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Abstract
In this paper, we prove the birational rigidity of Fano-Mori fibre spaces 𝜋 : 𝑉 → 𝑆, every fibre of which is a Fano
complete intersection of index 1 and codimension 𝑘 � 3 in the projective space P𝑀+𝑘 for M sufficiently high,
satisfying certain natural conditions of general position, in the assumption that the fibre space 𝑉/𝑆 is sufficiently
twisted over the base. The dimension of the base S is bounded from above by a constant, depending only on the
dimension M of the fibre (as the dimension of the fibre M grows, this constant grows as 1

2 𝑀2).

Introduction

0.1. Fano complete intersections

In the present paper, we study the birational geometry of algebraic varieties, fibred into Fano complete
intersections of codimension 𝑘 � 3 (fibrations into Fano hypersurfaces were studied in [1], into Fano
complete intersections of codimension 2 in [2]). We start with a description of fibres of these fibre
spaces. Let us fix an integer 𝑘 � 3 and set

𝜀(𝑘) = min
{
𝑎 ∈ Z

���� 𝑎 � 1,

(
1 + 1

𝑘

)𝑎
� 2

}
.

Now let us fix 𝑀 ∈ Z, satisfying the inequality

𝑀 � 10𝑘2 + 8𝑘 + 2𝜀(𝑘) + 3. (1)

The right-hand side of that inequality denote by the symbol 𝜌(𝑘). Let

𝑑 = (𝑑1, . . . , 𝑑𝑘 )

be an ordered tuple of integers,

2 � 𝑑1 � 𝑑2 � · · · � 𝑑𝑘 ,

satisfying the equality

𝑑1 + · · · + 𝑑𝑘 = 𝑀 + 𝑘.
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2 A. Pukhlikov

Fano varieties, considered in this paper, are complete intersections of type 𝑑 in the complex projective
space P𝑀+𝑘 . More precisely, let the symbol P𝑎,𝑁 stand for the space of homogeneous polynomials of
degree 𝑎 ∈ Z+ in 𝑁 � 1 variables. Set

P =
𝑘∏
𝑖=1

P𝑑𝑖 ,𝑀+𝑘+1

to be the space of all tuples

𝑓 = ( 𝑓1, . . . , 𝑓𝑘 )

of homogeneous polynomials of degree 𝑑1, . . . , 𝑑𝑘 on P𝑀+𝑘 . If for 𝑓 ∈ P the scheme of common zeros
of the polynomials 𝑓1, . . . , 𝑓𝑘 is an irreducible reduced factorial variety 𝐹 = 𝐹 ( 𝑓 ) of dimension M with
terminal singularities, then F is a primitive Fano variety:

Pic 𝐹 = Z𝐻𝐹 , 𝐾𝐹 = −𝐻𝐹 ,

where 𝐻𝐹 is the class of a hyperplane section of the variety F (the Lefschetz theorem). Assuming that
this is the case, let us give the following definition.

Definition 0.1. The variety F is divisorially canonical, if for every effective divisor 𝐷 ∼ 𝑛𝐻𝐹 , the pair
(𝐹, 1

𝑛𝐷) is canonical – that is, for every exceptional divisor E over F, the inequality

ord𝐸 𝐷 � 𝑛 · 𝑎(𝐸)

holds, where 𝑎(𝐸) is the discrepancy of E with respect to F.

Below is the first main result of the present paper.

Theorem 0.1. There exist a Zariski open subset F ⊂ P , such that for every tuple 𝑓 ∈ F , the scheme
of common zeros of the tuple 𝑓 is an irreducible reduced factorial divisorially canonical variety 𝐹 ( 𝑓 )
of dimension M with terminal singularities, and the codimension of the complement P \F satisfies the
inequality

codim((P \ F) ⊂ P) � 𝑀 − 𝑘 + 5 +
(
𝑀 − 𝜌(𝑘) + 2

2

)
.

(Thus, for a fixed k and growing M, the codimension of the complement P \ F grows as 1
2 𝑀2.)

It is convenient to express the property of divisorial canonicity in terms of the global canonical
threshold of the variety F.

Recall that for a Fano variety X with the Picard number 1 and terminal Q-factorial singularities,
its global canonical threshold ct(𝑋) is the supremum of 𝜆 ∈ Q+ such that for every effective divisor
𝐷 ∼ −𝑛𝐾𝑋 (here, 𝑛 ∈ Q+), the pair

(
𝑋, 𝜆𝑛𝐷

)
is canonical. Therefore, Theorem 0.1 claims that for every

𝑓 ∈ F , the inequality ct(𝐹 ( 𝑓 )) � 1 holds.
If in the definition of the global canonical threshold instead of ‘for every effective divisor 𝐷 ∼ −𝑛𝐾𝑋 ’,

we put ‘for a general divisor D in any linear system Σ ⊂ | − 𝑛𝐾𝑋 | with no fixed components’, we get
the definition of the mobile canonical threshold mct(𝑋); obviously, mct(𝑋) � ct(𝑋). The inequality
mct(𝑋) � 1 is equivalent to the birational superrigidity of the Fano variety X; see [3]. If in the definition
of the global canonical threshold the property of the pair (𝑋, 𝜆𝑛𝐷) to be canonical, we replace by the
log-canonicity of that pair, we get the definition of the global log-canonical threshold lct(𝑋); again,
lct(𝑋) � ct(𝑋).

For simplicity, we write 𝐹 ∈ F instead of 𝐹 = 𝐹 ( 𝑓 ) for 𝑓 ∈ F .
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0.2. Fano-Mori fibre spaces

By a Fano-Mori fibre space we mean a surjective morphism of projective varieties

𝜋 : 𝑉 → 𝑆,

where dim𝑉 � 3 + dim 𝑆, the base S is non-singular and rationally connected, and the following
conditions are satisfied:

(FM1) every scheme fibre 𝐹𝑠 = 𝜋−1 (𝑠), 𝑠 ∈ 𝑆 is an irreducible reduced factorial Fano variety with
terminal singularities and the Picard group Pic 𝐹𝑠 � Z,

(FM2) the variety V itself is factorial and has at most terminal singularities,
(FM3) the equality

Pic𝑉 = Z𝐾𝑉 ⊕ 𝜋∗ Pic 𝑆

holds.
So Fano-Mori fibre spaces are Mori fibre spaces with additional very good properties.

Definition 0.2. A Fano-Mori fibre space 𝜋 : 𝑉 → 𝑆 is stable with respect to fibre-wise birational
modifications, if for every birational morphism 𝜎𝑆 : 𝑆+ → 𝑆, where 𝑆+ is a non-singular projective
variety, the morphism

𝜋+ : 𝑉+ = 𝑉 ×𝑆 𝑆+ → 𝑆+

is a Fano-Mori fibre space.

We will consider birational maps 𝜒 : 𝑉 � 𝑉 ′, where V is the total space of a Fano-Mori fibre space
and 𝑉 ′ is the total space of a fibre space 𝜋′ : 𝑉 ′ → 𝑆′ which belongs to one of the two classes:

(1) rationally connected fibre spaces; that is, 𝑉 ′ and 𝑆′ are non-singular and projective and the base
𝑆′ and a fibre of general position (𝜋′)−1(𝑠′) are rationally connected,

(2) Mori fibre spaces, where 𝑉 ′ and 𝑆′ are projective and the variety 𝑉 ′ has Q-factorial terminal
singularities.

For a birational map 𝜒 : 𝑉 � 𝑉 ′, where 𝑉 ′/𝑆′ is a rationally connected fibre space, we want to answer
the question: is it fibre-wise – that is, is there a rational dominant map 𝛽 : 𝑆 � 𝑆′, making the diagram

𝑉
𝜒
� 𝑉 ′

𝜋 ↓ ↓ 𝜋′

𝑆
𝛽
� 𝑆′

(2)

a commutative one – that is, 𝜋′ ◦ 𝜒 = 𝛽 ◦ 𝜋?
For a birational map 𝜒 : 𝑉 � 𝑉 ′, where 𝑉 ′/𝑆′ is a Mori fibre space with the additional properties

(2) (only such Mori fibre spaces are considered in this paper), we want to answer the question: is there a
birational map 𝛽 : 𝑆 � 𝑆′, for which the diagram (2) is commutative? If the answer to this question is
always affirmative (that is, it is affirmative for every fibre space from the class (2)), then the fibre space
𝑉/𝑆 is birationally rigid.

Now let us state the second main result of the present paper.

Theorem 0.2. Assume that a Fano-Mori fibre space 𝜋 : 𝑉 → 𝑆 is stable with respect to fibre-wise
birational modifications, and moreover,

(i) for every point 𝑠 ∈ 𝑆, the fibre 𝐹𝑠 satisfies the inequalities lct(𝐹𝑠) � 1 and mct(𝐹𝑠) � 1,
(ii) (the K-condition) every mobile (that is, with no fixed components) linear system on V is a

subsystem of a complete linear system | − 𝑛𝐾𝑉 + 𝜋∗𝑌 |, where Y is a pseudoeffective class on S,
(iii) for every family C of irreducible curves on S, sweeping out a dense subset of the base S, and

𝐶 ∈ C, no positive multiple of the class

−(𝐾𝑉 · 𝜋−1 (𝐶)) − 𝐹 ∈ 𝐴dim 𝑆𝑉,
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4 A. Pukhlikov

where 𝐴𝑖𝑉 is the numerical Chow group of classes of cycles of codimension i on V and F – the class of
a fibre of the projection 𝜋 – is represented by an effective cycle on V.

Then for every rationally connected fibre space 𝑉 ′/𝑆′, every birational map 𝜒 : 𝑉 � 𝑉 ′ (if such
maps exist) is fibre-wise, and the fibre space 𝑉/𝑆 itself is birationally rigid.

By what was said in Subsection 0.1, the assumption (i) can be replaced by the single inequality
ct(𝐹𝑠) � 1 for every 𝑠 ∈ 𝑆; that is, it is sufficient to assume that every fibre of the fibre space 𝑉/𝑆 is a
divisorially canonical variety.

As we will see from the proof of Theorem 0.2, instead of the conditions (ii) and (iii), it is sufficient
to require that for every family C of irreducible curves on S, sweeping out a dense subset, and 𝐶 ∈ C the
class

−𝑁 (𝐾𝑉 · 𝜋−1 (𝐶)) − 𝐹 ∈ 𝐴dim 𝑆𝑉,

is not represented by an effective cycle on V for any 𝑁 � 1. The last condition is especially easy to
verify: it is enough to have a numerically effective 𝜋-ample class 𝐻𝑉 on V, satisfying the inequality(

𝐾𝑉 · 𝜋−1(𝐶) · 𝐻dim𝑉−dim 𝑆
𝑉

)
� 0 (3)

for every dense family C � 𝐶.

0.3. An explicit construction of a fibre space

Now let us construct a large class of Fano-Mori fibre spaces, satisfying the conditions of Theorem 0.2.
Let S be a non-singular projective rationally connected positive-dimensional variety and 𝜋𝑋 : 𝑋 → 𝑆 a
locally trivial fibration with the fibre P𝑀+𝑘 , where k and M are the same as in Subsection 0.1. We say
that the subvariety 𝑉 ⊂ 𝑋 of codimension k is a fibration into complete intersections of type 𝑑, if the base
S can be covered by Zariski open subsets U, over which the fibration 𝜋𝑋 is trivial, 𝜋−1

𝑋 (𝑈) � 𝑈 ×P𝑀+𝑘 ,
and for every U, there is a regular map

Φ𝑈 : 𝑈 → P ,

such that 𝑉 ∩ 𝜋−1
𝑋 (𝑈) in the sense of the above-mentioned trivialization is the scheme of common zeros

of a tuple

𝑓 (𝑠) = Φ𝑈 (𝑠) = ( 𝑓1(𝑥∗, 𝑠), . . . , 𝑓𝑘 (𝑥∗, 𝑠)),

where 𝑥∗ are homogeneous coordinates on P𝑀+𝑘 and s runs through U.
Below (in §1), it will be clear that the open subset F from Theorem 0.1 is invariant under the action

of the group Aut P𝑀+𝑘 . For that reason, the following definition makes sense.
Definition 0.3. A fibration 𝑉 ⊂ 𝑋 into complete intersections of type 𝑑 is a F-fibration, if for any
trivialization of the bundle 𝜋𝑋 over an open set 𝑈 ⊂ 𝑆, we have Φ𝑈 (𝑈) ⊂ F .

Obviously, if the inequality

dim 𝑆 � 𝑀 − 𝑘 + 4 +
(
𝑀 − 𝜌(𝑘) + 2

2

)
(4)

holds, then we may assume that V is a F-fibration. Set 𝜋 = 𝜋𝑋 |𝑉 . Now from Theorems 0.1 and 0.2 it is
easy to obtain the third main result of the present paper.
Theorem 0.3. AnyF-fibration 𝜋 : 𝑉 → 𝑆 constructed above is a Fano-Mori fibre space. If the conditions
(ii) and (iii) of Theorem 0.2 hold, then for every rationally connected fibre space 𝑉 ′/𝑆′, every birational
map 𝜒 : 𝑉 � 𝑉 ′ is fibre-wise, and the fibre space 𝑉/𝑆 itself is birationally rigid.
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Example 0.1. Let 𝐻𝑋 be a numerically effective divisorial class on X, the restriction of which onto the
fibre 𝜋−1

𝑋 (𝑠) � P
𝑀+𝑘 is the class of a hyperplane. Let Δ1,. . . , Δ 𝑘 be very ample classes on the base S.

Let us construct a F-fibration 𝑉/𝑆 as a complete intersection of k general divisors

𝑉 = 𝐺1 ∩ · · · ∩ 𝐺𝑘 ,

where 𝐺𝑖 ∈ |𝑑𝑖𝐻𝑋 + 𝜋∗𝑋Δ 𝑖 |. Let us find out, when 𝑉/𝑆 satisfies the conditions (ii) and (iii) of
Theorem 0.2. Write

𝐾𝑋 = −(𝑀 + 𝑘 + 1)𝐻𝑋 + 𝜋∗𝑋Δ𝑋 .

Then we get

𝐾𝑉 =

(
−𝐻𝑋 + 𝜋∗𝑋

(
Δ𝑋 +

𝑘∑
𝑖=1

Δ 𝑖

))�����
𝑉

.

It is easy to check that the inequality (3) in this case takes the form of the estimate((
Δ𝑋 +

𝑘∑
𝑖=1

(
1 − 1

𝑑𝑖

)
Δ 𝑖

)
· 𝐶

)
�

(
𝐻𝑀+𝑘+1𝑋 · 𝜋−1

𝑋 (𝐶)
)
,

where for the class 𝐻𝑉 , we took 𝐻𝑋 |𝑉 . This inequality must be satisfied for every dense family C � 𝐶.

Let us consider a very particular case, when 𝑋 = P𝑚×P𝑀+𝑘 and 𝐺𝑖 are divisors of bi-degree (𝑚𝑖 , 𝑑𝑖),
𝑖 = 1, . . . , 𝑘 . Taking for 𝐻𝑋 the pullback on X of the class of a hyperplane in P𝑀+𝑘 , we get that the last
inequality is equivalent to the numerical inequality

𝑘∑
𝑖=1

(
1 − 1

𝑑𝑖

)
𝑚𝑖 � 𝑚 + 1. (5)

If it is satisfied and the dimension 𝑚 = dim 𝑆 satisfies the inequality (4), then the intersection 𝑉 =
𝐺1∩ · · ·∩𝐺𝑘 of general (in the sense of Zariski topology) divisors of bi-degree (𝑚1, 𝑑1), . . . , (𝑚𝑘 , 𝑑𝑘 ),
fibred over 𝑆 = P𝑚, is a birationally rigid Fano-Mori fibre space, and every birational map of V onto the
total space of a rationally connected fibre space is fibre-wise. The inequality (5) shows that this claim
holds for almost all tuples (𝑚1, . . . , 𝑚𝑘 ) ∈ Z𝑘+ (except for finitely many of them) – that is, for almost all
families of Fano-Mori fibre spaces – obtained by means of this construction. Note that the condition (5)
is lose to a criterial one: if

𝑚1 + · · · + 𝑚𝑘 � 𝑚,

then the projection of V onto P𝑀+𝑘 defines on V a structure of a Fano-Mori fibre space (and a rationally
connected fibre space), which is ‘transversal’ to the original structure 𝜋 : 𝑉 → 𝑆 (and is not fibre-wise),
so that in this case, 𝑉/𝑆 is not birationally rigid.

0.4. The structure of the paper

The paper is organized in the following way. In §1, we produce the explicit local conditions defining
the open subset F ⊂ P . The proof of divisorial canonicity of a variety 𝐹 ∈ F (that is, of the inequality
ct(𝐹) � 1) is reduced in §1 to a number of technical facts that will be shown in the subsequent sections
(§§3–7). In §2, we show Theorem 0.2.

The proof of Theorem 0.1 consists of several pieces. The fact that the local conditions for the
singularities that a variety 𝐹 ∈ F can have (which are multi-quadratic singularities; see Subsection 1.2)
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guarantee that the variety F is factorial and its singularities are terminal is proven in §4, where we
give a general definition of multi-quadratic singularities and study their properties. The estimate for the
codimension of the complement P \F (which is very important for constructing families of Fano-Mori
fibre spaces, satisfying the assumptions of Theorem 0.2) is shown in §8. However, the main (and the
hardest) part of the proof of Theorem 0.1 is to show that a variety 𝐹 ∈ F is divisorially canonical. We
assume that for some effective divisor 𝐷 ∼ 𝑛𝐻𝐹 , the pair (𝐹, 1

𝑛𝐷) is not canonical; that is, for some
exceptional divisor E over F, the inequality

ord𝐸 𝐷 > 𝑛 · 𝑎(𝐸)

holds. Now we have to show that this assumption leads to a contradiction. In Subsections 1.3–1.6 it is
shown how (using the inequalities for the multiplicity of subvarieties of the variety F at a given point,
proven in §7) to obtain a contradiction in the case when a point of general position 𝑜 ∈ 𝐵, where B is the
centre of E on F, either is non-singular on F or is a quadratic singularity. The hardest task is to obtain
a contradiction when the point o is a multi-quadratic singularity of the variety F. A plan of solving this
problem is given in Subsection 1.7, where we introduce the concept of a working triple and describe
the procedure of constructing a sequence of subvarieties of the variety F, in which each subvariety is a
hyperplane section of the previous one and the last subvariety delivers the desired contradiction.

This program is realized in §3, where we study the properties of working triples; however, a number
of key technical facts is only stated there – their proof is put off for a greater clarity of exposition. These
key facts are shown in §§5, 6 (and the proof makes use of the facts on linear subspaces on complete
intersections of quadrics, proven in Subsection 4.5).

Finally, in §7, we prove the estimates for the multiplicities of certain subvarieties of the variety F
at given points in terms of the degrees of these subvarieties in P𝑀+𝑘 . Here we use the well-known
technique of hypertangent divisors. For the purposes of our proof of Theorem 0.1, we have to somewhat
modify this technique.

0.5. General remarks

The birational rigidity of Fano-Mori fibre spaces over a positive-dimensional base was one of the most
important topics in birational geometry in the past 40 years. For its history and place in the context
of the modern birational geometry of rationally connected varieties, see [2, Subsection 0.4]. Here we
just mention a few recent papers in the areas that are close to the direction, to which the present paper
belongs.

These areas are the birational rigidity, explicit birational geometry of Mori fibre spaces (including the
studies of their groups of birational automorphisms and, wider, Sarkisov links), the rationality problem,
computing and estimating the global canonical thresholds and, related to these problems, the theory of
K-stability.

In the papers [4, 5, 6], important results on the birational rigidity and rigidity-type results for fibrations
over P1 were obtained. The paper [7] links the Sarkisov program with the problem of estimating the
canonical threshold of certain divisors on Fano varieties. The papers [8, 9] prove the stable non-
rationality of very general conic bundles and fibrations into del Pezzo surfaces, respectively, over a
higher-dimensional base. The problem of stable rationality for hypersurfaces of various bi-degrees
in the products of projective spaces (see Example 0.1 above) is considered in [10]. The theory of
K-stability, which is on the border of birational geometry, is investigated in many papers (especially in
the recent past) – in particular, see [11, 12, 13, 14]; we mentioned the papers that are the closest to the
birational rigidity-type problems. Finally, there was a lot of development recently in the direction of
applying the theory of Sarkisov links and relations between them to the study of the groups of birational
automorphisms of such varieties that have a very large this group; see, for instance, [15, 16].

Getting back to the topic of this paper, we note that its immediate predecessor is [2], however,
that paper investigates the non-canonical singularities, the centre of which is contained in the set of
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bi-quadratic points of the variety (from the technical viewpoint, this is the hardest part of the proof
of divisorial canonicity), using the secant varieties of subvarieties of codimension 2 on an intersection
of two quadrics. It is not possible to apply this approach to subvarieties of higher codimension on an
intersection of 𝑘 � 3 quadrics, and the present paper is based on a completely different construction
(which applies to the bi-quadratic singularities, considered in [2], as well).

The author is grateful to the members of Divisions of Algebraic Geometry and Algebra at Steklov
Institute of Mathematics for the interest to his work, and also to the colleagues in Algebraic Geometry
research group at the University of Liverpool for general support.

The author thanks the referee for their work on the manuscript and the helpful comments.

1. Fano complete intersections

In this section, we describe the local conditions defining the open subset F ⊂ P (Subsections 1.2
and 1.4). For a complete intersection 𝐹 ∈ F , the proof of its divisorial canonicity is reduced to a number
of technical claims, which will be shown later. A more detailed plan of the proof of Theorem 0.1 is
given in Subsection 1.1.

1.1. A plan of the proof of Theorem 0.1

In order to prove Theorem 0.1, one has to give an explicit definition of the open setF ⊂ P . This definition
consists of two groups of conditions, which should be satisfied by the polynomials 𝑓1, . . . , 𝑓𝑘 at every
point 𝑜 ∈ P𝑀+𝑘 at which they all vanish. The first group of conditions is about the singularities of the
complete intersection 𝐹 ( 𝑓 ): they can be quadratic or multi-quadratic of a rank bounded from below.
The corresponding definitions and facts are given in Subsection 1.2. Assuming that the conditions of
the first group are satisfied, we get that the scheme of common zeros of the polynomials 𝑓1, . . . , 𝑓𝑘 is an
irreducible reduced factorial variety 𝐹 = 𝐹 ( 𝑓 ) ⊂ P𝑀+𝑘 with terminal singularities, and so Pic 𝐹 = Z𝐻𝐹
and 𝐾𝐹 = −𝐻𝐹 , so that the question, Is it divisorially canonical?, makes sense.

Assuming that F is not divisorially canonical, let us fix an effective divisor 𝐷𝐹 ∼ 𝑛(𝐷𝐹 )𝐻𝐹 , where
𝑛(𝐷𝐹 ) � 1, such that the pair (

𝐹,
1

𝑛(𝐷𝐹 )
𝐷𝐹

)
is not canonical; that is, there is an exceptional divisor E over F, satisfying the Noether-Fano inequality:

ord𝐸 𝐷𝐹 > 𝑛(𝐷𝐹 ) 𝑎(𝐸).

We have to show that the existence of such a divisor leads to a contradiction. Let 𝐵 ⊂ 𝐹 be the centre
of the exceptional divisor E on F. The information about the singularities of the varieties F makes it
possible to easily exclude the option when codim(𝐵 ⊂ 𝐹) = 2. This is done in Subsection 1.3.

After that, in Subsection 1.4, we produce the second group of local conditions for the tuple of
polynomials 𝑓 ∈ F : now they are the regularity conditions. Assuming that they are satisfied at every
point 𝑜 ∈ 𝐹, we exclude the option 𝐵 ⊄ Sing 𝐹 in Subsection 1.5, and in Subsection 1.6, the option
that the point 𝑜 ∈ 𝐵 of general position is a quadratic singularity of F. In Subsection 1.7 we describe
the procedure of excluding the multi-quadratic case, when the point 𝑜 ∈ 𝐵 of general position is a
multi-quadratic singularity of the type 2𝑙 , 𝑙 ∈ {2, . . . , 𝑘}. This is the hardest part of the work, which is
completed in the subsequent sections.

1.2. Multi-quadratic singularities

Let 𝑜 ∈ P𝑀+𝑘 be a point at which 𝑓1, . . . , 𝑓𝑘 all vanish. Let us consider a system of affine coordinates
𝑧∗ = (𝑧1, . . . , 𝑧𝑀+𝑘 ) with the origin at the point o on an affine chart A𝑀+𝑘 ⊂ P𝑀+𝑘 , containing that
point. Write down
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8 A. Pukhlikov

𝑓1 = 𝑓1,1 + 𝑓1,2+ . . . + 𝑓1,𝑑1 ,
𝑓2 = 𝑓2,1 + 𝑓2,2+ . . . + 𝑓2,𝑑2 ,

. . .
𝑓𝑘 = 𝑓𝑘,1 + 𝑓𝑘,2+ . . . + 𝑓𝑘,𝑑𝑘 ,

where we use the same symbols 𝑓𝑖 for the non-homogeneous polynomials in 𝑧∗, corresponding to the
original polynomials 𝑓𝑖 , and 𝑓𝑖,𝑎 is a homogeneous polynomial of degree a in 𝑧∗. Obviously, if the
linear forms 𝑓1,1, . . . , 𝑓𝑘,1 are linearly independent, then in a neighborhood of the point o, the scheme of
common zeros of the polynomials 𝑓1, . . . , 𝑓𝑘 is a non-singular complete intersection of codimension k.
In order to give the definition of a multi-quadratic singularity, we will need the concept of the rank of a
tuple of quadratic forms.
Definition 1.1 [2]. The rank of the tuple of quadratic forms 𝑞1, . . . , 𝑞𝑙 in N variables is the number

rk(𝑞1, . . . , 𝑞𝑙) = min{rk(𝜆1𝑞1 + · · · + 𝜆𝑙𝑞𝑙) | (𝜆1, . . . , 𝜆𝑙) ≠ (0, . . . , 0)}.

Obviously, rk(𝑞1, . . . , 𝑞𝑙) � 𝑁 . For that reason, in the sequel, the inequality rk(𝑞∗) � 𝑎 means implicitly
that the forms 𝑞𝑖 depend on a sufficient (� 𝑎) number of variables.

Take 𝑙 ∈ {1, 2, . . . , 𝑘}.
Definition 1.2. The tuple 𝑓 has at the point o a multi-quadratic singularity of type 2𝑙 of rank a, if the
following conditions are satisfied:
◦ dim〈 𝑓1,1, . . . , 𝑓𝑘,1〉 = 𝑘 − 𝑙 (and in order to simplify the notations, we assume that the forms

𝑓𝑙+1, . . . , 𝑓𝑘

are linearly independent),
◦ the rank of the tuple of quadratic forms

𝑓 ∗𝑖,2 = 𝑓𝑖,2 −
𝑘∑

𝑗=𝑙+1
𝜆𝑖, 𝑗 𝑓 𝑗 ,2,

𝑖 = 1, . . . , 𝑙, where 𝜆𝑖, 𝑗 ∈ C are defined by the equalities

𝑓𝑖,1 =
𝑘∑

𝑗=𝑙+1
𝜆𝑖, 𝑗 𝑓 𝑗 ,1,

is equal to the number a.
Now the first condition, defining the subset F ⊂ P , is stated in the following way.
(MQ1) For every point 𝑜 ∈ P𝑀+𝑘 , such that

𝑓1 (𝑜) = · · · = 𝑓𝑘 (𝑜) = 0,

either the linear forms 𝑓1,1, . . . , 𝑓𝑘,1 are linearly independent or 𝑓 has at the point o a multi-quadratic
singularity of type 2𝑙 , where 𝑙 ∈ {1, 2, . . . , 𝑘}, of rank

� 2𝑙 + 4𝑘 + 2𝜀(𝑘) − 1.

