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Abstract

Good test-suites are an important tool to check the correctness of programs. They are also essential
in unsupervised educational settings, like automatic grading or for students to check their solution
to some programming task by themselves. For most Haskell programming tasks, one can easily pro-
vide high-quality test-suites using standard tools like QuickCheck. Unfortunately, this is no longer
the case once we leave the purely functional world and enter the lands of console I/0. Nonetheless,
understanding console I/O is an important part of learning Haskell, and we would like to provide stu-
dents the same support as with other subject matters. The difficulty in testing console I/O programs
arises from the standard tools’ lack of support for specifying intended console interactions as simple
declarative properties. These interactions are however essential in order to determine whether a pro-
gram behaves as desired. We describe the console interactions of a program by tracing its text input
and output actions. In order to describe which traces match the intended behavior of the program
under test, we present a formal specification language. The language is designed to capture interac-
tive behavior found in commonly used textbook exercises and examples, or as much of it as possible,
as well as in our own teaching, while at the same time retaining simplicity and clarity of specifica-
tions. We intentionally restrict the language, ensuring that expressed behavior is truly interactive and
not simply a pure string-builder function in disguise. Based on this specification language, we build
a testing framework that allows testing against specifications in an automated way. A central feature
of the testing procedure is the use of a constraint solver in order to find meaningful input sequences
for the program under test.

1 Introduction

In our course on programming paradigms, we teach the main concepts of Haskell. For stu-
dents to gain practical experience with the language, we give weekly exercise tasks and
let them submit solutions for review. Since checking submissions by hand is tedious and
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2 O. Westphal and J. Voigtlinder

potentially error-prone, we employ Autotool, an e-learning system used in several German
universities (Waldmann, 2017; Siegburg et al., 2019), for automatically testing submis-
sions against a task specific test-suite, e.g., sets of QuickCheck properties (Claessen &
Hughes, 2000), whenever possible. As an added benefit students get immediate feedback
and can revise their submissions accordingly and incrementally.

Our approach relies on high-quality test-suites for each exercise task. For tasks about
implementing pure functions this is easy to achieve using standard techniques for designing
QuickCheck properties (Hughes, 2020). When switching from the pure context to console
I/0, these techniques are unfortunately no longer directly applicable. The main prob-
lem is the non-availability of easy, lightweight and declarative techniques for specifying
requirements on the interaction portion of console I/O programs. However, these interac-
tions determine whether a program behaves as desired or not, especially for programs of
type 10 ().

Nonetheless, we would like our students to have access to the same level of support for
console I/0 tasks as they are used to for programming pure functions. Fortunately, we do
not have to start completely from scratch. Swierstra & Altenkirch (2007) showed how one
can change the monad underlying a Haskell I/O program in order to get an inspectable
representation of a console I/O program (see Section 2). Using this technique, we can in
principle check properties formulated over executions via QuickCheck or similar tools.
Practical application, however, is cumbersome. Specifically, for every I/O exercise task
we want to grade automatically, we need to implement three separate components:

1. A generator of input sequences suitable for testing the candidate program. As we
will see later, this is not as easy as one might initially imagine. This is especially the
case if we want to ensure certain coverage conditions.

2. A way of checking if a given execution trace exhibits the desired behavior for a
given input sequence.

3. A means of providing feedback in case the behavior did not match the expecta-
tions, e.g., an explanation of the mismatch or an example of what would be correct
behavior for the relevant input sequence.

These components have to cover a lot of different cases even for a single exercise task,
since we typically allow students some degree of freedom when it comes to how their
program should prompt for input values, in what form exactly it should print any com-
puted result values, whether there are additional/optional output messages, etc. Moreover,
the components are not directly related to each other, much less derived from a common
source, thus leaving room for inconsistencies and other mistakes. Using this approach in
practice made it clear to us that an overall framework is needed to effectively test I/O
exercise tasks.

In previous work, we started building such a framework (Westphal & Voigtlinder,
2020a, TFPIE’19). At the core of our approach is a small formal specification language
for console I/O behavior. Specifications are structurally similar to lexical analysis regular
expressions, but are augmented with global variables that track state and history of pro-
gram runs and conditional branching and iterations based on that state. This allows us to
express an interesting range of dynamic behavior. The language also supports encoding
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of optional or ambiguous output behavior, to lessen the restrictions on how exactly
programs communicate information. The language is kept intentionally minimal, enabling
easy analysis of specifications and further automation. It is however expressive enough to
cover almost all console I/O related programs and tasks commonly found in introductory
Haskell textbooks. Given a specification of desired behavior, the three components needed
for testing are automatically derived.

In this article, we present, from the ground up, an extended version of the specification
language and testing framework. The language itself is largely the same. It is presented
with an updated syntax and extended with ways of specifying dedicated handling of possi-
ble input errors as sketched informally in previous work (Westphal & Voigtlander, 20205,
FLOPS’20). The main shortcoming of the old system was a rather naive approach to input
generation, interleaving random value generation with concrete execution. This restricted
effective applications of the framework to only a small set of I/O behavior. We improve
upon this by making the following contributions:

In order to improve the generation of input sequences, we use simple symbolic execu-
tion of specifications to generate constraints on input values. These constraints describe
paths through the specified behavior, i.e., different abstract instances of the behavior.
We search for input sequences that fulfill these constraints with the help of the Z3 SMT
solver (de Moura & Bjerner, 2008). In order to generate multiple inputs for the same path,
we use a sampling technique based on MaxSAT problems (Bjorner et al., 2015). Similarly
to tools like SmallCheck (Runciman et al., 2008), we then test programs exhaustively on
behavioral paths with lengths up to a certain cutoff. This ensures good coverage of dif-
ferent concrete variants of the specified behavior. If any counterexamples are found, we
return the one with the shortest input sequence to make it easier to identify the underly-
ing mistake. None of these improvements is novel on its own, but the combination and
application of these techniques improves the quality of the framework’s automated testing
capabilities.

We implement the extended framework via an embedded domain-specific language
(EDSL) in Haskell. We also give a precise description of the syntax and semantics of
our language as well as a detailed description of trace comparison and constraint genera-
tion. Compared to earlier work, the formalization is refined and extended to incorporate the
new input generation method. In terms of presentation, this leads to an untangling of input
generation and specification interpretation and therefore an exposition more in line with
how the implementation works. The formal syntax definition of specifications is refined
to only allow a certain kind of well-behaved iterations, making the language’s semantics
more robust regarding issues of termination. Due to the simplicity of the language, the
relevant property can be checked statically and therefore has benefits also during specifi-
cation construction. Moreover, we realized that our previous notion of program correctness
was too weak and replaced it with a more rigorous approach that now correctly accounts
for the set of input sequences on which a program must behave in accordance with a given
specification. We also relate the updated notion of program correctness to the actual testing
procedure, thereby providing formal justifications for the overall correctness of our system
that were not present in earlier work. For the sake of simplicity of the described formal-
ism, we will only consider programs that read and write integers. It is however possible to
generalize the approach to, for example, include string values, and the implemented EDSL
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actually does so. Along with the focus on integers in the formalization, we will assume
that I/O programs to test are written using the two primitive operations readLn and print
that incorporate conversion from and to strings. !

Also, we previously reported on how to make sure the testing framework retains its
desired semantics when the specification language is extended (Westphal & Voigtlander,
20205, FLOPS’20). The new input generation method, the extended syntax of the spec-
ification language, and a general overhaul of the EDSL combinators all are examples of
such changes and in fact those guardrails for preserving the language’s semantics proved
to be very useful. The basic idea is to leverage the fact that the semantics of the speci-
fication language is given via a relatively simple acceptance predicate on program traces
but the actual testing is done by an independent more practical procedure. The acceptance
predicate is easy to implement correctly, due to its simplicity. The more involved testing
procedure is then validated against the acceptance predicate using a mix of QuickCheck
properties and unit tests.

The rest of this article is structured as follows:

e Section 2 describes how we used to test console /O programs in the past using the
technique presented by Swierstra & Altenkirch (2007).

e Section 3 presents a general overview of our language and gives an intuitive
description of the intended semantics.

e Section 4 showcases the problems of our old method of input generation from
(Westphal & Voigtlénder, 2020a, TFPIE’19).

e In Section 5, we then demonstrate how to better generate input sequences for testing
with the help of constraint solving.

e Section 6 describes the full testing procedure.

e Section 7 showcases the implemented framework, including a short evaluation of
expressiveness (culminating in Figure 5) and discussions on limitations of the new
input generation method and on the usefulness of implementing a specification
interpreter.

e In Section 8§, we give the formal definitions for syntax and semantics of the specifica-
tion language, as well as the definitions used for trace matching and input generation.
Additionally, we give formal statements relating the semantics to the latter concepts
in the form of a lemma and a conjecture. We provide evidence for this conjecture
but do not present a complete proof, mainly because a full proof would be extremely
tedious and without any new insights over the presented evidence. Our testing pro-
cedure is correct under the assumption that the conjecture holds, which we firmly
believe to be the case.

e Section 9 reports on our experience using the implemented framework in the context
of our programming paradigms course.

e We conclude after mentioning related work (Section 10) and possibilities to further
build upon the presented language and testing framework (Section 11).

! This choice of primitive operations is also not meant as a real restriction. In the actual implementation we also
provide primitives that directly operate on strings.
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2 Ad-hoc testing of console I/O programs

Before we dive into the design of our specification language, let us first look at the situation
we faced when testing console I/O programs before we first developed that language.

Consider the following verbal description of a non-1/0 function one might give as an
exercise task to a beginning programmer:

“Add up all the numbers in a given list.”

A simple Haskell solution could look like this:

sum :: [Int] — Int
sum|[ ] =0
sum (x : xs) =x + sum xs

To test this solution, we could use QuickCheck properties like the following ones:
propSing :: Int — Bool

propSing = Ax — sum [x]=x

propAdd :: [Int] — [Int] — Bool

propAdd = \xs ys — sum (xs 4 ys) == sum xs + sum ys

Now consider another task, which might appear in a course section introducing I/O
programs:

“Read a natural number n from stdin, then read n additional numbers and print the sum
of those n numbers to stdout.”

The following Haskell solution has basically the same computational content as the func-
tion further above. But the fact that the program has to fetch its inputs on its own, and
to report the computed result value back to the user, changes the overall code structure

considerably.

main :: 10 () loop :: Int — Int — 10 ()

main = do n < readLn loop 0 res = print res
loopn 0 loop nres =dox < readLn

loop (n — 1) (x + res)

Now how do we test such a program? How, even, can we describe more formally than in
the second verbal description above what behavior is desired?

First, we need to consider what we want to test. In the case of the simple sum-function,
we wanted to test the result value of the computation. In the I/O case, we are also inter-
ested in the interaction of the program with the outside world (in what order are which
values read and printed, etc.). We therefore can no longer view such programs as just
mappings from input values to output values. Instead, programs will result in a sequence
of potentially interleaved input and output actions. We call such a sequence a trace of a
program. If we want to check whether some program exhibits a certain desired behavior,
we have to check the traces it can produce.
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For the above I/O task description, the set of intended traces is basically
{2010 stop, ?1 vy lv; stop, 72 vy v, (v + vy) stop, ...}

where each ? stands for an input action and each ! for an output action. If we now assume
that we never supply negative numbers as input values (at least not for the first input), then
the Haskell I/0O program given above indeed produces exactly all, and only, traces from
this set.

Corresponding tests can be automated by following the approach presented by
Swierstra & Altenkirch (2007). First, an alternative monad is defined that represents a
semantic domain for console I/0 programs:?

data /O,,, a instance Monad I10,., where
= GetLine (String — 10, a) GetLinef  >=g= GetLine(As — fs>=g)
| PutLine String (10, a) PutLine s ma >= g = PutLine s (ma >= g)
| Returna Return a >=g=ga

return = Return

Next, the /O primitives to be used are implemented for this new representation:

readLn :: Read a = 10,,, a print :: Show a = a — 10, ()
readLn = fmap read (GetLine Return) print x = PutLine (show x) (Return ())

Now, any potential Haskell solution to the I/O task given further above, main=do ...,
can not only be used at type /0 (), but also at type 10,,, (). We can then “run” main in a
kind of simulation mode that produces an explicit trace as a data structure when given a
concrete input sequence, because values of type /0,, are more inspectable than those of
the normal /O type:?

FUutyep 2 1Oy () = [String] — Trace data Trace

run,e, (GetLinef) (i :is) = Read x (run,p, (f i) is) = Read String Trace
rUnye, (PutLine s may) is = Write s (run,, ma is) | Write String Trace
TUnye (Return () [T =Stop | Stop

Now we can define, per exercise task, a predicate checkCorrectness :: Trace — Bool that
checks whether some trace exhibits the desired behavior. For our summation example this
can look as follows:

2 Swierstra and Altenkirch use a representation based on input and output of single characters. Here, we are not
interested in such a fine-grained inspection and therefore always require programs to read or write whole lines.

3 Note that runye, completes successfully only when the provided user program consumes exactly all inputs
offered to it. Exceptions thrown due to partiality here are already grounds for rejection of the supposed solution
to the underlying 1/O task.
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checkCorrectness :: Trace — Bool checkLoop :: Int — Int — Trace — Bool
checkCorrectness (Read nt') = checkLoop 0 s (Write text Stop) = text == show s
case readMaybe n of checkLoopns (Read xt') =
Just v— checkLoop v 0t case readMaybe x of
Nothing — False Just v — checkLoop (n — 1) (s + v) ¢
checkCorrectness _ = False Nothing — False
checkLoop _ _ _ = False

This predicate exactly captures the set of desired traces given above. Next we define a
generator of valid inputs for the specific exercise task like so:

validlnputs :: Gen [ String |

validlnputs = do n < chooselnt (0, 10)
xs < vectorOf n'$ chooselnt (—100, 100)
pure $ map show (n : xs)

With these two components we can use QuickCheck again to automatically test whether a
submitted program has the intended behavior.

testProgram :: 10,q, () — 10 ()
testProgram prog = quickCheck $ forAll validlnputs § checkCorrectness o run,e, prog

This approach works reasonably well for our simple example. But writing such a gener-
ator and the correctness checking predicate is generally not as straightforward as one might
hope. Ignoring for a moment the restriction concerning printing integers only, we usually
want students to have some freedom when it comes to the formatting of outputs. In the
above form, checkCorrectness will reject student programs that, e.g., prefix the sum with
something like "The sum is ...". Moreover, in many scenarios it makes sense to have
other optional outputs. For the summation task this might be a “Welcome” message or
some counter in between reading summands. Extending the checking predicate to account
for these things quickly becomes difficult to maintain. And concerning input generation,
one usually has to find a clever way to avoid naive “generate and test” loops for constraints
rarely satisfied accidentally (above, the constraint would be that the length of the generated
list is its first element plus one).

Figure 1 shows an input generator and a checking predicate for a variant of another
simple task that we regularly use in our course:

Write a program that reads in integers until the two most recently entered integers sum
up to zero. Then output the number of integers the program has read and stop. The
program may write optional decorations and prompts.

Even though the task and a sample solution are conceptually not too different from the
summation one, generating test data and checking trace correctness is quite a bit more
involved now. The code in Figure 1 is heavily optimized. Instead of dealing with the
optional outputs directly, we first normalize the trace by dropping all outputs before the
final input. Note that checkCorrectness receives the input sequence as a separate [/nt]
parameter now, so that we do have access to the expected number of read values and can
use this information during the trace normalization. This works because we know the input
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-- trace argument comes from running the program on the given valid input sequence
checkCorrectness :: [Int] — Trace — Bool
checkCorrectness is t =let n = length is
in show n ‘isInfixOf * finalWrite (normalize n t)

-- normalize trace (remove all optional writes and combine final writes into one)
normalize :: Int — Trace — Trace
normalize _ Stop = Stop
normalize n (Read it) = Read i (normalize (n — 1) t)
normalize O (Write o t) = case normalize 0 t of
Write o' t — Write (o 4 0') ¢
I — Writeot
normalize n (Write _ t) = normalize n t

finalWrite :: Trace — String
finalWrite Stop =""
finalWrite (Read _t) = finalWrite t
SfinalWrite (Writeo _) =0

validlnputs :: Gen [Int]
validlnputs = do n < chooselnt (0, 10)
xs < vectorOf (n+ 1) (chooselnt (—100, 100)) ‘suchThat* pred
return (xs H [negate $ last xs])
where
pred ys = and $ zipWith (Ax y — x + y /= 0) ys (tail ys)

Fig. 1: Hand-written correctness checker and input generator.

sequence that produced the trace; it is the one generated by validlnputs. Additionally, we
normalize possible consecutive outputs at the end of the trace into a single output. This
ensures that the computation result is part of the last output of the normalized trace, if the
program correctly prints it. Without this, the last output might be decoration-only. Given
that validlnputs generates only sequences where no two adjacent values apart from the last
two add up to 0, and knowing, due to the definition of run,,,, that the number of reads in
the trace is exactly the length of the input sequence (see Footnote 3), we then only still
need to check that the final output in the normalized trace contains the correct answer.
Note that the aggressive normalization of traces is possible only because all outputs
before the last input are completely optional. If we want to check that these outputs con-
tain certain specific information (in a slight variation of the task), we must instead inspect
the trace in a step-by-step way similar to what we did in the summation example (some
normalization of consecutive outputs can still be helpful, though). Lastly, providing feed-
back in case the predicate returns False is desirable, but will again add significant extra
complexity and most likely will have to be tailored to that particular exercise task.
Generating test inputs and checking the correctness of traces often mimics the structure
of the task’s behavior, i.e., the different conceptual states the behavior induces. By exten-
sion, it therefore also mimics the structure of a sample solution. For example, comparing
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the first checkCorrectness to main, it is not surprising to see that both first handle a single
value and afterwards go through a recursively looping function. By squinting a little bit,
we can even see parts of the alternative solution

main :: 10, ()

main = do n < readlLn
xs < replicateM n readlLn
print (sum xs)

in the input generator. Keeping this common structure in sync when creating and adjust-
ing exercise tasks is the main challenge of the “manual” approach. But the common
structure also enables a different approach. Instead of trying to keep the different test-
ing components in sync, we may specify the desired behavior we want for some task, in an
appropriate language, and then the necessary components are derived automatically from
the specification.

