
< %mplr(tl) 5( @ T(tl)kfl‘bgck)(e*) +O0(r(t1) ™)

k—1)!

1 -1 1C1 kg (k) g+ —341
— mpr(t)~Er(n) ()P (69 + 0 (r(t) T3)
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1 -1 C2 —1(k—1) g (k) 1 g -1
= 5-mplr(ty) Q(k_l)!r(tl) .7 (6%) + O(r(t) ™)
-1 ! kg (g 3+
— mpr(t) () () e (09 + 0 (r(t) T3)
_i 1 a1 —l(k=1) (k) g
T k-1 (Czl 2k) () oy (0%)
+0(r(t) ™) + 0 (r(t) 7H).
Since ¢ = Siﬁ‘f, Co = g’;iﬁ and [ = 3k, k> 2, then col — 51 <0, —%—H <
—1< =1 —i(k—1), which lead to
1 1 —1(k—1) g, (k) (
Lt ) 1+o(1 .
Tt o= g yme (el - g ) () P07 (1 +o(1) <0
That is, if | = B—k, then (r(t )

7(t)) |t=t, < 0. Therefore, there exists ¢y > t; such

that r(¢)3e7(t) < 1 for ¢ € [t1, t2], which contradicts the definition of ¢;. Thus for
all t € [0, 27], we have 7(t) < r(t) 3,

On the other hand, if [ = 2k 7, then we have

1 1
Jit Jo = omplr(t) 2@ (r(0) +67) + O(r(t) ™)

- %mpr(tl)iér(tl)lq)f(’r(tl) +60")+0 (r(tl)*%Jrl)

1 - ‘1 k—1
Z o 2 P
s mir()E ()

— mmert)”Er(0) 2t 80 (6) + O (r(n)H)

:%m"”(“)f%(kill)! r(t) DR (07) + O(r () )

'(0") +00r(t) )

— mpr(t) () Er(t) 0 (67) 4 0 (r(t)E )
1 1

_ —1—1(k—1) g (k) (=
or (k— 1)1 (Cll Qk) r(t) @ (0)

LO(r(t) )+ 0 (r(tl)_%“) :

Since ¢, = 8410

= G 2 = gﬁig andl—%l_l,k22, then ¢l — 53 >0, — —|—l<
—1 < —3 —l(k— 1), which lead to

1 1

Jit e = oo " p(clz Qk)r(tl)’%’l(k’l)fb;k)(@*)(l+0(1))>0.

That is, if | = 57—, then (r(t)'7(¢))|1=, > 0. Therefore, there exists t; > t; such
1
t —

that 7(¢)2*=T7(¢t) > 1 for ¢ € [t1, t2], which contradicts the definition of ¢;. Thus for
all t € [0, 27], one has 7(t) > r(t)fﬁ. The proof of the claim is completed
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Now we prove that every solution of system (5.2) with the initial point
(r(0), 7(0)) € D and r(0) = r* is unbounded.

From the claim, if the initial point (r(0), 7(0)) € D and r(0) > r*, then for any
t € [0, 27], one has r(t)_ﬁ < 7(t) < r(t)~3F < 2(r*)~ 3. Thus, from the second
equation of (5.2), for any ¢ € [0, 27|, we obtain

ar 1 1
X: = o-mpr(t) 2@ (7(t) +0%) = O, Pr(7(t) + 0%, t) = O- Pa(r(t), (1) + 0", 1)
1 1
= %mpr(t)ﬂb}(T(t) +0%) +0(1)
]. 1 C — *
> %mm"(f)2 ﬁT(t)k lq);k)(a )+ O(1)
5 1 HE L )y ==re™ ") + oa
/ﬂmpf()mr() g (07 +00)
1 c s ) (
= 5r e e ) + o)
1 & A *
> r e e e),

Choose r* sufficiently large such that %ﬁmp(%)mCD}k) (0*) > 1. Then
r(2m) = r(0) + 27 > r*.

In a word, if (r(0), 7(0)) € D and (0) > r*, then (r(27), 7(27)) € D and r(27) >
r(0) + 27 > r*.

Using the above argument repeatedly, if (r(0), 7(0)) satisfies the above initial
conditions, then r(2mi) > r(0) + 27i for any ¢ € N, which means that the solution
(r(t), 7(t)) is unbounded. Up to now theorem 1.1 is proved.
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