Theorem 1.1. Assume that 𝑓 satisfies the condition (MQ1). Then the scheme of common zeros of the
polynomials 𝑓1, . . . , 𝑓𝑘 is an irreducible reduced factorial variety F=F(f) – a complete intersection of
codimension k with terminal singularities, and, moreover,

codim(Sing 𝐹 ⊂ 𝐹) � 4𝑘 + 2𝜀(𝑘).

Proof is given in §4 (Subsections 4.1-4.3).
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Assume that 𝑓 satisfies the condition (MQ1). For a point 𝑜 ∈ 𝐹 = 𝐹 ( 𝑓 ), the symbol 𝑇𝑜𝐹 stands for
the subspace { 𝑓1,1 = · · · = 𝑓𝑘,1 = 0} ⊂ C𝑀+𝑘 . For the proof of Theorem 0.1, we will need one more
property of the tuple 𝑓 , which we include in the definition of the subset F .

(MQ2) For any point 𝑜 ∈ 𝐹, which is a multi-quadratic of type 2𝑙 , where 𝑙 � 2, the rank of the tuple
of quadratic forms

𝑓1,2 |𝑇𝑜𝐹 , . . . , 𝑓𝑘,2 |𝑇𝑜𝐹

is at least 10𝑘2 + 8𝑘 + 2𝜀(𝑘) + 5.
The condition (MQ2) for multi-quadratic points of type 2𝑙 with 𝑙 � 2 implies the condition (MQ1)

because the rank of a quadratic form, restricted to a hyperplane, drops at most by 2; however, for the
convenience of references, we state the conditions (MQ1) and (MQ2) independently of each other. These
conditions are used in the proof of Theorem 0.1 in different ways.

So every tuple 𝑓 ∈ F satisfies (MQ1) and (MQ2).

1.3. Subvarieties of codimension 2

Following the plan, given in Subsection 1.1, let us fix an effective divisor 𝐷𝐹 ∼ 𝑛(𝐷𝐹 )𝐻𝐹 , 𝑛(𝐷𝐹 ) � 1,
such that the pair (𝐹, 1

𝑛(𝐷𝐹 )𝐷𝐹 ) is not canonical. By the symbol

CS
(
𝐹,

1
𝑛(𝐷𝐹 )

𝐷𝐹

)
,

we denote the union of the centres on F of all exceptional divisors over F, satisfying the Noether-Fano
inequality (that is to say, of all non-canonical singularities of that pair). This is a closed subset of F. Let
B be an irreducible component of maximal dimension of that set.
Proposition 1.1. The following inequality holds: codim(𝐵 ⊂ 𝐹) � 3.
Proof. Assume the converse: codim(𝐵 ⊂ 𝐹) = 2. Then 𝐵 ⊄ Sing 𝐹. Moreover, let 𝑃 ⊂ P𝑀+𝑘 be a
general linear subspace of dimension 2𝑘 + 2. Theorem 1.1 implies that 𝑃 ∩ Sing 𝐹 = ∅, so that 𝐹 ∩ 𝑃 is
a non-singular complete intersection of type 𝑑 in 𝑃 � P2𝑘+2. Furthermore, the pair(

𝐹 ∩ 𝑃,
1

𝑛(𝐷𝐹 )
𝐷𝐹 |𝐹∩𝑃

)
is not canonical, and the irreducible subvariety 𝐵∩𝑃 is an irreducible component of maximal dimension
of the set

CS
(
𝐹 ∩ 𝑃,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃
)
,

so that (as 𝐹 ∩ 𝑃 is non-singular)

mult𝐵∩𝑃 𝐷𝐹 |𝐹∩𝑃 > 𝑛(𝐷𝐹 ).

However, 𝐷𝐹 |𝐹∩𝑃 ∼ 𝑛(𝐷𝐹 )𝐻𝐹∩𝑃 (where 𝐻𝐹∩𝑃 is the class of a hyperplane section of 𝐹 ∩ 𝑃), so that
by [17, Proposition 3.6] or [18], we get a contradiction, proving the proposition. Q.E.D. �

1.4. Regularity conditions

In order to continue the proof of Theorem 0.1, we need a second group of conditions defining the set F .
Let 𝑜 ∈ 𝐹 be a point. We use the notations of Subsection 1.2. By the symbol 𝑇𝑜𝐹 we denote the linear
tangent space

{ 𝑓1,1 = · · · = 𝑓𝑘,1 = 0} ⊂ C𝑀+𝑘 ,
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and by the symbol P(𝑇𝑜𝐹) its projectivization. Let S = (ℎ1, . . . , ℎ𝑀 ) be the sequence of homogeneous
polynomials

𝑓𝑖, 𝑗 |P(𝑇𝑜𝐹 ) ,

where 𝑗 � 2, placed in the lexicographic order: (𝑖1, 𝑗1) precedes (𝑖2, 𝑗2), if 𝑗1 < 𝑗2 or 𝑗1 = 𝑗2, but 𝑖1 < 𝑖2.
By the symbol S [−𝑚] denote the sequence S with the last m members removed. Finally, the symbol
S [−𝑚] |Π stands for the restriction of that sequence (that is, the restriction of each its member) onto a
linear subspace Π ⊂ P(𝑇𝑜𝐹). The regularity conditions depend on the type of the singularity 𝑜 ∈ 𝐹.

First, let the point 𝑜 ∈ 𝐹 be non-singular, so that P(𝑇𝑜𝐹) � P𝑀−1. In that case, the regularity
condition is stated in the following way.

(R1) The sequence

S [−(𝑘 + 𝜀(𝑘) + 3)] |Π

is regular for every subspace Π ⊂ P(𝑇𝑜𝐹) of codimension 𝑘 + 𝜀(𝑘) − 1.
The condition (R1) is assumed for every non-singular point 𝑜 ∈ 𝐹. It implies the following key fact.

Theorem 1.2. Let 𝑃 ⊂ P𝑀+𝑘 be an arbitrary linear subspace of codimension � 𝑘 + 𝜀(𝑘) − 1. Then for
every non-singular point 𝑜 ∈ 𝐹 ∩ 𝑃 and every prime divisor 𝑌 ∼ 𝑛(𝑌 )𝐻𝐹∩𝑃 on 𝐹 ∩ 𝑃, the inequality

mult𝑜 𝑌 � 2𝑛(𝑌 )

holds.
Proof is given in §7 (Subsections 7.1, 7.2).
Now let 𝑜 ∈ 𝐹 be a quadratic singularity (this case corresponds to the value 𝑙 = 1 in Definition 1.2).

Here P(𝑇𝑜𝐹) � P𝑀 . In this case, the regularity condition is stated as follows.
(R2) The sequence

S [−4] |Π

is regular for every hyperplane Π ⊂ P(𝑇𝑜𝐹).
The condition (R2) is assumed for every quadratic singular point 𝑜 ∈ 𝐹 and implies the following

key fact.
Theorem 1.3. Let 𝑜 ∈ 𝐹 be a quadratic singularity and 𝑊 � 𝑜 the section of F by a hyperplane that is
not tangent to F at the point o, and 𝑌 ∼ 𝑛(𝑌 )𝐻𝑊 a prime divisor on W. Then the following inequality
holds:

mult𝑜 𝑌 � 4𝑛(𝑌 ).

Proof is given in §7 (Subsection 7.3).
(The symbol 𝐻𝑊 stands for the class of a hyperplane section of the variety W; the linear form,

defining the hyperplane that cuts out W, is not a linear combination of the forms 𝑓1,1, . . . , 𝑓𝑘,1.)
Now let 𝑜 ∈ 𝐹 be a multi-quadratic point of type 2𝑙 , where 𝑙 ∈ {2, . . . , 𝑘}. Here we will need two

regularity conditions. In the first of them, the symbol 𝑇𝑜𝐹 means the projective closure of the linear
subspace

{ 𝑓1,1 = · · · = 𝑓𝑘,1 = 0} ⊂ C𝑀+𝑘

in P𝑀+𝑘 .
(R3.1) For every subspace 𝑃 ⊂ 𝑇𝑜𝐹 of codimension 𝜀(𝑘), containing the point o, the scheme of

common zeros of the polynomials

𝑓1 |𝑃 , . . . , 𝑓𝑘 |𝑃 , 𝑓𝑖,2 |𝑃 for all 𝑖 : 𝑑𝑖 � 3
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is an irreducible reduced subvariety of codimension 𝑘 + 𝑘�3 in P, where

𝑘�3 = ♯{𝑖 = 1, . . . , 𝑘 | 𝑑𝑖 � 3}.

Note that in the condition (R3.1), the homogeneous polynomials 𝑓𝑖,2 in the affine coordinates 𝑧∗ are
considered as quadratic forms in homogeneous coordinates on P𝑀+𝑘 .

In the second regularity condition for multi-quadratic points, the symbol 𝑇𝑜𝐹 means a linear subspace
in C𝑀+𝑘 .

(R3.2) For every linear subspace Π ⊂ P(𝑇𝑜𝐹) of codimension 𝜀(𝑘), the sequence

S [−𝑚∗] |Π

is regular, where 𝑚∗ = max{𝜀(𝑘) + 4 − 𝑙, 0}.
The conditions (R3.1) and (R3.2) are assumed for every multi-quadratic singular point 𝑜 ∈ 𝐹. They

imply the following key inequality. In Theorem 1.4, stated below, the symbol𝑇𝑜𝐹 stands for the projective
closure of the embedded tangent space – that is, a linear subspace in P𝑀+𝑘 , containing the point o.

Theorem 1.4. Let 𝑃 ⊂ 𝑇𝑜𝐹 be an arbitrary linear subspace of codimension � 𝜀(𝑘) and 𝑌 � 𝑜 a prime
divisor on 𝐹 ∩ 𝑃, 𝑌 ∼ 𝑛(𝑌 )𝐻𝐹∩𝑃 . Then the following inequality holds:

mult𝑜 𝑌 �
3
2
· 2𝑘𝑛(𝑌 ).

Proof is given in §7 (Subsections 7.3).
(The symbol 𝐻𝐹∩𝑃 stands for the class of a hyperplane section of the variety 𝐹 ∩ 𝑃; we will show

below – see §4 – that 𝐹 ∩ 𝑃 is an irreducible factorial complete intersection.)
Summing up, let us give a complete definition of the subset F ⊂ P: it consists of the tuples 𝑓 ,

satisfying the conditions (MQ1,2), the condition (R1) at every non-singular point 𝑜 ∈ 𝐹 ( 𝑓 ), the
condition (R2) at every quadratic point 𝑜 ∈ 𝐹 ( 𝑓 ) and the conditions (R3.1,2) at every multi-quadratic
point 𝑜 ∈ 𝐹 ( 𝑓 ).

The inequality for the codimension of the complement P \F , given in Theorem 0.1, is shown in §8.

1.5. Exclusion of the non-singular case

We carry on with the proof of divisorial canonicity of the variety 𝐹 ∈ F . In the notations of Sub-
section 1.3, assume that the point of general position 𝑜 ∈ 𝐵 is a non-singular point of F. We know
(Proposition 1.1) that codim(𝐵 ⊂ 𝐹) � 3. Consider a general subspace 𝑃 � 𝑜 of dimension 𝑘 + 3. Then
𝐹 ∩ 𝑃 is a non-singular three-dimensional variety, and the point o is a connected component of the set

CS
(
𝐹 ∩ 𝑃,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃
)

(if codim(𝐵 ⊂ 𝐹) � 4, then CS can be replaced, by inversion of adjunction, by LCS); that is, outside
the point o in a neighborhood of that point, the pair(

𝐹 ∩ 𝑃,
1

𝑛(𝐷𝐹 )
𝐷𝐹 |𝐹∩𝑃

)
(6)

is canonical. It is well known (see [19, Proposition 3] or [20, Chapter 7, Proposition 2.3]), and it follows
from here that either the inequality

mult𝑜 𝐷𝐹 > 2𝑛(𝐷𝐹 )
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holds or on the exceptional divisor 𝐸 � P𝑀−1 of the blow-up 𝐹+ → 𝐹 of the point o, there is a
hyperplane Θ ⊂ 𝐸 (uniquely determined by the pair (6)), such that the inequality

mult𝑜 𝐷𝐹 +multΘ 𝐷+𝐹 > 2𝑛(𝐷𝐹 )

holds, where 𝐷+𝐹 is the strict transform of 𝐷𝐹 on 𝐹+.
The first option is impossible as it contradicts Theorem 1.2. In the second case, denote by the symbol

|𝐻 − Θ| the projectively k-dimensional linear system of hyperplane sections of F, a general element of
which 𝑊 � 𝑜 is non-singular at the point o and satisfies the equality

𝑊+ ∩ 𝐸 = Θ.

The restriction 𝐷𝑊 = (𝐷𝐹 ◦𝑊) is an effective divisor on W, and 𝑛(𝐷𝑊 ) = 𝑛(𝐷𝐹 ) and the inequality

mult𝑜 𝐷𝑊 � mult𝑜 𝐷𝐹 +multΘ 𝐷+𝐹 > 2𝑛(𝐷𝑊 )

holds, which again contradicts Theorem 1.2. We have shown the following fact.
Proposition 1.2. The subvariety B is contained in the singular locus of F: 𝐵 ⊂ Sing 𝐹.

1.6. Exclusion of the quadratic case

Again, let 𝑜 ∈ 𝐵 be a point of general position.
Proposition 1.3. The point o is a multi-quadratic singularity of type 2𝑙 , 𝑙 � 2.
Proof. Assume the converse: the point o is a quadratic singularity of F. Let 𝑃 � 𝑜 be a general (𝑘 + 3)-
dimensional linear subspace in P𝑀+𝑘 . By the condition (MQ1) and Theorem 1.1, the intersection 𝐹 ∩ 𝑃
is a three-dimensional variety with the unique singular point o, which is a non-degenerate quadratic
singularity. This intersection can be constructed in two steps: first, we consider the intersection 𝐹 ∩ 𝑃′

with a general linear subspace 𝑃′ ⊂ P𝑀+𝑘 , 𝑃′ � 𝑜 of dimension

𝑘 + codim(Sing 𝐹 ⊂ 𝐹),

and after that the intersection with a general subspace 𝑃 ⊂ 𝑃′, 𝑃 � 𝑜 of dimension (𝑘 + 3). Now we get
the following: the pair (

𝐹 ∩ 𝑃,
1

𝑛(𝐷𝐹 )
𝐷𝐹 |𝐹∩𝑃

)
is not log-canonical, but canonical outside the point o. Let us consider the blow-up

𝜑𝑃 : 𝑃+ → 𝑃

of the point o with the exceptional divisor E𝑃 � P𝑘+2 and let (𝐹 ∩ 𝑃)+ ⊂ 𝑃+ be the strict transform of
𝐹∩𝑃 on 𝑃+, so that (𝐹∩𝑃)+ → 𝐹∩𝑃 is the blow-up of the quadratic singularity o with the exceptional
divisor 𝐸𝑃 = (𝐹 ∩𝑃)+ ∩E𝑃 , which is a non-singular two-dimensional quadric in the three-dimensional
subspace 〈𝐸𝑃〉 ⊂ E𝑃 . Obviously, 𝑎(𝐸𝑃 , 𝐹 ∩ 𝑃) = 1, so that, writing down

𝐷𝑃 = 𝐷𝐹 |𝐹∩𝑃 ∼ 𝑛(𝐷𝐹 )𝐻𝐹∩𝑃

and 𝐷+𝑃 ∼ 𝑛(𝐷𝐹 )𝐻𝐹∩𝑃 − 𝜈𝐸𝑃 (the strict transform of 𝐷𝑃 on (𝐹 ∩ 𝑃)+), we obtain two options:

◦ either 𝜈 > 2𝑛(𝐷𝐹 ), so that 𝐸𝑃 is a non-log-canonical singularity of the pair (𝐹 ∩ 𝑃, 1
𝑛(𝐷𝐹 )𝐷𝑃),

◦ or 𝑛(𝐷𝐹 ) < 𝜈 � 2𝑛(𝐷𝐹 ), and then the closed set

LCS
((

𝐹 ∩ 𝑃,
1

𝑛(𝐷𝐹 )
𝐷𝑃

)
, (𝐹 ∩ 𝑃)+

)
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– the union of the centres of all non-log-canonical singularities of the original pair (𝐹∩𝑃, 1
𝑛(𝐷𝐹 )𝐷𝑃)

on (𝐹 ∩ 𝑃)+ – is a connected closed subset of the non-singular quadric 𝐸𝑃 , which can be either a
(possibly reducible) connected curve 𝐶𝑃 ⊂ 𝐸𝑃 or a point 𝑥𝑃 ∈ 𝐸𝑃 . �

(It is well known – see, for instance, [20, Chapter 2, Proposition 3.7] – that the inequality 𝜈 � 𝑛(𝐷𝐹 )
is impossible.) In the case 𝜈 > 2𝑛(𝐷𝐹 ), we get

mult𝑜 𝐷𝑃 = mult𝑜 𝐷𝐹 > 4𝑛(𝐷𝐹 ),

which contradicts Theorem 1.3, so that this case is impossible. Coming back to the original variety F, let
us consider the blow-ups 𝜑P : (P𝑀+𝑘 )+ → P𝑀+𝑘 and 𝜑 : 𝐹+ → 𝐹 of the point o, where 𝐹+ is identified
with the strict transform of F on (P𝑀+𝑘 )+, with the exceptional divisors E and E, respectively, so that
𝐸 = 𝐹+ ∩ E is a quadratic hypersurface E in the subspace 〈𝐸〉 ⊂ E of codimension (𝑘 + 1). By the
condition for the rank (MQ1), the case of a point 𝑥𝑃 ∈ 𝐸𝑃 is impossible: in that case, the quadric
E would contain a linear subspace of codimension 2 (with respect to E), which cannot happen. Now,
arguing word for word as in [2, Subsection 3.2] and using [2, Theorem 3.1], we get that on the quadric E,
there is a hyperplane section Λ ⊂ 𝐸 , such that

𝜈 +multΛ 𝐷+𝐹 > 2𝑛(𝐷𝐹 ).

Taking the linear system |𝐻𝐹 − Λ| (of the projective dimension (𝑘 − 1)) of hyperplane sections of the
variety F, a general divisor 𝑊 ∈ |𝐻𝐹 −Λ| in which contains the point o and its strict transform 𝑊+ cuts
out Λ on E (that is, 𝑊+ ∩ 𝐸 = Λ), we set 𝐷𝑊 = (𝐷𝐹 ◦𝑊) and obtain the inequality

mult𝑜 𝐷𝑊 = 2(𝜈 +multΛ 𝐷+𝐹 ) > 4𝑛(𝐷𝐹 ) = 4𝑛(𝐷𝑊 ),

which contradicts Theorem 1.3. This completes the proof of Proposition 1.3.

1.7. Exclusion of the multi-quadratic case

This is the hardest and the longest part of our work. Fix a point 𝑜 ∈ 𝐵 of general position, which by
what was proven is a multi-quadratic singularity of type 2𝑙 , satisfying the conditions (MQ1,2). The pair
(𝐹, 1

𝑛(𝐷𝐹 )𝐷𝐹 ) has a non-canonical singularity, the centre B of which is a component of the maximal
dimension of the set CS(𝐹, 1

𝑛(𝐷𝐹 )𝐷𝐹 ), so that in a neighborhood of the point o, this pair is canonical
outside B. We will show that this is impossible. This will be done in a few steps, and now we describe
the scheme of the proof and state the key intermediate claims.

Definition 1.3. A pair [𝑋, 𝑜], where

𝑋 ⊂ P(𝑋) = P𝑁 (𝑋 )

is an irreducible reduced factorial complete intersection of type 𝑑 in the projective space P(𝑋), dim 𝑋 =
𝑁 (𝑋) − 𝑘 � 3, and 𝑜 ∈ 𝑋 is a point, is called a complete intersection with a marked point or, for
brevity, a marked complete intersection of level (𝑙𝑋 , 𝑐𝑋 )), where 𝑙𝑋 , 𝑐𝑋 are positive integers, satisfying
the inequalities

2 � 𝑙𝑋 � 𝑘 and 𝑐𝑋 � 𝑙𝑋 + 4,

if the following conditions are satisfied:
(MC1) the inequality

codim(Sing 𝑋 ⊂ 𝑋) � 𝑐𝑋

holds,
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(MC2) the point 𝑜 ∈ 𝑋 is a multi-quadratic singularity of type 2𝑙𝑋 , the rank of which satisfies the
inequality

rk(𝑜 ∈ 𝑋) � 2𝑙𝑋 + 𝑐𝑋 − 1,

(MC3) the non-singular part 𝑋 \Sing 𝑋 of the variety X satisfies the condition of divisorial canonicity,

ct(𝑋 \ Sing 𝑋) � 1;

that is, for every effective divisor 𝐴 ∼ 𝑎𝐻𝑋 , we have CS(𝑋, 1
𝑎 𝐴) ⊂ Sing 𝑋 .

The non-singular set of integers

𝐼𝑋 = [𝑘 + 𝑙𝑋 + 3, 𝑘 + 𝑐𝑋 − 1] ∩ Z

is called the admissible set of the marked complete intersection [𝑋, 𝑜].

Remark 1.1. (i) Since 𝑋 ⊂ P(𝑋) is a complete intersection, the factoriality of the variety X follows
from Grothendieck’s theorem [21] by the condition (MC1). For that reason, Pic 𝑋 = Z𝐻𝑋 , where 𝐻𝑋 is
the class of a hyperplane section.

(ii) By (MC1), for every 𝑚 � 𝑘 + 𝑐𝑋 − 1 and a general subspace 𝑃 � 𝑜 of dimension m in P(𝑋), the
point o is the only singularity of the variety 𝑋 ∩ 𝑃.

(iii) Let P(𝑋)+ → P(𝑋) be the blow-up of the point o with the exceptional divisor E𝑋 � P𝑁 (𝑋 )−1.
The strict transform 𝑋+ ⊂ P(𝑋)+ is the result of blowing up the point o on X with the exceptional
divisor 𝐸𝑋 = 𝑋+ ∩ E𝑋 . Obviously, 𝐸𝑋 is an irreducible reduced non-degenerate complete intersection
of 𝑙𝑋 quadrics in a linear subspace of codimension (𝑘 − 𝑙𝑋 ) in E𝑋 (this follows from (MC2); see
Proposition 1.4).

Proposition 1.4. The following inequality holds:

codim(Sing 𝐸𝑋 ⊂ 𝐸𝑋 ) � 𝑐𝑋 .

Proof. See in §4 (Subsection 4.2; by the condition (MC2) the claim of the proposition follows from
Proposition 4.2, (ii)). �

Remark 1.2. Proposition 1.4 implies the estimate

codim(Sing 𝐸𝑋 ⊂ E𝑋 ) � 𝑘 + 𝑐𝑋 .

Therefore, for every 𝑚 � 𝑘 + 𝑐𝑋 and a general subspace 𝑃 � 𝑜 of dimension m in P(𝑋), the strict
transform 𝑃+ ⊂ P(𝑋)+ does not meet the set Sing 𝐸𝑋 , since 𝑃+ ∩ E𝑋 is a general linear subspace of
dimension 𝑚 − 1 � 𝑘 + 𝑐𝑋 − 1 in E𝑋 . Therefore, for 𝑚 = 𝑘 + 𝑐𝑋 an isolated, and for 𝑚 � 𝑘 + 𝑐𝑋 − 1
the unique singularity o of the variety 𝑋 ∩ 𝑃 is resolved by the blow-up of that point, and moreover, the
exceptional divisor

𝐸𝑋∩𝑃 = 𝑃+ ∩ 𝐸𝑋

of that blow-up is a non-singular complete intersection of 𝑙𝑋 quadrics in the linear subspace of codi-
mension (𝑘 − 𝑙𝑋 ) in E𝑋∩𝑃 = 𝑃+ ∩ E𝑋 . The discrepancy of that exceptional divisor is

𝑎(𝐸𝑋∩𝑃) = 𝑎(𝐸𝑋∩𝑃 , 𝑋 ∩ 𝑃) = 𝑚 − 1 − 𝑘 − 𝑙𝑋 ,

so that for 𝑚 = 𝑘 + 𝑙𝑋 + 3, we have 𝑎(𝐸𝑋∩𝑃) = 2. The meaning of the lower end of the admissible set is
in that equality.

In the following definition, we use the notations of Remarks 1.1 and 1.2. We continue to consider a
marked complete intersection [𝑋, 𝑜] of level (𝑙𝑋 , 𝑐𝑋 ).
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Definition 1.4. A triple (𝑋, 𝐷, 𝑜), where 𝐷 ∼ 𝑛(𝐷)𝐻𝑋 is an effective divisor on X, 𝑛(𝐷) � 1, is called
a working triple, if for a general subspace 𝑃 � 𝑜 of dimension 𝑘 + 𝑐𝑋 − 1 in P(𝑋), the pair(

𝑋 ∩ 𝑃,
1

𝑛(𝐷)𝐷 |𝑋∩𝑃
)

(7)

is not log-canonical at the point o.

Remark 1.3. Since the point o is the unique singularity of the variety 𝑋 ∩ 𝑃, and by (MC3) the pair (7)
is canonical outside the point o, there is a non-log-canonical singularity of that pair, the centre of which
on 𝑋 ∩ 𝑃 is precisely the point o. By inversion of adjunction, the same is true for a general subspace
𝑃 � 𝑜 of dimension 𝑚 � 𝑘 + 𝑐𝑋 − 2.

Let us introduce one more notation. For the strict transform 𝐷+ of the divisor D on 𝑋+, write

𝐷+ ∼ 𝑛(𝐷)𝐻𝑋 − 𝜈(𝐷)𝐸𝑋

(in order to simplify the notations, the pullback of the divisorial class 𝐻𝑋 on 𝑋+ is denoted by the same
symbol 𝐻𝑋 ). Respectively, for a general subspace 𝑃 � 𝑜 in P(𝑋) of dimension 𝑚 � 𝑘 + 𝑐𝑋 − 1, we have

𝐷𝑃 = 𝐷 |𝑋∩𝑃 ∼ 𝑛(𝐷)𝐻𝑋∩𝑃

and

𝐷+𝑃 ∼ 𝑛(𝐷)𝐻𝑋∩𝑃 − 𝜈(𝐷)𝐸𝑋∩𝑃 ,

where 𝐻𝑋∩𝑃 = 𝐻𝑋 |𝑋∩𝑃 is the class of a hyperplane section of the variety 𝑋 ∩ 𝑃 ⊂ 𝑃 � P𝑚.

Proposition 1.5. Assume that 𝑐𝑋 � 2𝑙𝑋 + 4. Then the inequality 𝜈(𝐷) > 𝑛(𝐷) holds.

Proof is given in §3 (Subsection 3.2).
Let us come back to the task of excluding the multi-quadratic case. Recall that 𝐹 ∈ F , so that we can

use the conditions (MQ1,2) and the statement of Theorem 1.4. We fix a point of general position 𝑜 ∈ 𝐵,
where B is an irreducible component of the maximal dimension of the closed set CS(𝐹, 1

𝑛(𝐷𝐹 )𝐷𝐹 ).

Proposition 1.6. The pair [𝐹, 𝑜] is a marked complete intersection of level (𝑙, 𝑐𝐹 ), where 𝑐𝐹 =
4𝑘 + 2𝜀(𝑘), and (𝐹, 𝐷𝐹 , 𝑜) is a working triple.

Proof is given in §3 (Subsection 3.1).
Assume now that 𝑙 � 𝑘 − 1. The symbol 𝑇𝑜𝐹 stands again for a subspace of codimension (𝑘 − 𝑙) of

the projective space P𝑀+𝑘 . Set

𝑇 = 𝐹 ∩ 𝑇𝑜𝐹.

This is subvariety of codimension (𝑘 − 𝑙) in F and a complete intersection of type 𝑑 in P(𝑇) = 𝑇𝑜𝐹.

Remark 1.4. Let us state here two well-known facts which we will use many times in the sequel: when
a quadratic form is restricted to a hyperplane, its rank either remains the same or drops by 1 or 2; when
a complete intersection in the projective space is intersected with a hyperplane, the codimension of its
singular locus either remains the same or drops by 1 or 2 (for a proof of the second claim, see [22]
or [23]).