To summarize, we want to test student submissions to exercise tasks by treating the
submitted programs as black-boxes. Similarly to how we would test pure functions with
QuickCheck, we do not perform any analysis of the program code, type-checking aside.
Instead, we want to simply write a specification of the desired behavior. Moreover, the
components needed for testing should then be derived automatically. Included should
be a mechanism to provide informative feedback in case the program’s behavior differs
from the specified behavior. The language of specifications should be expressive enough
to capture usual exercise tasks on interactivity, including simple guessing games and other
common exercises from Haskell textbooks (Thompson, 2011; Hutton, 2016; Schrijvers,
2023). Also, specifications should facilitate easy and intuitive adaptation of existing tasks.
For example, we might want to change the summation in the first example task to a product
or change that task to only read positive numbers for summands. In the second example
task, we might want to require that the last three, or maybe even all, inputs sum up to 0
instead of the last two. Such simple adaptations should translate to equivalently simple
changes to tests or to a specification for the original task. It is certainly not the case for the
code in Figure 1.

As another case in point, note that while changing — in the earlier exercise task — the
summation to a product computation might seem trivial at first, there exists a subtle issue
with products commonly causing overflows of the bounded Inf type. If the student program
and the generator and checking predicate do not either all use Int or all use Integer, con-
ceptually correct programs might be rejected. Making generation and checking agnostic to
the choices of numerical types in the student program, though, again increases complexity
and is thus a burden on the test writer. But in our framework we can provide a general
solution for such issues (see Section 5.3.1).

3 Specifications

The main goal of the specification language is to describe the behavior that a correct solu-
tion for some task should have. We want such descriptions to be concise, intuitive and
easily adaptable toward new tasks. The design currently does not include any abstraction
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facilities or tries to achieve compositionality, since we focus only on specifying small
scale exercise tasks. For the same reason, we do not care to capture the full range of I/O
behavior, i.e., the behavior of every perceivable console I/O program. A lot of behavior is
uninteresting or ill-suited for exercise tasks. For example, we want behavior that actually
requires interaction, so that students must make repeated use of the I/O primitives to solve
the task.

In order to facilitate these goals, we intentionally restrict the specification language in
several ways both in terms of the overall design and also what specifications we con-
sider well-formed. For example, the specification language has only a very restricted
form of (global) state to enforce real interactivity of programs (see Section 3.5 for
details). Essentially, the only state information accessible inside a specification are the
values read in during the interaction so far. We also deliberately rule out general non-
determinism when expressing optionality and restrict the type of iterative behavior that
can be expressed, to rule out specifications with certain unproductive cycles. As an addi-
tional benefit, such restrictions keep the syntax and semantics of the specification language
simple and have the potential to enable additional reasoning about specifications. We will
go into detail on these restrictions both in this section as well as in the formal definitions
of syntax and semantics in Sections 8.1 and 8.2.

To motivate the design of our small DSL, we will go through the summation example
task from Section 2 step by step and see what constructs are necessary to describe the
intended behavior formally (Section 3.1). Additionally, we show how to express a very
specific form of optional behavior in specifications (Section 3.2). We then explain how a
specification is to be interpreted intuitively in terms of execution traces (Section 3.3) and
sketch how, given a sequence of inputs, we can derive traces from the specification itself
by treating it as a (non-deterministic) program (Section 3.4). Traces obtained this way are,
for example, useful when providing students with feedback.

3.1 Describing behavior

Recall the second task description from Section 2:

“Read a natural number n from stdin, then read n additional numbers and print the sum
of those n numbers to stdout.”

We will now, step by step, construct a specification for this behavior, introducing the
necessary specification language constructs as needed. The final specification will be
shown in each step, but parts not yet discussed will remain in gray.

First off, since we want to speak about interactive behavior, we need notations for
input and output primitives. We use square brackets to describe such atomic actions and
distinguish inputs from outputs via a triangle arrow into something or out of something:

[>7] [ > ]

We use (silent) concatenation to glue several shorter specifications together. The to-be-
completed specification above therefore already encodes that we first read something and
at some later point should print something back.
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Next, in order to relate inputs and outputs, we need variables to reference read values
at later points and functions to express computations over the values referenced by those
variables:

[>n] [ sum(x )]

Right now it is not clear what the argument to sum should be, but we will fill it in shortly.

The middle part of our example specification should correspond to the reading-in of the
n numbers we want to sum. Since # is determined by the first read value, we do not know up
front (before a program runs) how many values we need to read overall. Therefore, we need
some mechanism for flexible iteration (rather than just some fixed times concatenation of
sub-specifications). We mark the part of a specification we would like to iterate with ~F
and introduce a marker E to indicate where/when the iteration process should finish:

[en]( E )" sum(: )]

Now the middle part is repeated until the exit marker E is hit. However, up to now we have
no way to skip over certain parts of a specification or to choose between alternatives based
on some condition. In order for our iteration process to not always terminate after the first
round, we need to introduce a branching construct:

[en]( I=EA )" Lsum(: e ]

Now we can fill in a condition that only when satisfied gives control to the left branch,
leading in our case to the termination of the iteration process. Otherwise the right branch
will be used. Even though our example here uses only a single exit marker and branching
construct, the language can express much richer iteration schemata through the use of
multiple exit markers* and nested branching.

We can now use branching and iteration to repeatedly read in a value until some
condition is fulfilled:

[en] ( 1= EA[>x] )" Lsum(: )]

But now we have a problem, or actually two. In each new round the old value we
“assigned” to x previously is lost, and we have no way of knowing when to stop. The
key feature of our DSL that helps solve both issues is the fact that variables do not just
store a current value like in most programming languages. Variables instead hold lists of
all values assigned to them in chronological order. There are then two different ways to
access a variable, either as the traditional current value, denoted via the subscript ¢ (cur-
rent), or as the list of all values read into that variable so far, denoted with the subscript
4 (all). This gives us the expressive power to not only construct the missing branching
condition but now also fill in the missing argument to the summation:

[>n] (en(cs) =ncl=EA[>x] )" sum(eq) > ]

One thing the verbal description states that is not yet present in the DSL expression is the
fact that the first number should not be negative. This kind of restriction (in a task) is often
useful when we do not care about ill-formed or otherwise undesirable inputs, especially in

4 For an example of a specification where multiple exit markers arise naturally, see the variation of this example
in Figure 9 in Section 8.2.
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an educational setting where we usually introduce new concepts one step at a time. That
is, in the beginning of a course, we might not want students to, for example, have to worry
about checking inputs for correctness. But later on we might explicitly require them to do
so. Our specification language therefore provides the necessary flexibility to go both ways.
Each occurrence of the primitive for reading has to be annotated with the set of values we
expect there. Additionally we state for each input action what behavior we expect in case
the value is not from the given set. In the default case we do not expect any invalid values at
all. That is, the behavior when reading an invalid value is irrelevant. This default decision
corresponds to guaranteeing students that inputs will be well-formed. For our example, we
get the following specification:

[>n]"(Uen(xs) =nc] = E A [>x]9) " [ sum(xs)>]

In case we want specific behavior upon reading an invalid value, we choose one of two
modes of handling such values. Either the program has to stop (in a controlled fashion, not
via a runtime error), or the program has to enter a loop, repeatedly reading further candidate
inputs until a valid one is encountered, then to continue normally with that valid input. We
denote the first case with [> - ]; and the second with [ - ];,. In the second case, invalid
values are discarded and are therefore not accessible in later parts of the specification. For
the rest of this section, we will always assume valid inputs.

3.2 Optionality

The specification we have arrived at now (and which is essentially, up to a minuscule
syntactic difference, already a valid expression in our DSL) is quite rigid, as there is no
flexibility with regard to the interaction allowed. Continuing our example, one might want
to allow the programs to have some extra behavior that does not really influence the core
functionality. For example, we could modify the previous task description as follows:

“Read a natural number n from stdin, then read n additional numbers and print the sum

of those n numbers to stdout. Additionally, when the program is still expecting at least

one further summand, it might print how many more summands it is expecting, before
reading in the next input.”

We encode such optional behavior directly inside the output primitive. That is, instead of
giving a single term to describe what we expect as output, we use a set of possible terms.
This set might contain the “empty” term ¢ representing no output and thereby optionality:

[>n 1N ([len(xs) =nc] = E A[ e, nc — len(xq)} o [ > x 1) 75 {sum(xq)) > ]

While this way of expressing optionality can look a bit cumbersome compared to, for
example, simply flagging an output as optional via a dedicated construct, it is far more
expressive since the set we can give there is rather arbitrary. For example, we could allow
the programs, for whatever reason, to output exactly any multiple of the result of some
value computation.’

> This expressiveness really pays off if we generalize the language to output arbitrary strings, since we can then
specify that we allow any output string as long as it contains the required result somewhere.
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[on]" (Uen(c)=ncl=EA [{e,nc—len(xa)}e] [ex]” )7F  [{sum(xq)}>]

2—n len([])=2:False choose ¢ S—=x O
len([5]) =2 : False choose ¢ 3>x O
len([5,3])=2: True 8 € {sum([5, 3])}

Fig. 2: Successful matching of trace 72 75 ?3 18 stop.

We deliberately introduce only this specific kind of non-determinism, in outputs, and
not, for example, a general non-deterministic choice operator. We have not yet encountered
any tasks where such a general choice operator would be needed to encode the desired
behavior as a specification, not in any textbook and not in our own teaching. Therefore, it
seems adding general non-determinism would only increase the complexity of syntax and
semantics without providing any actual benefit.

Note that this does not mean that specifications cannot require completely different
behavior depending on some input. For example, we can write specifications of the form
[>x1%([p(xc)] = s1 A s3). But since p(xc) is deterministically defined once x¢ is known,
there is no non-determinism involved here. Combining this kind of deterministic branch-
ing with the possibility to have an empty specification, which we denote by 0, we can write
specifications like [p(xc)] = s A 0, which only requires s to be exercised if p(x¢) evaluates
to True.

3.3 Valid program runs

Consider now the following trace we might get from a program: ?2 ?5 ?3 I8 stop. The pro-
gram first reads in the numbers 2, 5, and 3, then prints 8 and stops. Does this trace match
the specification developed above, i.e., could a program fulfilling the specification have
such a run? If not, we have just found evidence that the program under consideration does
not fulfill the specification.

We can check the validity of the trace by going from left to right (and possibly in loops)
through the specification and seeing if the trace actions match the required actions, while
keeping track of the contents of variables. Figure 2 illustrates this process.

Starting with 22, we compare it to [ > 7 ]I. Since both are input actions and moreover 2
is a natural number, as required, we continue by checking the remaining trace against the
rest of the specification.

Next we have to check the iteration. To do this, we first check the trace against the
iteration body while remembering the context in which the iteration occurred, i.e., the
specification following it and the iteration body we might have to repeat. When we hit the
end (but not exit marker) of the body, that is, we did not encounter an E, we just check the
remaining trace against the iteration body again. When we do encounter an exit marker,
we continue by checking the remaining trace against the specification following the whole
iteration.

For our current case, we have [len(xy) = nc] = E A [ {e, nc — len(x4)} > ][> x 1% as the
iteration’s body. So we have to check ?5?3 I8 sfop against that. We first evaluate the
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branching condition to determine which sub-specification we have to match against. Since
x4 has length 0 at the moment, we choose the right branch, which means we have to check
75 against [ {e,nc — len(x4)} >]. The trace action here is an input, but the specification
calls for an output action. However, since ¢ is contained in the set of possible outputs,
this is not problematic. After all, we can simply skip this output step, hoping we then find
a match for the trace action.® And indeed the next action required by the specification is
[>x]%, which matches ?5 and results in 5 being assigned to x (actually, to be assigned to
xc and appended to x,). Since we have no specification left to check locally, but are inside
an iteration, we again check against the whole iteration body. This results in 3 also being
read into x, which now conceptually holds the list [5, 3] (as x4, with x¢ being the 3 from
the end of that list). Therefore, in the next round the branching condition evaluates to True,
thus ending the loop due to the occurrence of E in the left branch, i.e., the middle argument
of ([[]=-A).

All that is left now is to check !8 stop against [ {sum(x,)} > ]. Since we have sum(x,) =
sum([5, 3]) = 8, this check is positive, also taking into account that stop matches the empty
specification. Overall, we can conclude that the trace ?2 ?5 73 I8 stop is a valid program
run for the specification.

3.4 Specifications as (non-deterministic) programs

When we match a trace against a specification, in order to compare the trace’s actions with
the expectations, we have to keep track of a variable environment and evaluate branching
conditions and terms from output actions. This essentially is the equivalent of evaluating
the specification itself on the given input sequence. However, in contrast to the evaluation
of regular programs, we have to deal with the output actions’ (potential) non-determinism,
i.e., different possibilities for output values or completely optional outputs. So instead of a
single trace, evaluating a specification on an input sequence results in multiple traces, one
for each combination of output choices.

The matching procedure described in Section 3.3 can then be restated as checking
whether a program’s trace is equal to one of the traces resulting from the evaluation of
the specification under the same input sequence. The traces a specification evaluates to,
for a specific input sequence, differ only in the output values. In the matching example
above we showed why 72 ?5 73 18 stop is a valid program run for the summation task. But
sois 7212 7511 73 18 stop, i.e., when the program outputs the number of remaining needed
inputs for the sum.

Recall that one of our stated requirements is a way to provide feedback in case of a
mismatch between a program’s behavior and a specification. Both of the above traces
could be given as an example of a correct program run. None of them is an obvious best
choice. Depending on whether students try to fulfill the optional requirement, either one or
the other will be more useful for them to fix their mistake.

We can address this ambiguity by combining both traces into the representation
72 {e,2} 75 e, 1} 23 1{8) stop with sets of possible values for each output. Such a

6 If both skipping and successfully matching against a non-¢ output value is possible, checking trace validity
can require backtracking. Section 3.4 hints at an optimization that remedies this problem. Section 8.3 will
introduce this optimization in detail.
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trace also “contains” the two additional possible traces for the input sequence [2, 5, 3]:
7212757318 stop and 72?511 73 18 stop. We call this type of trace a generalized trace,
since it is a generalized description of the behavior given by a specification, for a certain
input sequence.

In case of a matching failure, we can provide such generalized traces (in some pretty-
printed form) to students. This way we can showcase what are all possible runs a correct
program can have on the input sequence for which their program behaved incorrectly. In
case the generalized trace contains lots of optional outputs or outputs whose allowed values
cannot be printed concisely, showing the complete generalized trace may lead to confusion
on the side of the students. But turning the generalized trace back into a single ordinary one
for display is always possible, for example, by ignoring all optional outputs and otherwise
always choosing the smallest allowed output.

Moreover, we can compare the erroneous program’s trace with the correct generalized
trace for the respective input sequence to provide useful feedback beyond just displaying
correct sample solution runs, namely by pinpointing how the expected and actual program
behaviors differ. There are effectively two cases a mismatch can result from. Either the
structure of the traces does not line up, e.g., at some point during the comparison one
trace begins with an input and the other with an output and the respective step in the
generalized trace cannot be skipped (because it is not of the form e, . .. }). Or, for some
output step there is a mismatch between the expected and actual output. In both cases,
a simple message like “Expected: ..., but got: ...” or “Unexpected output value .. .,
expected one of ...” can be generated and presented to the student, along with the input
(sequence) that triggered the error.

To determine the complete set of expected outputs in the presence of optionality, some
lookahead into immediately following outputs in the trace might be necessary. This can be
avoided by combining consecutive outputs in traces into sequences of values. For example,
the two consecutive outputs !{e, 1} !{e, 2} would be combined into !{e, 1, 2, 1.2}, where we
write 1.2 for a word over Z to distinguish it from a decimal representation for twelve.” A
similar normalization of outputs was already present in the “example-specific” checking
predicate in Figure 1. Now, the merging of consecutive outputs helps to avoid lookahead
or backtracking when checking whether a program trace is covered by a generalized trace.
More details on generalized traces are provided in Section 8.3.

3.5 Restrictions on expressiveness

As we already hinted at earlier, the expressiveness of the specification language is
restricted at several points. That rules out specifications of certain kinds of behavior, for
good or bad. Most notably, we deliberately ruled out general non-determinism, as already
explained in Section 3.2. Other restrictions will follow.

When it comes to usefulness in our educational setting, we would, for example, like the
specified pattern to enforce actual interactivity. That is, at its core the behavior should rely
on a (somewhat alternating) sequence of reads and writes and should not be expressible in
a different way. Consider, for example, the following Haskell program:

7 The lowered dot also clearly separates Z-word concatenation from our notations for explicit trace concatena-
tion (-) and integer multiplication () used later on.
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main :: 10 () loop :: Int — 10 ()
main = do n < readLn loopn|n<0=return ()
loop n loop n =printn > loop (n — 1)

A specification corresponding to this program is not expressible in our DSL (reading and
writing integer values), and that was a design goal. The non-expressibility is due to the facts
that in our specifications an iteration process can only end based on some predicate over
the global variable state (contents of variables, their history) and that only inputs can alter
this state, leaving the above kind of “output-driven loops” impossible to encode. In other
words, what is “missing” from the specification language are first-class value-variables
and assignment statements that would allow us to create and manipulate arbitrary (global)
state. More generally, specifications lack the ability to describe sequences of consecutive
output actions whose length is dynamically determined. According to our motivation, this
restriction is a good thing. We only want inherently interactive behavior to be expressible,
whereas the above program can be rewritten as

main 210 () loop :: Int — String
main = do n < readlLn loopn|n<0=""
print (loop n) loopn =shown 4 "\n" 4 loop (n — 1)

with exactly one input action at the beginning, then all computation happening in a non-I/O
loop®, and exactly one output action at the end. Overall this is not an attractive teaching
example when we actually want to cover interactive I/O in Haskell and how programs must
be structured to organize sequences of input and output actions in interesting ways.

If we for a moment would lift our restriction to just use integers as inputs and outputs,
we could write a specification like [ > n ][ {loop(n)} > ] for behavior as above, with the
second version of loop above. From this it is immediately clear that the interactive core of
the program/task here is almost trivial, so we do not want it. Put differently, we wanted
to make sure that there are as few as possible ways in our DSL to encode essentially
non-interactive computations in only seemingly interactive guise. Note that even if we do
indeed allow strings for input and output, as we do for practical usage in our course, we can
still prevent creation of such “boring tasks” via the DSL by controlling which functions are
allowed in terms for conditions and outputs, preventing, for example, something like loop
from appearing there as it does in the hypothetical specification [ > n ][ {loop(n)} > ]. We
will later, in the formal definition in Section 8.1, see that this is encoded in the definition
of syntactically correct terms by parameterizing it over some set of available functions.

4 Challenges of finding good input sequences

So far we showed how to specify console I/O behavior and how to check whether
the execution trace of a program matches the described behavior. But what input
sequences should be used to produce the execution traces? Take the original example

8 The loop’s structure can be viewed as a co-program producing a sequence of outputs (Gibbons, 2021), i.e., a
co-recursive case distinction between ending and continuing the sequence. Iteration in our DSL cannot be used
to issue output actions in a way that encodes such co-programs producing sequences of outputs with dynamic
length.
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from Section 3: [ > n ]V ([len(x4) = nc] = E A [ > x1%)~E[ {sum(x,)} > ]. This specification
requires an input sequence starting with a non-negative integer and then as many arbitrary
integers. It is unlikely that a completely random input sequence will have this property.
In Section 2, we already saw how to write a hand-crafted input generator for this exam-
ple. A naive solution for framework-provided instead of user-supplied input generation
interleaves generation of random values with evaluation of the specification’s behavior. At
each input action [ > - ]* we can generate a random value v € T and store it in a variable
environment. For [ > - 7 and [ > - |7, we can generate either a value ve T oravalue v ¢ 7,
then proceed appropriately. Generally, we go through the specification similarly to how we
did when matching against a trace. If we reach the end of the specification, the sequence of
generated values is an input sequence suitable for testing. This is our previous approach as
described in our first presentation of the specification language (Westphal & Voigtlander,
2020a, TFPIE’19). With a carefully chosen value range, the naive approach yields accept-
able results for certain specifications with behavior that straightforwardly guarantees the
termination of the generation process, like the one above.

However, the generated sequences can become very long. In the above summation
example, the first generated natural number determines the length of the input sequence.
Long sequences are not necessarily bad, but we would like to establish confidence that a
program behaves correctly on input sequences of any length. Generating only longer input
sequences can even hurt our ability to find mistakes. Take as an example the second task
from Section 2 (this time without the optional outputs):

“Write a program that reads in integers until the two most recently entered integers sum
up to zero. Then output the number of integers the program has read and stop.”

This task can be specified as [>x]%([>x%[xc™! +xc =0]=E A 0) %[ {len(x,)} > ].
Here xc~! is short for the penultimate element of x4, i.e., the value of x¢ prior to the last
input action on x. This is not an extension of the language itself, as xc ' = last(init(x4)).
If we run the naive generation approach on this specification and we draw values from
{xeZ]||x| <n} CZ, the expected length of an input sequence is 2n + 2. Now, let us
assume a student program for the stated task counts but otherwise ignores its first input,
which may result in an execution trace like ?1 ?—1 ?1!3. Such a mistake will not be
detected if the program is not tested on small input sequences. After all, input sequences
for the task’s specification with length > 2 will never contain a pattern that triggers this
error, because the first two values in these sequences will never sum up to zero. (Otherwise
already these two-element prefixes would be the relevant sequences being looked at.) But
the chance of never encountering a two-element input sequence is higher than 10% when
testing the program on 100 sequences naively generated from the above specification while
drawing values from the range [ —25 .. 25].

Controlling the size of randomized inputs is not a problem unique to testing I/O pro-
grams. When using random inputs to test programs, the first random input that witnesses
a property violation is usually not the most succinct one, if any is found at all. Therefore,
most property-based testing frameworks employ techniques to shrink found counterexam-
ples in an attempt to find the minimal input needed to reproduce an encountered problem
(Pike, 2014; Claessen, 2012; de Vries, 2023). Some frameworks do not use shrinking and
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instead systematically and exhaustively test the input domain up to some cutoff on the
input’s size (Runciman ef al., 2008; Duregérd et al., 2012).

We will employ a somewhat hybrid approach between exhaustive testing and random
inputs with shrinking. We explore input sequences exhaustively with regard to their length
but per realizable length we only test a few randomized sequences. Additionally, we do
not attempt to shrink the counterexamples themselves. In case we find a counterexample,
we narrow the search space going forward, to further include only input sequences shorter
than the counterexample already found, and keep testing. In the end, we report the shortest
counterexample found.

To implement this approach, we need a reliable way to exhaustively explore realizable
(lengths of) input sequences for the behavior given by some specification expression. That
is, we want to be able to systematically control the length of generated input sequences
and to explore as many different combinations of the specification’s branching choices as
possible.” And in contrast to hand-crafted input generators or naive framework-provided
input generation, the new approach should work for all specifications, yet not require any
analysis of specifications by the user or overly careful choices of ranges for random values.
Indeed, it should also work well if, for example, choosing certain input values can make
it impossible to reach the end of the specification. We present a constraint-solving-based
approach fulfilling these requirements in the next section and tie it all together into a fully
formed testing procedure in Section 6.

5 Input sequence generation through constraint solving

Our goal is to systematically search for input sequences that result in terminating traces, for
a given specification. Additionally, we want to be able to control exactly what branching
choices are taken in the specification per input sequence. To this end, we construct paths
of symbolic constraints over input sequences. We call them specification paths. If such a
path is satisfiable, finding a concrete input sequence for it then yields an input sequence
that we can use for testing. Unsatisfiable paths correspond to impossible combinations of
branching choices and are therefore not relevant for testing programs.

This is the essential idea behind test case generation through symbolic execution (King,
1976; Cadar & Sen, 2013). Usually, it is the tested program itself that is symbolically exe-
cuted into constraints. We perform symbolic execution on specifications instead, since we
choose to only look at the traces a student program produces and do not use its actual pro-
gram code. In this section, we will first introduce specification paths in detail (Section 5.1).
We then show how to systematically explore a specification’s paths (Section 5.2). Finally,
we describe how we use the Z3 SMT solver (de Moura & Bjerner, 2008) to determine
satisfiability of specification paths and generate input sequences from satisfiable paths
(Section 5.3).

9 Note that branching conditions under an iteration induce a new independent choice in every cycle of the
iteration.

10 The naive generation method is still available in the implementation, as it can be significantly faster for
specifications without very specific termination conditions.
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5.1 Specification paths

Specification paths are constructed by traversing the specification in the same way as when
comparing against traces. But instead of working with concrete values we only gather up
constraints on symbolic variables. Since we have no concrete values at hand we cannot
evaluate branching conditions. We therefore simply choose one of the branches and record
the necessary constraint to choose that branch on the path.

Take, for example, [>x %[>y 1%([xc > ye]l = [ {2 % xc)} > 1 A [ {3 *yc} & ]). This spec-
ification has two paths (x; € Z)(y1 € Z){x; > y1) T and (x; € Z)(y1 € Z){x; < y1)T.

Constraints of the form (x; € 7) introduce a new input value from set 7, specifically the
ith value read into variable x. These constraints originate from the input actions of the
specification. A constraint like (x; > y;) states that the first value read into x should be
greater than the first value read into y. Such constraints encode which branching choices
are made on this path. The T symbol represents termination, i.e., reaching the end of the
specification. Note that the output actions are unimportant for the constraints.

Both paths for [ >x %[>y [%([xc > yc] = [ {2 % xc} > 1 A [ {3 * yc} > ]) share a common
prefix and differ only in the last constraint, i.e., in the decision which branch to take. This
is not surprising, since we always explore the paths of a specification starting from the first
action. We will therefore represent the paths of a specification as a tree. In this case the
tree is:

X1 >y1)—T
(xIGZ)(yleZ){< 1< 1> .
X1 Xx)V1)—

To fully automate input generation, we use a constraint solver to search for input
sequences that satisfy the constraints of a given path. For this to work, we need functions
used in conditions to be expressible in the language of the constraint solver. In Section 3.5,
we already mentioned parameterizing specifications over the set of available functions to
guarantee interesting behavior. The same approach also works for guaranteeing specifi-
cations produce only constraints expressible in the solver’s language. But this time we
are interested in restricting available functions in branching conditions instead of output
actions. We will go into more detail on how we use constraint solving in practice in a
moment. First, we will look at some examples of how the structure of a specification and
its branching conditions affect the shape, and especially the size, of the path tree.

5.2 Infinite path trees

Input sequences derived from terminating specification paths are guaranteed to produce
well-formed, i.e., terminating traces for the underlying specification. However, this does
not mean that we can always fully explore programs with regard to the specified behav-
ior, since in general specifications can have infinitely many paths. This happens when a
specification contains a “read until valid” input action [ - ];, or an iteration.

As an example of the iteration case, let us consider the “sum up to zero”-example
from Section 4 again: [>x]%([>x“[xc™! +xc =0]1=E A 0)~F[ {len(x4)} > ]. Recall
that xc~! refers to the penultimate element of x,. For this specification we have a path
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—(len([]) ’: —"

(x1 €N) (x; €N) T
—(len([x1]) < 2)— 1<2)——
X2 eN) (x2 e N)
—(len([xl,xz]) <2)— . 2 <2)—
(x3 €N) "I' (x3 €N) ‘
%Uen([m,le,m]) <2)— % (3 <2)——

(x4 € N) T (xg EN) T
|

Fig. 3: Single satisfiable path (with len evaluated on the right).

(x1 € Z)(xy € Z){x1 +x, = 0) T describing immediate termination of the iteration. But of
course there is also (x| € Z){(xy € Z)(x1 + x2 # 0){(x3 € Z){x» +x3 =0)T, i.e., the iteration
stopping after reading one additional value into x. Continuing this pattern, we can always
extend a path by one additional input, resulting in infinitely many paths:

(X1 +x=0—T
—(x1 €Z)—{x, € Z)A[ o +x3=00——T
(xt 32 7 )3 € Z)—|
(2 +x3 #£0)—(x4 € Z)—

We impose an upper limit on the number of input constraints in paths to test, since we
cannot test all possible paths for such a specification in finite time. But up to such a limit,
we can now systematically search for all satisfiable paths of specific lengths and generate
(multiple) input sequences for each such path.

Up until now, all paths in our examples were satisfiable. For more complex specifica-
tions this does not need to be the case. There are even situations where we have an infinite
number of paths for a specification, but only one of them is satisfiable. That is, the specifi-
cation requires very specific input sequences, all of the same fixed length. An example for
such a specification would be ([len(x,) < 2] = [>x ] A E)~E. The paths for this specifi-
cation are shown in Figure 3. The only satisfiable path (len([ ]) < 2)(x; € N)(len([x;]) <
2)(xy € N)(len([x1, x2]) < 2) (x3 € N)(—(len([x, x2,x3]) <2)) T is highlighted there. On
this path the length of x, increases by one each iteration cycle until the branching condi-
tion becomes true. All other paths are clearly unsatisfiable, but since paths are constructed
purely symbolically they are nonetheless part of the tree. Note that we symbolically
evaluated each occurrence of x, in the specification’s branching conditions to a list of
input variables. We can evaluate the conditions even further, as already partially done in
Figure 3, since the len-function does not require any knowledge about the list’s elements’

https://doi.org/10.1017/50956796825100075 Published online by Cambridge University Press



https://doi.org/10.1017/S0956796825100075

Testing 1/0 behavior 21

actual values. The result would be “constant” constraints (frue) or (false). But to empha-
size where each constraint originates from, we do not fully do this simplification in the
figure.

In general, path trees can have both infinitely many satisfiable and infinitely many
unsatisfiable paths. This is especially the case if we have a tree that grows exponen-
tially in the number of iteration rounds. For example, for specifications of the form
([c1]1=EA0[>x]"[c] = [y ]2 A 0)”F the path tree has the following shape:

(er)—T
_pley—T el 2 e [le)—brem—-
(mer)—{u € 71) (- ..

o)y ——
{c1)——T
bcﬂa[(—'ﬁ)*(xz € Tl)-E(fizTO}l © Tz)*:

Here, searching for satisfiable paths (up to a certain length of input sequences) can become
expensive quickly. In general, due to the varying shape of the path tree and its ratio of satis-
fiable to unsatisfiable paths, the efficiency and effectiveness of our input generation method
depends on the strategy we use to search the path tree for satisfiable paths. For example,
identifying unsatisfiable subtrees early and pruning them from the search space can reduce
the runtime significantly for exponential path trees with many times more unsatisfiable
paths than satisfiable ones. See Section 7.3 for details on this and also the limitations of
our implementation.

5.3 On solving specification paths

We use the Z3 SMT solver (de Moura & Bjerner, 2008) to find input sequences for satis-
fiable specification paths. Given a specification path, we construct a corresponding SMT
formula and ask the solver to search for a model for that formula. For this to work, the func-
tions used in branching conditions and the sets we draw inputs from need to be translatable
into some logic supported by the SMT solver. At the moment we use QF_LIA, quantifier-
free formulas over linear integer constraints, as our target logic. Even though this is a
fairly restricting choice, all of the exercises we usually give to students are expressible
within this theory, and so is the majority of programs and exercise tasks from popular text-
books (Thompson, 2011; Hutton, 2016; Schrijvers, 2023). This is in part because in many
cases functions that fall outside of linear integer arithmetic are only used in output actions
where they do not affect input generation.

Note that during translation, lists of symbolic values are translated to (in)equality
constraints between expressions over input variables. Assume, for example, that we
have a specification which describes reading in a natural number # and then repeatedly
reading integers until the sum of these integers exceeds n. A path for such a specifica-
tion is (n € N)(=(sum([]) > m)){x1 € Z)(—(sum([x1]) > n1))(x2 € Z)(—(sum([x1,x2]) >
ny)){xs € Z){sum([x1,x3,x3]) > n;) T and it is translated to the formula

M Z0A0<n) A <) AR +Hx2 <) A X +Xx2 +x3 > 1)
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Checking for satisfiability of this constraint then gives us a model from which we then
derive an input sequence that will test the specification path, in this case the sequence
[0,0,0,1].

Ideally, we want multiple input sequences for a single path to test the program with.
This is especially important since the paths describe the behavior from the perspective of
the specification and a program can potentially realize one specification path’s behavior
through more than one execution path. Unfortunately, simply running the solver multiple
times on the same query will most likely result in the same model every time, since the
solver usually works deterministically. To work around this, we encode paths as MaxSAT
optimization problems (Bjerner et al., 2015). That is, we add additional constraints to the
formula that the solver is allowed to ignore when searching for a model. In a MaxSAT
problem the goal is to find a model that fulfills the maximum number of these soft con-
straints. We use these extra constraints to encode randomized suggestions for the different
values of the input sequence. For our current example we, might suggest the input sequence
[3,7,15,—4]:

(I’ll 20)/\(0<n1)/\(x1 gl’l])/\(xl + X3 gnl)/\(xl + X2 + X3 >}’11)
A (ng :3) Axi=T)A (= 15) A (x3= —4)

The soft constraints we add, shown in gray, are always of the form x; = ¢;, where ¢; is a
concrete value randomly drawn from the set of allowed inputs for x;. They encode a sug-
gested input sequence and the solver is asked to find the closest input sequence satisfying
the path constraint, with distance measured by the number of differences between the two
sequences. Here, the solver would return the sequence [22, 7, 15, 1], satisfying two of the
soft constraints. This is a common approach when sampling solutions of SAT and SMT
problems (Dutra et al., 2018). Each new run for the same specification path is done with
different random value suggestions.

5.3.1 Additional constraints

Sometimes straightforward solving of paths can be insufficient. Consider our running
example, the summation of » numbers, but now we require the program to output the
product instead of the sum: [>n N ([len(x,) =nc] = E A [>x %) {product(x,)} > 1.
For this specification, even relatively short input sequences can make product(x,) exceed
the bounds of Haskell’s Int type. If students would now write an otherwise correct program
using the /nt type instead of the unbounded /nteger type, our testing framework would most
likely reject it. When matching a program trace against a specification, we carry along a
variable environment under which branching conditions and expected outputs are evalu-
ated. This environment always stores unbounded /nfeger values to keep in line with the
semantics of specifications that have no concept of bounded-size machine integers. In case
of an overflow of the Int type, the corresponding output step of the program’s trace and the
evaluation of the expected outputs will most likely differ and cause a behavior mismatch.
In the past, we have given students a task based on this specification and in fact some stu-
dents wrote programs that only worked as long as the /nf type did not overflow. But since
already a product of 10 relatively small numbers can cause an /nt-overflow, these programs
got rejected by the testing framework. In some contexts this might be the appropriate
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Fig. 4: Additional constraints to avoid /nt-overflows.

outcome. But when the goal is to teach simple (recursive) I/O programs, such technical
details get in the way of the desired educational goal. We cannot, though, simply require
students to only use unbounded Integers as some standard library functions just return
Ints, most notably the ubiquitous function length :: [a] — Int. Depending on the context,
we therefore might require the solver to consider additional constraints when checking the
satisfiability of paths. In the above example, we would like to make sure that ideally no
(sub-)computation in conditions and outputs exceeds the bounds of the Inf type. For every
computation representable inside the solver we can insert respective constraints into the
paths, without changing the structure of the specification’s path tree. Figure 4 shows the
modified paths for the product example. Here Int,,;, and Int,,, are the lower and upper
bound of the Inf type. Note how the output actions now also contribute constraints to the
paths.