If 𝑙 = 𝑘 , then for uniformity of notations, we set 𝑇 = 𝐹.

Proposition 1.7. The pair [𝑇, 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑇 ), where 𝑐𝑇 =
2𝑘 + 2𝜀(𝑘) + 4. There is an effective divisor 𝐷𝑇 ∼ 𝑛(𝐷𝑇 )𝐻𝑇 on T, such that (𝑇, 𝐷𝑇 , 𝑜) is a working
triple.

Proof is given in §3 (Subsection 3.4).
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Proposition 1.5 (taking into account Remark 1.4) implies that 𝜈(𝐷𝑇 ) > 𝑛(𝐷𝑇 ). Now the main stage
in the exclusion of the multi-quadratic case (and thus in the proof of Theorem 0.1) is given by the
following claim.

Proposition 1.8. There is a sequence of marked complete intersections

[𝑅0 = 𝑇, 𝑜], [𝑅1, 𝑜], . . . , [𝑅𝑎, 𝑜],

where 𝑎 � 𝜀(𝑘) and P(𝑅𝑖+1) is a hyperplane in P(𝑅𝑖), containing the point o, and of effective divisors
𝐷𝑖 ∼ 𝑛(𝐷𝑖)𝐻𝑅𝑖 on 𝑅𝑖 , 𝑛(𝐷𝑖) � 1, such that 𝐷0 = 𝐷𝑇 and

(𝑅0, 𝐷0, 𝑜), (𝑅1, 𝐷1, 𝑜), . . . , (𝑅𝑎, 𝐷𝑎, 𝑜)

are working triples, and moreover, for every 𝑖 = 0, . . . , 𝑎 − 1, the inequality

2 − 𝜈(𝐷𝑖+1)
𝑛(𝐷𝑖+1)

<
1

1 + 1
𝑘

(
2 − 𝜈(𝐷𝑖)

𝑛(𝐷𝑖)

)
holds and 𝜈(𝐷𝑎) > 3

2 𝑛(𝐷𝑎).
Proof is given in §3 (Subsection 3.5) and §5.
Now let us complete the exclusion of the multi-quadratic case. The variety 𝑅𝑎 is a section of

𝑇 = 𝐹 ∩ 𝑇𝑜𝐹 by a subspace of codimension � 𝜀(𝑘), containing the point o, and 𝐷𝑎 is an effective
divisor on 𝑅𝑎, satisfying the inequality

mult𝑜 𝐷𝑎 = 2𝑘𝜈(𝐷𝑎) >
3
2
· 2𝑘𝑛(𝐷𝑎).

This contradicts Theorem 1.4.
The contradiction completes the proof of divisorial canonicity of the variety 𝐹 ∈ F .

2. Fano-Mori fibre spaces

In this section, we prove Theorem 0.2. In Subsection 2.1, we associate with a birational map 𝜒 : 𝑉 � 𝑉 ′

a mobile linear system Σ on V and state the key Theorem 2.1 about this system. In Subsection 2.2, we
construct a fibre-wise birational modification of the fibre space 𝑉/𝑆 for the system Σ. In Subsection 2.3,
we consider a mobile algebraic family of irreducible curves C on V and use it to prove (in Subsection 2.4)
Theorem 2.1, which implies the first claim of Theorem 0.2 (that 𝜒 is fibre-wise). In Subsection 2.5, we
prove the birational rigidity of the fibre space 𝑉/𝑆.

2.1. The mobile linear system Σ

Assume that the Fano-Mori fibre space 𝜋 : 𝑉 → 𝑆 satisfies all conditions of Theorem 0.2. Fix a fibre
space 𝜋′ : 𝑉 ′ → 𝑆′ that belongs to one of the two classes: either the class of rationally connected fibre
spaces (and then we say that the rationally connected case is being considered) or the class of Mori
fibre spaces in the sense of Subsection 0.2 (and then we say that the case of a Mori fibre space is being
considered). We will study both cases simultaneously.

In the rationally connected case, let 𝑌 ′ ∈ Pic 𝑆′ be a very ample class. Set

Σ′ = | (𝜋′)∗𝑌 ′ | = | − 𝑚𝐾 ′𝑉 + (𝜋
′)∗𝑌 ′ |,

where 𝑚 = 0. This is a mobile complete linear system on 𝑉 ′ (it defines the morphism 𝜋′).
In the case of a Mori fibre space, let

Σ′ = | − 𝑚𝐾 ′𝑉 + (𝜋
′)∗𝑌 ′ |
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be a complete linear system on 𝑉 ′, where 𝑚 � 0 and 𝑌 ′ is a very ample divisorial class on 𝑆′, and
moreover, for 𝑚 � 1, the system Σ′ is very ample.

In both cases, set

Σ = (𝜒−1)∗Σ′ ⊂ | − 𝑛𝐾𝑉 + 𝜋∗𝑌 |

to be the strict transform of Σ′ on V with respect to the birational map 𝜒 : 𝑉 � 𝑉 ′. Note that if 𝑚 = 0
and 𝑛 = 0, then by construction of these linear systems, the map 𝜒 is fibre-wise.
Theorem 2.1. The following inequality holds: 𝑛 � 𝑚.
Proof. Assume the converse: 𝑛 > 𝑚. In particular, if 𝑚 = 0, then 𝜒 is not fibre-wise. Let us show that
this assumption leads to a contradiction. �

2.2. A fibre-wise birational modification of the fibre space 𝑉/𝑆

Let 𝜎𝑆 : 𝑆+ → 𝑆 be a composition of blow-ups with non-singular centres,

𝑆+ = 𝑆𝑁
𝜎𝑆,𝑁→ 𝑆𝑁−1 → . . .

𝜎𝑆,1→ 𝑆0 = 𝑆,

where 𝜎𝑆,𝑖+1 : 𝑆𝑖+1 → 𝑆𝑖 blows up a non-singular subvariety 𝑍𝑆,𝑖 ⊂ 𝑆𝑖 . Set𝑉𝑖 = 𝑉×𝑆𝑆𝑖 and 𝜋𝑖 : 𝑉𝑖 → 𝑆𝑖;
by the assumption on the stability with respect to birational modifications of the base, 𝑉𝑖/𝑆𝑖 is a Fano-
Mori fibre space. Obviously,

𝑉𝑖+1 = 𝑉𝑖 ×𝑆𝑖 𝑆𝑖+1

is the result of the blow-up 𝜎𝑖+1 : 𝑉𝑖+1 → 𝑉𝑖 of the subvariety 𝑍𝑖 = 𝜋−1
𝑖 (𝑍𝑆,𝑖) ⊂ 𝑉𝑖 . Therefore, we get

the commutative diagram

𝑉+ = 𝑉𝑁
𝜎𝑁→ . . . → 𝑉𝑖+1

𝜎𝑖+1→ 𝑉𝑖 → . . .
𝜎1→ 𝑉0 = 𝑉

↓ . . . ↓ ↓ . . . ↓
𝑆+ = 𝑆𝑁

𝜎𝑆,𝑁→ . . . → 𝑆𝑖+1
𝜎𝑆,𝑖+1→ 𝑆𝑖 → . . .

𝜎𝑆,1→ 𝑆0 = 𝑆,

where the vertical arrows 𝜋 : 𝑉𝑖 → 𝑆𝑖 are Fano-Mori fibre spaces. The symbol Σ𝑖 stands for the strict
transform of the system Σ on 𝑉𝑖 , Σ+ = Σ𝑁 . In these notations, let us consider a sequence of blow-ups
𝜎𝑆,∗ such that for every 𝑖 = 0, 1, . . . , 𝑁 − 1,

𝑍𝑖 ⊂ BsΣ𝑖 ,

and the base set of the system Σ+ contains entirely no fibre 𝜋−1
+ (𝑠+), where 𝑠+ ∈ 𝑆+ and 𝜋+ = 𝜋𝑁 . (If

this is true already for the original system Σ, then we set 𝜎𝑆 = id𝑆 , 𝑆+ = 𝑆 and 𝑉+ = 𝑉 , and there is no
need to make any blow-ups; but we will soon see that this case is impossible.)

By the assumptions on the fibre space 𝑉/𝑆, the fibre 𝜋−1
+ (𝑠+) is isomorphic to the fibre 𝐹𝑠 = 𝜋−1(𝑠)

of the original fibre space, where 𝑠 = 𝜎𝑆 (𝑠+). Let T be the set of all prime 𝜎𝑆-exceptional divisors
on 𝑆+. We get

Σ+ ⊂

�����−𝑛𝜎∗𝐾𝑉 + 𝜋∗+

(
𝜎∗𝑆𝑌 −

∑
𝑇 ∈T

𝑏𝑇𝑇

)����� =
=

�����−𝑛𝐾+ + 𝜋∗+

(
𝜎∗𝑆𝑌 +

∑
𝑇 ∈T
(𝑛𝑎𝑇 − 𝑏𝑇 )𝑇

)�����,
where 𝜎 : 𝑉+ → 𝑉 is the composition of the morphisms 𝜎𝑖 , 𝐾+ = 𝐾𝑉 + , 𝑏𝑇 � 1 and 𝑎𝑇 � 1 for all
𝑇 ∈ T , 𝑎𝑇 = 𝑎(𝑇, 𝑆) is the discrepancy of T with respect to S.
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Let 𝜑 : 𝑉 → 𝑉+ be the resolution of singularities of the composite map 𝜒+ = 𝜒 ◦𝜎 : 𝑉+ � 𝑉 ′, E the
set of prime 𝜑-exceptional divisors on 𝑉 and 𝜓 = 𝜒 ◦ 𝜎 ◦ 𝜑 : 𝑉 → 𝑉 ′ is a birational morphism.

Proposition 2.1. For a general divisor 𝐷+ ∈ Σ+, the pair (𝑉+, 1
𝑛𝐷+) is canonical.

Proof. Assume that this is not the case. Then there is an exceptional divisor 𝐸 ∈ E , satisfying the
Noether-Fano inequality

ord𝐸 𝐷+ = ord𝐸 Σ+ > 𝑛𝑎(𝐸, 𝑉+)

(we write 𝐷+, Σ+ instead of 𝜑∗𝐷+, 𝜑∗Σ+ for simplicity). Set 𝐵 = 𝜑(𝐸) ⊂ 𝑉+.
There are two options:
(1) 𝜋+(𝐵) = 𝑆+,
(2) 𝜋+(𝐵) is a proper irreducible closed subset 𝑆+.
If (1) is the case, then the fibre 𝐹 = 𝐹𝑠 of general position intersects B. The restriction

Σ+𝐹 = Σ+|𝐹 ⊂ | − 𝑛𝐾𝐹 |

is a mobile linear system, and moreover, the pair (𝐹, 1
𝑛𝐷+𝐹 ) is not canonical for 𝐷+𝐹 = 𝐷+|𝐹 . This

contradicts the condition mct(𝐹) � 1.
Therefore, (2) is the case. Let 𝑝 ∈ 𝐵 be a point of general position and 𝐹 = 𝜋−1

+ (𝜋+(𝑝)), so that
𝑝 ∈ 𝐹. Since 𝐹 ⊄ BsΣ+, the restriction 𝐷+𝐹 = 𝐷+|𝐹 is well defined (although the linear system Σ+𝐹
may have fixed components). By inversion of adjunction, the pair (𝐹, 1

𝑛𝐷+𝐹 ) is not log-canonical. This
contradicts the condition lct(𝐹) � 1. Q.E.D. for the proposition. �

Denote by the symbol Σ̃ the strict transform of the system Σ+ on 𝑉 . Obviously,

Σ̃ = 𝜓∗Σ′ = | − 𝑚𝜓∗𝐾 ′ + 𝜓∗(𝜋′)∗𝑌 ′ |, (8)

where 𝐾 ′ = 𝐾𝑉 ′ ; that is, Σ̃ is a complete linear system. We have another presentation for this linear
system:

Σ̃ =

�����𝜑∗𝐷+ −∑
𝐸 ∈E

𝑏𝐸𝐸

����� =
=

�����−𝑛𝐾 + 𝜑∗𝜋∗+

(
𝜎∗𝑆𝑌 +

∑
𝑇 ∈T
(𝑛𝑎𝑇 − 𝑏𝑇 )𝑇

)
+

∑
𝐸 ∈E
(𝑛𝑎𝐸 − 𝑏𝐸 )𝐸

�����, (9)

where 𝐾 = 𝐾𝑉 , 𝐷+ ∈ Σ+ is a general divisor and 𝑎𝐸 = 𝑎(𝐸, 𝑉+) is the discrepancy.

2.3. The mobile system of curves

Take a family of irreducible curves C ′ on 𝑉 ′, contracted by the projection 𝜋′, sweeping out a Zariski
dense subset of the variety 𝑉 ′ and not meeting the set where the birational map 𝜓−1 is not determined.
Assume that for a general pair of points 𝑝, 𝑞 in a fibre of general position of the projection 𝜋′, there is
a curve 𝐶 ′ ∈ C ′ containing the both points. In the rationally connected case, the curves of the family
C ′ are rational (the existence of such family is shown in [24, Chapter II]); in the case of a Mori fibre
space, we do not require this. For a curve 𝐶 ′ ∈ C ′, set 𝐶 = 𝜓−1 (𝐶 ′) (at every point of the curve 𝐶 ′, the
map 𝜓−1 is an isomorphism); thus, we get a family C̃ of irreducible curves on 𝑉 . Both in the rationally
connected case and the case of a Mori fibre space, the inequality

(𝐶 ′ · 𝐾 ′) < 0
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holds, so that (𝐶 · 𝐾) = (𝐶 ′ · 𝐾 ′) < 0. Furthermore,.

(𝐶 · 𝐷) = (𝐶 ′ · 𝐷 ′) = −𝑚(𝐶 ′ · 𝐾 ′) � 0,

and (𝐶 · 𝐷) = 0 if and only if 𝑚 = 0 (since obviously (𝐶 ′ · (𝜋′)∗𝑌 ′) = 0).
Let C+ = 𝜑∗C̃ be the image of the family C̃ on 𝑉+ and C = 𝜎∗C+ its image on V.

Proposition 2.2. The curves 𝐶 ∈ C are not contracted by the projection 𝜋.
Proof. Assume the converse: 𝜋(𝐶) is a point on S. By the construction of the family C ′ this means that
the map 𝜒−1 is fibre-wise: there is a rational dominant map 𝛽′ : 𝑆′ � 𝑆, such that the diagram

𝑉
𝜒−1

� 𝑉 ′

↓ ↓
𝑆

𝛽′

� 𝑆′

is commutative, and moreover, dim 𝑆′ > dim 𝑆 (otherwise, 𝛽′ is birational and then 𝜒 is fibre-wise,
contrary to our assumption). In that case, for a point 𝑠 ∈ 𝑆 of general position, the fibre 𝐹𝑠 = 𝜋−1(𝑠)
is birational to (𝜋′)−1(𝛽′)−1(𝑠). Here, dim(𝛽′)−1(𝑠) � 1 and either the fibre (𝜋′)−1(𝑠′) for a point
𝑠′ ∈ (𝛽′)−1(𝑠) of general position is rationally connected or the anti-canonical class of the variety
(𝜋′)−1(𝛽′)−1(𝑠) is 𝜋′-ample, and we get a contradiction with the condition mct(𝐹𝑠) � 1 (the fibre 𝐹𝑠 is
a birationally superrigid Fano variety). Q.E.D. for the proposition. �

For a general curve 𝐶 ∈ C, set

𝜋∗𝐶 = 𝑑𝐶𝐶,

where 𝑑𝐶 � 1. Replacing, if necessary, the family C ′ by some open subfamily, we may assume that the
integer 𝑑𝐶 does not depend on C. For the corresponding curve 𝐶+ ∈ C+, we have (𝜋+)∗𝐶+ = 𝑑𝐶𝐶

+
,

where 𝐶
+

is the strict transform of the curve 𝐶 on 𝑆+.

2.4. Proof of Theorem 2.1

Recall that we assume that 𝑛 > 𝑚. Using the two presentations (8) and (9) for the class of a divisor
𝐷 ∈ Σ̃, we get

𝑑𝐶

(
𝐶
+ ·

(
𝜎∗𝑆𝑌 +

∑
𝑇 ∈T
(𝑛𝑎𝑇 − 𝑏𝑇 )𝑇

))
+

∑
𝐸 ∈E
(𝑛𝑎𝐸 − 𝑏𝐸 ) (𝐶 · 𝐸) = (𝑛 − 𝑚) (𝐶 · 𝐾) < 0,

whence, taking into account the inequalities 𝑏𝐸 � 𝑛𝑎𝐸 for all 𝐸 ∈ E (Proposition 2.1), it follows that(
𝐶
+ ·

(
𝜎∗𝑆𝑌 +

∑
𝑇 ∈T
(𝑛𝑎𝑇 − 𝑏𝑇 )𝑇

))
< 0.

However, by the K-condition (the assumption (ii) in Theorem 0.2), the class Y is pseudo-effective, so that

(𝐶+ · 𝜎∗𝑆𝑌 ) = (𝐶 · 𝑌 ) � 0,

and (𝐶+ ·𝑇) � 0 for all 𝑇 ∈ T , so that T ≠ ∅, and for some 𝑇 ∈ T , such that (𝐶+ ·𝑇) > 0, the inequality
𝑏𝑇 > 𝑛𝑎𝑇 holds. Since 𝑎𝑇 � 1 for all 𝑇 ∈ T , we conclude that(

𝐶
+ ·

(
𝜎∗𝑆𝑌 −

∑
𝑇 ∈T

𝑏𝑇𝑇

))
< −𝑛

(
𝐶
+ ·

∑
𝑇 ∈T

𝑎𝑇𝑇

)
� −𝑛.
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For a general curve 𝐶
+
, consider the algebraic cycle of the scheme-theoretic intersection

(𝐷+ ◦ 𝜋−1
+ (𝐶

+)) =
((

𝜎∗𝐷 − 𝜋∗+

(∑
𝑇 ∈T

𝑏𝑇𝑇

))
◦ 𝜋−1
+ (𝐶

+)
)
.

The numerical class of that effective cycle is

𝑛(𝜎∗(−𝐾𝑉 ) · 𝜋−1
+ (𝐶

+)) +
(
𝐶
+ ·

(
𝜎∗𝑆𝑌 −

∑
𝑇 ∈T

𝑏𝑇𝑇

))
𝐹

(where F is the class of a fibre of the projection 𝜋+) and the class of the effective cycle 𝜎∗(𝐷+ ◦𝜋−1
+ (𝐶

+))
in the numerical Chow group is

−𝑛(𝐾𝑉 · 𝜋−1 (𝐶)) + 𝑏𝐹,

where 𝑏 < −𝑛. This contradicts the condition (iii) of Theorem 0.2. The proof of Theorem 2.1 is complete.
Therefore, in both cases (that of a rationally connected fibre space and of a Mori fibre space), the map
𝜒 is fibre-wise. The first claim of Theorem 0.2 (in the rationally connected case) is shown. It remains to
prove the birational rigidity.

2.5. Proof of birational rigidity

Starting from this moment, we assume that 𝑉 ′/𝑆′ is a Mori fibre space and the birational map 𝜒 : 𝑉 � 𝑉 ′

is fibre-wise; however, the corresponding map of the bases 𝛽 : 𝑆 � 𝑆′ is not birational: dim 𝑆 > dim 𝑆′

and the fibres 𝛽−1 (𝑠′) for 𝑠′ ∈ 𝑆′ are of positive dimension. We have to obtain a contradiction, showing
that this case is impossible.

First of all, let us consider the fibre-wise modification of the fibre space 𝑉/𝑆 (Subsection 2.2).
Now we will need a composition of blow-ups 𝜎𝑆 : 𝑆+ → 𝑆 with non-singular centres such that as in
Subsection 2.2, none of the fibres of the Fano-Mori fibre space 𝑉+/𝑆+ are contained in the base set
BsΣ+, and, in addition, 𝜎𝑆 resolves the singularities of the rational dominant map 𝛽 : 𝑆 � 𝑆′; that is,

𝛽+ = 𝛽 ◦ 𝜎𝑆 : 𝑆+ → 𝑆′

is a morphism. (So that the inclusion 𝑍𝑖 = 𝜋−1
𝑖 (𝑍𝑆,𝑖) ⊂ BsΣ𝑖 – see Subsection 2.2 – no longer takes

place for all 𝑖 = 0, . . . , 𝑁 − 1.)
The fibre 𝛽−1

+ (𝑠′) over a point 𝑠′ ∈ 𝑆′ of general position is an irreducible non-singular subvariety
of positive dimension. Set 𝐺 (𝑠′) = (𝜋′)−1(𝑠′) and let 𝐺+(𝑠′) be the strict transform of 𝐺 (𝑠′) on 𝑉+.
Obviously,

𝐺+(𝑠′) = 𝜋−1
+ (𝛽−1

+ (𝑠′))

is a union of fibres of the projection 𝜋+ over the points of the variety 𝛽−1
+ (𝑠′).

Since 𝜋′ : 𝑉 ′ → 𝑆′ is a Mori fibre space, we have the equality 𝜌(𝑉 ′) = 𝜌(𝑆′) + 1. Let E ′ be the
set of all 𝜓-exceptional divisors 𝐸 ′ ∈ E ′, satisfying the equality 𝜋′(𝜓(𝐸 ′)) = 𝑆′. Furthermore, let
Z ⊂ Pic𝑉 ⊗ Q be the subspace, generated by the subspace 𝜓∗(𝜋′)∗ Pic 𝑆′ ⊗ Q and the classes of all
𝜓-exceptional divisors on 𝑉 , the images of which on 𝑉 ′ do not cover 𝑆′. Then the equality

Pic𝑉 ⊗ Q = Q𝐾 ⊕
(⊕
𝐸′ ∈E′

Q𝐸 ′ ⊕ Z
)
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holds; in particular, the subspace in brackets is a hyperplane in Pic𝑉 ⊗ Q. Writing down the class 𝐾
with respect to the morphisms 𝜑 and 𝜓, we get the equality

𝜑∗𝐾+ +
∑
𝐸 ∈E

𝑎+𝐸𝐸 = 𝜓∗𝐾 ′ +
∑
𝐸′ ∈E′

𝑎′(𝐸 ′)𝐸 ′ + 𝑍1, (10)

where 𝑍1 ∈ Z is some effective class, 𝑎+𝐸 = 𝑎(𝐸, 𝑉+) for 𝜑-exceptional divisors 𝐸 ∈ E and 𝑎′(𝐸 ′) =
𝑎(𝐸 ′, 𝑉 ′) for 𝜓-exceptional divisors 𝐸 ′ ∈ E ′, covering 𝑆′. Here, all 𝑎+𝐸 � 1 and 𝑎′(𝐸 ′) > 0. Using
the 𝜓-presentation (8) and the 𝜑-presentation (9) of the divisorial class 𝐷 and expressing 𝐾 ′ from the
formula (10), we get the following equality in Pic𝑉 ⊗ Q:

(𝑚 − 𝑛)𝜑∗𝐾+ + 𝜑∗𝜋∗+𝑌+ +
∑
𝐸 ∈E
(𝑚𝑎+𝐸 − 𝑏𝐸 )𝐸 = 𝑚

∑
𝐸′ ∈E′

𝑎′(𝐸 ′)𝐸 ′ + 𝑍2, (11)

where 𝑌+ = 𝜎∗𝑆𝑌 +
∑
𝑇 ∈T (𝑛𝑎𝑇 − 𝑏𝑇 )𝑇 and 𝑍2 = 𝑚𝑍1 + 𝜓∗(𝜋′)∗𝑌 ′ ∈ Z is an effective class. Applying

to both sides of (11) 𝜑∗ and restricting onto a fibre of general position of the projection 𝜋+, we get that

(𝑚 − 𝑛)𝐾+|𝜋−1
+ (𝑠+)

is an effective class. Since 𝑚 � 𝑛 and the fibre 𝜋−1
+ (𝑠+) is a Fano variety, we conclude that 𝑚 = 𝑛 and

(11) turns into

𝜑∗𝜋∗+𝑌+ +
∑
𝐸 ∈E
(𝑛𝑎+𝐸 − 𝑏𝐸 )𝐸 = 𝑛

∑
𝐸′ ∈E′

𝑎′(𝐸 ′)𝐸 ′ + 𝑍2. (12)

By Proposition 2.1, we have 𝑏𝐸 � 𝑛𝑎+𝐸 for all 𝐸 ∈ E . Again, we apply 𝜑∗ and get that the class 𝑌+ is
effective on 𝑆+.

Now let us consider the defined above fibre 𝐺 = 𝐺 (𝑠′) of general position of the morphism 𝜋′

and its strict transforms 𝐺 on 𝑉 and 𝐺+ on 𝑉+ (the symbol 𝑠′ for simplicity of notations is omitted).
Obviously, for every 𝑍 ∈ Z , we have 𝑍 |𝐺 = 0. Furthermore, for any linear combination with non-
negative coefficients, ( ∑

𝐸′ ∈E′
𝑏′𝐸′𝐸

′

)�����
𝐺

is a fixed divisor on 𝐺. Now let Δ be a very ample divisor on 𝑆+. Then the restriction 𝜑∗𝜋∗+Δ |𝐺 is mobile
(recall that 𝛽−1

+ (𝑠′) is a variety of positive dimension, so that Δ |𝛽−1
+ (𝑠′) is a mobile class). Therefore,

𝜑∗𝜋∗+Δ ∉
⊕
𝐸′ ∈E′

Q𝐸 ′ ⊕ Z ,

whence we conclude that

Pic𝑉 ⊗ Q = Q[𝜑∗𝜋∗+Δ] ⊕
(⊕
𝐸′ ∈E′

Q𝐸 ′ ⊕ Z
)
.

However, this cannot be the case. Let 𝐹+ ⊂ 𝐺+ be a fibre of general position of the morphism 𝜋+ and
𝐹 ⊂ 𝐺 its strict transform on 𝑉 . Restricting (12) onto 𝐹, we obtain the equality∑

𝐸 ∈E
(𝑛𝑎+𝐸 − 𝑏𝐸 )𝐸 |𝐹 = 𝑛

∑
𝐸′ ∈E′

𝑎′(𝐸 ′)𝐸 ′|𝐹 ,

where on the right-hand side, it is a linear combination of all divisors 𝐸 ′ |𝐹 , 𝐸 ′ ∈ E ′, with positive
coefficients (it is here that we use the assumption that the singularities of the variety 𝑉 ′ are terminal;
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see Subsection 0.2), and on the left-hand side, it is a linear combination of 𝜑-exceptional divisors 𝐸 |𝐹 ,
𝐸 ∈ E , with non-negative coefficients. Since by construction 𝜋∗+Δ |𝐹+ = 0, we have 𝜑∗𝜋∗+Δ |𝐹 = 0,
whence it follows that the restriction of every divisorial class in Pic𝑉 ⊗ Q onto 𝐹 is fixed (is a linear
combination of 𝜑-exceptional divisors 𝐸 |𝐹 , 𝐸 ∈ E), which is impossible. This contradiction completes
the proof of Theorem 0.2.

3. Hyperplane sections

This section is an immediate follow up of §1: we develop the technique of working triples and consider
its first applications.

3.1. The working triple (𝐹, 𝐷𝐹 , 𝑜)

Let us prove Proposition 1.6. Proposition 1.2, shown in Subsection 1.5, implies the condition (MC3).
Theorem 1.1 gives the condition (MC1) for 𝑐𝐹 = 4𝑘 + 2𝜀(𝑘) (the inequality 𝑐𝐹 � 𝑙 + 4 is satisfied in
the obvious way, since 𝑙 � 𝑘). Finally, the condition (MQ1) gives precisely (MC2). Therefore, [𝐹, 𝑜] is
indeed a marked complete intersection of level (𝑙, 𝑐𝐹 ).