By design, (sub-)terms in outputs do not have to be completely representable in the lan-
guage of constraints. Our implementation provides an option to generate such additional
constraints on a best-effort basis, thus reducing the possibilities of unwanted testing fail-
ures due to overflows. Additionally, we also produce a warning during the actual testing on
input sequences whenever a computation, from the specification, would exceed the limits
of the Int type. So even if the additional constraints were not able to prevent an overflow,
students or lecturers are still alerted and can interpret the test’s result accordingly.

6 Testing procedure

Now, how can we actually test programs against specifications? Recall that we want to be
able to automatically generate the following three components from a given specification:
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e A generator of input sequences that respect the task’s invariants.

e A way of checking whether a trace exhibits the desired behavior.

e A method of providing feedback in case the actual behavior did not match the
expectations (e.g., a correct run on the respective input sequence).

We described how to match program traces against specifications and how to provide feed-
back in Sections 3.3 and 3.4. Section 5 described our approach to input generation. We now
test programs by repeatedly running the following steps:

1. Search for a satisfiable path for the given specification s,

2. find a valid input sequence for this path using random suggestions for each value in
the sequence,

3. run the program under testing on that input sequence, resulting in trace #,,

4. check whether 7, is a valid run for s.

The testing procedure accepts the program if we have successfully tested # input sequences
for each satisfiable path up to length /,,,,, with the length of a path being the number of
its input constraints. If we instead find a counterexample, i.e., an input sequence for which
the program produces a trace that is not a valid run for s, we record the length of this
sequence and continue testing on paths shorter than the counterexample’s length only. This
process continues until we have successfully tested n input sequences for each satisfiable
path shorter than the last found counterexample, which we then report. Increasing » and
Inay increases the probability that the program actually has the specified behavior in case
we do not find a counterexample. Increasing /,,,, can, however, cause the number of tests
performed to grow exponentially (see Section 7.3).

7 Implementation

We have built an EDSL for the designed language in Haskell and implemented the test-
ing approach explained thus far.!! An interactive sandbox for playing around with the
implementation on various examples is available at https://iotasks.fmi.uni-due.
de/.

Within the framework, we provide a data type for describing a Specification, the 10,
type from Section 2, and a function taskCheck :: 10,., () — Specification — 10O () that tests
a program against a specification according to the procedure described in Section 6,
reporting the shortest counterexample found.

7.1 Example usage

To see the testing framework in action we once again use the summation example task
from Section 2:

“Read a positive number n from stdin, then read n additional numbers and print the
sum of those n numbers to stdout.”'?

' The library containing the EDSL is available at https://github.com/fmidue/I0Tasks.
12 For a clearer presentation we here exclude the case of n = 0.

https://doi.org/10.1017/50956796825100075 Published online by Cambridge University Press


https://iotasks.fmi.uni-due.de/
https://iotasks.fmi.uni-due.de/
https://github.com/fmidue/IOTasks
https://doi.org/10.1017/S0956796825100075

Testing 1/0 behavior 25

We specify this behavior as [>n [N ([len(xs) = nc] = E A [ x 12) B[ {sum(x,)} > ] and
a possible solution we presented in Section 2 is

program :: 10, () loop :: Integer — Integer — 1O, ()
program =don < readLn  loop 0 res = print res
loopn 0 loop nres =dox < readLn

loop (n — 1) (x + res)

Now how can we use our EDSL in order to check the correctness of this solution?

Since our main goal was to have everything needed for testing to be derived from
the specification of the desired behavior, all we need to do is express the behavior’s
specification in our EDSL:

specification :: Specification

specification =

readlnput n pos AssumeValid <> --[on ]NJr

tillExit ( --

branch (length* (allValues x) -==- currentValuen) - -  [len(xy) =nc] =
exit - - E A
(readInput x ints AssumeValid) - - [>x1%

)< -- )7F

writeQutput [ resultOf (sum* $ allValues x)] - - [{sum(xq)} =]

where

n,x :: Var Integer
n=intVar "n"
x=intVar "x"

pos, ints :: ValueSet Integer

pos = greaterThan 0

ints = complete

For every construct in our specification language there is a corresponding constructor
in our EDSL which creates that particular kind of specification, possibly from smaller
specifications.

readlnput  :: Var a — ValueSet a — InputMode — Specification
writeQutput :: [ OutputPattern] — Specification

branch :: Term Bool — Specification — Specification — Specification
tillExit :: Specification — Specification

exit :: Specification

nop :: Specification

Since the Specification type forms a Monoid with regard to sequential composition (and
neutral element 0, now written nop), we use (<>) to glue multiple specifications together.
Note that Var and ValueSet are polymorphic over the type of values they stand for or
talk about. This is due to the fact that the implementation is not restricted to Integer inputs,
but also supports String-valued variables. Similarly, instead of simply a list of Terms,
the writeOutput-function takes an [ OQutputPattern] argument, allowing for more flexible
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outputs than simply printing (integer) results of computations. OutputPatterns are built
from the primitives

resultOf :: Show a = Term a — OutputPattern
text . String — OutputPattern
wildcard :: OutputPattern

and can be combined through a Monoid instance (with neutral element text""). For
example, in practice we often want to allow results to be printed with some optional
embellishments. The output pattern wildcard <> resultOf (sum* $ allValues x) <> wildcard
could then be used in the above specification to accept programs that use something more
descriptive like

putStrLn § "The sum of all inputs is " HresH "."

instead of the simple print res call in the sample solution further above.
When it comes to values of Term types, for output and branching, we construct them
from syntactically inspectable versions of some standard Prelude functions.

data Terma -- abstract

(== 2Eqa = Terma — Terma — Term Bool
(+>) =Orda= Terma — Terma — Term Bool
(<) =Orda= Terma — Terma — Term Bool
G+ = Term Integer — Term Integer — Term Integer
(-&&-) Term Bool — Term Bool — Term Bool
not* : Term Bool — Term Bool

length* :: Term [a] — Term Integer

sum* : Term [ Integer] — Term Integer

product” :: Term [ Integer] — Term Integer

The special term constructors currentValue and allValues are used to access specification
variables, corresponding to the subscript notation ¢ and 4.

currentValue :: Var a — Term a
allValues :: Var a — Term [a]

We cannot build terms from arbitrary Haskell functions in general, as we need to translate
terms into constraints that we can then hand to the SMT solver. For terms used in outputs
this restriction can be loosened, though. Apart from checking for overflows, as described in
Section 5.3.1, we do not need to translate output terms into SMT-expressible constraints.
The implementation therefore allows the use of opaque Haskell functions in outputs, but
for simplicity we disregard this detail here.

Now that we have written the specification, we can check whether the program has
the desired behavior simply by running the taskCheck :: 10,., () — Specification — 10 ()
function:

> taskCheck program specification
generated 125 input sequences covering 25 satisfiable paths
+++ 0K, passed 125 tests.

https://doi.org/10.1017/50956796825100075 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796825100075

Testing 1/0 behavior 27

By default, we explore all paths that unfold iterations at most 25 times (globally).
Therefore, we find 25 satisfiable paths, namely forn € {1, ..., 25}, i.e., with 2 to 26 inputs
in length. The number of different sequences tested per satisfiable path defaults to 5, so we
end up with 125 tests in total.

What happens if a program does not have the specified behavior? For example, what if
the program we are testing reads one value less than it should:

wrongl :: 10, () loop :: Integer — Integer — 10, ()
wrongl = do n < readLn loop 0 res = print res
loop (n—1)0 loop nres = do x < readLn

loop (n — 1) (x + res)

In such a case, we get an error message like this:

> taskCheck wrongl specification
generated 1 input sequence covering 1 satisfiable path
***x Failure
Input sequence: 71 757
Expected run: 71 7?57 !57 stop
Actual run: 71 !0 stop
Error:
AlignmentMismatch:
Expected:
757
Got:
0

When checking whether the generalized trace covers the program trace here, we get stuck
when checking the program’s !0 stop against the expected ?57 {57} stop. Such an align-
ment mismatch, as already mentioned in Section 3.4, is one of two possible error causes
when comparing ordinary and generalized traces in our setting. The other possible source
of a mismatch (not an alignment issue) manifests when the program writes an output that
is not part of the set of valid outputs at the respective position, i.e., the actual output is
not covered by the expected outputs. For this example, that could be the case because a
program does not include the first read number into the summation:

wrong2 :: 10, () loop :: Integer — Integer — 10, ()
wrong2 = don < readlLn loop 0 res = print res
X <—readlLn loop nres = dox < readLn
loop(n—1)0 loop (n — 1) (x + res)

For such a program the error message looks like this:

> taskCheck wrong2 specification

generated 1 input sequence covering 1 satisfiable path
***x Failure

Input sequence: 71 737
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Expected run: 71 737 !37 stop
Actual run: 71 737 !0 stop
Error:
OutputMismatch:
'0 is not covered by !37

7.1.1 Counterexamples with naive input generation

The implementation also includes the naive input generation method as an opt-in fallback.
As discussed in Section 4, this input generation method only works for a small set of
specifications. And even then, the problems with coverage heavily impact the quality of
error messages. On average, input sequences provided in error messages are significantly
longer. In the summation example, the termination condition is simple enough that we can
use naive input generation. Doing so, for the wrongl program, we get an error message
like this:

> Naive.taskCheckWith stdArgs{inputRange = 15} wrongl specification
**x* Failure
Input sequence: 79 7-12 712 712 78 72 75 79 7-6 713
Expected run: 79 7-12 712 712 78 72 7?5 79 7-6 713 !43 stop
Actual run: 79 7-12 712 712 78 72 7?5 7?9 7-6 !30 stop
Error:
AlignmentMismatch:
Expected:
713
Got:
130

And for wrong?2:

> Naive.taskCheckWith stdArgs{inputRange = 15} wrong2 specification
**x* Failure
Input sequence: 711 78 7-11 7-15 7-2 72 712 715 7?4 715 7-7 71
Expected run: 711 7?8 7-11 ?7-15 7-2 72 712 715 74 715 7-7 71 122 stop
Actual run: 711 7?8 7-11 7-15 7-2 7?2 712 715 7?4 715 7-7 71 114 stop
Error:

OutputMismatch:

'14 is not covered by !22

Notice how we restricted the inputRange parameter to 15. This restricts the absolute value
of randomly generated integers. We will therefore only draw values from {—15, ..., 15},
or {1,...,15} for the first input. The default inputRange used for the constraint-based
examples is 100.

Without the inputRange restriction the counterexamples generated with the naive
method can become very large here as the length of the input sequence depends on the
first input value. Alternatively, we could have changed the specification itself, to directly
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restrict the set of allowed values for the first input. Either way, some ad-hoc restriction
is necessary when we use naive generation and thus eschew exploiting path coverage
information. There is also no immediately obvious way to shrink a counterexample into a
smaller one, as it is not clear which input controls the length of the overall sequence from
the error-producing sequence alone. We could try to brute-force a smaller sequence that
also triggers the error, by trying to shrink individual values, but this is clearly infeasible
in general. The constraint-based generation approach, with its knowledge of paths, can
systematically search for errors on shorter paths and thereby on shorter input sequences,
reducing the size of counterexamples considerably and reliably even when inputs are
drawn from larger value ranges.

7.1.2 Derived combinators

Since specifications are embedded as ordinary Haskell values, one can use the full power
of Haskell to build more complex combinators from the basic specification constructors.
This allows for higher-level abstractions and consequently more succinctly written speci-
fications. For example, the implementation provides a combinator to capture the structure
of what is conceptually a while loop in our summation specification:

while :: Term Bool — Specification — Specification
while ¢ body = tillExit (branch c body exit)

With this newly defined combinator, the complete specification becomes shorter and more
declarative:

specification :: Specification
specification =
readlnput n pos AssumeValid <>
while (not* $ length* (allValues x) -==- currentValue n)
(readlnput x ints AssumeValid) <>
writeQutput [ resultOf (sum* $ allValues x)]
where
n=intVar "n"
x=intVar "x"

Moreover, the implementation’s version of while is additionally enriched with useful
sanity checks. For example, we check that there is no top-level exit marker in the loop
body, and that at least one input action in the body modifies one of the variables in the
condition. Such checks then help to not write ill-formed or otherwise bad specifications.

7.2 Expressiveness

So far, we have seen only relatively simple examples of behavior. However, specifications
can express much richer behavior. Starting from the simplest behavior, we can express
things like reading some value and then passing that value to some function, printing back
the result. A specification for such behavior consists of a single input action followed by
an output action. Even though this is not particularly interesting behavior, in the form of

https://doi.org/10.1017/50956796825100075 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796825100075

30 O. Westphal and J. Voigtlinder

a greeter program where the user is asked to enter their name and then is greeted with a
custom message this interaction pattern occurs in multiple textbooks (Thompson, 2011;
Schrijvers, 2023).

Moving up the complexity ladder, we have behaviors that require some form of repeated
actions until a certain condition is met. The simplest condition just checks whether the last
read value fulfills some predicate. Examples are reading values until the read value is 0
or until a certain string input like "stop" is read. Some behaviors require checking more
than just a single value. For example, we already saw a specification waiting for the last
two values read to sum up to 0. As long as we guarantee that enough values have been
read, we can express conditions not only on the last two values but on any fixed number of
recent inputs. We can also use a condition over all values read into some variable, like in
our summation running example (where the condition is length-related) or in the example
from Section 5.3. In fact, the summation task is the single most common task we found in
textbooks.

I/O behavior is all about interactivity, so it is not surprising that sooner or later one
wants to implement simple interactive games. Our framework can capture common simple
games found in textbooks. Since string inputs are only supported in a very rudimentary
fashion, we usually need to reframe these games in terms of reading integers instead of
more complicated data like strings or game moves (but see Footnote 15).

The easiest games are simple single player guessing games. One example is a game
where the user has to guess a hidden number by repeatedly trying numbers and getting
feedback as to whether the hidden number is higher or lower (Schrijvers, 2023). For these
single player games, the initial setup of the game is not part of the specification itself. The
(randomized) selection of the hidden number is outside of the scope of the specification
language. Therefore, we end up with an EDSL expression that is parameterized over the
hidden number.

specification :: Integer — Specification
specification target =

readlnput guess ints AssumeValid <>
branch (currentValue guess -==- intLit target)

Consequently, the program tested against such a specification must have the corresponding
type main :: Integer — 10 () and testing is then done like this:

let farget = . . . in taskCheck (main target) (specification target)

We might need to test a program with multiple (random) initializations to make sure it has
the desired behavior.

A slightly more involved game is a variant of the classic hangman game, where the goal
is to guess a word of length n by guessing a single letter in each try until the complete word
is revealed (a string-based variant is used by Hutton (2016)). Again, as our framework
deals mainly with integers, the most straightforward specification for a hangman game
also requires guessing a sequence of numbers instead of a dictionary word (for example,
trying to guess the digits of an unknown prime number that the game host is revealing
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piece by piece). The win condition for this game is more complicated than for the high-low
guessing game. We need to check that all numbers in the target sequence are contained in
the guessed values. This condition depends on the target sequence, so we define a function
to construct the win condition from an integer sequence.

hangmanSpec :: [ Integer| — Specification
hangmanSpec target =

branch (winCond $ allValues guess)
where
winCond :: Term [ Integer] — Term Bool
winCond guesses = foldr (Aa b — (intLit a ‘elem™* guesses) -&& - b) true target

Here elem” :: Term Integer — Term [ Integer] — Term Bool is the lifted membership test
on lists.3

Finally, there are games that are usually played with two players but often feature a
computer opponent in the context of programming exercises. Tasks for these games usu-
ally have a pure component that implements a strategy for the computer opponent and an
interactive part for the main game loop. The pure part of the game logic can be tested with
regular property-based tests. Again, the win condition needs to be expressed in the EDSL’s
term language and the game state must be computable from the inputs alone. This means
that the computer opponent’s strategy must be deterministic.

A basic example is the rock-paper-scissors game, where the game loop consists of play-
ing multiple rounds against a certain computer strategy with the overall winner determined
by who won the most rounds (Thompson, 2011).'* The fourth and final game is a number
picking game where players take turns picking numbers from 1 to 9, each number can be
picked only once, and whoever picked three numbers that add up to 15 wins. This game is
equivalent to a game of Tic-tac-toe on a 3 x 3 grid but without the need to handle positional
moves. !

All of the above examples and some variations can be found in our example collec-
tion at https://github.com/fmidue/I0Tasks-collection (see also Figure 5) and
the smaller examples are also available as templates in the interactive demo (https://
iotasks.fmi.uni-due.de/).

7.3 Practical limitations of input generation

Most of the concrete examples we presented so far contain only the simplest form of iter-
ation expressible with our specifications (all but the sketches of games): a single iteration
with exactly one branching construct and therefore two paths inside its body, one leading

13 List membership is translated to a disjunction of equalities when creating constraints for the SMT solver.

14 The example presented by Thompson models multiple different opponent strategies, including one that uses
unsafePerformIO to implement a completely random strategy. For the reasons stated in the previous paragraph
this non-deterministic strategy is not compatible with our framework.

15 We have actually also used a task that from the students’ perspective looked exactly like real Tic-tac-toe,
including string input/output of positional moves, but internally used a numeric encoding hidden by clever
name-shadowing and pretty-printing.
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Task Origin  Restrictions Variations
Check whether user input is T B Compute some other func-
a palindrome. tion on user input.
Greet user with their TS B repeating user input (multi-
entered name. ’ ple times)
Read two numbers and out- no negative numbers
put their sum. Repeat until allowed (on negative num-
the first entered number is (0] - bers, repeat reading until
0, then print the number of non-negative number is
performed additions. entered)
Compute product, sort, etc.
instead of sum;
Read natural number, then With extra prompts;
that many additional inte- T,H,S - Read values until 0 is
gers and output their sum. entered instead of read-
ing the number of values
upfront.
. . one specification per
High-low guessing game S secret -
guess individual letters
(digits) instead of
Hangman H whole words; -
one specification per
different secret needed
game moves encoded as
Rock-paper-scissors T numbers% . -
one specification per
strategy needed
Tic-tac-toe;
Number scrabble o - against CPU;
with two human players
Origins T: (Thompson, 2011); H: (Hutton, 2016); S: (Schrijvers, 2023); O: our own course material

Fig. 5: Some expressible exercise tasks.

to termination and one to continuing the iteration. This structure ensures that the number of
paths inside the iteration is linear with regard to the maximum length of the input sequence,
since only one of the two paths, after a fork, forks again. However, as already shown in
Section 5.2, in general the tree of specification paths can be up to exponentially large in
the maximum desired input length. The specifications for simple games often exhibit this
problematic structure. For example, for hangman, there is usually a reaction of the pro-
gram telling the user whether a guess was correct or not, introducing two different paths
through the iteration encoding the game loop. In many cases, large parts of such trees can
consist solely of unsatisfiable paths. The implementation, therefore, regularly tests prefixes
of paths for satisfiability to potentially prune subtrees of unsatisfiable paths early.

Pruning is most effective when unsatisfiability can be determined from a short common
prefix of some paths. For example, a win or termination condition becoming irrefutable
after a certain number of read inputs will result in prunable subtrees. Pruning is there-
fore often effective in reducing the amount of paths to explore and in fact was introduced
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precisely to make testing games like hangman more efficient. We have observed speed-up
between 1.5x and 4x when searching for satisfiable paths of suitable specifications, for
example, hangman games with shorter secrets. On specifications where unsatisfiable paths
do not have short unsatisfiable prefixes in common, the pruning checks only incur a small
extra runtime cost of around 10-20%.

But for some specifications pruning is not possible at all, as all paths are in fact satisfi-
able. Since we only start looking for prunable subtrees after finding the first unsatisfiable
path, pruning has no performance penalty on such specifications. A simple specification
for which all paths are satisfiable is the following one:

[>x]*([sum(x4) > 0] = E A ([>x]"[xc > 0] = [{1} > ] A [ {0} ])) "

Here the nested branching constructs result in two paths that both continue the iteration.
Therefore, the overall number of paths for this specification is 2/« — 1, where ., is
the maximum length of input sequences. Our current implementation can handle such
specifications only for relatively small numbers of iteration unfoldings.

7.4 Specification interpreter

In addition to the core functionality of testing programs against specifications, the imple-
mentation also provides means to run specifications as if they were programs. The most
straightforward way is a function runSpecification :: Specification — [ String| — Trace,
producing a (generalized) trace given a specification and an input sequence. Such a func-
tion is already part of the core framework’s internals, as it is exactly what we use to find
the generalized trace for a specific input sequence (see Figure 11 in Section 8.3.1).

Additionally, we also provide a function interpret :: Specification — [1O ()] that turns
a specification into actual I/O programs. This function resolves the potential non-
determinism of output actions by returning a list of all meaningful variants of resolving
non-deterministic outputs. Every such variant results from first choosing a specific combi-
nation of output options, i.e., reducing every set of outputs to some singleton set, and then
interpreting the specification.

Interpretation is an important tool when designing a new specification. Through running
the specification itself on different input sequences, we can make sure that a specification
matches our mental model of what we want to encode. In case of exercise task design, this
also means checking the verbal task description against the specification used for testing
solution candidates.

Additionally, with the ability to interpret specifications, we can also test the implemen-
tation of the testing framework itself, to some degree. As interpreting specifications as
programs is independent, in terms of the implementation, from testing programs against
specifications, we can programmatically interpret a specification and check the resulting
program against that specification. This raises confidence in the internal consistency of
the implementation. Moreover, via this connection, correctness arguments, e.g., by code
inspection, in one part also bridge and carry over to other parts to some extent. We have
presented a detailed exploration of this idea in a previous article (Westphal & Voigtlénder,
20205, FLOPS’20).
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Tt C7Z xé€Var Tt CZ xe€Var me{T,0}

Inputl Input2
[>x]" € Spec (Inputl) [>x]}, € Spec (Input2)
O C(TzU{e}), O\ {e} #0 s1 € Spec 53 € Spec
Output S
[O©>] e Spec (Output s1 - 82 € Spec (Seq)

s1 € Spec sy eSpec ceTp
[e]= 51 A sy € Spec

(Branch)

o ¢ effects(s) s € Spec

Till-E —— (L Exit N
s7F e Spec (Hi-5) E € Spec (LoopExit) 0cspec CNoP)
x € Var x € Var
_ t — = (Al
xc €Ty (Current) x4 € Tz (AD
f:Dix..xDy—D tyelp,,...,.t,€Tp, f€Func .
(Function)

f(ty,...,.tn) €p

Fig. 6: Syntax of specifications (top) and terms (bottom).

8 Formal definitions

After presenting the basic concepts and ideas of our approach informally, we will now give
formal definitions for the specification language and everything else needed for testing.

We start by defining the syntax of specifications (Section 8.1). We then give a precise
semantics of when a trace is accepted by a specification and a corresponding notion of
program correctness (Section 8.2). Next, we define generalized traces and what it means for
a generalized trace to cover a program trace (Section 8.3). Then, we modify the acceptance
criterion to compute generalized traces from a specification by essentially evaluating a
specification on an input sequence (Section 8.3.1). We define another modification of the
acceptance criterion that, given a specification, computes the tree of all specification paths
for input generation (Section 8.4). Finally, we relate the producers of generalized traces
and of specification paths, and the testing procedure using them, to our original notions
of trace acceptance and program correctness, by giving a lemma and a conjecture that
together ensure agreement on which programs adhere to a specification’s behavior and
which do not (Section 8.5).

8.1 Syntax

As described in Section 3, specifications are essentially built from primitives for specifying
input and output actions, together with a branching and an iteration construct. Figure 6
gives the full syntax of our language by defining the set Spec of all specifications as well
as the term language used for the description of output values and branching conditions.
We distinguish different subsets of the set of all terms by a subscript indicating the type
of value a term evaluates to. For example, 77 denotes the set of all terms that evaluate to an
integer and 7g the set of terms evaluating to a Boolean value. We write [Z] instead of Z*
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effects([ © > ]) = effects(0) = {o}
effects([>x 1) = effects([ > x 17) = effects([ > x ]7,) = {1}
effects(E) = {]}
{(XUY|Y eeffects(s;)} ifX=ovX=1
effects(s - s2) = { .
Xqus(m {X} ifX=lvX=¢
effects([c] = 51 A 57) = effects(sy) U effects(sy)
o ifxX=1%
effects(s”F) = U {o} ifX=]
Xeeffects(s) {T} if X = ¢
Note that no case X = o exists in the last equation, since we inductively already know that
for any s~ in the syntax it holds o ¢ effects(s).

Fig. 7: Loop body effects.

for sequences of integers here, emphasizing that we are dealing with list values as opposed
to words over integers.

With the exception of (Output) and (Till-E), the rules are straightforward; there,
we impose restrictions to rule out unwanted behavior descriptions. For output actions, we
require that the set of possible output values contains at least one real term. That is, we
deliberately rule out actions of the forms [ {} > ] and [ {€} > ]. Giving an empty set of terms
would always result in an unsatisfiable specification; giving a singleton set containing ¢
would be equivalent to 0.

In the case of iterations, we require guaranteed progress in the sense that each path
through the iteration body reaches an exit marker or contains at least one input action,
i.e., the path alters the global variable state. To check this requirement, the function effects
defined in Figure 7 computes abstractions of the different possible effects an iteration body
can have. There are two separate effects we are interested in: firstly, reading something
into some variable at least once, and secondly, finishing the iteration. A single path can
therefore have four different possible combinations of presence/absence of these effects: o,
representing paths that neither read any input nor terminate the iteration; 1 and | for either
paths that read or ones that terminate; and § for paths that both read and terminate the
iteration. We use LI for the obvious join operation on this four element lattice. Depending
on the branching structure a (sub-)specification can feature any collection from those four
effect abstractions. The effects-function computes the set of (combined) effects for all paths
of the given specification. For example, the set {o, $} encodes that a specification has at
least one path that neither reads nor terminates the iteration, at least one path that both
reads and terminates, and no paths with any other combination of effects.

The condition o ¢ effects(s) in the (Till-E) rule therefore exactly describes our desired
progress condition: every path through a loop must terminate the iteration (| or ¢) or read
at least one new value (1 or ¢). Note that progress of iterations in general does not imply
termination. For example, ([sum(x,) < 100] = [>x 1% A E)~F has the progress property
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but a program with this behavior does not always terminate (and yet, programs can be
effectively tested against this specification, see below). On the other hand, a specification
of definitely terminating behavior will always also have an equivalent variant that satisfies
the progress condition.

As a consequence of requiring progress, building specification paths as introduced in
Section 5 will never result in an infinite path with only a finite number of input constraints.
This is because for a path that leads to repeating the iteration’s body its combined effect is
exactly 1 (since o is outlawed in the (Till-E) rule and | or § would imply the path is not
one of those leading to repetition). So every repetition of the iteration’s body will add at
least one additional input constraint. This is an important property as it enables us to find
all specification paths up to a specified cutoff length (see Section 8.4 for details). A similar
argument also guarantees termination of the semantic functions for trace acceptance and
for the computation of generalized traces, as they will consume finite traces and finite
input sequences, respectively, in lockstep with specification input actions (see Sections 8.2
and 8.3.1).

The syntactic definition of specifications is parameterized over a not further specified
set Func of functions and some variable set Var. In principle, we could choose any set
of functions we want, as long as both concrete and symbolic evaluation of terms is well-
defined. The formalization does not require or assume any other property of Func. Strictly
speaking, we require symbolic evaluation for only terms used in branching conditions as
only those are used to create path constraints.

In addition to the syntactic definition of specification expressions, we make the fol-
lowing assumptions regarding structure and semantic well-formedness. A specification
s € Spec is called well-formed exactly if it has the following properties:

1. A variable x¢ does not occur in a term before x occurred in an input action, since this
would make the evaluation of that term fail. A corresponding issue does not exist for
x4 since we can define it to initially evaluate to the empty list.

2. The exit marker E never occurs outside of an iteration, i.e., never at the top-level of
a specification expression.

3. Every loop eventually terminates, i.e., it reaches an occurrence of E (given the right
sequence of input values). If we are not interested in termination in such a strict fash-
ion, we can alternatively loosen the requirement so that for every loop (s')~F
s there has to exist an exit marker somewhere in s” and outside another iteration, but
we do not analyze the branching conditions to reach it.

inside

As a side note, we observe that both the second and the looser version of the third condition
can be expressed in terms of effects as “effects(s) C {o, 1}, and “for every loop (s')~F
inside s, it holds effects(s") # {1}”, respectively. After some consideration, we might even
go further and require that the effects set of every loop body must consist exactly of 1, one
of | and ¢ or both, and no o (the latter of course already known from the (Till-E) rule).
The purpose of the third property above, in its strict form, is to let specifications only
ever describe finite behavior. In practice, the three properties do not necessarily have to be
checked statically. When creating new specifications for exercise tasks, we cross-validate
the specification against other artifacts (see Section 7.4 and (Westphal & Voigtlinder,
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20200, FLOPS’20)). So even if we do not check the properties above explicitly, cross-
validation usually imposes enough constraints such that accidentally violating one of the
properties becomes unlikely.

Syntactically, sequential composition of specifications is defined to be associative,
i.e., §1-(s2-83)=(81-82) - 53, therefore we can just write s -5, - 53 instead, or indeed
s1 .82 83. Also, 0 is the neutral element of sequential composition, meaning 0 - s =s==s- 0.
Moreover, we define sequential composition to have higher precedence than branching
and ~F to have higher precedence than sequential composition, i.e., [c] => 51 A sy - 53 =
[c]=>s1 A(sy-s3)and sy - 5575 =51 (s57F).

Also note that we have no real notion of variable scope in our language. Every variable
is global and changes to it will be visible at every point in time after that change occurred.

8.2 Semantics

We give the semantics of our specification language by defining which program traces
are instances of the described behavior. That is, which traces are accepted by a given
specification.

In Section 2, we gave a data type for representing such traces and also informally intro-
duced a compact notation for traces specialized to reading and writing integer values. A
trace then is a sequence of values v; € Z marked either as input, denoted ?v;, or as output,
denoted !v;. Each trace ends with the element stop. We use 7 to denote the set of all traces
(regardless of a certain program or specification). We mostly denote traces simply as stop-
terminated sequences without any explicit concatenation symbol, but for visual clarity we
sometimes write x - f to describe a trace’s structure, where x is a trace prefix, i.e., a trace
without final stop, and ¢ € Tr.

In order to determine whether a given trace is valid for a given specification, we intro-
duce a function accept such that accept(s, k;)(t, A;) = True exactly if a given trace t € Tr
exhibits behavior specified by s € Spec. Figure 8 gives the definition of this function. Other
than the trace and the specification that the trace is checked against, the function also takes
avariable environment A and a continuation function & as additional inputs (with k; and A;
being the initial continuation and empty variable environment). The continuation k takes
care of managing the current iteration context, as informally described when discussing
how to check an iteration in Section 3.3. It encodes how to proceed if we Exit from the
current context to an outer one or if we just End a round inside the current context and
continue with another round of the iteration. The functions eval and sfore evaluate terms
and store values in the environment, respectively. Their definitions are straightforward and
are therefore omitted here. We write eval(®, A) for evaluating, under A, every term in a
set ©.

At its core, accept traverses a specification from left to right, consuming matching trace
elements and updating variables along the way. If we are left with exactly the empty speci-
fication or if we encounter an exit marker of some iteration, we call the current continuation
k with the appropriate argument to indicate whether we want to continue the iteration pro-
cess or exit from it, and pass the remaining trace and current variable environment along.
Note that this also covers the case where we completely consumed the specification in the
outermost context, i.e., the initial one. If the trace is then also fully consumed already, the
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/ / H — 9 . J
accept([ox " -5, k)1, A) = accept(s', k)(t', store(x, v, A)) ,ift v Y ANveT 8.1)
False , otherwise
accept(s', k)t , store(x,v, A)) ,ift=%-f AveET
accept([>x 15 -5, k)(t, A) = { True ,ift=2vstoprvért (8.2)
False , otherwise
accept(s', k)t , store(x,v, A)) ,ift=2-f AveET
accept([>x 15, -8/, k)(t, A) =  accept([ > x 15, - s, k)(7', A) Jift=% -7 Avért (8.3)
False , otherwise
accept([ (O \{eD)>]-5,k)(t, A) ,ifeec®
V accept(s', k)(t, A)
accept([ @15, k)(t, A) = { accept(s', k)(t', A) ,ife¢d®OAt=lo-1 (8.4)
Ao €eval(®, A)
False , otherwise
t(s1 -5, k), A), if eval(c, A) = True
cept(([c] = 51 A s2) -5, k)(t, A) = | P 8.5
accept(([e] = s1 Asz) -5, b)(E ) accept(sy - 5, k)(t, A) , otherwise ®3)
accept(s~E -5, k)(t, A) = accepi(s, K )1, A) o (8.6)
with ¥ (cont) = accept(s; Ky, %f cont = Ené
accept(s', k) , if cont =Exit
accept(E - s', k)(t, A) = k(Exit)(t, A) (8.7)
accept(0, k)(t, A) = k(End)(t, A) (8.8)
True , if cont = End A t = stop
ki(cont)(t, A)= { False ,if cont =End A t # stop
error ,ifcont=Exit

Fig. 8: Trace acceptance.

acceptance match is successful. The initial continuation 4; is defined such that in the case
of End it performs exactly this check (see Figure 8) and therefore finishes the computation.

Note that specifications that violate one of the first two of the three well-formedness
properties from the previous subsection would lead to errors when evaluating accept.
Namely, this happens if in equations (8.4) or (8.5) we evaluate x¢ before any [>x] or
[>x]7)0 occurred, and if we encounter an E-marker at the top-level.

It might seem strange not to mention the third property, on termination, here, as one
could expect that a non-terminating specification might also cause accept to fail to termi-
nate. But the progress condition o ¢ effects(s) we enforce on iteration bodies makes sure
that even for an infinite iteration process we consume at least one input from the trace we
are matching against during each round of such an iteration (except if the match exits with
a negative result, i.e., False or error). Thereby, in the absence of errors caused by eval,
the accept-function is guaranteed to terminate by reaching the end/exit of the specification
or of the given trace. Note that for just ensuring termination of accept, the progress condi-
tion is even stricter than necessary, as an input or non-optional output action or E in each
iteration round would suffice.