Consider a general subspace 𝑃♯ � 𝑜 of dimension 𝑘 + 𝑐𝐹 in P𝑀+𝑘 . The pair(
𝐹 ∩ 𝑃♯,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃♯

)
is not canonical. By (MC1), the singularities of the variety 𝐹 ∩ 𝑃♯ are zero-dimensional, and moreover,
𝑜 ∈ Sing 𝐹 ∩ 𝑃♯ and

CS
(
𝐹 ∩ 𝑃♯,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃♯

)
⊂ Sing(𝐹 ∩ 𝑃♯),

and the point o is an (isolated) centre of some non-canonical singularity of that pair. For a general
subspace 𝑃 � 𝑜 of dimension 𝑘 + 𝑐𝐹 − 1, take a general hyperplane in 𝑃♯, containing the point o. By
inversion of adjunction, we have the equalities

{𝑜} = LCS
(
𝐹 ∩ 𝑃,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃
)
= CS

(
𝐹 ∩ 𝑃,

1
𝑛(𝐷𝐹 )

𝐷𝐹 |𝐹∩𝑃
)
,

and this is precisely (7). Q.E.D. for Proposition 1.6.
As we explained in Subsection 1.7, from now, our work is constructing a certain special sequence

of working triples. This sequence starts with the working triple (𝐹, 𝐷𝐹 , 𝑜). In order to construct the
sequence, we will need certain facts about working triples.

3.2. Multiplicity at the marked point

Let us prove Proposition 1.5. We use the notations of Subsection 1.7 and work with a working triple
(𝑋, 𝐷, 𝑜), where [𝑋, 𝑜] is a marked complete intersection. Assume that 𝜈(𝐷) � 2𝑛(𝐷) (otherwise,
there is nothing to prove).

Since for a general subspace 𝑃 � 𝑜 of dimension 𝑚 ∈ 𝐼𝑋 , the inequality 𝑎(𝐸𝑋∩𝑃) � 2 holds (see
Remark 1.2), the pair (

(𝑋 ∩ 𝑃)+, 1
𝑛(𝐷)𝐷

+
𝑃

)
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is not log-canonical, and moreover,

LCS
(
(𝑋 ∩ 𝑃)+, 1

𝑛(𝐷)𝐷
+
𝑃

)
⊂ 𝐸𝑋∩𝑃 .

Let 𝐵(𝑃) ⊂ 𝐸𝑋∩𝑃 be the centre of some non-log-canonical singularity of that pair. Then the inequality

mult𝐵 (𝑃) 𝐷+𝑃 > 𝑛(𝐷)

holds, and the more so,

mult𝐵 (𝑃) 𝐷+𝑃 |𝐸𝑋∩𝑃 > 𝑛(𝐷).

Considering a general subspace 𝑃∗ � 𝑜 of the minimal admissible dimension 𝑘 + 𝑙𝑋 + 3 in 𝐼𝑋 as a
general subspace of codimension � 𝑙𝑋 in a general subspace 𝑃 � 𝑜 of the maximal admissible dimension
𝑘 + 𝑐𝑋 − 1 in 𝐼𝑋 (recall that by assumption 𝑐𝑋 � 2𝑙𝑋 + 4), we see that the centre 𝐵(𝑃) of some non-
log-canonical singularity is of dimension � 𝑙𝑋 . However, 𝐸𝑋∩𝑃 is a non-singular complete intersection
of 𝑙𝑋 quadrics in the projective space of dimension 𝑙𝑋 + 𝑐𝑋 − 2, and the divisor 𝐷+𝑃 |𝐸𝑋∩𝑃 is cut out
on 𝐸𝑋∩𝑃 by a hypersurface of degree 𝜈(𝐷) in that projective space. Therefore, (for example, by [17,
Proposition 3.6]), the inequality

𝜈(𝐷) � mult𝐵 (𝑃) 𝐷+𝑃 |𝐸𝑋∩𝑃

holds. Therefore, 𝜈(𝐷) > 𝑛(𝐷). Q.E.D. for Proposition 1.5.

3.3. Transversal hyperplane sections

We still work with an arbitrary working triple (𝑋, 𝐷, 𝑜), where [𝑋, 𝑜] is a marked complete intersection
of level (𝑙𝑋 , 𝑐𝑋 ).

Proposition 3.1. Let 𝑅 � 𝑜 be the section of the variety X by a hyperplane P(𝑅) ⊂ P(𝑋), which is not
tangent to X at the point o. Then 𝐷 ≠ 𝑏𝑅 for 𝑏 � 1. Moreover, if D contains R as a component – that is,

𝐷 = 𝐷∗ + 𝑏𝑅,

where 𝑏 � 1 – then (𝑋, 𝐷∗, 𝑜) is a working triple.

Proof. If 𝑐𝑋 � 2𝑙𝑋 + 4, then the first claim (that D is not a multiple of R) follows immediately from
Proposition 1.5: indeed, the hyperplane P(𝑅) is not tangent to X at the point o; that is, for the strict
transform 𝑅+ on the blow-up of that point, we have

𝑅+ ∼ 𝐻𝑋 − 𝐸𝑋 ,

so that the equality 𝐷 = 𝑏𝑅 implies that 𝑛(𝐷) = 𝑏 = 𝜈(𝐷), which contradicts Proposition 1.5. However,
we will show now that the additional assumptions for the parameters 𝑙𝑋 and 𝑐𝑋 are not needed.

By Remark 1.4, the condition (MC1) for X implies the inequality

codim(Sing 𝑅 ⊂ 𝑅) � 𝑐𝑋 − 2. (13)

Since the hyperplane P(𝑅) is not tangent to X at the point o, this point is a multi-quadratic singularity
of the variety R of type 2𝑙𝑋 , the rank of which (by Remark 1.4 and the condition (MC2)) satisfies the
inequality

rk(𝑜 ∈ 𝑅) � 2𝑙𝑋 + 𝑐𝑋 − 3.
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Consider a general linear subspace 𝑃 � 𝑜 in P(𝑋) of dimension 𝑘 +𝑐𝑋 −2. That dimension, generally
speaking, does not belong to 𝐼𝑋 , and only the inequality

𝑎(𝐸𝑋∩𝑃) � 1

holds. The variety 𝑋 ∩ 𝑃 has a unique singularity, the point o, and its strict transform (𝑋 ∩ 𝑃)+ and the
exceptional divisor 𝐸𝑋∩𝑃 are non-singular.

The intersection 𝑃∩P(𝑅) is a general linear subspace of dimension 𝑘 +𝑐𝑋 −3 in P(𝑅), containing the
point o. For that reason, 𝑅∩𝑃 has a unique singularity, the point o, and moreover, the exceptional divisor

𝐸𝑅∩𝑃 = (𝑅 ∩ 𝑃)+ ∩ E𝑋 = 𝑅+ ∩ 𝐸𝑋∩𝑃

is non-singular, and the map (𝑅 ∩ 𝑃)+ → 𝑅 ∩ 𝑃 is the blow-up of the point o on 𝑅 ∩ 𝑃, which resolves
the singularities of that variety. From here, taking into account that

𝜈(𝑅) = 1 � 𝑎(𝐸𝑋∩𝑃),

it follows that the pair (𝑋 ∩ 𝑃, 𝑅 ∩ 𝑃) is canonical. By inversion of adjunction, we get that for every
𝑚 ∈ 𝐼𝑋 and a general subspace 𝑃♯ � 𝑜 of dimension m, the pair (𝑋∩𝑃♯, 𝑅∩𝑃♯) is canonical. Therefore,
𝐷 ≠ 𝑏𝑅, 𝑏 � 1, and the first claim of the proposition is shown.

Assume now that 𝐷 = 𝐷∗ + 𝑏𝑅, where 𝑏 � 1. Then for a general subspace 𝑃 � 𝑜 of dimension
𝑘 + 𝑐𝑋 − 1 in P(𝑋), the pair (𝑋 ∩ 𝑃, 1

𝑛(𝐷) 𝐷𝑃) is not log canonical at the point o. As we saw above, the
pair (𝑋 ∩ 𝑃, 𝑅𝑃) is log-canonical (and even canonical). The condition of being log-canonical is linear,
so we conclude that the pair (

𝑋 ∩ 𝑃,
1

𝑛(𝐷∗)𝐷
∗ |𝑋∩𝑃

)
is not log-canonical at the point o. Therefore, (𝑋, 𝐷∗, 𝑜) is a working triple. Q.E.D. for the
proposition. �

Theorem 3.1 (on the transversal hyperplane section). Let [𝑋, 𝑜] be a marked complete intersection of
level (𝑙𝑋 = 𝑘, 𝑐𝑋 ), where 𝑐𝑋 � 𝑘 + 6, and (𝑋, 𝐷, 𝑜) a working triple. Let 𝑅 � 𝑜 be a hyperplane
section, which is not a component of the divisor D. Assume that the inequality ct(𝑅\Sing 𝑅) � 1 holds.
Then (𝑅, (𝐷 ◦𝑅), 𝑜) is a working triple on the marked complete intersection [𝑅, 𝑜] of level (𝑙𝑅 = 𝑘, 𝑐𝑅),
where 𝑐𝑅 = 𝑐𝑋 − 2.

Proof. First of all, let us check that [𝑅, 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑅). The
inequality 𝑐𝑅 � 𝑘 + 4 holds by assumption. Furthermore,

codim(Sing 𝑅 ⊂ 𝑅) � 𝑐𝑋 − 2 = 𝑐𝑅,

so that the condition (MC1) is satisfied. Furthermore, the point 𝑜 ∈ 𝑅 is a multi-quadratic singularity,
the rank of which satisfies the inequality

rk(𝑜 ∈ 𝑅) � rk(𝑜 ∈ 𝑋) − 2 � 2𝑘 + 𝑐𝑅 − 1,

so that the condition (MC2) holds. The condition (MC3) holds by assumption. The bound for the
codimension of the singular set Sing 𝑅 guarantees that the complete intersection 𝑅 ⊂ P(𝑅) is irreducible,
reduced and factorial. Therefore, [𝑅, 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑅). Set

𝐼𝑅 = [2𝑘 + 3, 𝑘 + 𝑐𝑅 − 1] .
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Obviously, (𝐷 ◦ 𝑅) ∼ 𝑛(𝐷 ◦ 𝑅)𝐻𝑅 = 𝑛(𝐷)𝐻𝑅, where 𝐻𝑅 is the class of a hyperplane section of R.
It remains to check that for a general subspace 𝑃 � 𝑜 of dimension 𝑘 + 𝑐𝑅 − 1 in P(𝑅), the pair(

𝑅 ∩ 𝑃,
1

𝑛(𝐷 ◦ 𝑅) (𝐷 ◦ 𝑅) |𝑅∩𝑃
)

(14)

is not log-canonical at the point o. In order to do this, we present P as the intersection

𝑃 = 𝑃♯ ∩ P(𝑅),

where 𝑃♯ � 𝑜 is a general subspace of dimension

𝑘 + 𝑐𝑅 = 𝑘 + 𝑐𝑋 − 2

in P(𝑋). As 𝑘 +𝑐𝑅 ∈ 𝐼𝑋 , the point o is the only singularity of the variety 𝑋∩𝑃♯ (and the only singularity
of the variety 𝑅 ∩ 𝑃), and

{𝑜} = LCS
(
𝑋 ∩ 𝑃♯,

1
𝑛(𝐷)𝐷 |𝑋∩𝑃♯

)
.

The variety 𝑅 ∩ 𝑃 is the section of the variety 𝑋 ∩ 𝑃♯ by the hyperplane 𝑃 = 𝑃♯ ∩ P(𝑅), containing
the point o, so that by inversion of adjunction the pair (14) is not log-canonical. At the same time, it is
canonical outside the point o since the subspace 𝑃 ⊂ P(𝑅) is generic, the non-singular part 𝑅\Sing 𝑅
is divisorially canonical and the equality {𝑜} = Sing(𝑅 ∩ 𝑃) holds. Therefore, the pair (14) is not
log-canonical precisely at the point o, which completes the proof of Theorem 3.1. �

3.4. Tangent hyperplane sections

Now let us consider a marked complete intersection [𝑋, 𝑜] of level (𝑙𝑋 , 𝑐𝑋 ), where 𝑙𝑋 � 𝑘 − 1. Let R
be the section of the variety X by a hyperplane P(𝑅) ⊂ P(𝑋), which is tangent to X at the point o. By
the symbol P(𝑅)+, denote the strict transform of the hyperplane P(𝑅) on P(𝑋)+ and set

E𝑅 = P(𝑅)+ ∩ E𝑋 .

Obviously, E𝑅 � P𝑁 (𝑋 )−2 is the exceptional divisor of the blow-up of the point o on the hyperplane
P(𝑅). Set also 𝐸𝑅 = 𝑅+ ∩ E𝑋 . Obviously, 𝐸𝑅 ⊂ E𝑅, and

codim(𝐸𝑅 ⊂ E𝑅) = 𝑘.

Proposition 3.2. Assume that 𝑐𝑋 � 𝑙𝑋 + 5 and the point 𝑜 ∈ 𝑅 is a multi-quadratic singularity of type
2𝑙𝑋+1, and moreover, the inequality

rk(𝑜 ∈ 𝑅) � 2𝑙𝑋 + 𝑐𝑋 − 2

holds. Then 𝐷 ≠ 𝑏𝑅 for 𝑏 � 1. Moreover, if the divisor D contains R as a component – that is,

𝐷 = 𝐷∗ + 𝑏𝑅,

where 𝑏 � 1 – then (𝑋, 𝐷∗, 𝑜) is a working triple.
Proof is completely similar to the proof of Proposition 3.1, but we give it in full details because

there are some small points where the two arguments are different. The inequality (13) holds in this
case again. Let us use the additional assumption about the singularity 𝑜 ∈ 𝑅. Consider a general linear
subspace 𝑃 � 𝑜 in P(𝑋) of dimension 𝑘 + 𝑙𝑋 + 3 (it is the minimal admissible dimension). We get the
equality 𝑎(𝐸𝑋∩𝑃) = 2. Obviously,

𝑅+ ∼ 𝐻𝑋 − 2𝐸𝑋
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and, respectively, on (𝑋 ∩ 𝑃)+, we have

(𝑅 ∩ 𝑃)+ ∼ 𝐻𝑋∩𝑃 − 2𝐸𝑋∩𝑃 .

Arguing as in the transversal case, we note that the intersection 𝑃 ∩ P(𝑅) is a general subspace of
dimension 𝑘 + 𝑙𝑋 + 2 in P(𝑅). Taking into account that by the inequality (13), the inequality

codim(Sing 𝑅 ⊂ P(𝑅)) � 𝑘 + 𝑐𝑋 − 2

holds, and that by assumption 𝑐𝑋 � 𝑙𝑋 + 5, we see that 𝑅 ∩ 𝑃 has a unique singularity, the point o.
Furthermore, by the assumption about the rank of the singular point 𝑜 ∈ 𝑅, we get the inequality

codim(Sing 𝐸𝑅 ⊂ 𝐸𝑅) � 𝑐𝑋 − 3 � 𝑙𝑋 + 2,

so that

codim(Sing 𝐸𝑅 ⊂ E𝑅) � 𝑘 + 𝑙𝑋 + 2.

The exceptional divisor 𝐸𝑅∩𝑃 is the section of the subvariety 𝐸𝑅 ⊂ E𝑅 by a general linear subspace of
dimension 𝑘 + 𝑙𝑋 + 1, whence we conclude that the variety 𝐸𝑅∩𝑃 is non-singular. Thus, we have shown
that the singularity 𝑜 ∈ 𝑅 ∩ 𝑃 is resolved by one blow-up. Therefore, the pair

((𝑋 ∩ 𝑃)+, (𝑅 ∩ 𝑃)+)

is canonical, so that the pair

(𝑋 ∩ 𝑃, 𝑅 ∩ 𝑃)

is canonical, too. We have shown that 𝐷 ≠ 𝑏𝑅 for 𝑏 � 1.
By inversion of adjunction for every 𝑚 ∈ 𝐼𝑋 and a general subspace 𝑃♯ � 𝑜 of dimension m, the pair

(𝑋 ∩ 𝑃♯, 𝑅 ∩ 𝑃♯) is canonical (recall that 𝑛(𝑅) = 1). Repeating the arguments given in the transversal
case (the proof of Proposition 3.1) word for word, we complete the proof of Proposition 3.2.
Remark 3.1. If for 𝑙𝑋 � 𝑘 − 1 the intersection 𝑋 ∩𝑇𝑜𝑋 has the point o as a multi-quadratic singularity
of type 2𝑘 , the rank of which satisfies the inequality

rk(𝑜 ∈ 𝑋 ∩ 𝑇𝑜𝑋) � 2𝑙𝑋 + 𝑐𝑋 − 2,

the assumption about the rank rk(𝑜 ∈ 𝑅) in the statement of Proposition 3.2 holds automatically for
every tangent hyperplane at the point o.
Theorem 3.2 (on the tangent hyperplane section). Let [𝑋, 𝑜] be a marked complete intersection of level
(𝑙𝑋 , 𝑐𝑋 ), where 2 � 𝑙𝑋 � 𝑘 − 1 and 𝑐𝑋 � 𝑙𝑋 + 7, and (𝑋, 𝐷, 𝑜) a working triple. Let R be the section
of X by a hyperplane which is tangent to X at the point o, and assume that R is not a component of the
divisor D. Assume that the point 𝑜 ∈ 𝑅 is a multi-quadratic singularity of type 2𝑙𝑅 , where 𝑙𝑅 = 𝑙𝑋 + 1,
the rank of which satisfies the inequality

rk(𝑜 ∈ 𝑅) � 2𝑙𝑅 + 𝑐𝑅 − 1 = 2𝑙𝑋 + 𝑐𝑋 − 1,

where 𝑐𝑅 = 𝑐𝑋 − 2, and also that the inequality ct(𝑅\Sing 𝑅) � 1 holds. Then (𝑅, (𝐷 ◦ 𝑅), 𝑜) is a
working triple on the marked complete intersection [𝑅, 𝑜] of level (𝑙𝑅, 𝑐𝑅).

Proof is similar to the transversal case (Theorem 3.1), and we just emphasize the necessary modifi-
cations. The fact that [𝑅, 𝑜] is a marked complete intersection of level (𝑙𝑅, 𝑐𝑅) is checked in the tangent
case even easier than in the transversal one, because the assumption about the singularity 𝑜 ∈ 𝑅 is
among the assumptions of the theorem.

A general subspace 𝑃 � 𝑜 of dimension 𝑘 + 𝑐𝑅 − 1 = 𝑘 + 𝑐𝑋 − 3 in P(𝑅) is again presented as the
intersection 𝑃 = 𝑃♯ ∩ P(𝑅), where 𝑃♯ � 𝑜 is a general subspace of dimension 𝑘 + 𝑐𝑅 ∈ 𝐼𝑋 in P(𝑋),
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and now, repeating the arguments in the transversal case and using inversion of adjunction, we get that
(𝑅, (𝐷 ◦ 𝑅), 𝑜) is a working triple. Q.E.D. for the theorem.

Proof of Proposition 1.7. We assume that 𝑙 � 𝑘 −1. Recall that the symbol T stands for the intersection
𝐹 ∩ 𝑇𝑜𝐹; this is a subvariety of codimension (𝑘 − 𝑙) in F. Let us construct a sequence of subvarieties

𝑇0 = 𝐹 ⊃ 𝑇1 ⊃ · · · ⊃ 𝑇𝑘−𝑙 = 𝑇,

where 𝑇𝑖+1 is the section of 𝑇𝑖 � 𝑜 by some hyperplane P(𝑇𝑖+1) = 〈𝑇𝑖+1〉 � 𝑜, which is tangent to 𝑇𝑖 at
the point o. Theorem 1.1 implies that the inequality

𝑐𝐹 � 𝑙 + 3(𝑘 − 𝑙) + 4

holds (the inequality of Theorem 1.1 for the codimension 𝑐𝐹 is much stronger, but for the clarity of
exposition, we give the weakest estimate that is sufficient for the proof of Proposition 1.7; this remark
also applies to the estimate of the rank of the multi-quadratic singularity 𝑜 ∈ 𝑇 below). Furthermore,
the condition (MQ2) implies that 𝑜 ∈ 𝑇 is a multi-quadratic singularity of type 2𝑘 , and moreover, the
inequality

rk(𝑜 ∈ 𝑇) � 2𝑘 + 𝑐𝐹 − 1 (15)

holds. Finally, by Theorem 1.2 for every hyperplane section W of every subvariety 𝑇𝑖 , 𝑖 = 0, 1, . . . , 𝑘 − 𝑙,
every non-singular point 𝑝 ∈ 𝑊 and every prime divisor Y on W the inequality

mult𝑝
deg

𝑌 �
2

deg 𝐹
(16)

holds. Then for all 𝑖 = 0, 1, . . . , 𝑘 − 𝑙, the pair [𝑇𝑖 , 𝑜] is a marked complete intersection of level

(𝑙𝑖 = 𝑙 + 𝑖, 𝑐𝑖 = 𝑐𝐹 − 2𝑖).

Indeed, the inequality 𝑐𝑖 � 𝑙𝑖 + 4 is true by the definition of the numbers 𝑙𝑖 , 𝑐𝑖 , the condition (MC1)
follows from Remark 1.4, the point 𝑜 ∈ 𝑇𝑖 by construction is a multi-quadratic singularity of type 2𝑙+1,
and moreover, by (15), we have

rk(𝑜 ∈ 𝑇𝑖) � 2𝑙 + 𝑐𝐹 − 1 = 2𝑙𝑖 + 𝑐𝑖 − 1,

and, finally, repeating the proof of Proposition 1.1 and the arguments of Subsection 1.5 word for word,
we get that by (16), the condition (MC3) holds. Therefore, [𝑇, 𝑜] is a marked complete intersection of
level (𝑘, 𝑐𝑘−𝑙), where 𝑐𝑘−𝑙 = 𝑐𝐹 − 2(𝑘 − 𝑙) � 𝑘 + 4. Recall (Proposition 1.6) that 𝑐𝐹 = 4𝑘 + 2𝜀(𝑘).
Since 𝑙 � 2, the inequality

𝑐𝑘−𝑙 � 𝑐𝑇 = 2𝑘 + 2𝜀(𝑘) + 4

holds, so that [𝑇, 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑇 ), as we claimed. �

It remains to construct the working triple (𝑇, 𝐷𝑇 , 𝑜). We will construct a sequence of working triples
(𝑇𝑖 , 𝐷𝑖 , 𝑜), where 𝑖 = 0, 1, . . . , 𝑘 − 𝑙 and 𝐷0 = 𝐷𝐹 . Assume that (𝑇𝑖 , 𝐷𝑖 , 𝑜) is already constructed and
𝑖 � 𝑘 − 𝑙 − 1. Let us check that all assumptions that allow us to apply Proposition 3.2 are satisfied.

Indeed, the fact that 𝑖 � 𝑘 − 𝑙 − 1 implies the inequality 𝑐𝑖 � 𝑙𝑖 + 7. The point 𝑜 ∈ 𝑇𝑖+1 is a multi-
quadratic singularity of type 2𝑙𝑖+1, the rank of which satisfies the inequality

rk(𝑜 ∈ 𝑇𝑖+1) � 2𝑙𝑖+1 + 𝑐𝑖+1 − 1 = 2𝑙𝑖 + 𝑐𝑖 − 1

(see above). Applying Proposition 3.2, we remove 𝑇𝑖+1 from the effective divisor 𝐷𝑖 (if it is necessary)
and obtain the working triple (𝑇𝑖 , 𝐷∗𝑖 , 𝑜), where the effective divisor 𝐷∗𝑖 does not contain 𝑇𝑖+1 as a
component.
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It is easy to see that we have all assumptions of Theorem 3.2. Set

𝐷𝑖+1 = (𝐷∗𝑖 ◦ 𝑇𝑖+1).

Now (𝑇𝑖+1, 𝐷𝑖+1, 𝑜) is a working triple. Proof of Proposition 1.7 is complete.

3.5. Plan of the proof of Proposition 1.8

Recall that by the condition (MQ2), the inequality

rk(𝑜 ∈ 𝑇) � 10𝑘2 + 8𝑘 + 2𝜀(𝑘) + 5

holds. The pair [𝑇, 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑇 ), where 𝑐𝑇 = 2𝑘 +2𝜀(𝑘) +4. Let

𝑅0 = 𝑇, 𝑅1, . . . , 𝑅𝑎,

where 𝑎 � 𝜀(𝑘), be an arbitrary sequence of subvarieties in T, where 𝑅𝑖+1 is the section of 𝑅𝑖 by the
hyperplane P(𝑅𝑖+1) in P(𝑅𝑖), containing the point o. Set 𝑐𝑖 = 𝑐𝑇 − 2𝑖, where 𝑖 = 0, 1, . . . , 𝑎.
Proposition 3.3. The pair [𝑅𝑖 , 𝑜] is a marked complete intersection of level (𝑘, 𝑐𝑖).
Proof. Since 𝑎 � 𝜀(𝑘), the inequality 𝑐𝑖 � 𝑘 + 4 holds in an obvious way (in fact, 𝑐𝑖 � 2𝑘 + 4).
The condition (MC1) holds by Remark 1.4. The condition (MC3) is obtained by repeating the proof of
Proposition 1.1 and the arguments of Subsection 1.5 word for word, taking into account Theorem 1.2.
Finally, again by Remark 1.4, the inequality

10𝑘2 + 8𝑘 + 2𝜀(𝑘) + 4 � 2𝑘 + 𝑐𝑖 + 2𝑖 − 1

implies the condition (MC2). Q.E.D. for the proposition. �

Now let us construct for every 𝑖 = 0, 1, . . . , 𝑎 an effective divisor 𝐷𝑖 on 𝑅𝑖 in the same way as
we did it in Subsection 3.4 in the proof of Proposition 1.7, applying instead of Proposition 3.2, its
‘transversal’ analog, Proposition 3.1, and Theorem 3.1 instead of Theorem 3.2. More precisely, if
the effective divisor 𝐷𝑖 , where 𝑖 � 𝑎 − 1, is already constructed, we remove from this divisor all
components that are hyperplane sections (if there are such components), and obtain an effective divisor
𝐷∗𝑖 that does not contain hyperplane sections as components, and such that (𝑅𝑖 , 𝐷∗𝑖 , 𝑜) is a working
triple (Proposition 3.1).
Proposition 3.4. The following inequality holds:

𝜈(𝐷∗𝑖 )
𝑛(𝐷∗𝑖 )

�
𝜈(𝐷𝑖)
𝑛(𝐷𝑖)

.

Proof. It is sufficient to consider the case when 𝐷∗𝑖 is obtained from 𝐷𝑖 by removing one hyperplane
section 𝑍 � 𝑜. Write down

𝐷𝑖 = 𝐷∗𝑖 + 𝑏𝑍,

where 𝑏 � 1. Since 𝑐𝑖 � 2𝑘 + 4, we can apply Proposition 1.5: 𝜈(𝐷𝑖) > 𝑛(𝐷𝑖). However, 𝜈(𝑍) =
𝑛(𝑍) = 1. Set 𝜈(𝐷𝑖) = 𝛼𝑛(𝐷𝑖), where 𝛼 > 1. We get

𝜈(𝐷∗𝑖 )
𝑛(𝐷∗𝑖 )

=
𝛼𝑛(𝐷∗𝑖 ) + (𝛼 − 1)𝑏

𝑛(𝐷∗𝑖 )
> 𝛼,

which proves the proposition. Q.E.D. �

(If we remove from 𝐷𝑖 , a hyperplane section that does not contain the point o, the claim of
Proposition 3.4 is trivial.)
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Now we apply Theorem 3.1, setting 𝐷𝑖+1 = (𝐷∗𝑖 ◦𝑅𝑖+1). This cycle of the scheme-theoretic intersection
is well defined as an effective divisor on 𝑅𝑖+1, and moreover, (𝑅𝑖+1, 𝐷𝑖+1, 𝑜) is a working triple and

𝜈(𝐷𝑖+1)
𝑛(𝐷𝑖+1)

�
𝜈(𝐷∗𝑖 )
𝑛(𝐷∗𝑖 )

�
𝜈(𝐷𝑖)
𝑛(𝐷𝑖)

.