It is important to note that the equations (8.1) to (8.7) are all defined with the asso-
ciativity of sequential composition in mind. We do not have a case for something like
accept((s - s") - 8", k)(t, A) since this can always be rewritten as accepit(s - (s' - s”), k)(t, A).
Moreover, the fact that 0 is the neutral element of sequential composition means that the
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rules can also be applied to specifications like [ >x]° by expanding them to [>x]" - 0.
By the same reasoning, we do not need an explicit rule like accept(0 -5, k)(t, A) =
accept(s', k)(t, A). And crucially, equation (8.8) is only applicable if the specification is
exactly 0. Otherwise this would allow for the initiation of another round of iteration at any
point in the specification, since, for example, s - s can always be rewritten as s - 0 - s'.

Note that for E in equation (8.7) the situation is different than that. Even though the
pattern E - 5" in it might seem strange at first, since one would probably never write a
specification containing “dead code” s’ like this, cases exist where a specification of the
form E - 5’ does arise. Consider, for example, (([c;] = ([c2] = E A s1) A s3) - s3)~E, which
is a perfectly reasonable specification to write. Now in order to leave the loop via that E,
both conditions must evaluate to True, and by equation (8.5) we are now left with matching
against E - s3. So in order to correctly handle such specifications, equation (8.7) needs to
discard everything following an occurrence of E.

See Figure 9 for a detailed step-by-step application of the accept-function on a variation
of the “read a natural number and then as many integers”-specification.

8.2.1 Program correctness

Using the accept-function, we can now formulate a notion of program (trace) correctness.
First, we define the set of all traces that are accepted by specification s as 7Tr* = {t € Tr |
accept(s, k)(t, A;) = True}, where A; is the initial environment containing no values, i.e.,
eval(x,, Ay) evaluates to the empty list for every variable x occurring in s, and &; is the
initial continuation as shown in Figure 8. Next, we derive from this set the set of rele-
vant input sequences inputs(Tr*) with inputs : Tr — [Z] mapping a trace to its sequence of
values marked as inputs. Note that inputs implicitly induces a partition of 7r° into pair-
wise disjoint sets (called “clusters” henceforth) of s-accepted traces with identical input
sequences.

Definition (Program correctness). Treating a program as a (potentially) partial function
prog : [Z] — Tr with inputs o prog C id|z, it is considered to have the behavior given by

specification s if and only if: For every vs € inputs(Tr®), it holds that prog(vs) € Tr*.10

That is, we consider a program correct with regard to a specification s if on every input
sequence that specification defines as relevant, the program does give an execution trace ¢
and it holds that accept(s, k;)(t, A;) = True. Programs that do not read all provided inputs
or do attempt to read more than the given inputs, fall into the partiality case, i.e., their trace
(on a relevant input sequence) becomes undefined and they therefore cannot be correct (see
Footnote 3).

8.3 Generalized traces

The semantics of specifications and the correctness of programs are both defined through
the accept-function. But the actual testing procedure does not use accept directly,

16 Of course, prog(vs) will then fall into the one “cluster” from the partition mentioned above whose elements all
have vs as input sequence.
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Fig. 9: Acceptance example
(Read natural number and then as many integers but stop on reading ().
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since for practical purposes it is much more convenient to compute generalized traces,
as introduced in Section 3.4, from specifications and to have a notion of coverage
relating program traces and generalized traces. To see this, consider the specification
[>x1%[{e,xc) > [ {e, xc} > 1[ {xc} > ] and the matching trace ?1!1 !1 stop. Each time we
encounter [ {€, xc} > ] when matching the trace against the specification, we need to decide
whether to “consume” the next !1 output or to choose to skip it. It turns out that with the
accept-function we cannot simply match the trace against the specification in a single left
to right traversal. No matter whether we prioritize evaluating the left or the right side of
the disjunction in the first case of equation (8.4), i.e., choosing x¢ or &, we always have to
backtrack at the end and change one of our choices. For longer traces and more compli-
cated specifications, it becomes ever more likely that this backtracking causes a runtime
blowup of the matching procedure.

We can avoid this problem by not matching program traces against specifications
directly. Instead, we match traces against other traces that we derive from the specifi-
cation. Such a derived generalized trace represents exactly one “cluster” from the partition
that inputs induces on Tr°.

Analogously to how we allowed different potential output values in a single output
action in the specification language, we now allow different values in each output step of
a (generalized) trace. Moreover, and unlike for specifications, we fuse sequences of adja-
cent output steps into a single output step, then containing (possibly various) sequences of
values.

Before we look at how to compute generalized traces from specifications, we will first
define what generalized traces are exactly and how they relate to ordinary traces.

The set of all generalized traces (regardless of a certain program or specification), 7rg,
is defined by the following rules:

veZ teTre veZ teTrg OCZ* O\{e}£¥

-teTlrg 10 -teTrg
OCZ* O\{e}#0
stop € Trg 10 stop € Trg

Instead of a single value o as in an ordinary trace, an output step in a generalized trace
consists of a set of sequences of values. The sequences encode the fusing of consecutive
output steps and the sets encode non-determinism, i.e., the output of one of the sequences
from the given set. These sets are not allowed to be empty or singleton sets containing
only ¢. Similar to the discussion on [ {} > ] and [ {¢} = ], the form !{} is not realizable by any
program in a meaningful way and !{e} is always skipped. Additionally, the two separate
rules for !0 ensure that generalized traces do not have consecutive output actions. This
corresponds to always fusing as many output steps as possible.

It is quite straightforward to check whether an ordinary program trace is covered by a
generalized trace. For example, for [ > x %[ {,xc} > ][ {e, xc} > [ {xc} > ] the generalized
trace for input 1 is 71 {1, 1.1, 1.1.1} stop. We write x.y to distinguish words over Z from
decimal representations of integer numbers. Comparing this generalized trace to a pro-
gram’s trace ?1!1!1 stop, we can determine that the latter is covered by the former and
is therefore a valid program run for the underlying specification. But, unlike previously,
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we now do not need to speculate how to relate the two outputs !1 with the expected outputs.
We can simply gather up all consecutive outputs of the program and then check whether
this output sequence is an element of the set of expected output sequences.

To simplify the formal definition of this process, we first normalize ordinary traces by
way of the function [-]: 7r — Tr that embeds 77 into 7rg, the image being exactly the
subset of 77 with only singleton sets, of non-empty words, in output steps:

rﬂ = |—t—|E |—‘0 . t/—|w = |—t/—| w.o
v 77, = ICRIAP ,ifw=e Tstop., = stop ,ifw=¢e
' " w) 2v [, otherwise " |wistop , otherwise

This normalization is exactly the fusion of consecutive definite outputs into a single output
containing a sequence of values, e.g., [?1 1 !l stop] =71 !{1.1} stop.
Now we can define the covering relation < C [7r] x Trg as follows:

Hh<b weO t <t e€e0 1<

N-H <M b HYw}-t1 <10 -1, Hh=<!0-t stop < stop

A normalized ordinary trace is covered by a generalized trace if the input sequences of
both traces match exactly and it holds that whenever the generalized trace has an output
step between two input actions, the normalized ordinary trace has a corresponding output
step with one of the value sequences “required” by the generalized trace’s set of value
sequences at that point; if there is no corresponding output step in the ordinary trace, the
trace can only be covered if the generalized trace’s output options include €. Note that, due
to the typing of the relation, neither the trace on the left nor that on the right of any occur-
rence of < can contain directly consecutive output steps. Having no consecutive outputs
in the right argument means that in the third rule we do not need to check that #; does not
begin with an output. When checking ¢, < #, in this context, #, either starts with an input
or is sfop. So the check on the shape of ¢, is performed implicitly in the next step.

8.3.1 Computing generalized traces

Equipped with the definition of generalized traces, we now need a way to actually compute
them for a given specification. The basic idea of generalized traces was to find, for a fixed
input sequence, a representation of all program runs that match the behavior of the given
specification. In order to get a single non-generalized trace that fulfills a specification, we
can leverage the definition of accept to search for an accepted trace with a specific input
sequence. Basically, we want to solve for ¢ in the equation accept(s, k;)(t, A;) = True. We
can do this by evaluating accept with ¢ unfixed — up to inputs(t) = vs — and on demand
extending the trace with the appropriate steps such that we never fall into a False-case.
That is, we take the next unused value from the desired input sequence at every input
action and choose one of the possible outputs of each output action. Figure 10 exemplifies
this for a certain specification and singleton input sequence. This process results in a par-
ticular non-generalized trace (normalized or not) that matches the specification, provided

https://doi.org/10.1017/50956796825100075 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796825100075

Testing 1/0 behavior 43

Lets=[>x]15[{xc,2 *xc} > 1[ {1, e} > ] and fix inputs(t) = [v1].

Assuming vy ¢ t: accept(s, kr)(t, Aj) = True <= t= v stop = [1]

Assuming v| € T:
accept(s, kr)(t, Ay) = True
> =" -1 Aaccept([ {xc,2 xxc) > 1[ {1, e} > 1, k))(E, store(x, vi, Ap)) = True
> t="1!o1-1" Aoy e{v, 2% v} Aaccept([{1,e} ], kp)(t", store(x, vy, A1) = True
then alternatively, making output choices:
— t=y'o1-" Aoy =v| Aaccept([ {1} 1, kp)(t”, store(x, vi, Ap)) = True
<= t="1!o1 oy stop Aoy =v] Aop =1 <= [f] =7v; Yv.1} stop
or:
= t="1'o1 - Aoy =v| Aaccept(0, ki) (!, store(x, v1, A1) = True
<= t="v1 loy stop A o] =v; < [f] = v v} stop
or:
= t="1lo; - " Aoy =2xv| Aaccept([ {1} 1, k)", store(x, vy, Ap)) = True
< t="1lo1loastop Ao1=2%xv1 Aoy =1 << [f] =71 {2 *xv1).1} stop
or:
= t=1lo1 - Aoy =2 % vy Aaccept(0, k)t store(x, v, Ap)) = True
<= t="v1 oy stop Aoy =2xv] < [t] =201 {2 % vy} stop

Fig. 10: Solving accept for ¢ with desired input sequence.

the desired input sequence is an element of the set of relevant input sequences for the
given specification. If we want to get a generalized trace instead, all we need to do is to
not choose a single output per output action but rather extend the trace with all possible
outputs each time.

In Figure 11, the definition of this execution function is given. The most notable concep-
tual deviation from the accept-function, apart from turning an acceptor into an evaluator,
is equation (11.4). It avoids the case distinction from the corresponding part in Figure 8
since we consider all possible output values of an output action and combine consecutive
output values into single words. For notational simplicity, we assume that eval(e, A) =¢.
Figure 12 shows the evaluation of gfrace in correspondence to the solving of “accept =
True” in Figure 10. Note how all output alternatives are now explored in one go.

Similarly to accept, the function gtrace(s, k7 )(-, A;) can produce an error if we try to
evaluate an x¢ “too early” or encounter a top-level E. But compared to accept, the gtrace-
function has a lot more cases where instead of a result, i.e., a generalized trace, it will
return an error. For example, this happens when we encounter an input action after we
ran out of input values or when an input value is not part of the required value set for the
input mode that assumes only valid inputs. Additionally, and equally as important, gtrace
also results in an error if there are still input values left after the end of the specification is
reached. In fact, gtrace returns an error in those places in its definition where accept would
return error or False. The only exception to this is accept’s case for checking outputs,
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- ¢ 4 A if us=v:vs’
gtrace([>x " -, k)(vs, A) = v - gtrace(s’, k)(vs’, store(x, v, A)) ,if vs .v v AvET (11.1)
error , otherwise
v - gtrace(s’, k)(vs', store(x, v, A)) ,ifvs=v:vs Aver
trace([ > x .S, Vs, = v sto, ,MUus=|V|AVET .
girace([>x T -, b)(vs, A) = 1 2w stop ifus=[lAvgr  (112)
error , otherwise
v - gtrace(s’, k)(vs', store(x, v, A)) ,ifvs=v:vs Aver
gtrace([>x 15, - s, k)(vs, A) = 2v - gtrace([>x1f, - s, k)(vs', A) ,ifvs=v:vs Avgr (11.3)
error , otherwise
gtrace([ ©>]- 5", k)(vs, A) = eval(®, A) © gtrace(s', k)(vs, A) (11.4)
0.0/ / a ift=10 -¢
) {0.0|0€0,0 €0}t ,ift 0 ?
10-t , otherwise
gtrace(sy - s, k)(vs, A) , if eval(c, A) = True
1 Asy)-s' k)(vs, A) = . 11.5
girace(([c] = s1 £52) -5’ b)(vs, ) {gtrace(sz -s',k)(vs, A) , otherwise ( )
gtrace(s”E - s/, k)(vs, A) = gtrace(s, k' )(vs, A) o (11.6)
with K (cont) = gtrace(s; Ky, %f cont = Enc.i
gtrace(s', k) , if cont = Exit
gtrace(E - 5, k)(vs, A) = k(Exit)(vs, A) (11.7)
gtrace(0, k)(vs, A) = k(End)(vs, A) (11.8)
sto, ,if cont =End A vs =
kIT(cont)(vs, A)= P . L]
error , otherwise

Fig. 11: Specification execution (differences to Figure 8§ are in gray).

Assuming vy ¢ T:  gtrace([>x 15[ {xc, 2 #xc} = ][ {1, e} ], kIT)([vl], Ay) = ?v) stop

Assuming v; € T: gtmce([|>x]fT[{xC,Z*xc}>][{1,5}>],kf)([v1],A[)
= vy - gtrace([ {xc,2 xxc}>1[ {1, e} 1], kIT)([ ], store(x, v1, Ar))
= v - ({v1,2 % v1) © grrace([ {1, e} & 1, kP )([ 1, store(x, v1, Ap)))
=1 - ({v, 2% v} O ({1, e} © gtrace(0, kIT)([ ], store(x, v1, Ar))))
=1 ({v1, 2% v} © ({1, €} © st0p))
=1 - (v, 2xv1} © Y1, ¢} stop)
= 7v; Hv1.1,v1, (2% vy).1,2 % v } stop

Fig. 12: Evaluating gtrace for the example from Figure 10.

equation (8.4). There, the False-case is now dropped instead as gtrace computes the correct
outputs itself and so nothing can go wrong at that point. The replacing of accept’s other
False-cases by error is by design, as we intend gtrace to only ever be called on value
sequences that are known to originate from accepted traces, i.e., on sequences from the set
of valid input sequences for the given specification.
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paths([>x]1" 5", k)(A) = —(v € t)—paths(s', k)(storesyp (x, v, A)) *)  (13.1)
paths([>x 1% 5/, k)(A) = _[(v € t)—paths(s', k)(storesyp (x, v, A)) ) (132)
(véT)—T
o (v € T)—paths(s’, k)(storesyp(x, v, A))
h -5, k) (A)= 13.3
paths([>x1¢, -5/ K)(A) {(v ¢ 1y—paths(Tox T -5, XA ® (133
paths([O>1-5, k)(A) = paths(s', K)(A) (13.4)

, (evalgyp(c, A)) paths(sy - ', k)(A)
th Asy)-s, k) (A) =
paths(([c] = s1 A s3) - 5", k)(A) —[(—-evalSYM(c, ) paths(sy - BYA)

paths(sHF‘ -5', k)(A) = paths(s, K )(A) { (13.6)

(13.5)

with ¥ (cont) paths(s, k') , if cont = End
cont) = , )
f cont = Exi
paths(E - ', K)(A) = k(Exit)(A) paths(s k)., if cont =Exit ;)
paths(0, k)(A) = k(End)(A) (13.8)
__,ifcont=End
k}D(cont)(A)z { T, ifcon n

error , if cont =Exit

(*) with fresh variable v

Fig. 13: Specification paths (differences to Figure § are in gray).

Due to similar reasoning as for accept, the gtrace-function will terminate even if the
(well-formed) specification contains an infinite iteration. However, in contrast to accept,
we now really need exactly the progress condition on iterations in order to guaran-
tee termination of gfrace. This results from the fact that gfrace cannot guarantee that
its specification- or its input-sequence-argument will permanently decrease in size on
consuming an output action (inside an iteration).

8.4 Specification paths

The last concept we introduce formally are the specification paths we discussed in
Section 5.1. Specification paths are sequences of symbolic constraints on input values.
Constraints either describe to what set a certain input value needs to belong or to what
set it must not, or they describe whether a specific branching condition should evaluate to
True or to False at a specific point in time. Constraints of single input values are denoted
as (v e 1) or (v ¢ ), for some symbolic variable v. Conditions are denoted as (c) or (—c)
with ¢ being the result of symbolically evaluating a term from 7. Each specification path
ends with T indicating termination of the underlying behavior.