We emphasize that 𝑅1, . . . , 𝑅𝑎 is an arbitrary sequence of consecutive hyperplane sections. By
Remark 1.4, for all 𝑖 = 0, 1, . . . , 𝑎, the inequality 𝑐𝑖 � 2𝑘 + 4 holds, and the rank of the multi-quadratic
singularity 𝑜 ∈ 𝑅𝑖 of type 2𝑘 is at least 10𝑘2 + 8𝑘 + 5. By Theorem 1.4 and Proposition 1.5, we have the
inequalities

𝑛(𝐷𝑖) < 𝜈(𝐷𝑖) �
3
2

𝑛(𝐷𝑖).

Therefore, at every step of our construction, the assumptions of the following claim are satisfied.
Theorem 3.3 (on the special hyperplane section). Let [𝑋, 𝑜] be a marked complete intersection of level
(𝑘, 𝑐𝑋 ), where 𝑐𝑋 � 2𝑘 + 4 and the inequality

rk(𝑜 ∈ 𝑋) � 10𝑘2 + 8𝑘 + 5

holds. Let (𝑋, 𝐷, 𝑜) be a working triple, where the effective divisor D does not contain hyperplane
sections and satisfies the inequalities

𝑛(𝐷) < 𝜈(𝐷) � 3
2

𝑛(𝐷).

Then there is a section 𝑅 � 𝑜 of the variety X by a hyperplane P(𝑅) = 〈𝑅〉 ⊂ P(𝑋) = P𝑁 (𝑋 ) , such that
the effective divisor 𝐷𝑅 = (𝑅 ◦ 𝐷) on R satisfies the inequality

2 − 𝜈(𝐷𝑅)
𝑛(𝐷𝑅)

<
1

1 + 1
𝑘

(
2 − 𝜈(𝐷)

𝑛(𝐷)

)
.

Now by the definition of the integer 𝜀(𝑘) and what was said above, Theorem 3.3 immediately implies
Proposition 1.8.

Proof of Theorem 3.3 is given in §5.

4. Multi-quadratic singularities

In this section, we consider the properties of multi-quadratic singularities, the rank of which is bounded
from below: they are factorial, stable with respect to blow-ups and terminal. In Subsection 4.5, we study
linear subspaces on complete intersections of quadrics and the properties of projections from these
subspaces.

4.1. The definition and the first properties

Let X be an (irreducible) algebraic variety, 𝑜 ∈ X a point.
Definition 4.1. The point o is a multi-quadratic singularity of the variety X of type 2𝑙 and rank 𝑟 � 1, if
in some neighborhood of this point, X can be realized as a subvariety of a non-singular 𝑁 = (dimX + 𝑙)-
dimensional variety Y � 𝑜, and for some system (𝑢1, . . . , 𝑢𝑁 ) of local parameters on Y at the point o,
the subvariety X is the scheme of common zeros of regular functions

𝛼1, . . . , 𝛼𝑙 ∈ O𝑜,Y ⊂ C[[𝑢1, . . . , 𝑢𝑁 ]],

which are represented by the formal power series

𝛼𝑖 = 𝛼𝑖,2 + 𝛼𝑖,3 + . . . ,
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where 𝛼𝑖, 𝑗 (𝑢1, . . . , 𝑢𝑁 ) are homogeneous polynomials of degree j and

rk(𝛼1,2, . . . , 𝛼𝑙,2) = 𝑟.

(Obviously, the order of the formal power series, representing 𝛼𝑖 , and the rank of the tuple of quadratic
forms 𝛼𝑖,2 do not depend on the choice of the local parameters on Y at the point o.)

It is convenient to work in a more general context. Assume that in a neighborhood of the point o,
the variety X is realized as a subvariety X ⊂ Z , where dimZ = dimX + 𝑒 = 𝑁 (Z), and for a certain
system of local parameters (𝑣1, . . . , 𝑣𝑁 (Z) ) on Z at the point o, the subvariety X is the scheme of
common zeros of regular functions

𝛽1, . . . , 𝛽𝑒 ∈ O𝑜,Z ⊂ C[[𝑣∗]],

which are represented by the formal power series

𝛽𝑖 = 𝛽𝑖,1 + 𝛽𝑖,2 + . . . ,

where 𝛽𝑖, 𝑗 (𝑣∗) are homogeneous polynomials of degree j. Assume that for some 𝑙 ∈ {0, 1, . . . , 𝑒},

dim〈𝛽1,1, . . . , 𝛽𝑒,1〉 = 𝑒 − 𝑙,

where we assume (for the convenience of notations) that the linear forms 𝛽 𝑗 ,1 for 𝑙 + 1 � 𝑗 � 𝑒 are
linearly independent, so that for 1 � 𝑖 � 𝑙 and 𝑙 + 1 � 𝑗 � 𝑒, there are uniquely determined numbers
𝑎𝑖, 𝑗 , such that

𝛽𝑖,1 =
𝑒∑

𝑗=𝑙+1
𝑎𝑖, 𝑗 𝛽 𝑗 ,1.

Set Y = {𝛽 𝑗 = 0 | 𝑙 + 1 � 𝑗 � 𝑒} and

𝛽∗𝑖 = 𝛽𝑖 −
𝑒∑

𝑗=𝑙+1
𝑎𝑖, 𝑗 𝛽 𝑗 .

Then (in a neighborhood of the point o) the variety Y is non-singular, and X ⊂ Y is realized as the
scheme of common zeros of the regular functions 𝛽∗𝑖 , 1 � 𝑖 � 𝑙. Set

𝑇𝑜Y = 𝑇𝑜X = {𝛽 𝑗 ,1 = 0 | 𝑙 + 1 � 𝑗 � 𝑒}.

If

rk
(
𝛽∗𝑖,2 |𝑇𝑜X | 1 � 𝑖 � 𝑙

)
= 𝑟,

then obviously 𝑜 ∈ X is a multi-quadratic singularity of rank r.
The rank of the multi-quadratic point 𝑜 ∈ X is denoted by the symbol rk(𝑜 ∈ X ) or just rk(𝑜),

if it is clear which variety is meant. For uniformity of notations, we treat a non-singular point as a
multi-quadratic one of type 20.
Proposition 4.1. Assume that 𝑜 ∈ X is a multi-quadratic singularity of type 2𝑙 , where 𝑙 � 1, and of
rank 𝑟 � 2𝑙. Then in a neighborhood of the point o, every point 𝑝 ∈ X is either non-singular or a
multi-quadratic of type 2𝑏 , where 𝑏 ∈ {1, . . . , 𝑙}, of rank � 𝑟 − 2(𝑙 − 𝑏).
Proof. Using the notations for the embedding X ⊂ Z introduced above, with 𝑒 = 𝑙 (so that 𝛽𝑖,1 = 0 for
all 𝑖 = 1, . . . , 𝑙) and setting 𝑁 (Z) = 𝑁 , consider an open set 𝑈 ⊂ Z , 𝑈 � 𝑜, such that for every point
𝑝 ∈ 𝑈, the ‘shifted’ functions

𝑣 (𝑝)𝑖 = 𝑣𝑖 − 𝑣𝑖 (𝑝), 𝑖 = 1, . . . , 𝑁
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form a system of local parameters at the point p, and in the formal expansion

𝛽𝑖 = 𝛽 (𝑝)𝑖,0 + 𝛽 (𝑝)𝑖,1 + 𝛽 (𝑝)𝑖,2 + . . .

with respect to the system of parameters 𝑣 (𝑝)∗ , the quadratic components satisfy the inequality

rk(𝛽 (𝑝)𝑖,2 | 1 � 𝑖 � 𝑙) � 𝑟.

If the point p is a common zero of 𝛽1, . . . , 𝛽𝑙 , then 𝛽 (𝑝)𝑖,0 = 0 for 1 � 𝑖 � 𝑙. Set

𝑇𝑝X = {𝛽 (𝑝)𝑖,1 = 0 | 1 � 𝑖 � 𝑙}

and assume (for the convenience of notations) that the forms 𝛽 (𝑝)𝑖,1 for 𝑏 + 1 � 𝑖 � 𝑙 are linearly
independent, where

dim〈𝛽 (𝑝)𝑖,1 | 1 � 𝑖 � 𝑙〉 = 𝑙 − 𝑏.

Since codim(𝑇𝑝X ⊂ 𝑇𝑝Z) = 𝑙 − 𝑏, by Remark 1.4, the inequality

rk(𝛽 (𝑝)𝑖,2 |𝑇𝑝X | 1 � 𝑖 � 𝑙) � 𝑟 − 2(𝑙 − 𝑏)

holds. It is easy to see from the construction of the quadratic forms 𝛽 (𝑝)∗𝑖,2 , 1 � 𝑖 � 𝑏 that every linear
combination of these forms with coefficients (𝜆1, . . . , 𝜆𝑏) ≠ (0, . . . , 0) is a linear combination of the
original forms 𝛽 (𝑝)𝑖,2 , 1 � 𝑖 � 𝑙, not all coefficients in which are equal to zero. Therefore, the point p is a
multi-quadratic singularity of rank � 𝑟 − 2(𝑙 − 𝑏), as we claimed. Q.E.D. for the proposition. �

4.2. Complete intersections of quadrics

In the notations of Definition 4.1, let Y+ → Y be the blow-up of the point o with the exceptional divisor
𝐸Y � P𝑁−1 and X + ⊂ Y+ the strict transform of X on Y+, so that X + → X is the blow-up of the point
o on X with the exceptional divisor 𝐸Y |X + = 𝐸X . Therefore, 𝐸X is the scheme of common zeros of the
quadratic forms 𝛼𝑖,2, 𝑖 = 1, . . . , 𝑙, on 𝐸Y � P𝑁−1.

Let 𝑞1, . . . , 𝑞𝑙 be quadratic forms on P𝑁−1, where 𝑁 � 𝑙 + 4. By the symbol 𝑞 [1,𝑙] , we denote the
tuple (𝑞1, . . . , 𝑞𝑙).

Proposition 4.2. (i) Assume that the inequality

rk 𝑞 [1,𝑙] � 2𝑙 + 3

holds. Then the scheme of common zeros of the forms 𝑞1, . . . , 𝑞𝑙 is an irreducible non-degenerate
factorial variety 𝑄 ⊂ P𝑁−1 of codimension l – that is, a complete intersection of type 2𝑙 .

(ii) Assume that for some 𝑒 � 4, the inequality

rk 𝑞 [1,𝑙] � 2𝑙 + 𝑒 − 1

holds. Then the following inequality is true:

codim(Sing 𝑄 ⊂ 𝑄) � 𝑒.

Proof is given below in Subsection 4.4.
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Corollary 4.1. (i) Assume that the rank of the tuple 𝛼∗,2 = (𝛼1,2, . . . , 𝛼𝑙,2) of quadratic forms satisfies
the inequality

rk(𝛼∗,2) � 2𝑙 + 3.

Then in a neighborhood of the point o, the scheme of common zeros of the regular functions 𝛼1, . . . , 𝛼𝑙
is an irreducible reduced factorial subvariety X of codimension l in Y .

(ii) Assume that for some 𝑒 � 4, the inequality

rk(𝛼∗,2) � 2𝑙 + 𝑒 − 1

holds. Then in a neighborhood of the point o, the following inequality is true:

codim(SingX ⊂ X ) � 𝑒.

Proof. Both claims obviously follow from Proposition 4.2, taking into account Grothendieck’s theorem
[21] on the factoriality of a complete intersection, the singular set of which is of codimension � 4.

Therefore, for 𝑟 � 2𝑙 + 3, the assumption in Definition 4.1, that X is an irreducible variety, is
unnecessary: in a neighborhood of the point o, the scheme of common zeros of the functions 𝛼∗ is
automatically irreducible and reduced, and moreover, it is a factorial variety. This proves all claims of
Theorem 1.1, except for that the singularities of the variety F are terminal. �

4.3. Stability with respect to blow-ups

Let 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑘 ) be a tuple of integers, satisfying the inequalities 𝑟𝑖+1 � 𝑟𝑖 +2 for 𝑖 = 1, . . . , 𝑘 −1,
where 𝑟1 � 5. Again, let Y be a non-singular N-dimensional variety, where 𝑁 � 𝑘 + 3, and X ⊂ Y an
(irreducible) subvariety of codimension k, every point 𝑜 ∈ X of which is either non-singular or a multi-
quadratic singularity of type 2𝑙 , where 𝑙 ∈ {1, . . . , 𝑘}, of rank � 𝑟𝑙 . Somewhat abusing the terminology,
we say in this case that X has multi-quadratic singularities of type 𝑟 .

Theorem 4.1. In the assumptions above, let 𝐵 ⊂ X be an irreducible subvariety of codimension � 2.
Then there is an open subset 𝑈 ⊂ X , such that 𝑈 ∩ 𝐵 ≠ ∅, 𝑈 ∩ 𝐵 is non-singular and the blow-up

𝜎𝐵 : 𝑈𝐵 → 𝑈

along B gives a quasi-projective variety 𝑈𝐵 with multi-quadratic singularities of type 𝑟 .

Proof. If a point of general position 𝑜 ∈ 𝐵 is non-singular on X , there is nothing to prove. If 𝑜 ∈ X
is a multi-quadratic singularity of type 2𝑙 , where 𝑙 < 𝑘 , then a certain Zariski open subset 𝑈 ⊂ X ,
𝑈 � 𝑜 has multi-quadratic singularities of type (𝑟1, . . . , 𝑟𝑙) (see Subsection 4.1), so that it is sufficient
to consider the case when a point of general position 𝑜 ∈ 𝐵 is a multi-quadratic point of type 2𝑘 on X .
Passing over to an open subset, we may assume that the subvariety B is non-singular. Let (𝑢1, . . . , 𝑢𝑁 )
be a system of local parameters at the point o, such that 𝐵 = {𝑢1 = · · · = 𝑢𝑚 = 0}. Since 𝐵 ⊂ X , the
subvariety X ⊂ Y is the scheme of common zeros of regular functions

𝛽1, . . . , 𝛽𝑘 ∈ O𝑜,Y ⊂ O𝑜,𝐵 [[𝑢1, . . . , 𝑢𝑚]],

where for all 𝑖 = 1, . . . , 𝑘 ,

𝛽𝑖 = 𝛽𝑖,2 + 𝛽𝑖,3 + . . . ,

where 𝛽𝑖, 𝑗 are homogeneous polynomials of degree j in 𝑢1, . . . , 𝑢𝑚 with coefficients from O𝑜,𝐵. Again
replacing Y , if necessary, by an open subset, containing the point o, we have
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𝛽𝑖 ∈ O(Y) ⊂ O(𝐵) [[𝑢1, . . . , 𝑢𝑚]],

so that all coefficients of the forms 𝛽𝑖, 𝑗 are regular functions on B; in particular,

𝛽𝑖,2 =
∑

1� 𝑗1� 𝑗2�𝑚
𝐴 𝑗1 , 𝑗2𝑢 𝑗1𝑢 𝑗2 ,

where 𝐴 𝑗1 , 𝑗2 ∈ O(𝐵). In terms of the embedding O𝑜,Y ⊂ C[[𝑢1, . . . , 𝑢𝑁 ]], we get the presentation

𝛽𝑖 = 𝛽𝑖,2 + 𝛽𝑖,3 + . . . ,

where 𝛽𝑖, 𝑗 is a homogeneous polynomial of degree j in 𝑢∗, and moreover, in the right-hand side, there
are no monomials that do not contain the variables 𝑢1, . . . , 𝑢𝑚, or that contain precisely one of them
(in the power 1): every monomial in the right-hand side is divisible by some quadratic monomial in
𝑢1, . . . , 𝑢𝑚. �

Let Y𝐵 → Y be the blow-up of the subvariety B and X𝐵 ⊂ Y𝐵 the strict transform of X . Obviously,
the morphism X𝐵 → X is the blow-up of B on X . The symbol 𝐸𝐵 denotes the exceptional divisors of
the blow-up of B on Y . Since outside 𝐸𝐵 the varieties X𝐵 and X are isomorphic, it is sufficient to show
that every point 𝑝 ∈ X𝐵 ∩ 𝐸𝐵 is either non-singular or a multi-quadratic singularity of the variety 𝑈𝐵
of type 2𝑙 , where 𝑙 � 1, and of rank � 𝑟𝑙 . We assume that the point p lies over the point 𝑜 ∈ 𝑈 and is a
singularity of the variety 𝑈𝐵.

By a linear change of local parameters 𝑢1, . . . , 𝑢𝑚, we may ensure that at the point 𝑝 ∈ Y𝐵, there is
a system of local parameters

(𝑣1, . . . , 𝑣𝑚, 𝑢𝑚+1, . . . , 𝑢𝑁 )

linked to the original system of parameters 𝑢∗ by the standard relations

𝑢1 = 𝑣1, 𝑢2 = 𝑣1𝑣2, . . . , 𝑢𝑚 = 𝑣1𝑣𝑚.

The local equation of the exceptional divisor 𝐸𝐵 at the point p is 𝑣1 = 0, and the subvariety X𝐵 ⊂ Y𝐵
at that point is defined by the equations

𝛽1, . . . , 𝛽𝑘 ∈ O𝑝,Y𝐵 ⊂ C[[𝑣1, . . . , 𝑣𝑚, 𝑢𝑚+1, . . . , 𝑢𝑁 ]] .

Write down 𝛽𝑖 = 𝛽𝑖,1 + 𝛽1,2 + . . . and assume that for some 𝑙 ∈ {1, . . . , 𝑘}, the linear forms 𝛽 𝑗 ,1,
𝑙 + 1 � 𝑗 � 𝑘 are linearly independent, and moreover,

dim〈𝛽𝑖,1 | 1 � 𝑖 � 𝑘〉 = 𝑘 − 𝑙,

so that there are relations

𝛽𝑖,1 =
𝑘∑

𝑗=𝑙+1
𝑎𝑖, 𝑗 𝛽𝑖,1,

𝑖 = 1, . . . , 𝑙. Replacing the original system of local equations 𝛽1, . . . , 𝛽𝑘 by

𝛽𝑖 −
𝑘∑

𝑗=𝑙+1
𝑎𝑖, 𝑗 𝛽 𝑗 , 𝑖 = 1, . . . , 𝑙, 𝛽𝑙+1, . . . , 𝛽𝑘 ,

we may assume that the linear forms 𝛽𝑖,1, 𝑖 = 1, . . . , 𝑙 are identically zero. In that case, the following
claim is true.
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Lemma 4.1. For 𝑖 = 1, . . . , 𝑙 the quadratic forms 𝛽𝑖,2 depend only on 𝑢2, . . . , 𝑢𝑚 and

𝛽𝑖,2 = 𝛽𝑖,2(𝑣2, . . . , 𝑣𝑚) + 𝛽♯𝑖,2,

where every monomial in the quadratic form 𝛽♯𝑖,2 is divisible either by 𝑣1, or by 𝑢𝑖 , 𝑚 + 1 � 𝑖 � 𝑁 .

Proof. This is obvious because every monomial in 𝛽𝑖, 𝑗 is divisible by some quadratic monomial in
𝑢1, . . . , 𝑢𝑚, and 𝛽𝑖,1 ≡ 0 for 𝑖 = 1, . . . , 𝑙, and by the standard formulas, transforming regular functions
under a blow-up. Q.E.D. for the lemma. �

The lemma gives us the inequality

rk(𝛽𝑖,2, 1 � 𝑖 � 𝑙) � rk(𝛽𝑖,2, 1 � 𝑖 � 𝑙) � 𝑟𝑘 .

Setting 𝑇𝑝X𝐵 = {𝛽𝑖,1 = 0 | 𝑙 + 1 � 𝑗 � 𝑘} and using Remark 1.4, we get

rk(𝛽𝑖,2 |𝑇𝑝X𝐵 , 1 � 𝑖 � 𝑙) � 𝑟𝑘 − 2(𝑘 − 𝑙) � 𝑟𝑙 .

Therefore, 𝑝 ∈ X𝐵 is a multi-quadratic singularity of type 2𝑙 and rank � 𝑟𝑙 . Q.E.D. for Theorem 4.1.

Corollary 4.2. Assume that X has multi-quadratic singularities of type 𝑟 , where 𝑟𝑙 � 3𝑙 + 1 for all
𝑙 = 1, . . . , 𝑘 . Then the singularities of X are terminal.

Proof. In the notations of the proof of Theorem 4.1, it is sufficient to show the inequality

𝑎(X𝐵 ∩ 𝐸𝐵,X ) � 1.

Assume that a point 𝑜 ∈ 𝐵 of general position is a multi-quadratic singularity of type 2𝑙 . From the claim
(ii) of Corollary 4.1, we get the inequality

codim(𝐵 ⊂ X ) � 𝑙 + 2,

so that codim(𝐵 ⊂ Y) � 𝑘 + 𝑙 + 2, and for that reason,

𝑎(𝐸𝐵,Y) � 𝑘 + 𝑙 + 1.

By the adjunction formula,

𝑎(X𝐵 ∩ 𝐸𝐵,X ) = 𝑎(𝐸𝐵,Y) − (𝑘 − 𝑙) − 2𝑙,

which implies the required inequality. Q.E.D. for the corollary. �

This completes the proof of Theorem 1.1.

4.4. Singularities of complete intersections

Let us show Proposition 4.2. We will prove the claims (i) and (ii) simultaneously: by Grothendieck’s
theorem on parafactoriality [21, 25], the claim (ii) for 𝑒 = 4 implies the factoriality of the variety Q.

We argue by induction on 𝑙 � 1. For one quadric (𝑙 = 1), the claims (i) and (ii) are obvious. Since

rk 𝑞 [1,𝑙−1] � rk 𝑞 [1,𝑙] ,

we may assume that the claims (i) and (ii) are true for the tuple of quadratic forms 𝑞1, . . . , 𝑞𝑙−1.
In particular, the scheme of their common zeros 𝑄𝑙−1 is an irreducible reduced factorial complete
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intersection of type 2𝑙−1 in P𝑁−1, so that Pic 𝑄𝑙−1 = Z𝐻𝑙−1, where 𝐻𝑙−1 is the class of a hyperplane
section: every effective divisor on 𝑄𝑙−1 is cut out on 𝑄𝑙−1 by a hypersurface in P𝑁−1.

The scheme of common zeros of the quadratic forms 𝑞1, . . . , 𝑞𝑙 is the divisor of zeros of the form
𝑞𝑙 on the variety 𝑄𝑙−1. This divisor is reducible or non-reduced if and only if there is a form 𝑞∗𝑙 of rank
� 2 such that

𝑞𝑙 − 𝑞∗𝑙 ∈ 〈𝑞1, . . . , 𝑞𝑙−1〉,

and in that case, rk 𝑞 [1,𝑙] � 2, which contradicts the assumption. Therefore, Q is an irreducible reduced
complete intersection. It is easy to see that 𝑄 ⊂ P𝑁−1 is non-degenerate. Since

rk 𝑞 [1,𝑙−1] � 2(𝑙 − 1) + (𝑒 + 2) − 1

(for the claim (i) we set 𝑒 = 4), we have

codim(Sing 𝑄𝑙−1 ⊂ 𝑄𝑙−1) � 𝑒 + 2,

so that

codim((𝑄 ∩ Sing 𝑄𝑙−1) ⊂ 𝑄) � 𝑒 + 1.

It is easy to see that a point 𝑝 ∈ 𝑄, which is non-singular on 𝑄𝑙−1, is singular on Q if and only if for
some 𝜆1, . . . , 𝜆𝑙−1, the quadric

𝑞𝑙 − 𝜆1𝑞1 − · · · − 𝜆𝑙−1𝑞𝑙−1 = 0

is singular at that point. Since the singular set of a quadric of rank r in P𝑁−1 has dimension 𝑁 − 1 − 𝑟 ,
we conclude that the dimension of the set

Sing 𝑄 ∩ (𝑄𝑙−1 \ Sing 𝑄𝑙−1)

does not exceed 𝑁 −1− rk 𝑞 [1,𝑙] + (𝑙 −1), whence it follows that the codimension of that set with respect
to Q is at least rk 𝑞 [1,𝑙] − 2𝑙 + 1 � 𝑒. Q.E.D. for Proposition 4.2.

4.5. Linear subspaces and projections

Now let us consider the questions that are naturally close to Proposition 4.2 and its proof. These questions
are of key importance in the proof of Theorem 3.3 (which will be given in §5). Since in Theorem 3.3
the multi-quadratic singularity is of type 2𝑘 , starting from this moment, we consider k quadratic forms
𝑞1, . . . , 𝑞𝑘 in N variables (that is, on P𝑁−1), and the tuple of them is denoted by the symbol 𝑞 [1,𝑘 ] . The
symbol Q, as above, stands for the complete intersection of these k quadrics {𝑞𝑖 = 0} in P𝑁−1.

Proposition 4.3. Assume that for some 𝑏 � 0, the inequality

rk 𝑞 [1,𝑘 ] � 2(1 + 𝑏)𝑘 + 3

holds. Then for every point 𝑝 ∈ 𝑄 \ Sing 𝑄, there is a linear space Π ⊂ P𝑁−1 of dimension b, such that
𝑝 ∈ Π ⊂ 𝑄, and moreover, Π ∩ Sing 𝑄 = ∅.

Proof contains the (obvious) construction of such linear subspaces. We argue by induction on b. If
𝑏 = 0, then Π is the point p itself and there is nothing to prove. Assume that 𝑏 � 1 and for 𝑏 − 1 the
claim of the Proposition is true.

Consider the linear subspace 𝑇 = 𝑇𝑝𝑄 of codimension k in P𝑁−1. Obviously, every linear space in
P𝑁−1 that contains the point p and is contained in Q is contained in T, too. Furthermore, 𝑄∩𝑇 is defined
by the quadratic forms 𝑞1 |𝑇 , . . . , 𝑞𝑘 |𝑇 . Since rk 𝑞 [1,𝑘 ] |𝑇 � rk 𝑞 [1,𝑘 ] − 2𝑘 , the inequality
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rk 𝑞 [1,𝑘 ] |𝑇 � 2𝑏𝑘 + 3

holds, where every quadric {𝑞𝑖 |𝑇 = 0}, 𝑖 = 1, . . . , 𝑘 , is by construction a cone with the vertex at p.
Therefore, 𝑄 ∩ 𝑇 is a cone with the vertex at the point p. Let 𝑃 ⊂ 𝑇 be a hyperplane in T that does not
contain the point p. Then the cone 𝑄 ∩ 𝑇 is a cone with the base 𝑄 ∩ 𝑃, where 𝑄 ∩ 𝑃 is a complete
intersection of the quadrics {𝑞𝑖 |𝑃 = 0}, where, obviously,

rk 𝑞 [1,𝑘 ] |𝑃 = rk 𝑞 [1,𝑘 ] |𝑇 � 2(1 + (𝑏 − 1))𝑘 + 3.

By the induction hypothesis, there is a linear subspaceΠ♯ ⊂ 𝑃 of dimension (𝑏−1), such thatΠ♯ ⊂ 𝑄∩𝑃
and Π♯ ∩ Sing(𝑄 ∩ 𝑃) = ∅.

Furthermore, the set of singular points Sing(𝑄 ∩ 𝑇) is a cone with the vertex p, the base of which is
Sing(𝑄∩𝑃), so that for the subspace Π = 〈𝑝,Π♯〉, which is a cone with the vertex p and the base Π♯, we
have Π ∩Sing(𝑄 ∩𝑇) = {𝑝}. Since 𝑇 ∩Sing 𝑄 ⊂ Sing(𝑄 ∩𝑇) and 𝑝 ∉ Sing 𝑄, we get Π ∩Sing 𝑄 = ∅,
which completes the proof of the proposition.

Proposition 4.4. Let 𝑏 � 𝛽 � 0 be some integers. Assume that the inequality

rk 𝑞 [1,𝑘 ] � 2𝑘 (𝑏 + 𝛽 + 1) + 2𝛽 + 3

holds. Then for every linear subspace 𝑃 ⊂ P𝑁−1 of codimension 𝛽 and a general linear subspace
Π ⊂ 𝑄, Π ∩ Sing = ∅, of dimension b, the intersection 𝑃 ∩ Π has codimension 𝛽 in Π.

Proof. Again, we argue by induction on 𝛽; the case 𝛽 = 0 is trivial. Only the equality Π ∩ Sing 𝑄 = ∅
for a general subspace Π ⊂ 𝑄 of dimension 𝑏 � 0 is needed, and it is true by Proposition 4.3. �

Let us show our claim in the assumption that it is true for 𝛽 − 1.
First of all, note that

rk 𝑞 [1,𝑘 ] |𝑃 � 2𝑘 (𝑏 + 𝛽 + 1) + 3 > 2𝑘 + 3,

so that by Proposition 4.2, the intersection 𝑄∩𝑃 is an irreducible reduced complete intersection of type
2𝑘 in P; in particular, a point of general position 𝑝 ∈ 𝑄 ∩ 𝑃 is non-singular. This means that

𝑇𝑝 (𝑄 ∩ 𝑃) = 𝑇𝑝𝑄 ∩ 𝑃

is of codimension k in P, so that 𝑇𝑝𝑄 and P are in general position. The property to be in general
position is an open property; therefore, for a point of general position 𝑝 ∈ 𝑄 (in particular, 𝑝 ∉ 𝑃), the
linear subspaces 𝑇𝑝𝑄 and P are in general position and their intersection 𝑇𝑝𝑄 ∩ 𝑃 is of codimension k
in P and of codimension 𝛽 in 𝑇𝑝𝑄.

Consider a general hypersurface Z in 𝑇𝑝𝑄, containing the subspace 𝑇𝑝𝑄 ∩ 𝑃 and not containing the
point p. We have

rk 𝑞 [1,𝑘 ] |𝑍 � 2𝑘 (𝑏 + 𝛽) + 2𝛽 + 1 = 2𝑘 (𝑏 + (𝛽 − 1) + 1) + 2(𝛽 − 1)) + 3,

so that by the induction hypothesis for a general linear subspace Π♯ ⊂ 𝑄 ∩ 𝑍 of dimension (𝑏 − 1) that
does not meet the set Sing(𝑄 ∩ 𝑍), the intersection

(𝑃 ∩ 𝑇𝑝𝑄) ∩ Π♯ = 𝑃 ∩ Π♯

is of codimension 𝛽 − 1 = codim((𝑃 ∩ 𝑇𝑝𝑄) ⊂ 𝑍) with respect to Π♯.
Then the linear space

Π = 〈𝑝,Π♯〉 ⊂ 𝑇𝑝𝑄
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of dimension b is contained in Q and does not meet the set Sing 𝑄 (see the proof of Proposition 4.3),
and finally, the subspace

𝑃 ∩ Π = 𝑃 ∩ 𝑇𝑝𝑄 ∩ Π = 𝑃 ∩ 𝑇𝑝𝑄 ∩ 𝑍 ∩ Π = 𝑃 ∩ Π♯

is of codimension 𝛽 with respect to Π. Q.E.D. for the proposition.

Corollary 4.3. In the assumptions of Proposition 4.4, where 𝛽 � 𝑘 , let 𝑌 ⊂ 𝑄 be an irreducible
subvariety of codimension 𝛽 − 𝑘 . Then the restriction onto Y of the projection

prΠ : P𝑁−1 � P𝑁−𝑏−2

from a general subspace Π ⊂ 𝑄 of dimension b is dominant.

Proof. Let 𝑝 ∈ 𝑌 be a non-singular point. We apply Proposition 4.4 to the subspace 𝑃 = 𝑇𝑝𝑌 ⊂ P𝑁−1

of codimension 𝛽. A general subspace Π ⊂ 𝑄 of dimension 𝑏 � 𝛽 does not contain the point p and is
in general position with P, so that prΠ |𝑃 is regular in a neighborhood of the point p and its differential
at the point p is an epimorphism. Therefore, prΠ |𝑌 is regular at the point p, and its differential at that
point is an epimorphism. Q.E.D. for the corollary. �

Note an important particular case.

Corollary 4.4. Assume that 𝑏 � 𝑘 and the inequality

rk 𝑞 [1,𝑘 ] � 2𝑘 (𝑏 + 𝑘 + 2) + 3

holds. Then the restriction of the projection prΠ from a general subspace Π ⊂ 𝑄 of dimension b onto Q
is dominant, and its general fibre is a linear subspace of dimension 𝑏 + 1 − 𝑘 .

Proof. That it is dominant follows from the previous corollary, so that the dimension of a general fibre
is 𝑏 + 1 − 𝑘 . Furthermore, prΠ fibres P𝑁−1 (more precisely, P𝑁−1 \ Π) into linear subspaces Π♯ ⊃ Π
of dimension 𝑏 + 1. The centre Π of the projection is a hyperplane in Π♯. Since Π ⊂ 𝑄, the quadric
{𝑞𝑖 |Π♯ = 0} is the union of two hyperplanes, one of which is Π. Now the claim of the corollary is
obvious. �

Let Π ⊂ 𝑄 be a linear subspace of dimension 𝑏 � 𝑘 , not meeting the set Sing 𝑄, and 𝜎 : 𝑄 → 𝑄 and
𝜎P : �P𝑁−1 → P𝑁−1 the blow-ups of Π on Q and P𝑁−1, respectively, so that we can identify 𝑄 with the
strict transform of Q on �P𝑁−1. By the symbols 𝐸𝑄 and 𝐸P we denote the exceptional divisors of these
blow ups; we consider 𝐸𝑄 as a subvariety in 𝐸P. Let 𝜑 : 𝑄 → P𝑁−𝑏−2 and 𝜑P : �P𝑁−1 → P𝑁−𝑏−2 be
the regularizations of the rational maps prΠ |𝑄 and prΠ , respectively. We have the natural identification
𝐸P = Π × P𝑁−𝑏−2, where the map

𝜑P |𝐸P : 𝐸P → P𝑁−𝑏−2

is the projection onto the second factor. In the assumptions of Corollary 4.4, the morphism 𝜑 is
surjective, and for a point of general position 𝑝 ∈ P𝑁−𝑏−2, the fibre 𝜑−1(𝑝) is a linear subspace of
dimension 𝑏 + 1 − 𝑘 in 𝜑−1

P
(𝑝) � P𝑏+1, which is not contained entirely in the hyperplane

𝜑−1
P (𝑝) ∩ 𝐸P =

(
𝜑P |𝐸P

)−1 (𝑝),

which identifies naturally with Π, and for that reason, 𝜑−1(𝑝) ∩ 𝐸P identifies naturally with a subspace
of dimension 𝑏 − 𝑘 in Π (and a hyperplane in 𝜑−1(𝑝)). However,

𝜑−1(𝑝) ∩ 𝐸P = 𝜑−1(𝑝) ∩ 𝐸𝑄 = (𝜑|𝐸𝑄 )−1(𝑝),

so that arguing by dimensions, we conclude that the restriction 𝜑|𝐸𝑄 is surjective.
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Proposition 4.5. In the assumptions of Corollary 4.4, let 𝑌 ⊂ Π be an irreducible closed subset, and
assume that

𝑏 � 𝑘 + codim(𝑌 ⊂ Π).

Then the restriction 𝜑|𝜎−1 (𝑌 ) is surjective, so that for a point of general position 𝑝 ∈ P𝑁−𝑏−2, the
intersection 𝜑−1(𝑝) ∩𝜎−1(𝑌 ) is nonempty and each of its components is of codimension codim(𝑌 ⊂ Π)
in the projective space 𝜑−1(𝑝) ∩ 𝐸P.

Proof. Obviously,

𝜎−1 (𝑌 ) = 𝜎−1
P (𝑌 ) ∩𝑄 = 𝜎−1

P (𝑌 ) ∩ 𝐸𝑄 .

Since 𝜑−1(𝑝) ⊂ 𝑄, the equality

𝜑−1(𝑝) ∩ 𝜎−1(𝑌 ) = 𝜑−1(𝑝) ∩ 𝜎−1
P (𝑌 )

holds, but 𝜎−1 (𝑌 ) = 𝑌 × P𝑁−𝑏−2 in terms of the direct decomposition of the exceptional divisor 𝐸P.
Therefore, identifying the fibre of the projection 𝜑P |𝐸P with the projective space Π, we get that the
intersection 𝜑−1 (𝑝) ∩ 𝜎−1 (𝑌 ) identifies naturally with the intersection of Y and the linear subspace
𝜑−1 (𝑝) ∩ 𝐸P of dimension 𝑏 − 𝑘 in Π. By our assumption, this intersection is nonempty, so that the
morphism 𝜑|𝜎−1 (𝑌 ) is surjective. Q.E.D. for the proposition. �

5. The special hyperplane section

In this section, we prove Theorem 3.3.

5.1. Start of the proof

We use the notations of Subsection 1.7 and the assumptions of Theorem 3.3. Recall that

𝐼𝑋 = [2𝑘 + 3, 𝑘 + 𝑐𝑋 − 1] ∩ Z

is the set of admissible dimensions for the working triple (𝑋, 𝐷, 𝑜). Consider a general subspace 𝑃 � 𝑜
in P(𝑋) of the minimal admissible dimension 2𝑘 +3. Since 𝑎(𝐸𝑋∩𝑃) = 2 and 𝜈(𝐷) � 3

2 𝑛(𝐷) < 2𝑛(𝐷),
we conclude that the pair (

(𝑋 ∩ 𝑃)+, 1
𝑛(𝐷)𝐷 |

+
𝑋∩𝑃

)
is not log-canonical, but canonical outside the exceptional divisor 𝐸𝑋∩𝑃 . By the inequality
𝜈(𝐷) < 2𝑛(𝐷), we can apply the connectedness principle to this pair:

LCS
(
(𝑋 ∩ 𝑃)+, 1

𝑛(𝐷)𝐷 |
+
𝑋∩𝑃

)
(17)

is a proper connected closed subset of the exceptional divisor 𝐸𝑋∩𝑃 . There are the following options:
(1)𝑃 this subset contains a divisor,
(2)𝑃 some irreducible component of maximal dimension 𝐵(𝑃) ⊂ 𝐸𝑋∩𝑃 in this set has a positive

dimension and codimension � 2 in 𝐸𝑋∩𝑃 ,
(3)𝑃 this subset is a point.

Remark 5.1. In the case (1)𝑃 , the divisor in the subset (17) is unique and is a hyperplane section of the
variety 𝐸𝑋∩𝑃 ⊂ E𝑋∩𝑃 , since 𝐷 |+𝑋∩𝑃 has along this subvariety the multiplicity > 𝑛(𝐷) (since it is the
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centre of some non-log-canonical singularity), whereas the restriction 𝐷+|𝐸𝑋∩𝑃 is cut out on 𝐸𝑋∩𝑃 by
a hypersurface of degree 𝜈(𝐷) < 2𝑛(𝐷).

Since 𝑃 � 𝑜 is a subspace of general position, we go back to the original variety X and get that the pair
(𝑋+, 1

𝑛(𝐷)𝐷 |
+) is not log-canonical, and moreover, for the centre 𝐵 ⊂ 𝐸𝑋 of some non-log-canonical

singularity of that pair, one of the three option takes place:
(1) B is a hyperplane section of 𝐸𝑋 ⊂ E𝑋 ,
(2) codim(𝐵 ⊂ 𝐸𝑋 ) ∈ {2, . . . , 𝑘 + 1},
(3) B is a linear subspace of codimension 2𝑘 + 2 in E𝑋 , which is contained in 𝐸𝑋 .

Proposition 5.1. The option (1) does not take place.

Proof. Assume the converse: B is a hyperplane section of 𝐸𝑋 . Let 𝑅 ⊂ 𝑋 , 𝑅 � 𝑜 be the uniquely
determined hyperplane section, such that 𝑅+ ∩𝐸𝑋 = 𝐵 (in other words, P(𝑅)+ ∩E𝑋 is the hyperplane in
E𝑋 that cuts out B on 𝐸𝑋 ). Since mult𝐵 𝐷+ > 𝑛(𝐷), we get that for the effective divisor 𝐷𝑅 = (𝐷 ◦ 𝑅)
on R, the inequality

𝜈(𝐷𝑅) � 𝜈(𝐷) +mult𝐵 𝐷+ > 2𝑛(𝐷) = 2𝑛(𝐷𝑅)

holds, which is impossible by Theorem 1.4. Q.E.D. for the proposition. �

Proposition 5.2. The option (3) does not take place.

Proof. Since codim(𝐵 ⊂ 𝐸𝑋 ) = 𝑘 + 2, this is impossible by the Lefschetz theorem (in order to apply
the Lefschetz theorem, it is sufficient to have the inequality codim(Sing 𝐸𝑋 ⊂ 𝐸𝑋 ) � 2𝑘 + 6, for which
by Proposition 4.2 it is sufficient to have the inequality rk(𝑜 ∈ 𝑋) � 4𝑘 + 5; we have a much stronger
condition for the rank of the singularity). Q.E.D. for the proposition. �

Therefore, the option (2) takes place. By construction (or arguing by dimension), 𝐵 ⊄ Sing 𝐸𝑋 .
Recall that there is a non-log-canonical singularity of the pair (𝑋+, 1

𝑛(𝐷)𝐷
+), the centre of which is B.

Let 𝑝 ∈ 𝐵 be a point of general position; in particular, 𝑝 ∉ Sing 𝐸𝑋 and the more so, 𝑝 ∉ Sing 𝑋+.
Applying inversion of adjunction in the word for word the same way as in [20, Chapter 7, Proposition
2.3] (that is, restricting 𝐷+ onto a general non-singular surface, containing the point p), we get the
alternative: either mult𝐵 𝐷+ > 2𝑛(𝐷) or on the blow-up

𝜑𝑝 : 𝑋 (𝑝) → 𝑋+

of the point p with the exceptional divisor 𝐸 (𝑝) ⊂ 𝑋 (𝑝) , 𝐸 (𝑝) � P𝑁 (𝑋 )−1, there is a hyperplane
Θ(𝑝) ⊂ 𝐸 (𝑝) in 𝐸 (𝑝), satisfying the inequality

mult𝐵 𝐷+ +multΘ(𝑝) 𝐷 (𝑝) > 2𝑛(𝐷), (18)

where 𝐷 (𝑝) is the strict transform of the divisor 𝐷+ on 𝑋 (𝑝) , and moreover, the hyperplane Θ(𝑝) is
uniquely determined by the pair (𝑋+, 1

𝑛(𝐷)𝐷
+) and varies algebraically with the point 𝑝 ∈ 𝐵.

The case when the inequality mult𝐵 𝐷+ > 2𝑛(𝐷) holds is excluded (with simplifications) by the
arguments, excluding the option (2)Θ, given below; see Subsection 5.3, Remark 5.2.

There are two options for the hyperplane Θ(𝑝):
(1)Θ Θ(𝑝) ≠ P(𝑇𝑝𝐸𝑋 ) (where we identify 𝐸 (𝑝) with the projectivization of the tangent space 𝑇𝑝𝑋+),

so that Θ(𝑝) intersects P(𝑇𝑝𝐸𝑋 ) by some hyperplane Θ𝐸 (𝑝),
(2)Θ the hyperplanes Θ(𝑝) and P(𝑇𝑝𝐸𝑋 ) in 𝐸 (𝑝) are equal.
Below (see Subsection 5.3, Remark 5.2), we show that the option (2)Θ does not take place: it implies

that 𝐸𝑋 ⊂ 𝐷+, which is impossible; the same arguments exclude the inequality mult𝐵 𝐷+ > 2𝑛(𝐷), too.
Therefore, we may assume that the option (1)Θ takes place.
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5.2. The existence of the special hyperplane section

Adding the upper index (𝑝) means the strict transform on 𝑋 (𝑝) : we used this principle for the divisor D
above and will use it for other subvarieties on 𝑋+. Our aim is to prove the following claim.

Theorem 5.1. There is a hyperplane section Λ of the exceptional divisor 𝐸𝑋 ⊂ E𝑋 , containing B,
satisfying the inequality

multΛ 𝐷+ >
2𝑛(𝐷) − 𝜈(𝐷)

𝑘 + 1
.

Moreover, for a point of general position 𝑝 ∈ 𝐵, the following equality holds:

Λ(𝑝) ∩ 𝐸 (𝑝) = Θ𝐸 (𝑝).

Proof. Let 𝐿 ⊂ 𝐸𝑋 , 𝐿 � 𝑝 be a line in the projective space E𝑋 , such that 𝐿 ∩ Sing 𝐸𝑋 = ∅ and

𝐿 (𝑝) ∩ 𝐸 (𝑝) ∈ Θ𝐸 (𝑝). �

Lemma 5.1. The line L is contained in 𝐷+.

Proof. Assume the converse. Then 𝐷+|𝐿 is an effective divisor on L of degree 𝜈(𝐷) � 3
2 𝑛(𝐷) < 2𝑛(𝐷).

At the same time, the divisor 𝐷+|𝐿 contains the point p with multiplicity > 2𝑛(𝐷) due to the inequality
(18). The contradiction proves the lemma. Q.E.D. �

Proposition 5.3. The following inequality holds:

mult𝐿 𝐷+ >
2𝑛(𝐷) − 𝜈(𝐷)

𝑘 + 1
.

Proof is given in §6.
Let us go back to the proof of Theorem 5.1.
We will construct the set Λ ⊂ 𝐸𝑋 explicitly and then prove that it is a hyperplane section. The

exceptional divisor 𝐸𝑋 is a complete intersection of k quadrics in E𝑋 :

𝐸𝑋 = {𝑞1 = . . . 𝑞𝑘 = 0},

using the notations of Subsection 4.5. Let 𝑈𝐵 ⊂ 𝐵 be a nonempty Zariski open subset, where

𝑈𝐵 ∩ Sing 𝐸𝑋 = ∅,

and for every point 𝑝 ∈ 𝐵, the option (1)Θ takes place. By the assumption on the rank of the multi-
quadratic point 𝑜 ∈ 𝑋 for 𝑝 ∈ 𝑈𝐵, the set 𝐸𝑋 ∩ 𝑇𝑝𝐸𝑋 (where 𝑇𝑝𝐸𝑋 ⊂ E𝑋 is the embedded tangent
space – that is, a linear subspace of codimension k in E𝑋 ) is irreducible and reduced, and moreover,
every hyperplane section of that set is also irreducible and reduced. Indeed, by Proposition 4.2, in order
to have these properties, it is sufficient to have the inequality rk 𝑞 [1,𝑘 ] � 4𝑘 + 5 because by Remark 1.4,
it implies the inequality

rk 𝑞 [1,𝑘 ] |𝑇𝑝𝐸𝑋 � 2𝑘 + 5,

and we can apply Proposition 4.2. Obviously, 𝐸𝑋 ∩ 𝑇𝑝𝐸𝑋 is a cone with the vertex p, consisting of all
lines 𝐿 ⊂ 𝐸𝑋 , 𝐿 � 𝑝. The singular set of that cone is of codimension � 6 (Proposition 4.2), and so for
a general line 𝐿 � 𝑝,

𝐿 ∩ Sing(𝐸𝑋 ∩ 𝑇𝑝𝐸𝑋 ) = {𝑝},
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so that 𝐿 ∩ Sing 𝐸𝑋 = ∅, and the same is true for every hyperplane section of the cone 𝐸𝑋 ∩ 𝑇𝑝𝐸𝑋 ,
containing the point p, since its singular set is of codimension � 4 (Remark 1.4).

Let L(𝑝) be the union of all lines 𝐿 ⊂ 𝐸𝑋 , 𝐿 � 𝑝, such that

𝐿 (𝑝) ∩ 𝐸 (𝑝) ∈ Θ𝐸 (𝑝).

Obviously, L(𝑝) is the section of the cone 𝐸𝑋 ∩𝑇𝑝𝐸𝑋 by some hyperplane, containing the point p (this
hyperplane corresponds to the hyperplane Θ𝐸 (𝑝)). As we have shown above, L(𝑝) is an irreducible
closed subset of codimension 𝑘 + 1 in 𝐸𝑋, and

multL(𝑝) 𝐷+ >
2𝑛(𝐷) − 𝜈(𝐷)

𝑘 + 1
.

Set

Λ =
⋃
𝑝∈𝑈𝐵

L(𝑝)

(the overline means the closure). By what was said above, the inequality

multΛ 𝐷+ >
2𝑛(𝐷) − 𝜈(𝐷)

𝑘 + 1

holds.

Theorem 5.2. The subset Λ ⊂ 𝐸𝑋 is a hyperplane section of the variety 𝐸𝑋 ⊂ E𝑋 .
We will prove Theorem 5.2 in two steps: first, we will show that Λ is a prime divisor on 𝐸𝑋 and then

that this divisor is a hyperplane section. By construction, the set Λ is irreducible.

5.3. The set Λ is a divisor

By our assumption about the rank of the point 𝑜 ∈ 𝑋 for 𝑏 = 𝑘 + 1, the inequality

rk 𝑞 [1,𝑘 ] � 2𝑘 (𝑏 + 2𝑘 + 2) + 2(2𝑘 + 1) + 3 (19)

holds. By Corollary 4.3, for a general subspace Π ⊂ 𝐸𝑋 of dimension b, the restriction onto B of the
projection

prΠ : P𝑁 (𝑋 )−1 � P𝑁 (𝑋 )−𝑏−2

from the subspace Π is dominant. Let 𝑠 ∈ P𝑁 (𝑋 )−𝑏−2 be a point of general position. By the symbol
〈Π, 𝑠〉 denote the closure

pr−1
Π (𝑠) ⊂ P

𝑁 (𝑋 )−1

(this is a (dimΠ + 1)-dimensional subspace) and set

𝐸𝑋 (Π, 𝑠) = 𝐸𝑋 ∩ 〈Π, 𝑠〉.

For the blow-ups 𝜎 : 𝐸𝑋 → 𝐸𝑋 and 𝜎P : �P𝑁 (𝑋 )−1 → P𝑁 (𝑋 )−1 of the subspace Π on 𝐸𝑋 and P𝑁 (𝑋 )−1,
respectively, let 𝜑 : 𝐸𝑋 → P𝑁 (𝑋 )−𝑏−2 and 𝜑P : �P𝑁 (𝑋 )−1 → P𝑁 (𝑋 )−𝑏−2 be the regularizations of the
projections prΠ |𝐸𝑋 and prΠ , respectively. Obviously, the fibre 𝜑−1

P
(𝑠) identifies naturally with 〈Π, 𝑠〉, and

the fibre 𝜑−1(𝑠) with 𝐸𝑋 (Π, 𝑠). The fibre of the surjective morphism 𝜑|𝜎−1 (𝐵) over the point s we denote
by the symbol 𝐵(𝑠); this is a possibly reducible closed subset in 𝜑−1

P
(𝑠), each irreducible component of
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which is of codimension 𝑐𝐵 = codim(𝐵 ⊂ 𝐸𝑋 ) and is not contained entirely in the hyperplane Π (with
respect to the identification 𝜑−1

P
(𝑠) = 〈Π, 𝑠〉). Write down 𝐵(𝑠) as a union of irreducible components:

𝐵(𝑠) =
⋃
𝑖∈𝐼

𝐵𝑖 (𝑠),

and let 𝑝 ∈ 𝐵𝑖 (𝑠) be a point of general position on one of them; in particular, 𝑝 ∉ Π, so that the
projection prΠ is regular at that point and 𝑝 ∉ 𝐵 𝑗 (𝑠) for 𝑗 ≠ 𝑖. We will consider the point p as a point
of general position on B, which was introduced in Subsection 5.1, and use the notations for the blow-up
𝜑𝑝 of this point and for objects linked to this blow-up. Note that for 𝑏 = 𝑘 + 1, we have the inequality

dim 𝐵(𝑠) = dim 𝐵𝑖 (𝑠) � 1.

The set of lines 𝐿 ⊂ 𝐸𝑋 (Π, 𝑠), 𝐿 � 𝑝, such that 𝐿 (𝑝) ∩ 𝐸 (𝑝) ∈ Θ(𝑝), forms a hyperplane in 𝐸𝑋 (Π, 𝑠),
which we denote by the symbol Λ(Π, 𝑠, 𝑝). By construction, Λ(Π, 𝑠, 𝑝) ⊂ Λ.

Since any nontrivial algebraic family of hyperplanes in a projective space sweeps out that space and
for a general point s we have 𝐸𝑋 (Π, 𝑠) ⊄ Λ (otherwise, Λ = 𝐸𝑋 , which is impossible), we conclude that
the hyperplane Λ(Π, 𝑠, 𝑝) does not depend on the choice of a point of general position 𝑝 ∈ 𝐵𝑖 (𝑠), so that

Λ(Π, 𝑠, 𝑝) = Λ(Π, 𝑠, 𝐵𝑖 (𝑠))

is a hyperplane in 𝜑−1 (𝑠) = 𝐸𝑋 (Π, 𝑠), containing the component 𝐵𝑖 (𝑠). Therefore, for a general point s,
the intersection Λ ∩ 𝐸𝑋 (Π, 𝑠) contains a divisor in 𝐸𝑋 (Π, 𝑠), whence we get that Λ ⊂ 𝐸𝑋 is a (prime)
divisor on 𝐸𝑋 , as we claimed. This divisor is cut out on 𝐸𝑋 by a hypersurface of degree 𝑑Λ in E𝑋 . It
remains to show that 𝑑Λ = 1.

Remark 5.2. We promised above that the option (2)Θ does not take place. Indeed, if it does, then every
line 𝐿 � 𝑝 in 𝐸𝑋 (Π, 𝑠) is contained in Λ, so that 𝐸𝑋 (Π, 𝑠) ⊂ Λ, and for that reason, 𝐸𝑋 ⊂ Λ, which is
absurd. In a similar way, if mult𝐵 𝐷+ > 𝜈(𝐷), then every line in 𝐸𝑋 (Π, 𝑠), meeting B, is contained in
Λ, so that 𝐸𝑋 ⊂ Λ, which is impossible. Therefore, the inequality

mult𝐵 𝐷+ � 𝜈(𝐷)

holds.

5.4. The divisor Λ is a hyperplane section

Let us consider the intersection Λ ∩ 𝐸𝑋 (Π, 𝑠) for a general point s in more details. This is a possibly
reducible divisor, each component of which has multiplicity 1, containing at least one hyperplane. If
in this divisor there are components of degree � 2, then the union of hyperplanes in Λ(Π, 𝑠) gives a
proper closed subset of Λ1 (Π, 𝑠), which is also a divisor. Then⋃

𝑠

Λ1(Π, 𝑠)

(the union is taken over a nonempty open subset in P𝑁 (𝑋 )−𝑏−2) is a proper closed subset in Λ, which
is of codimension 1 in 𝐸𝑋 , which is impossible as Λ is a prime divisor. We conclude that Λ(Π, 𝑠) is a
union of precisely 𝑑Λ distinct hyperplanes in 𝐸𝑋 (Π, 𝑠).