Once again, we modify the accept-function, this time to generate the tree containing all
specification paths for the argument specification (see Figure 13). For gtrace we essentially
dropped the outputs from accept’s trace argument and turned its False-cases into errors
(except for the case where accept checks the trace’s outputs). Now to generate the path
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gtrace([>x 15[ {xc, 2% xc} o [ {1, e} & 1, &D)([v1s - - -, va], Ap)
v v Lv, 2%xv)).1,2%v}stop  ,ifn=1Av €T

= 1 v stop ,ifn=1Av ¢t
error ,ifn#1

paths([>x 15[ {xc, 2 xxch e [ {1, 6} = 1,k )(A))

(vi ¢t

[
_[ (vi € T)—paths([ {xc, 2 % xc} > [ {1, e} > 1, kT )(storesyn (x, v, A)))
—T
_[<v1 eT)—T

(v ¢)—T

Fig. 14: Comparing gtrace, as per Figure 12, and paths.

tree, we drop the trace argument completely and instead introduce fresh symbolic variables
when we need to access input values, and gather up constraints on these variables. We
replace the functions store and eval by symbolic versions, and A now holds lists of sym-
bolic variables instead of concrete values as before. For example, the term sum(x,4) > 0 is
evaluated symbolically to v; + v, 4+ v3 > 0 under the environment [x — [v1, vy, v3]]. Here
v1, vy and v; are pairwise distinct elements from a set of symbolic variables. Moreover,
we turn accept’s case distinctions over input values and branching conditions into forks in
the tree with one branch for every case in accept that does not immediately return False.
So while in gtrace we turned False-cases into errors, for paths we now simply elide them
completely. In fact, a direct comparison between gtrace and paths is also illustrative, both
on the level of definitions (Figure 11 vs. Figure 13) and based on an example. Regarding
the latter, consider again the specification used in Figures 10 and 12. We only looked at it
for vs = [v;] so far, but from the definition of gtrace it is not difficult to see that exactly
all input sequences of other lengths would be rejected as erroneous.!” As it happens, the
paths-function implicitly reveals that information as well, see Figure 14.

The above modifications turn accept, an inductively defined consumer of con-
crete traces, into a co-inductively defined producer of symbolic constraints. Note that
paths(s, k¥ )(Ar) can result in a tree with infinite paths. From equation (13.3), it is clear
that this happens if s has an input action with the O-mode. But it can also happen when s
contains an iteration that can repeat its body, i.e., there is at least one path with no occur-
rence of E in the iteration body. For the O-mode, the infinite paths will have infinitely
many different input constraints of the form (v; ¢ ). Infinite paths arising from iterations
also have infinitely many different input constraints, possibly interspersed with branching
constraints, because the progress condition in the (Till-E) rule from Figure 6 ensures that
we never repeat the iteration body before producing at least one new input constraint.

We can now define the set of specification paths P*° for some specification s to be all
finite paths from the root to a T-labeled leaf that are contained in paths(s, k7)(Ar). That

17 More explicit and general calculations for the same example in Section 8.5.2, concerning both gtrace and
accept, confirm this aspect.
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is, P°={Rc;...c, T €paths(s, kf )(Ap)}, with R denoting the root of the tree of specifi-
cation paths. We can also, for every / € N, compute the finite subset P/ = {p € P* | |p| </}
where |p| denotes the length of path p defined as the number of input constraints in p. The
presence of infinite paths does not interfere with the ability to compute this set. By the
arguments above, every infinite path has infinitely many input constraints and checking
whether |p| > [ is decidable in finite time even if p is an infinite path.

For some path p € P* and input sequence vs € [Z], we write vs =p if vs = [vy, ..., V)]
and all constraints on p are fulfilled by the values of vs. Note that the input sequence must
have exactly as many elements as the number of input values introduced by the path in
order for vs = p to hold.

8.5 Correctness of testing

Our testing procedure, as introduced in Section 6, uses paths and evaluation to generalized
traces (gtrace), but the semantics of our specification language and the notion of program
correctness are given by the definition of accept. We therefore relate the testing procedure
to the definition of program correctness to show that we actually test in accordance with
the defined semantics.

Recall from Section 8.2.1 that we have the following definition for when a program prog
is correct, given well-formed specification s:

For every vs € inputs(Tr*), it holds that prog(vs) € Tr*.

By contrast, our testing procedure searches for a counterexample to the following
statement:

Forevery p=Rci ...c, T €paths(s, k¥ )(A;) and vs € [Z] with vs = p, it holds that
[prog(vs)] < gtrace(s, k] )(vs, Ar).

In order for the testing procedure to be in line with the accept-based notion of program
correctness, we need these two statements to be equivalent. In particular, we aim for two
facts:

1. The input generation using paths and constraint solving produces exactly the set of
relevant input sequences, i.e., inputs(Tr*).

2. The combination of gtrace, [-], and < can be used to decide 7 €’ Tr* for each trace
t € Tr with inputs(t) € inputs(Tr*).

We will make the connections precise by introducing a lemma and a conjecture, each of
which a strengthening of the corresponding desired fact above.

8.5.1 Input generation

We need to show that from using paths and constraint solving we get exactly the set of
relevant input sequences for the given specification. So every relevant input sequence must
satisfy some path and no input sequence that satisfies a path shall be irrelevant.
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Lemma 1. Let s € Spec be well-formed. It holds inputs(Tr*) = |+ {vs € [Z] | vs Ep}.
pEPS

Proof Recall that PS ={Rc; ...c,T € paths(s, kI )(A;)}. Instead of just stating that with
paths we get exactly the set of relevant input sequences, the lemma additionally states that
input sequences found by different paths must be different too. The latter follows directly
from the definition of paths. If a path is split in equations (13.2), (13.3) or (13.5), the
next constraints in the resulting two paths are each others’ negations. So no two paths
P, q € P* with p # g exist that have a common satisfying sequence (with the exact required
length), i.e., a sequence vs € [Z] such that vs = p and vs |= ¢g. This means that all subsets
{vs € [Z] | vs = p} in the right-hand side’s union are disjoint.
Now we establish both directions of the equality:

o inputs(Tr*) C |# {vs € [Z] | vs =p}
pePs
Forany t € Tr* we know that accept(s, k1)(t, A;) = True and thus can obtain satisfied

constraints on the input sequence of ¢ from the side conditions in equations (8.1),
(8.2), (8.3), and (8.5). The condition for True in k; then corresponds to the end of the
path. The other side conditions in Figure 8, namely in equation (8.4) for handling
an output action, do not constrain the input sequence and are therefore unimportant
here.

From the gathered conditions and the corresponding cases in Figure 13, we
deduce that there exists a corresponding (unique) path pe P°={Rc;...c, T €
paths(s, kI )(A7)} whose symbolic constraints are made true when concrete values
are taken from the sequence inputs(t), i.e., inputs(t) = p.

Therefore, inputs(t) € |+ {vs € [Z] | vs =p}.
pePs

o inputs(Tr*) 2 |4 {vs € [Z] | vs = p}
pePs
Given p e P® and vs € [Z] with vs |=p, we can construct a trace ¢ 7r with

inputs(t) = vs and with outputs such that accept(s, k;)(t, A;) = True, i.e., even
te Tr’. We do this, likewise to Figure 10, by going through the specification as
if we were to evaluate accept, building up the trace along the way, starting from an
empty trace prefix. When we encounter an input action in the specification, we take
the next unused input v from vs, extending the trace prefix with ?v. We know from
the definition of paths that the constraints satisfied on vs/v guarantee we do not fall
into any False-cases in the definition of accept. For branching, we can simply use
all the values read in until that point to determine which branch to pick. This choice
necessarily agrees with the choice made at the corresponding position in p. On out-
put actions in the specification, we simply choose any o € eval(®, A) and extend the
trace prefix with lo if 0 # ¢ or leave it as is otherwise. Upon reaching the end of the
evaluation, i.e., when reaching &;(End), we complete the trace prefix to a full trace
by adding the stop. The constraints in path p guarantee that we have exactly enough
input values in the input sequence to actually reach the end.'®

18 Of course, all this is essentially the same as what gtrace does, but here we end up with an ordinary trace instead
of a generalized trace that encodes all possible outputs in a normalized form.
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Therefore, for every sequence in |+ {vs € [Z] | vs =p} there exists a trace in Tr*
pePs
with that sequence as input sequence.

8.5.2 Deciding t €’ Tr*

Our testing procedure uses the result of evaluating gfrace on a relevant input sequence in
combination with < and [-] to judge concrete traces for correctness/acceptance. To better
see the connections between gtrace and accept, we first look at the evaluations of both
functions on a small but representative (except for the aspect of iterations, which we will
look at later) example specification, and an arbitrary ¢ € Tr (not necessarily known to also
be € Tr'):

Let s=[px]5[{xc,2*%xc}>][{1,e}>], the specification we already used in
Figures 10, 12 and 14. We require 7 to be a non-trivial set of allowed values
here, i.e., we want neither t =@ nor t =7Z. The reason for this is simply that we
want conditions like vet and vé¢t to both be satisfiable. Additionally, let =
010" ..., 0" stop € Trand vs = inputs(t) = [v1, . .., v,] € [Z] with o' =10 ... 10},
being potentially empty sequences of output actions. Crucially, unlike in the earlier con-
siderations of accept- and gtrace-evaluations for this example specification, we now do not
start with fixing n = 1, instead staying more general. We can already describe the shape
of ¢ after normalization: [£] = !{wy} 7v; {w1}. .. ?v, {w,} stop, with w; = o’i .. -Oiz,» For
notational simplicity, we treat !{w;} as ¢ in case of w; =¢. This happens if n; =0, i.e.,
o =e.

We now look at the possible values of t, = gtrace(s, kI )(vs, A7) and compare them with
the evaluation of accept(s, kr)(t, Aj), i.e., with checking which traces are in 77°. For gtrace,
we will ultimately get the result already displayed earlier in Figure 14, but now we more
carefully explore the genesis of the error-cases. Apart from this aspect, the calculation is
largely a repeat from Figure 12, though this time around we do not start with vs = [v;] out-
right but instead let # be arbitrary initially. For cases n > 1 we abbreviate store(x, vy, Aj)
to A/

ty =gtrace([>x 15[ {xc, 2 xxc} e 1[{1, &} > 1, & Nvs, Ap)

@ 1 - gtrace([ {xc, 2% xc} e [ {1, e} 1,k )([v2, - .., val, A)
,ifn>1Avier

@ My stop  Lifn=1Av  ér

G error ,ifn=0v(n>1Av]¢1)

® 1 - ({1, 2% vy} @({1,6}@gtrace(O,kIT)([vz,...,vn],A/))) ,ifn>1Avier
=10
®
@ 21 - ({v1,2 xv1} © ({1, &} O stop))
,ifn=1Avi €T
=@ error ,ifn>1AvieT
@
®
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@ ?v1 fv1.1,v1, (2% v1).1,2 % vy} stop
Jifn=1Avi et

®

® error ,ifn=0vn>1

Only the lines with the markers ® and ® introduce new error-cases, in the steps at which
they first appear, whereas the line with the marker ® is simply the merger of the two.
Analogous marking is also used in the following accept-evaluation. The calculation is
again similar to the derivation of fulfilling conditions shown in Figure 10, but now we
evaluate accept with a completely unfixed trace, not even assuming inputs(f) = [v;], and
thus discovering all relevant conditions on the trace structure as well as exploring the
False-cases explicitly. This time, we see that only the lines with the markers ®, ® and @
introduce new False-cases, whereas the line with the marker © at the end simply merges all
three (while ® merges ® and ©). The markers appearing in both calculations (i.e., above
and also below) are used for lines related to each other, while ® in the first calculation
would be related to the merger of ® and @ in the second calculation.

accept([>x 17 [ {xc, 2 x x> 1L {1, e} > 1, k)(t, Ap)

@ accept([ {xc, 2 % xcy e 1[{1, e} o 1, ki), A'), where ¢ =o' v 0% . .. T, 0" stop
Jifod=eAn>1Avier

® True ,ifo®=eAnn=1Avi¢TA0 =¢

® False ,ifo®#£evn=0vn>1Avi¢r)vV(n=1Av¢T A0 £¢)

@ accept([ {1,&}> 1, kp)(”, A), where ¢/ = !o% ... !0'111 7 0% ... T, 0" stop
,ifoozeAn>l/\v1er/\n1>le{e{v1,2*v1}
=1 ® False ,if00=8/\n>1/\v1er/\(n1=0V0%¢{v1,2>kv1})
@
®
@ accept([ {1} > 1, kp)(#”7, A’ V accept(0, kp)(¢”', A')
Jfo’=eAn>1AvierAn =110} €{v, 2501}
=
©)
®
® True ,ifoO:e/\v1er/\o%e{v1,2>kv1}/\(t”:!lstop,i.e.,n:1/\n1:2/\05:1)
® True ,ifoozsAvleer%e{v1,2>kvl}/\(t”:stop,i.e.,n:1/\n1:1)
@ False ,ifo®=eAvietnol e{v,2xv}A(m>1Vn >2V(n =2A0#1))
®
@
®
@ True ,if [t] =2 Ywi}stop Avy €T Awy €{vr.1,v1, (2% v1).1,2 % vy}
@ True ,if[t]=v1stopAv) ¢t
® False ,ifo®#£evn#1 \/(v1er/\ol§é{!v1!1,!v1,!(2*1}1)!1,!(2*1)1)})
\/(v1¢t/\017&8)
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We now investigate the connections between accept’s results and the generalized traces
produced by gtrace, by case analysis on the just calculated results of gtrace:

Case @n =1Aviet: We have #, = v {vi.1, v, (2% v1).1,2 % v} stop, also
t=0° v o'stop and [1] = {wy} 2v; !{w1} stop. So the testing procedure checks this:

Ywo} 201 w1} stop ; 201 Hv1.1, v, (2% vy).1,2 % v} stop

If wo # ¢, then we have [f] £ t;. If wo=¢ but w; ¢ {v;.1, v, (2 *v1).1,2 x v}, then we
also have [f] 4 1t,. Only when wo=¢ and w; € {v;.1,v1,(2 % v1).1,2 * v}, does [f] <1,
hold. These — respectively o®=¢gando! €{lv;!1, vy, (2% v1)!1, (2% v;)} —are precisely
the remaining side conditions for which accept(s, k;)(¢, A;) = True whenn =1 and v; € 7.
Soifn=1Av; et,thente Tr’iff [f] <t,.

Case @ n=1Av; ¢ t and thus t, = ?v; stop: Analogously to above, we again need
wo = 0% = ¢ and this time also w; = 0! = ¢ in order to fulfill [7] < t,. And those are again
precisely the remaining side conditions for which accept(s, k;)(t, A;) = True when n =1
andv; ¢ 7. Soifn=1Av; ¢ 7, thente Tr*iff [1] <1,.

Case © gtrace(s, k] )(vs, A;) = error: This happens exactly when n # 1. But from the
accept-evaluation above we also know that then accept(s, k;)(t, A;) = False, i.e., t ¢ Tr".
Put differently, no trace with zero or more than one inputs can be in 77°, and hence neither
vs =[] nor any vs =[vy, vs,...] in inputs(Tr°). So we would not even consider such
input sequences as relevant to begin with in the context of testing for program correctness.

Note that computing accept introduces False-cases (or rather conditions for them) in
greater volume than gtrace does with error, but only as regards outputs. This is because
the False-cases in accept stem from both ill-formed inputs and ill-formed outputs, whereas
for gtrace the error-cases only come from ill-formed inputs, as gtrace computes the
output sets itself. The additional False-cases are therefore exactly those introduced by
equation (8.4), the case that we did not turn into an error in gfrace. In the end this is not
surprising, since gtrace’s role is to compute and not to check outputs.

In a nutshell: The conditions of accept on inputs are obviously all contained in check-
ing [f] <t, (the inputs are unaffected by trace normalization, are directly reproduced
by gtrace in non-error-cases, and are checked for exact agreement in the coverage
relation), and the “missing” checks on outputs are also reintroduced when we check
[£] <t,. Essentially, if the conditions for gtrace(s, k! )(vs, A;) # error are fulfilled,
then the (remaining) conditions for accept(s, k;)(¢t, A;) = True are identical to those for
[] < tg.

We generalize the observations from the given example into the following conjecture.
The important bit about the above calculations actually is that not only do the results
“agree”, but also the calculations themselves are in suitable correspondence. The way in
which steps in one are related to steps in the other is essentially what would drive a proof of
the conjecture by cases and induction. In fact, the example specification used was chosen
precisely to cover representative structural cases, minus any iteration for simplicity.

Conjecture 2. Let s € Spec be well-formed. It holds for every vs € [Z],
a. gtrace(s, k] )(vs, A;) = error iff vs ¢ inputs(Tr*), and
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b. for every t € Tr with inputs(t) = vs,
if gtrace(s, kI )(vs, Ar) = te € Trg, then t € Tr? iff [f] < t,.

Note that the conjecture would allow us to decide ¢€’ 7r® for arbitrary t € Tr. By
choosing vs = inputs(f), we either get gtrace(s, k] )(inputs(t), A;) = error, in which
case inputs(t) ¢ inputs(Tr*) and thus 7 ¢ Tr*, or, if gtrace(s, ki )(inputs(t), Aj) = tg, we
can check [f] <t,. Note also that for our program correctness testing procedure,
[prog(vs)] < gtrace(s, k] )(vs, Ar), we only ever use input sequences from inputs(Tr*), so
by Conjecture 2a. we have that gtrace will never throw an error during testing.'”

Instead of a complete proof of the statement of the conjecture, we will use the example
considered at length above and an additional one given below as a sketch. We believe these
two examples to be representative of the cases that would constitute the essential steps in
a full induction proof. So we perform(ed) the analysis of these examples in the hope that
this sufficiently illustrates how one can go about actually proving the statement of the
conjecture. We are convinced a rigorous formal proof is possible, but extremely tedious
and boring.