Assume that 𝑑Λ � 2. By our assumptions about the rank rk(𝑜 ∈ 𝑋), the inequality (19) holds for
𝑏 = 3𝑘:

rk 𝑞 [1,𝑘 ] � 10𝑘2 + 8𝑘 + 5.
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Again, we apply Corollary 4.3, now to a general subspace Π∗ = 𝐸𝑋 (Π, 𝑠) of dimension 𝑏∗ = 𝑏+1− 𝑘 �
2𝑘 + 1. The subspace Π∗ does not meet the set Sing 𝐸𝑋 , and the restriction of the projection from Π∗

prΠ∗ : P𝑁 (𝑋 )−1 � P𝑁 (𝑋 )−𝑏
∗−2

onto B is dominant. Let 𝑠∗ ∈ P𝑁 (𝑋 )−𝑏∗−2 be a point of general position. We use the notations introduced
above and write 𝐸𝑋 (Π∗, 𝑠∗). For the blow-ups of the subspace Π∗, we use the symbols 𝜎Π∗ and 𝜎P,Π∗ ,
respectively, and for the regularized projections, the symbols 𝜑Π∗ and 𝜑P,Π∗ . The symbol 〈Π∗, 𝑠∗〉 has
the same meaning as above. Set

𝐸∗ = 𝜎−1
Π∗ (Π

∗) and 𝐸∗P = 𝜎−1
P,Π∗ (Π

∗)

to be the exceptional divisors of the blow-up of Π∗ on 𝐸𝑋 and P𝑁 (𝑋 )−1. By the arguments immediately
before the statement of Proposition 4.5, the map 𝜑Π∗ |𝐸∗ is surjective, and by Proposition 4.5 (which
applies since 𝑏∗ � 𝑘 + 1), the intersection

𝜑−1
Π∗ (𝑠

∗) ∩ 𝜎−1
Π∗ (Λ ∩ Π∗)

is nonempty, and each of its irreducible components is of codimension 1 in the projective space
𝜑−1
Π∗ (𝑠

∗) ∩ 𝐸∗
P
.

By what was shown above, Λ ∩ Π∗ is a union of 𝑑Λ distinct hyperplanes Λ∗𝑖 , 𝑖 ∈ 𝐼. In a similar way,

Λ ∩ 𝐸𝑋 (Π∗, 𝑠∗) = 𝜎−1
Π∗ (Λ) ∩ 𝜑−1

Π∗ (𝑠
∗)

is the union of 𝑑Λ distinct hyperplanes in 𝜑−1
Π∗ (𝑠

∗), none of which coincides with the hyperplane
𝜑−1
Π∗ (𝑠

∗) ∩ 𝐸∗
P
. Note that the strict transform of the divisor Λ with respect to the blow-up 𝜎Π∗ is just its

full inverse image 𝜎−1
Π∗ (Λ), since Λ ⊄ Π∗. Furthermore,

𝜎−1
Π∗ (Λ) ∩ 𝐸∗ = 𝜎−1

Π∗ (Λ ∩ Π∗) =
⋃
𝑖∈𝐼

𝜎−1
Π∗ (Λ

∗
𝑖 ),

and every intersection 𝜑−1
Π∗ (𝑠

∗)∩𝜎−1
Π∗ (Λ

∗
𝑖 ) is a hyperplane in 𝜑−1

Π∗ (𝑠
∗)∩𝐸∗

P
. It follows that each irreducible

component of set Λ ∩ 𝐸𝑋 (Π∗, 𝑠∗) intersects the hyperplane 𝜑−1
Π∗ (𝑠

∗) ∩ 𝐸∗
P

by one of the hyperplanes
𝜎−1
Π∗ (Λ

∗
𝑖 ) ∩ 𝜑−1

Π∗ (𝑠
∗), 𝑖 ∈ 𝐼. Thus, one can write down

Λ ∩ 𝐸𝑋 (Π∗, 𝑠∗) =
⋃
𝑖∈𝐼

Λ𝑖 (Π∗, 𝑠∗),

where Λ𝑖 (Π∗, 𝑠∗) is a hyperplane in 𝐸𝑋 (Π∗, 𝑠∗), satisfying the equality

Λ𝑖 (Π∗, 𝑠∗) ∩ 𝐸∗ = 𝜎−1
Π∗ (Λ

∗
𝑖 ) ∩ 𝜑−1

Π∗ (𝑠
∗).

In other words, the choice of a component of the intersection Λ∩Π∗ determines uniquely the component
of the intersection of Λ with 〈Π∗, 𝑠∗〉 = 𝜑−1

Π∗ (𝑠
∗) = 𝐸𝑋 (Π∗, 𝑠∗) for a general point 𝑠∗. Now set

Λ𝑖 = 𝜎Π∗

(⋃
𝑠∗
(Π∗, 𝑠∗)

)
,

where the union is taken over a nonempty Zariski open subset of the projective space P𝑁 (𝑋 )−𝑏∗−2. This
is a prime divisor on 𝐸𝑋 , and moreover, Λ𝑖 ⊂ Λ, and for that reason, Λ𝑖 = Λ, whence we conclude that
all hyperplanes Λ𝑖 (Π∗, 𝑠∗) are the same, which is a contradiction with the assumption that 𝑑Λ � 2.

Thus, 𝑑Λ = 1 and Λ is a hyperplane section of 𝐸𝑋 ⊂ E𝑋 . Q.E.D. for Theorem 5.2, and therefore for
Theorem 5.1.
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5.5. The construction of a new working triple

Now we can complete the proof Theorem 3.3 and construct the new working triple (𝑅, 𝐷𝑅, 𝑜). Let
𝑅 � 𝑜 the section of X by the hyperplane P(𝑅) = 〈𝑅〉, such that

𝑅+ ∩ E𝑋 = 𝑅+ ∩ 𝐸𝑋 = Λ

(in other words, the hyperplane P(𝑅)+ ∩ E𝑋 cuts out Λ on 𝐸𝑋 ). Since R is not a component of the
effective divisor 𝐷𝑋 , the scheme-theoretic intersection (𝑅 ◦ 𝐷𝑋 ) is well defined, and we treat this
intersection as an effective divisor on R. Set 𝐷𝑅 = (𝑅 ◦ 𝐷𝑋 ) in that sense.

On 𝑅+ ⊂ 𝑋+ with the exceptional divisor

𝐸𝑅 = (𝑅+ ∩ 𝐸𝑋 ) = Λ ⊂ E𝑅 = P(𝑅)+ ∩ E𝑋 ,

we have the equivalence

𝐷+𝑅 ∼ 𝑛(𝐷𝑅)𝐻𝑅 − 𝜈(𝐷𝑅)𝐸𝑅,

where 𝐻𝑅 is the class of a hyperplane section of R and

𝜈(𝐷𝑅) � 𝜈(𝐷𝑋 ) +multΛ 𝐷+𝑋 > 𝜈(𝐷𝑋 ) +
2𝑛(𝐷𝑋 ) − 𝜈(𝐷𝑋 )

𝑘 + 1
.

Again, [𝑅, 𝑜] is a marked complete intersection, of level (𝑘, 𝑐𝑅), where 𝑐𝑅 = 𝑐𝑋 − 2, (𝑅, 𝐷𝑅, 𝑜) is a
working triple, and the inequality

2𝑛(𝐷𝑅) − 𝜈(𝐷𝑅) <

(
1 − 1

𝑘 + 1

)
(2𝑛(𝐷𝑋 ) − 𝜈(𝐷𝑋 ))

holds (since 𝑛(𝐷𝑅) = 𝑛(𝐷𝑋 )).
The procedure of constructing the special hyperplane section is complete. Q.E.D. for Theorem 3.3.

6. Multiplicity of a line

In this section, we prove Proposition 5.3.

6.1. Blowing up a point and a curve

Since we completed our study of working triples, the symbol X is now free and will mean an arbitrary
non-singular quasi-projective variety of dimension � 3. Let 𝐶 ⊂ 𝑋 be a non-singular projective curve,
𝑝 ∈ 𝐶 a point. Furthermore, let

𝜎𝐶 : 𝑋 (𝐶) → 𝑋

be the blow-up of the curve C with the exceptional divisor 𝐸𝐶 and 𝜎−1
𝐶 (𝑝) � P

dim𝑋−2 the fibre over the
point p. Let

𝜎 : 𝑋 (𝐶, 𝜎−1
𝐶 (𝑝)) → 𝑋 (𝐶)

be the blow-up of that fibre with the exceptional divisor E and 𝐸 (𝑝)𝐶 the strict transform of 𝐸𝐶 on that
blow-up.

However, consider the blow-up

𝜑𝑝 : 𝑋 (𝑝) → 𝑋
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of the point p with the exceptional divisor 𝐸𝑝 and denote by the symbol 𝐶 (𝑝) the strict transform of the
curve C on 𝑋 (𝑝). Finally, let

𝜑 : 𝑋 (𝑝, 𝐶 (𝑝)) → 𝑋 (𝑝)

be the blow-up of the curve 𝐶 (𝑝), 𝐸𝐶 (𝑝) the exceptional divisor of that blow-up and 𝐸𝐶𝑝 the strict
transform of 𝐸𝑝 .

Proposition 6.1. The identity map id𝑋 extends to an isomorphism

𝑋 (𝐶, 𝜎−1
𝐶 (𝑝)) � 𝑋 (𝑝, 𝐶 (𝑝)),

identifying the subvarieties E and 𝐸𝐶𝑝 and the subvarieties 𝐸 𝑝𝐶 and 𝐸𝐶 (𝑝) .

Proof. This is a well-known fact, which can be checked by elementary computations in local parameters.
Q.E.D. for the proposition. �

Taking into account the identifications above, we will use the notations 𝐸𝐶𝑝 and 𝐸𝐶 (𝑝) , and forget
about E and 𝐸 𝑝𝐶 . The variety 𝑋 (𝐶, 𝜎−1

𝐶 (𝑝)) will be denoted by the symbol 𝑋 . Let D be an effective
divisor on X. The symbols 𝐷𝐶 and 𝐷 𝑝 stand for its strict transforms on 𝑋 (𝐶) and 𝑋 (𝑝), respectively,
and the symbol 𝐷 for its strict transform on 𝑋 . Set

𝜇 = mult𝐶 𝐷 and 𝜇𝑝 = mult𝑝 𝐷,

where, of course, 𝜇𝑝 � 𝜇.

Lemma 6.1. The following equality holds:

mult𝜎−1
𝐶
(𝑝) 𝐷𝐶 = 𝜇𝑝 − 𝜇.

Proof. (This is a well-known fact, and we give a proof for the convenience of the reader, and also
because a similar argument is used below.) We have the sequence of obvious equalities:

𝜎∗𝐶𝐷 = 𝐷𝐶 + 𝜇𝐸𝐶 ,

so that

𝜎∗𝜎∗𝐶𝐷 = 𝐷 + 𝜇𝐸𝐶 (𝑝) + (𝜇 +mult𝜎−1
𝐶 (𝑝)

𝐷𝐶 )𝐸𝐶𝑝 .

Considering the second sequence of blow-ups, we get

𝜑∗𝑝𝐷 = 𝐷 𝑝 + 𝜇𝑝𝐸𝑝

and, respectively,

𝜑∗𝜑∗𝑝𝐷 = 𝐷 + 𝜇𝐸𝐶 (𝑝) + 𝜇𝑝𝐸𝐶𝑝 .

Comparing the two presentations of the same effective divisor, we get the claim of the lemma.

6.2. Blowing up two points and a curve

In the notations of the previous subsection, let us consider the point

𝑞 = 𝐶 (𝑝) ∩ 𝐸𝑝 .
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Set 𝜇𝑞 = mult𝑞 𝐷 𝑝 . Obviously,

𝜇𝑞 � mult𝐶 (𝑝) 𝐷 𝑝 = mult𝐶 𝐷 = 𝜇.

Let

𝜑𝑞 : 𝑋 (𝑝, 𝑞) → 𝑋 (𝑝)

be the blow-up of the point q with the exceptional divisor 𝐸𝑞 and 𝐶 (𝑝, 𝑞) the strict transform of the
curve 𝐶 (𝑝). Finally, let

𝜑♯ : 𝑋♯ → 𝑋 (𝑝, 𝑞)

be the blow-up of the curve 𝐶 (𝑝, 𝑞) with the exceptional divisor 𝐸𝐶 (𝑝,𝑞) and 𝐸♯𝑞 the strict transform of
𝐸𝑞 . Note that the curve 𝐶 (𝑝) intersects 𝐸𝑝 transversally, and therefore, 𝐶 (𝑝, 𝑞) does not meet the strict
transform 𝐸𝑞𝑝 of the divisor 𝐸𝑝 ⊂ 𝑋 (𝑝) on 𝑋 (𝑝, 𝑞).

Proposition 6.2. The restriction of the divisor 𝐷𝐶 onto the exceptional divisor 𝐸𝐶 contains the fibre
𝜎−1
𝐶 (𝑝) with multiplicity at least 𝜇𝑝 + 𝜇𝑞 − 2𝜇.

Proof. Obviously, on 𝑋♯ we have the equality

𝜑∗♯𝜑
∗
𝑞𝜑∗𝑝𝐷 = 𝐷♯ + (𝜇𝑞 + 𝜇𝑝)𝐸♯𝑞 + 𝜇𝑝𝐸𝑞𝑝 + 𝜇𝐸𝐶 (𝑝,𝑞) ,

where 𝐷♯ is the strict transform of D on 𝑋♯. However, using the constructions of Subsection 6.1, we see
that 𝑋♯ can be obtained as the blow-up of the curve 𝐶 (𝑝) on 𝑋 (𝑝) with the subsequent blowing up of
the fibre of the exceptional divisor 𝐸𝐶 (𝑝) over the point q or, applying the construction of Subsection 6.1
twice, as the blow-up of the curve C on X with the subsequent blowing up of the fibre 𝜎−1

𝐶 (𝑝) and then
the blowing up of the subvariety

𝐸𝐶𝑝 ∩ 𝐸 𝑝𝐶 .

In the last presentation, the three prime exceptional divisors are

𝐸♯𝐶 = 𝐸𝐶 (𝑝,𝑞) , 𝐸♯𝑝 and 𝐸♯𝑞 .

We denote the blow-up 𝑋♯ → 𝑋 of the subvariety 𝐸𝐶𝑝 ∩ 𝐸 𝑝𝐶 , mentioned above, by the symbol 𝜎♯. Thus,
we obtain the following commutative diagram of birational morphisms:

𝑋 (𝐶) 𝜎← 𝑋
𝜎♯← 𝑋♯

↓ ↓ ↓
𝑋

𝜑𝑝← 𝑋 (𝑝)
𝜑𝑞← 𝑋 (𝑝, 𝑞),

where the vertical arrows (from the left to the right) are 𝜎𝐶 , 𝜑 and 𝜑♯, respectively. We have the equality

𝜎∗♯𝜎∗𝜎∗𝐶𝐷 = 𝜑∗♯𝜑
∗
𝑞𝜑∗𝑝𝐷.

This pullback can be written down as

𝐷♯ + 𝜇𝐸♯𝐶 + 𝜇𝑝𝐸♯𝑝 + (𝜇𝑝 + 𝜇𝑞)𝐸♯𝑞 ,
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since 𝐸𝐶 (𝑝,𝑞) = 𝐸♯𝐶 and 𝐸♯𝑞 is the exceptional divisor of the blow-up 𝜎♯. However, 𝐷𝐶 = 𝜎∗𝐶𝐷 − 𝜇𝐸𝐶
and, besides,

𝜎∗♯𝜎∗𝐸𝐶 = 𝐸♯𝐶 + 𝐸♯𝑝 + 2𝐸♯𝑞 ,

so that the exceptional divisor 𝐸♯𝑞 comes into the pullback of the divisor 𝐷𝐶 on 𝑋♯ with multiplicity
(𝜇𝑝 + 𝜇𝑞 − 2𝜇). However, the blow-ups 𝜎 and 𝜎♯ do not change the divisor 𝐸𝐶 , as they blow-up
subvarieties of codimension 1 on the variety:

𝜎 ◦ 𝜎♯ |𝐸♯
𝐶

: 𝐸♯𝐶 → 𝐸𝐶

is an isomorphism. Since the restriction 𝐷♯ onto 𝐸♯𝐶 is an effective divisor, it follows from here that
the restriction of the divisor 𝐷𝐶 onto 𝐸𝐶 contains the fibre 𝜎−1 (𝑝) (which is precisely the restriction
of 𝐸♯𝑞 onto 𝐸♯𝐶 in terms of the isomorphism between 𝐸♯𝐶 and 𝐸𝐶 , discussed above) with multiplicity
� 𝜇𝑝 + 𝜇𝑞 − 2𝜇. Proof of Proposition 6.2 is complete. �

6.3. The multiplicity of an infinitely near line

Let us come back to the proof of Proposition 5.3. We will obtain its claim from a more general fact.
Let 𝑜 ∈ X be a germ of a multi-quadratic singularity of type 2𝑘 , where X ⊂ Y , Y is non-singular,
codim(X ⊂ Y) = 𝑘 and the inequality

rk(𝑜 ∈ X ) � 2𝑘 + 3

holds, so that codim(SingX ⊂ X ) � 4 and X is factorial. Let 𝜎Y : Y+ → Y be the blow-up of the point
o with the exceptional divisor 𝐸Y , X + ⊂ Y+ the strict transform, so that

𝜎 = 𝜎Y |X + : X + → X

is the blow-up of the point o on X with the exceptional divisor 𝐸X , which is a complete intersection of
k quadrics in 𝐸Y � PdimY−1. By Proposition 4.2,

codim(Sing 𝐸X ⊂ 𝐸X ) � 4.

Let 𝐿 ⊂ 𝐸X be a line, where 𝐿 ∩ Sing 𝐸X = ∅ and 𝑝 ∈ 𝐿 a point. Let us blow-up this point on Y+ and
X +, respectively:

𝜎𝑝,Y : Y𝑝 → Y+ and 𝜎𝑝 : X𝑝 → X +

are these blow-ups with the exceptional divisors 𝐸𝑝,Y and 𝐸𝑝 . Set

𝑞 = 𝐿 (𝑝) ∩ 𝐸𝑝 ,

where 𝐿 (𝑝) ⊂ X𝑝 is the strict transform.
Let 𝐷X be an effective divisor on X . For its strict transform on X +, we have the equality

𝐷+X = 𝜎∗𝐷X − 𝜈𝐸X

for some 𝜈 ∈ Z+. Furthermore, we denote the strict transform of 𝐷+X on X𝑝 by the symbol 𝐷 (𝑝)X and set

𝜇𝑝 = mult𝑝 𝐷+X and 𝜇𝑞 = mult𝑞 𝐷 (𝑝)X .

Set also 𝜇 = mult𝐿 𝐷+X ; obviously, 𝜇 � 𝜇𝑝 .
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Theorem 6.1. The following inequality holds:

𝜇 �
1

𝑘 + 1
(𝜇𝑝 + 𝜇𝑞 − 𝜈).

Proof. Let 𝑃 ⊂ 𝐸Y be a general linear subspace of dimension (𝑘 + 2), containing the line L. �

Lemma 6.2. The surface 𝑆 = 𝑃 ∩ X + = 𝑃 ∩ 𝐸X is non-singular.

Proof. We argue by induction on dim 𝐸X � 2. If dim 𝐸X = 2, then there is nothing to prove. Let
dim 𝐸X � 3. The hyperplanes in 𝐸Y , tangent to 𝐸X at at least one point of the line L, form a
k-dimensional family. The hyperplanes, containing the line L, form a family (a linear subspace) of
codimension 2 in the dual projective space for 𝐸Y – that is, of dimension 𝑘 + dim 𝐸X − 2 � 𝑘 + 1 – so
that for a general hyperplane 𝑅Y ⊃ 𝐿 in 𝐸Y , we have the following: 𝐸X ∩ 𝑅Y is non-singular along L
(and, of course, for the codimension of the singular set, we have the equality codim(Sing(𝐸X ∩ 𝑅Y ) ⊂
(𝐸X ∩ 𝑅Y )) = codim(Sing 𝐸X ⊂ 𝐸X )). Applying the induction hypothesis, we complete the proof of
the lemma. Q.E.D. �

Let Z ⊂ Y , Z � 𝑜, be a general subvariety of dimension (𝑘 + 3), non-singular at the point o, such
that Z+ ∩ 𝐸Y = 𝑃, and

X𝑃 = X ∩ Z

(the notation X𝑃 is chosen for convenience: X𝑃 is determined by Z , not by P). Then X𝑃 is a three-
dimensional variety with the isolated multi-quadratic singularity 𝑜 ∈ X𝑃 , and the blow-up of the point
o resolves this singularity: the exceptional divisor X +𝑃 ∩ 𝐸Y is the non-singular surface S.

The restriction of the divisor 𝐷X onto X𝑃 is denoted by the symbol 𝐷𝑃 , and its strict transform on
X +𝑃 by the symbol 𝐷+𝑃 .

Lemma 6.3. The normal sheaf N𝐿/X +𝑃 � O𝐿 (−𝛼) ⊕ O𝐿 (−𝛽), where 𝛼 + 𝛽 = 𝑘 and 𝛼 � 𝛽 � 1.

Proof. Since 𝑃 � P𝑘+2, by the adjunction formula 𝐾𝑆 = (𝑘−3)𝐻𝑆 , where 𝐻𝑆 is the class of a hyperplane
section of 𝑆 ⊂ 𝑃, whence it follows that (𝐿2)𝑆 = 1 − 𝑘 . Furthermore, the surface S is the exceptional
divisor of the blow-up of the point o on X𝑃 (𝑆 = X +𝑃 ∩ 𝐸Y ), so that OX +𝑃 (𝑆) |𝐿 = O𝐿 (−1), and we have
the exact sequence

0→ N𝐿/𝑆 → N𝐿/X +𝑃 → N𝑆/X +𝑃 |𝐿 → 0

or

0→ O𝐿 (1 − 𝑘) → N𝐿/X +𝑃 → O(−1) → 0.

From this, the claim of the lemma follows at once. Q.E.D. �

Let 𝜎𝐿 : X𝑃,𝐿 → X +𝑃 be the blow-up of the line L, and 𝐸𝑃,𝐿 ⊂ X𝑃,𝐿 the exceptional divisor. The
lemma implies that 𝐸𝑃,𝐿 is a ruled surface of type F𝛼−𝛽 and its Picard group is Z𝑠 ⊕ Z 𝑓 , where f is
the class of a fibre, s the class of the exceptional section, 𝑠2 = −(𝛼 − 𝛽). Again, from the lemma shown
above, it follows that

(𝐸3
𝑃,𝐿)X𝑃,𝐿 = (𝐸𝑃,𝐿 |2𝐸𝑃,𝐿

) = − degN𝐿/X +𝑃 = 𝑘,

so that

−𝐸𝑃,𝐿 |𝑃,𝐿 = 𝑠 + 1
2
(𝑘 + 𝛼 − 𝛽) 𝑓 .
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Obviously (since the subspace P is general),

mult𝑝 𝐷+𝑃 = 𝜇𝑝 .

Let X (𝑝)𝑃 ⊂ X𝑝 be the strict transform of X +𝑃 on X𝑝 . By construction, 𝑞 ∈ X (𝑝)𝑃 . Setting
𝐷 (𝑝)𝑃 = 𝐷 (𝑝)X |X (𝑝)𝑃

, we obtain

𝜇𝑞 = mult𝑞 𝐷 (𝑝)𝑃 .

Finally, let 𝐷 (𝐿)𝑃 be the strict transform of the divisor 𝐷+𝑃 on X𝑃,𝐿 . Obviously,

𝐷 (𝐿)𝑃 = 𝜎∗𝐿𝐷+𝑃 − 𝜇𝐸𝑃,𝐿 ,

so that, writing the pullback on X𝑃,𝐿 of the restriction 𝐸X |X +𝑃 for simplicity as the restriction 𝐸X |X𝑃,𝐿 ,
we have

(−𝜈𝐸X |X𝑃,𝐿 − 𝜇𝐸𝑃,𝐿) |𝐸𝑃,𝐿 ∼

∼ 𝜈 𝑓 + 𝜇(𝑠 + 1
2
(𝑘 + 𝛼 − 𝛽) 𝑓 ) = 𝜇𝑠 + (𝜈 + 1

2
𝜇(𝑘 + 𝛼 − 𝛽)) 𝑓 .

By Proposition 6.2, this effective divisor contains the fibre 𝜎−1
𝐿 (𝑝) with multiplicity at least 𝜇𝑝+𝜇𝑞−2𝜇,

whence we get the inequality

𝜈 + 1
2

𝜇(𝑘 + 𝛼 − 𝛽) � 𝜇𝑝 + 𝜇𝑞 − 2𝜇,

which after easy transformations gives us that

𝜇 >
2(𝜇𝑝 + 𝜇𝑞) − 2𝜈

𝑘 + (𝛼 − 𝛽) + 4
.

The denominator of the right-hand side is maximal when 𝛼 = 𝑘 − 1 and 𝛽 = 1 and so

𝜇 >
2(𝜇𝑝 + 𝜇𝑞) − 2𝜈

2𝑘 + 2
=
(𝜇𝑝 + 𝜇𝑞) − 𝜈

𝑘 + 1
.

Q.E.D. for the theorem.
Proposition 5.3 follows immediately from the theorem that we have just shown, taking into account

the construction of the line L and the inequality (18).

7. Hypertangent divisors

In this section, we prove Theorems 1.2, 1.3 and 1.4.

7.1. Non-singular points. Tangent divisors

Let us start the proof of Theorem 1.2. Obviously, it is sufficient to consider the case when the subspace
P is of maximal admissible codimension 𝑘 + 𝜀(𝑘) − 1 in P𝑀+𝑘 . Theorem 1.1 and Remark 1.4 imply that
the inequality

codim(Sing(𝐹 ∩ 𝑃) ⊂ (𝐹 ∩ 𝑃)) � 2𝑘 + 2
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holds. In particular, 𝐹 ∩ 𝑃 is a factorial complete intersection of codimension k in P � P𝑀−𝜀 (𝑘)+1.
Moreover, by the Lefschetz theorem, applied to the section of the variety 𝐹 ∩ 𝑃 by a general linear
subspace of dimension 3𝑘 + 1 in P (this section is a non-singular complete intersection of codimension
k in P3𝑘+1), we get that the section of 𝐹 ∩ 𝑃 by an arbitrary linear subspace of codimension 𝑎 � 𝑘 is
irreducible and reduced, since for the numerical Chow group, we have

𝐴𝑎𝐹 ∩ 𝑃 = Z𝐻𝑎𝐹∩𝑃 ,

where 𝐻𝐹∩𝑃 is the class of a hyperplane section.
Assume that Theorem 1.2 is not true and multo 𝑌 > 2𝑛(𝑌 ). We will argue precisely as in [26, §2];

see also [20, Chapter 3, Section 2.1]. Let 𝑇1, . . . , 𝑇𝑘 be the tangent hyperplane sections of 𝐹 ∩ 𝑃 at the
point o (in the notations of Subsection 1.4 they are defined by the linear forms 𝑓𝑖,1 |𝑃 , 𝑖 = 1, . . . , 𝑘). By
what was said above, for each 𝑖 = 1, . . . , 𝑘 , the intersection 𝑇1 ∩ · · · ∩ 𝑇𝑖 is of codimension i in 𝐹 ∩ 𝑃
and coincides with the scheme-theoretic intersection (𝑇1 ◦ · · · ◦ 𝑇𝑖) and its multiplicity at the point o
equals precisely 2𝑖 , since the quadratic forms

𝑓1,2 |𝑇𝑜 (𝐹∩𝑃) , . . . , 𝑓𝑘,2 |𝑇𝑜 (𝐹∩𝑃)

satisfy the regularity condition. Now we argue as in [26, §2]. We set 𝑌1 = 𝑌 and see that 𝑌1 ≠ 𝑇1 because
mult𝑜 𝑇1 = 2𝑛(𝑇1) = 2. We consider the cycle (𝑌1 ◦ 𝑇1) of the scheme-theoretic intersection and take
for 𝑌2 the component of that cycle that has the maximal value of the ratio mult𝑜/deg. Assume that the
subvariety 𝑌𝑖 of codimension i in 𝐹 ∩ 𝑃, satisfying the inequality

mult𝑜 𝑌𝑖 >
2𝑖

deg𝐹
deg𝑌𝑖

is already constructed, and 𝑖 � 𝑘 − 1. Then

𝑌𝑖 ≠ 𝑇1 ∩ · · · ∩ 𝑇𝑖 .