For the second example, we use a specification with an iteration and branching other
than via input mode: s = ([>x]%[xc =0] = E A 0)~F. Again, we compute accept and
gtrace for the general trace form ¢ =0° 2v; o' ... ?v, 0" stop € Tr and its corresponding
input sequence vs = inputs(t) = [vy, . . ., V,] € [Z], and use markers to indicate lines related
to each other.

ty = gtrace([ > x 1“[xc = 0] = E A 0) &, k] )(vs, Ay) = gtrace([ > x 1*[xc = 0] = E A 0, K} )(vs, Aj)
@ vy - gtrace([xc =0]=E A 0, kp)([v2, ..., va], A') ,ifn>1

Q@ error ,ifn=0
® ?v1 - gtrace(E, kp)([v2, ..., v], A) L ifn>1Av1=0
=1® v - gtrace(0, k) ([v2, . .., va), A') L, ifn>=1Av #0
©)
® v - gtrace(0, kIT)([vz, vl A) ,ifn>=1Av=0
=1® 1 - gtrace([>x2[xc =0]=E A0, Kp)([v2, ... va], A ifn>1Av#0
©)
® My stop  Lifn=1Av =0
_ ]| ® error ,ifn>1Av;=0
e
©)

19 Incidentally, we also institute a corresponding guarantee about running the program itself on the input
sequence. Our setup in Section 8.2.1 uses partiality in that it considers prog(vs) to be undefined when prog
tries to consume too few or too many inputs, but in practice we actually still use the above check even then:
We compute prog(vs) using a less strict version of run,,, possibly producing a special “read beyond provided
inputs” action, and then check [prog(vs)] < gtrace(s, k,T )(vs, Ay) as usual. The generalized trace computed by
gtrace here will definitely have exactly vs as its sub-sequence of input actions, resulting in a mismatch with
[prog(vs)], and a somewhat informative one at that. In fact, we have already seen this at work in the testing
and error reporting for wrongl in Section 7.1.
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®

@ My My stop  ,ifn=2Avi #0Avy=0

® 1 ;2 - gtrace([>x 12[xc = 0] = E A 0, k) ([vs, . . . , va], store(x, vz, A))
= ,ifn22Av #0Avy #0

(& error ,ifn=1Av#0

@ error ,ifn>2Av1 #0Avy=0

@,®
) tustop L ifRZ T A VI FOAV, =0
" |error , otherwise

accept(([>x1%[xc =01 = E A 0) "%, ky)(t, Ar) = accept([ > x X [xc = 0] = E A 0,K)(t, Af)
@ accept(xc =0]=E A0, k)¢, A), where ¥ =o' 203 0% ... 2, 0" stop

= ,ifod=eAn>1

® False ,ifo®#£evn=0

@ acceptEB, k), A ,ifo®=eAn>=1Av =0

= 1@ accept(0, k)¢, A') ,ifo"=eAn>1Av #£0

®

@ accept(0, k)¢, A') Jifod=eAn>=1Av=0
=1@ accept([>x2[xc =01=EA0,K),A) ,ifo"=eArn>1Av1#£0

©)

® True Jifol=eAn=1Av,=0r0=¢
@ False ,ifo®=eAn=1Av=0A0 #£¢
=1@ False ,ifo®=eArn>1Av,=0

®

@

®

@ True ,ifooze/\n=2/\v1750Aol=s/\v2=0/\02=8

® accept([>x12[xc =0]=E A 0, K)(0% 23 0° ... 2, 0" stop, store(x, v, A))
Lifol=eAn>2Av £A0A0 = A1y £0

=1@ False ,ifo®=eArn=1Av]#£0

® False ,ifo®=eAn>2Av1£0A0 =eAv;=0

@ False ,ifo®=eAn>1Avi#0A0" #¢

@ False ,ifo®=eAn=2Av£0A0'=cAv=0A0%#¢

@,0,0

True ,ifnZlAvlgkn#O/\vn:O/\OO@S":g

False , otherwise

Comparing [7] = {wo} 2v1 w1} . .. 2v, {w,} stop, with w; =0 .. .p;[, to 7., analogously
to the previous example, we now find that [] < 7, exactly when o' =¢ for all 0 <i <,
which again is precisely the remaining part of the side condition for the ultimate 7True-case
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of accept. This should not be too surprising here either, as the only cases that have an
impact on this correspondence are the ones regarding input actions and output actions in
the specification, as well as the conditions for error-free termination in the initial contin-
uations k; and k7. All of these conditions were already present in the previous example.
Neither branching nor iterations add any new side conditions to the evaluation.

The novel part, highlighted by this example, is the fact that the same argument we used
for the first example also works in the presence of loops (and branching). The ellipsis in
both derivations abstracts two things that make this work. First, the possibility that # can
have an arbitrary finite length and still get accepted. And second, the fact that eventually the
computation will terminate due to the progress requirement on loop bodies in well-formed
specifications.

8.5.3 Wrap-Up

Combining the lemma and the conjecture above gives us the desired statement on the
correctness of our testing procedure. Even though we did not fully prove the conjecture, we
hope the justifications to be enough to convince the reader it actually holds, and therefore,
by extension, that our testing procedure actually tests program correctness as defined in
terms of accept.

9 Retrospective comments

We have used different versions of the presented framework in our course over the last
years, with a disruption of Autotool usage in one academic year when our university was
suffering and then recovering from a hacking incident that had brought the whole digital
infrastructure to a halt and then much of it kept offline for several months. For our stu-
dents, the instant online feedback seems to be a key motivating factor for working on the
exercise tasks (which are neither mandatory in the course nor part of the final grade in any
way). Both in the course period when we could not use Autotool and instead improvised
a workflow where students would get the same automated feedback on their submissions,
but only once the exercise week was completed and thus only on one solution attempt,
as well as when we have posed tasks that came without instant feedback for other rea-
sons, student participation went down. We interpret this as there being distinctive value
in a setup where students can in principle work in a test-driven-development style, getting
feedback at each step in the process. That does not mean we do not also inspect submitted
programs individually to provide feedback on programming style and other aspects that
black-box testing cannot cover. But such manual inspection happens only once per week
and only on the last submission per student.

We can also report anecdotally on the value of using property-based testing in particular.
With unit tests, as we sometimes have for simple tasks or when the overall test-suite is
partitioned into a student visible and a hidden one, at least some in our audience have a
tendency to try to circumvent the overall task intent and instead address just the special
cases contained in the unit tests. Even though there is no harm arising from such behavior
in our non-graded exercise setting, we still find it educationally beneficial to make it so
that students cannot game the system in that way. This applies already to the exercise tasks
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on pure functional programs (transforming data structures etc.), and since students thus
become used to getting a fresh counterexample whenever they make progress on the task
solution by covering more of its semantics correctly but not yet all of it, it only makes
sense to us to realize the same experience in the I/O setting.

In that context, the quality of the counterexamples produced is highly important, of
course. Comparing the counterexamples displayed in Section 7.1.1, produced with the old
input generation method, to the ones displayed in the subsection before that, shows the
improvements exemplarily. We have first used the new input generation method in the
Summer 2024 edition of the course and observed the impact. Most of the time students
are given exactly the smallest input sequence for which their program does not conform to
the required behavior. Even so, the trace output can become overwhelming due to the all-
possibilities-in-one aspect of generalized traces but also due to the pattern output we use
for display in the case of string values instead of the simplified integer-only values handled
in the examples in this article. We have started to experiment with heuristics for turning
generalized traces into single ordinary traces for display, as well as even more mundane
variations such as laying out long traces horizontally (as in all the examples printed in this
article) vs. laying them out vertically with additional alignment.

One instance where in the past we have posed 1/O programming tasks without auto-
mated feedback, as alluded to above, was the interactive part of Tic-tac-toe (in preceding
weeks students implement the pure game logic), since we had not worked out how to
encode it into previous versions of the framework. Now we support that task, as indicated
in Section 7.2. Games also appear to profit particularly from programmatic generation of
tests instead of simply using unit tests, because it becomes easier to account for differ-
ent game strategies. Generally, we are satisfied with the expressiveness of the framework.
Every behavior that we want to test, we can express in the language; and additionally, we
have not found any textbook example that was not expressible, apart from what we call
“output-driven loops”, but we do not want these anyway.

Of course, some bias could be at play here: we have our own notions of what we consider
interesting or non-interesting I/O programming tasks, and our specification language ends
up being a very good fit to express the former ones. In any case, for us as educators it is
almost as important, beside the ability to express relevant tasks in the first place, to be able
to make modifications to them without breaking anything. Before using the framework,
we almost never changed the tasks and their manually written generators and checkers,
and even with the initial version of the framework supporting the naive-but-automated
input generation method as well as full trace match checking, we were still reluctant to
make changes, since the input generation was fragile and without coverage guarantees.
Now we regularly experiment with new tasks and can produce variations on them quickly.

Sometimes, varying a task leads to surprises. As reported in Section 5.3.1, we had an
occasion where a seemingly innocent change from “sum up the read values” to “build the
product of read values” led the testing to become unreliable due to overflow problems,
and that is what motivated our introduction of extra constraints into the framework. Other
occasions where we still need to adapt the framework in response to wanting to realize a
particular exercise task are largely in the context of supporting new functions in conditional
expressions in specifications. As indicated in Section 7.1, we support certain functions
from the standard library out of the box. Whenever a new function should be used for
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branching decisions, ad-hoc extension of the framework is currently needed, since the
SMT solver also needs to be taught about this function. We have plans to streamline this
process in the sense that an educator/user of the framework could themselves provide the
relevant SMT code.

Both when using the framework as educators and when extending the framework as
developers, we have substantially profited from the specification interpreter as elaborated
on in Section 7.4.

10 Related work

Due to the large number of existing automatic task grading and assessment tools, we cannot
give a complete overview here. A list of many different published automatic grading sys-
tems for programming tasks is maintained by Strickroth & Striewe (2022). A survey (with
a focus on feedback generation) of different automatic assessment tools for programming
tasks is presented by Keuning et al. (2019). Most tools use some form of automatic test-
ing against specified test cases or compare submissions to the results of sample solutions.
Additionally, a number of tools use program transformation or static analysis techniques
to determine how a program deviates from a sample solution. Task specification is usually
done through unit or property tests or by providing sample solutions in the respective pro-
gramming language. As far as we can tell, no existing system defines intended behavior
using a formal specification language designed expressly for that purpose.

Similarly, there exists a large body of research on program test case generation with
symbolic execution (King, 1976; Cadar & Sen, 2013). Compared to the literature, our
approach is very simple. A major reason is that we do not execute actual programs
but rather the specifications, which are syntactically much simpler than a full-featured
programming language. Additionally, we construct path constraints purely from the spec-
ifications and do not incorporate information from running the specified behavior on
concrete inputs. This is sometimes called static symbolic execution, as opposed to dynamic
symbolic execution where dynamic, i.e. runtime, information is included (Cadar & Engler,
2005; Godefroid et al., 2005; Sen, 2007; Godefroid, 2011; Giantsios et al., 2015). Dynamic
symbolic execution makes it easier to find very specific inputs that pure symbolic execu-
tion cannot find, e.g., because some condition is not expressible symbolically and rarely
satisfied by random inputs. Concrete execution can simplify conditions such that symbolic
reasoning is possible again and can enable much longer paths to be explored. This some-
times includes lifting information about complex functions to the level of the SMT solver
in the form of additional constraints on uninterpreted functions (Anand ef al., 2008). Some
authors have also used machine learning techniques to improve path coverage (Liu ef al.,
2021). Due to the very restricted nature of our specification language, such optimizations
were not yet necessary in our application context.

Reach problems are another approach to finding inputs that exercise specific program
paths (Naylor & Runciman, 2007; Fowler & Hutton, 2016). In a reach problem an expres-
sion in some program is marked as a target and then a reach solver tries to find inputs
to a source function such that the target expression is evaluated. Reach solvers can, for
example, be implemented using lazy narrowing, which is a form of symbolic evaluation
developed in the context of functional-logic programming.
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Searching for values that satisfy some predicate does not necessarily require a constraint
solving approach. Claessen ef al. (2014) automatically derive generators for values of an
algebraic data type from a Boolean predicate on that type alone.

The general mechanism for building inspectable representations of effectful pro-
grams (Swierstra & Altenkirch, 2007) is provided in the Haskell 10Spec library.?’ It
supports not only console I/O but also forking processes, mutable references, and software
transactional memory. However, its API is very minimal and no higher-level abstractions
exist.

Quviq QuickCheck (Hughes, 2007, 2016) is a variation of the original QuickCheck that
deals with stateful computations in the context of the Erlang programming language.”'
Instead of testing specific programs, like we do, they test whole stateful APIs. A specifi-
cation of such an API is a semantic model, given in Erlang, of the API together with pre-
and post-conditions for each stateful action. Testing is then done by generating random
sequences of actions based on the pre-conditions and checking the result of the actual API
calls against the model and post-conditions. Any found sequence of API calls that do not
behave in accordance with the semantic model is simplified via shrinking to obtain a small
counterexample.

Many approaches for formal descriptions of behavior exist. For example, session types
describe communication protocols between multiple parties of some (distributed) sys-
tem (Honda et al., 1998; Vasconcelos, 2012). Programs with compatible session types
are statically guaranteed to adhere to the specified protocol. In contrast to our specifica-
tions, session types usually do not inspect communicated values. They “only” describe
the communication pattern, but the range of expressible patterns far exceeds the simple
interaction patterns of console I/O programs. Dynamic session type variants exist that are
not checked statically and allow for some access to communicated data (Neykova, 2013;
Fowler, 2016).

Software contracts are another way to specify behavior of programs (Hinze ef al., 2006;
Dimoulas et al., 2016). These contracts are akin to complex dynamically checked types but
often exist as first-class entities inside a programming language. Various different flavours
of contracts exist, including contracts capable of describing effects like /O (Moy et al.,
2024).

Elsewhere, we have shown how, in principle, we can automatically generate, for every
expression in our specification language, source code of a (Haskell) program with the
respective behavior (Westphal & Voigtldnder, 20205, FLOPS’20). Such programs can
be used as sample solutions for (automatically generated) tasks, or even as part of task
descriptions. Advances in generative language models may also lead to more ways of prof-
iting from such code artifacts (Sarsa et al., 2022). Other applications of machine learning
are conceivable in the context of feedback generation, to help explain the root causes of
detected behavior mismatch in student programs, as Seidel et al. (2017) do for type errors.

Additionally, using a slightly earlier version of the language presented in this article,
we have previously built a separate EDSL for specifying templates for automatic task
generation (Westphal, 2021, WFLP’20). Templates represent a diverse range of tasks and
are centered around deriving various artifacts, like example runs and code fragments, from

20 https://hackage.haskell.org/package/I0Spec
2l See http://hackage.haskell.org/package/quickcheck-state-machine for a Haskell version.
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specifications in our language. For each given specification, the templates can then be
instantiated further to possibly randomized variations of a basic task design, significantly
reducing time spent on manually creating such variations.

11 Future work

Automatic testing of programs is a nice first step when it comes to automating parts of edu-
cational activities. We have other activities for which we would also like some automation,
and our DSL is designed partly with these possibilities in mind:

e Automatic generation of meaningful specifications. Using the presented language
of specifications as a basis for automatic exercise generation requires a generation
method for meaningful specifications, possibly randomized. Generated specifica-
tions should describe behavior that can be expressed verbally in a compact and/or
simple natural language description or at least somewhat resembles interactions
occurring in real-world programs. Also, the overall complexity of the specified
behavior needs to be controllable in order to not generate overwhelmingly difficult
tasks. When multiple specifications are needed as the basis for individualized tasks,
uniform complexity is equally important to ensure fairness among students. Blindly
building specification expressions just constrained by syntactic correctness and well-
formedness will likely only rarely fulfill this criterion, so a more structured approach
is needed. We have taken first steps to develop such an approach (Westphal, 2025).

e Generation of helpful feedback. Currently the feedback we gain from a failing test
case contains no real pointers to the root of the problem but just a (short) coun-
terexample for which the program behaves in a certain wrong way. Inferring, for
example, a specification for the wrongly behaving program and comparing it to the
target specification might help us identify behavioral mismatches at a higher level
of abstraction.

Additionally, the language itself and the testing framework as a whole can be improved in
various ways or built upon. For example:

e Improvements to constraint solving. The presented method of input generation
works well for most of our relatively small examples. But it is generally not hard to
find examples where it performs sub-optimally, both in terms of runtime as well as
achievable search depth. It might be worth exploring if different variations of sym-
bolic execution from the literature, especially those including runtime information,
yield overall better or simply faster generation procedures.

e Additional I/O capabilities. I/O programs can do much more than reading and writ-
ing from and to the console. For example, a lot of traditional (imperative) exercise
tasks for novice programmers include reading and writing files as well. The specifi-
cation language could be extended to express such behavior, allowing more diverse
behavior to be tested. We could introduce atomic actions on files like moving files
around or appending two files and writing the result into a new file. Filenames could
be values from outside the program, i.e., be arguments on the command line as
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opposed to values read interactively (or both). Having these features in the language
would allow testing of behavior like “Swap the contents of two files” or “Copy all
files in folder X to folder Y.

e Alternative domains. The general approach of defining a language for specifi-
cations from which we can generate black-box tests for free form solutions can
potentially be adapted to other programming task domains as well. For example,
the approach could be adapted to other domains like transformations of lists using
a certain set of predefined combinators or declarative descriptions of simple images
composed of geometric primitives. Specification languages for such other domains
might use very different structuring principles than we do for our I/O specifica-
tions. For example, they might need non-tail recursion and thus be more akin to
context-free grammars than to regular expressions, which served as inspiration for
our dealing with iterations.

12 Conclusion

We presented a formal language for specifying the interactive behavior of console I/O pro-
grams. By doing so, we gain the ability to automatically generate test cases from intuitive
declarative specifications. Tests are generated with a mix of probabilistic and exhaustive
testing techniques combined with constraint solving. We can therefore easily pose new
tasks and check the correctness of program submissions. The presented framework is a
significant improvement to the ability to state and automatically grade exercises compared
to ad-hoc testing with preexisting tools and techniques. Constraint-driven input genera-
tion improves the quality of generated test cases, compared to our initial version of the
framework. Additionally, the fact that we can manipulate the formal descriptions of behav-
ior programmatically opens up a wide range of possibilities for further automation and
analyses.
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