However, by construction, 𝑌𝑖 is contained in the divisors 𝑇1, . . . , 𝑇𝑖−1, so that 𝑌𝑖 ⊄ 𝑇𝑖 , and the cycle
of scheme-theoretic intersection (𝑌𝑖 ◦ 𝑇𝑖) of codimension 𝑖 + 1 is well defined. For 𝑌𝑖+1, we take the
component of this cycle with the maximal value of the ratio mult𝑜/deg. Completing this process, we
obtain an irreducible subvariety 𝑌𝑘+1 ⊂ (𝐹 ∩ 𝑃) of codimension 𝑘 + 1, satisfying the inequality

mult𝑜
deg

𝑌𝑘+1 >
2𝑘+1

deg 𝐹
.

7.2. Non-singular points. Hypertangent divisors

We continue the proof of Theorem 1.2. In the notations of Subsection 1.4 for each 𝑗 = 2, . . . , 𝑑𝑘 − 1,
construct the hypertangent linear systems

Λ 𝑗 =

�����
𝑘∑
𝑖=1

min{ 𝑗 ,𝑑𝑖−1}∑
𝛼=1

𝑓𝑖, [1,𝛼] 𝑠𝑖, 𝑗−𝛼

�����
𝐹∩𝑃

,

where 𝑓𝑖, [1,𝛼] = 𝑓𝑖,1+· · ·+ 𝑓𝑖,𝛼 is the left segment of the polynomial 𝑓𝑖 of length 𝛼, the polynomials 𝑠𝑖, 𝑗−𝛼
are homogeneous polynomials of degree 𝑗 − 𝛼, running through the spaces P 𝑗−𝛼,𝑀+𝑘 independently
of each other and the restriction onto 𝐹 ∩ 𝑃 means the restriction onto the affine part of that variety in
A𝑀+𝑘𝑧∗ followed by the closure.

Let ℎ𝑎, where 𝑎 � 𝑘 + 1, be the a-th polynomial in the sequence S . Then ℎ𝑎 = 𝑓𝑖, 𝑗 |P(𝑇𝑜𝐹 ) for some i
and 𝑗 � 3. Set H𝑎 = Λ 𝑗−1. In this way, we obtain a sequence of linear systems H𝑘+1, H𝑘+2,. . . , H𝑀 ,
where the system Λ 𝑗 occurs, in the notations of [26, §2],
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𝑤+𝑗 = ♯{𝑖, 1 � 𝑖 � 𝑘 | 𝑗 � 𝑑𝑖 − 1}

times. By the symbol H[−𝑚] we denote the space

𝑀−𝑚∏
𝑎=𝑘+1

H𝑎

of all tuples (𝐷𝑘+1, . . . , 𝐷𝑀−𝑚) of divisors, where 𝐷𝑎 ∈ H𝑎. For 𝑎 ∈ {𝑘 + 1, . . . , 𝑀} set

𝛽𝑎 =
𝑗 + 1

𝑗
,

if H𝑎 = Λ 𝑗 . The number 𝛽𝑎 is called the slope of the divisor 𝐷𝑎. It is easy to see that

𝑀∏
𝑎=𝑘+1

𝛽𝑎 =
𝑑1 . . . 𝑑𝑘

2𝑘
=

deg 𝐹

2𝑘
. (20)

Set 𝑚∗ = 𝑘 + 𝜀(𝑘) + 3. Let

(𝐷𝑘+1, . . . , 𝐷𝑀−𝑚∗ ) ∈ H[−𝑚∗]

be a general tuple. The technique of hypertangent divisors, applied in precisely the same way as in [26,
§2] or [20, Chapter 3, Subsection 2.2] – see also [2, Proposition 2.1] – gives the following claim.
Proposition 7.1. There is a sequence of irreducible subvarieties

𝑌𝑘+1, 𝑌𝑘+2, . . . , 𝑌𝑀−𝑚∗ ,

where 𝑌𝑘+1 has been constructed above, such that codim(𝑌𝑖 ⊂ (𝐹 ∩ 𝑃)) = 𝑖, the subvariety 𝑌𝑖 is not
contained in the support of the divisor 𝐷𝑖+1 for 𝑖 � 𝑀 − 𝑚∗ − 1, the subvariety 𝑌𝑖+1 is an irreducible
component of the effective cycle (𝑌𝑖 ◦ 𝐷𝑖+1) and the following inequality holds:

mult𝑜
deg

𝑌𝑖+1 � 𝛽𝑖+1
mult𝑜
deg

𝑌𝑖 .

There is no need to give a proof of that claim because it is identical to the arguments mentioned
above. Note only that the key point in the construction of the sequence of subvarieties 𝑌𝑖 is the fact
that 𝑌𝑖 is not contained in the support of a general divisor 𝐷𝑖+1 ∈ H𝑖+1, and this fact follows from the
regularity condition (R1). Since dim(𝐹 ∩ 𝑃) = 𝑀 + 1 − 𝑘 − 𝜀(𝑘), the subvariety 𝑌 ∗ = 𝑌𝑀−𝑚∗ is of
dimension 4 and satisfies the inequality

mult𝑜
deg

𝑌 ∗ >

2𝑘+1

deg 𝐹
· deg 𝐹

2𝑘

3
2
·

𝑀∏
𝑎=𝑀−𝑚∗+1

𝛽𝑎

=
4
3

1
𝑀∏

𝑎=𝑀−𝑚∗+1
𝛽𝑎

.

(The number 3
2 appears in the denominator because the hypertangent divisor 𝐷𝑘+1 is skipped in the

procedure of intersection, in the same way and for the same reason as in [26, §2], and its slope is 3
2 .)

Now the inequality

4
3
�

𝑀∏
𝑎=𝑀−𝑚∗+1

𝛽𝑎, (21)

shown below in Proposition 7.2, completes the proof of Theorem 1.2.
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Proposition 7.2. Assume that for 𝑘 = 3, 4, 5, the dimension M is, respectively, at least 96, 160, 215, and
for 𝑘 � 6, the inequality 𝑀 � 8𝑘2 + 2𝑘 holds. Then the inequality (21) is true.

Proof. Using the obvious fact that the function 𝑡+1
𝑡 is decreasing, it is easy to see that the right-hand

side of the inequality (21) with k and M fixed attains the maximum when the degrees 𝑑1, . . . , 𝑑𝑘 are
equal or ‘almost equal’ in the following sense: let 𝑀 ≡ 𝑒 mod 𝑘 with 𝑒 ∈ {0, 1, . . . , 𝑘 − 1}, then the
‘almost equality’ means that

𝑑1 = · · · = 𝑑𝑘−𝑒 =
𝑀 − 𝑒

𝑘
+ 1, 𝑑𝑘−𝑒+1 = · · · = 𝑑𝑘 =

𝑀 − 𝑘

𝑘
+ 2.

For 𝑘 ∈ {3, . . . , 9}, the claim of the proposition can be checked for each case of almost equal degrees –
that is, for each possible value of e – manually, computing 𝜀(𝑘) explicitly. For 𝑘 � 10, it is easy to see
that 𝜀(𝑘) � 𝑘 − 3, so that 𝑚∗ � 2𝑘 . Therefore (again considering the case of almost equal degrees), the
right-hand side of (21) does not exceed the number

(
𝑀
𝑘

𝑀
𝑘 − 2

) 𝑘
=

(
𝑀

𝑀 − 2𝑘

) 𝑘
,

from which we get that (21) is true if

𝑀 � 2𝑘
(1 + 1

3 )
1
𝑘

(1 + 1
3 )

1
𝑘 − 1

.

If in the numerator and denominator we replace (1 + 1
3 )

1
𝑘 by the smaller number 1 + 1

4𝑘 , the right-hand
side of the last inequality gets higher. This proves the proposition. Q.E.D. �

Note that for 𝑀 � 𝜌(𝑘) (see the inequality (1) in Subsection 0.1), the assumptions of the previous
proposition are satisfied. This completes the proof of Theorem 1.2.

7.3. Quadratic points

Let us show Theorem 1.3. Note first of all that if Y is a section of the variety W by a hyperplane that is
tangent to W at the point o (that is, the equation of the hyperplane is a linear combination of the forms
𝑓1,1, . . . , 𝑓𝑘,1, restricted onto the hyperplane P(𝑊) � P𝑀+𝑘−1), then

mult𝑜 𝑌 = 4𝑛(𝑌 ) = 4,

so that the claim of the theorem is optimal. Thus, we assume the converse: the inequality

mult𝑜 𝑌 > 2𝑛(𝑌 )

holds. We argue as in the non-singular case (Subsection 7.1): let 𝑇1, . . . , 𝑇𝑘−1 be the tangent hyperplane
sections, given by (𝑘 − 1) independent forms taken from the set { 𝑓1,1, . . . , 𝑓𝑘,1}. Since codim(Sing 𝐹 ⊂
𝐹) � 2𝑘 +2, all scheme-theoretic intersections (𝑇1 ◦ · · · ◦𝑇𝑖), 1 � 𝑖 � 𝑘 −1, are irreducible, reduced and
coincide with the set-theoretic intersection 𝑇1∩· · ·∩𝑇𝑖 , and moreover, by the condition (R2), the equality

mult𝑜 𝑇1 ∩ · · · ∩ 𝑇𝑖 = 2𝑖+1
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holds. In particular, mult𝑜 𝑇1 = 4𝑛(𝑇1) = 4, so that 𝑌 ≠ 𝑇1. Arguing as in Subsection 7.1, we construct
a sequence of irreducible subvarieties 𝑌1 = 𝑌,𝑌2, . . . , 𝑌𝑘 , where codim(𝑌𝑖 ⊂ 𝑊) = 𝑖 and the inequality

mult𝑜
deg

𝑌𝑘 >
2𝑘+1

deg 𝐹

holds. Now the proof of Theorem 1.3 repeats the arguments of Subsection 7.2, where 𝑚∗ is replaced
by 4. Since 4 < 𝑚∗, the inequality (21) guarantees the inequality which is obtained from (21) when 𝑚∗
is replaced by 4. This completes the proof of Theorem 1.3.

7.4. Multi-quadratic points. Tangent divisors

We start the proof of Theorem 1.4, the structure of which is similar to the structure of the proof of
Theorem 1.2. At first, we argue as in Subsection 7.1: it is sufficient to consider a linear subspace P in
𝑇𝑜𝐹 of maximal admissible codimension 𝜀(𝑘). Assume that the prime divisor Y on 𝐹 ∩ 𝑃 satisfies the
inequality

mult𝑜 𝑌 >
3
2
· 2𝑘𝑛(𝑌 ),

or the equivalent inequality

mult𝑜
deg

𝑌 >
3
2
· 2𝑘

deg 𝐹
,

and consider the second hypertangent linear system (which in this case plays the role of the tangent
linear system)

Λ2 =

�����∑
𝑑𝑖�3

𝑠𝑖,0 𝑓𝑖,2

�����
𝐹∩𝑃

,

where 𝑠𝑖,0 ∈ C are constants, independent of each other. Instead of the Lefschetz theorem, we use the
condition (R3.1): the system of equations 𝑓𝑖,2 |𝐹∩𝑃 = 0, where 𝑑𝑖 � 3 defines an irreducible reduced
subvariety of codimension 𝑘 + 𝑘�3 in P, and by (R3.2), the multiplicity of that subvariety at the point o
is precisely 2𝑘 · ( 3

2 )
𝑘�3 . More precisely, for a general tuple (𝐷2,1, . . . , 𝐷2,𝑘�3 ) of divisors in the system

Λ2, the following claim is true: for each 𝑖 = 1, . . . , 𝑘�3, the cycle (𝐷2,1 ◦ · · · ◦ 𝐷2,𝑖) of the scheme-
theoretic intersection of the divisors 𝐷2,1, . . . , 𝐷2,𝑖 is an irreducible reduced subvariety of codimension
i in 𝐹∩𝑃, the multiplicity of which at the point o is 2𝑘 · ( 3

2 )
𝑖 . Arguing as in Subsection 7.1, we construct

a sequence 𝑌1 = 𝑌,𝑌2, . . . , 𝑌𝑘�3 of irreducible subvarieties of codimension codim(𝑌𝑖 ⊂ (𝐹 ∩ 𝑃)) = 𝑖,
where 𝑌𝑖+1 is an irreducible component of the cycle (𝑌𝑖 ◦ 𝐷2,𝑖) with the maximal value of the ratio
mult𝑜/deg. Therefore,

mult𝑜
deg

𝑌𝑘�3 >

(
3
2

) 𝑘�3

· 2𝑘

deg 𝐹
.

It follows from here that 𝑌𝑘�3 ≠ 𝐷2,1 ∩ · · · ∩ 𝐷2,𝑘�3 , but since by construction,

𝑌𝑘�3 ⊂ 𝐷2,1 ∩ · · · ∩ 𝐷2,𝑘�3−1,
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we conclude that 𝑌𝑘�3 ⊄ 𝐷2,𝑘�3 , so that the effective cycle (𝑌𝑘�3 ◦ 𝐷2,𝑘�3 ) of the scheme-theoretic
intersection of these varieties is well defined and one of its components 𝑌𝑘�3+1 satisfies the inequality

mult𝑜
deg

𝑌𝑘�3+1 >

(
3
2

) 𝑘�3+1
· 2𝑘

deg 𝐹
.

7.5. Multi-quadratic points. Hypertangent divisors

Now we argue almost word for word as in Subsection 7.2: construct the hypertangent systems

Λ 𝑗 =

�����
𝑗∑
𝛼=2

∑
𝑑𝑖�𝛼+1

𝑓𝑖, [2,𝛼] 𝑠𝑖, 𝑗−𝛼

�����
𝐹∩𝑃

,

where 𝑗 = 3, . . . , 𝑑𝑘 − 1 and all symbols have the same meaning as in Subsection 7.2. If ℎ𝑎, where
𝑎 � 𝑘 + 𝑘�3 + 1 is the a-th polynomial in the sequence S , ℎ𝑎 = 𝑓𝑖, 𝑗 |P(𝑇𝑜𝐹 ) , for some i and 𝑗 � 4, then
we set H𝑎 = Λ 𝑗−1 and obtain the sequence of linear systems

H𝑘+𝑘�3+1, H𝑘+𝑘�3+2, . . . , H𝑀 .

By the symbol H[−𝑚] we denote the space

𝑀−𝑚∏
𝑎=𝑘+𝑘�3+1

H𝑎 .

Instead of the equality (20), we get the equality

𝑀∏
𝑎=𝑘+𝑘�3+1

𝛽𝑎 =
deg 𝐹

2𝑘
(

3
2

) 𝑘�3
.

Let (𝐷𝑘+𝑘�3+1, . . . , 𝐷𝑀−𝑚∗ ) ∈ H[−𝑚∗] be a general tuple. Now the technique of hypertangent divisors,
applied in the word for word the same way as in Subsection 7.2, gives the following claim.

Proposition 7.3. There is a sequence of irreducible subvarieties

𝑌𝑘�3+1, 𝑌𝑘�3+2, . . . , 𝑌𝑀−𝑘−𝑚∗ ,

where 𝑌𝑘�3+1 is constructed above, such that codim(𝑌𝑖 ⊂ (𝐹 ∩𝑃)) = 𝑖, the subvariety 𝑌𝑖 is not contained
in the support of the divisor 𝐷𝑘+𝑖+1 for 𝑖 � 𝑀 −𝑚∗ − 1, the subvariety 𝑌𝑖+1 is an irreducible component
of the effective cycle (𝑌𝑖 ◦ 𝐷𝑘+𝑖+1) and the following inequality holds:

mult𝑜
deg

𝑌𝑖+1 � 𝛽𝑘+𝑖+1
mult𝑜
deg

𝑌𝑖 .

Now since dim 𝐹 ∩ 𝑃 = 𝑀 − (𝑘 − 𝑙) − 𝜀(𝑘), by the definition of the number 𝑚∗, the last subvariety
𝑌 ∗ = 𝑌𝑀−𝑘−𝑚∗ in that sequence is of dimension � 4 and satisfies the inequality

mult𝑜
deg

𝑌 ∗ >

(
3
2

) 𝑘�3+1
· 2𝑘

deg 𝐹
· deg 𝐹

2𝑘
(

3
2

) 𝑘�3

4
3

𝑀∏
𝑎=𝑀−𝑚∗+1

𝛽𝑘+𝑎

=
9
8

1
𝑀∏

𝑎=𝑀−𝑚∗+1
𝛽𝑘+𝑎

.
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(The number 4
3 appears in the denominator of the right-hand side because the hypertangent divisor

𝐷𝑘+𝑘�3+1 is skipped in the process of constructing the sequence 𝑌∗; see the similar remark above, before
the inequality (21).) If 𝑚∗ = 0, then the product in the denominator is assumed to be equal to 1. Now
the inequality

9
8
�

𝑀∏
𝑎=𝑀−𝑚∗+1

𝛽𝑘+𝑎, (22)

shown below in Proposition 7.4, completes the proof of Theorem 1.4.

Proposition 7.4. Assume that for 𝑘 ∈ {3, . . . , 7}, the number M is at least the number shown in the
corresponding column of the table

𝑘 3 4 5 6 7

𝑀 � 128 204 255 357 477
,

and for 𝑘 � 8, the inequality 𝑀 � 9𝑘2 + 𝑘 holds. Then the inequality (22) holds.

Proof. As in the non-singular case (the proof of Proposition 7.2), we see that the right-hand side of the
inequality (22) for k and M fixed attains the maximum when the degrees 𝑑𝑖 are equal or ‘almost equal’.
For 𝑘 ∈ {3, . . . , 7}, the claim of the proposition is checked manually. For 𝑘 � 8, we have 𝜀(𝑘) � 𝑘 − 2,
so that 𝑚∗ � 𝑘 . Therefore, (considering the case of equal or almost equal degrees) the right-hand side
of the inequality (22) does not exceed the number(

𝑀

𝑀 − 𝑘

) 𝑘
,

which, in its turn, does not exceed 9
8 for 𝑀 � 9𝑘2+𝑘 , which is easy to check by elementary computations,

similar to the proof Proposition 7.2. Q.E.D. �

8. The codimension of the complement

In this section, we show the estimate for the codimension of the complementP\F , given in Theorem 0.1.

8.1. Preliminary constructions

Set

𝛾 = 𝑀 − 𝑘 + 5 +
(
𝑀 − 𝜌(𝑘) + 2

2

)
;

see Subsection 0.1. We consider 𝛾 as a function of M with 𝑘 � 3 fixed, where 𝑀 � 𝜌(𝑘). Let 𝑜 ∈ P𝑀+𝑘
be an arbitrary point. The symbol P (𝑜) stands for the linear subspace of the space P , consisting of all
tuples 𝑓 , vanishing at the point o: 𝑓 (𝑜) = (0, . . . , 0). Obviously, codim(P (𝑜) ⊂ P) = 𝑘 . Fixing the point
o, we use the notations of Subsections 1.2–1.4, considering the polynomials 𝑓𝑖 as non-homogeneous
polynomials in the affine coordinates 𝑧∗. By the symbols

B𝑀𝑄1, B𝑀𝑄2, B𝑅1, B𝑅2, B𝑅3.1, B𝑅3.2

https://doi.org/10.1017/fms.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.84


56 A. Pukhlikov

we denote the subsets of the subspace P (𝑜), consisting of the tuples 𝑓 that do not satisfy the conditions

(𝑀𝑄1), (𝑀𝑄2), (𝑅1), (𝑅2), (𝑅3.1), (𝑅3.2)

at the point o, respectively. Since the point o varies in P𝑀+𝑘 , it is sufficient to show that the codimension
of each of the six sets B∗ in P (𝑜) is at least 𝛾 + 𝑀 .

Furthermore, for an arbitrary tuple

𝜉 = (𝜉1, . . . , 𝜉𝑘 )

of linear forms in 𝑧∗, the symbol P (𝑜, 𝜉) denotes the affine subspace, consisting of the tuples 𝑓 , such that

𝑓1,1 = 𝜉1, . . . , 𝑓𝑘,1 = 𝜉𝑘 .

By the symbol dim 𝜉 denote the dimension

dim〈𝜉1, . . . , 𝜉𝑘〉,

so that P (𝑜) is fibred into disjoint subsets

P (𝑖) (𝑜) =
⋃

dim 𝜉=𝑖
P (𝑜, 𝜉),

where 𝑖 = 0, 1, . . . , 𝑘 . Obviously, the equality

codim(P (𝑖) (𝑜) ⊂ P (𝑜)) = (𝑘 − 𝑖) (𝑀 + 𝑘 − 𝑖)

holds. In particular, P (𝑘) (𝑜) consists of the tuples 𝑓 , such that the scheme of their common zeros is a
non-singular subvariety of codimension k in a neighborhood of the point o. Set

B𝑅1(𝜉) = B𝑅1 ∩ P (𝑜, 𝜉).

For the case of a non-singular point, it is sufficient to prove the inequality

codim(B𝑅1(𝜉) ⊂ P (𝑜, 𝜉)) � 𝛾 + 𝑀,

where dim 𝜉 = 𝑘 .
Furthermore, let B𝑀𝑄1 (𝜉) = B𝑀𝑄1 ∩ P (𝑜, 𝜉), where dim 𝜉 = 𝑖 � 𝑘 − 1, be the set of the tuples 𝑓 ,

such that the condition (MQ1) for 𝑙 = 𝑘 − 𝑖 is not satisfied, and B𝑀𝑄2 (𝜉) = B𝑀𝑄2 ∩ P (𝑜, 𝜉), where
dim 𝜉 = 𝑖 � 𝑘 − 2, be the set of the tuples 𝑓 , such that the condition (MQ2) for 𝑙 = 𝑘 − 𝑖 is not satisfied.

In a similar way, we define the setsB𝑅2(𝜉) for dim 𝜉 = 𝑘−1 andB𝑅3.1(𝜉),B𝑅3.2(𝜉) for dim 𝜉 � 𝑘−2.
Clearly, it is sufficient to prove that for dim 𝜉 = 𝑖, the codimension of the setB∗(𝜉) inP (𝑜, 𝜉) is at least

𝛾 + 𝑀 − (𝑘 − 𝑖) (𝑀 + 𝑘 − 𝑖).

In the conditions (R1), (R2) and (R3.2), we have also an arbitrary subspace Π ⊂ P(𝑇𝑜𝐹) of the
corresponding codimension, and in the condition (R3.1) an arbitrary subspace P in the embedded
tangent space 𝑇𝑜𝐹 ⊂ P𝑀+𝑘 of codimension 𝜀(𝑘), containing the point o. For an arbitrary subspace
Π ⊂ P(𝑇𝑜𝐹) of the corresponding codimension, let

B𝑅1(𝜉,Π), B𝑅2(𝜉,Π), B𝑅3.2(𝜉,Π)

be the set of tuples 𝑓 ∈ P (𝑜, 𝜉), such that the respective condition (R1), (R2) and (R3.2) is violated
precisely for that subspace Π. In a similar way, we define the subset B𝑅3.1(𝜉, 𝑃). These definitions are
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meaningful because the tangent space 𝑇𝑜𝐹 is given by the fixed linear forms 𝜉𝑖 and for that reason is
fixed.

Since the subspace Π varies in a (dimΠ + 1) codim(Π ⊂ P(𝑇𝑜𝐹))-dimensional Grassmanian, the
estimate for the codimension of the set B∗(𝜉,Π) in P (𝑜, 𝜉) should be stronger than the estimate for the
codimension of the set B∗(𝜉) by that number. Similarly, P varies in a

𝜀(𝑘) (dim𝑇𝑜𝐹 − 𝜀(𝑘))

-dimensional family, so that the estimate for the codimension of the set B𝑅3.1(𝜉, 𝑃) should be stronger
than the estimate for B𝑅3.1(𝜉) by that number.

Now everything is ready to consider each of the six subsets B∗.

8.2. The conditions (MQ1) and (MQ2)

For a non-singular point 𝑜 ∈ 𝐹, these conditions contain no restrictions, so we assume that dim 𝜉 � 𝑘−1.
It is well known that the closed subset of quadratic forms of rank � 𝑟 � 𝑁 − 1 in the space P2,𝑁 has the
codimension

(
𝑁 − 𝑟 + 1

2

)
.

From here, it is easy to see that the closed subset of tuples (𝑞1, . . . , 𝑞𝑒) = 𝑞 [1,𝑒] of quadratic forms in
N variables, defined by the condition

rk 𝑞 [1,𝑒] � 𝑟,

is of codimension

�
(
𝑁 − 𝑟 + 1

2

)
− (𝑒 − 1)

in the space P×𝑒2,𝑁 . As we noted in Subsection 1.2 (after stating the condition (MQ2)), for 𝑙 � 2, the
condition (MQ2) is stronger than (MQ1); therefore, it is sufficient to estimate the codimension of the
set B𝑀𝑄2 (in the case of quadratic points, when 𝑙 = 1, it is easy to check that the codimension of the set
B𝑀𝑄1 is higher than required). So we assume that dim 𝜉 = 𝑘 − 𝑙 � 𝑘 − 2. The condition (MQ2) requires
the rank of the tuple of quadratic forms 𝑞 [1,𝑘 ] , where 𝑞𝑖 = 𝑓𝑖,2 |𝑇𝑜𝐹 , to be at least 𝜌(𝑘) + 2; see (1) in
Subsection 0.1. Taking into account the variation of the tuple 𝜉, from what was said above, it is easy to
obtain that the codimension of the set B𝑀𝑄2 ∩ P 𝑘−𝑙 (𝑜) �

−𝑘 + 1 + 𝑙 (𝑀 + 𝑙) +
(
𝑀 + 𝑙 − 𝜌(𝑘)

2

)
.

The minimum of this expression is attained for 𝑙 = 2, and it is easy to check that this minimum is
precisely 𝛾 + 𝑀 . Therefore, the codimension of the set B𝑀𝑄2 is at least 𝛾, and the codimension of
the set B𝑀𝑄1 for 𝑙 � 2 is higher. For 𝑙 = 1, the last codimension is also higher. This completes our
consideration of the conditions (MQ1) and (MQ2).
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8.3. Regularity at the non-singular and quadratic points

Let us estimate the codimension of the set B𝑅1(𝜉,Π) in the space P (𝑜, 𝜉). Here, dim 𝜉 = 𝑘 and
Π ⊂ P(𝑇𝑜𝐹) is a subspace of codimension 𝑘 + 𝜀(𝑘) − 1 = 𝑚∗ − 4. Let

G (𝑑) =
𝑀−𝑚∗∏
𝑖=1

Pdeg ℎ𝑖 ,dimΠ+1

be the space, parameterizing all sequencesS [−𝑚∗] |Π . Since the polynomials ℎ𝑖 are distinct homogeneous
components of the polynomials of the tuple 𝑓 , restricted onto the subspace Π, the codimension of the
subset B𝑅1(𝜉,Π) in P (𝑜, 𝜉) is equal to the codimension of the subset B ⊂ G (𝑑), which consists of the
sequences that do not satisfy the condition (R1).

Using the approach that was applied in [27, 20, 28] and many other papers, let us present B as a
disjoint union

B =
𝑀−𝑚∗⊔
𝑖=1

B𝑖 ,

where B𝑖 consists of sequences

(ℎ1 |Π , . . . , ℎ𝑀−𝑚∗ |Π),

such that the first 𝑖 − 1 polynomials form a regular sequence but ℎ𝑖 vanishes on one of the components
of the set of their common zeros. The ‘projection method’ estimates the codimension of B𝑖 in G (𝑑)
from below by the integer(

dimΠ − 𝑖 + 1 + deg ℎ𝑖
deg ℎ𝑖

)
=

(
dimΠ − 𝑖 + 1 + deg ℎ𝑖

dimΠ − 𝑖 + 1

)
(23)

(we will use both presentations). It follows easily from here (see [28, §3]) that the worst estimate
corresponds to the case of equal or ‘almost equal’ degrees 𝑑𝑖 , described above. We will consider this
case.

Thus, we need to estimate from below the minimum of 𝑀 −𝑚∗ integers (23). Here are the first (𝑘 +1)
of them: (

dimΠ + 2
2

)
,

(
dimΠ + 1

2

)
, . . . ,

(
dimΠ + 3 − 𝑘

2

)
,

(
dimΠ + 3 − 𝑘

3

)
.

We call the left-hand side of the equality (23) the presentation of type (I); the right-hand side is the
presentation of type (II). Let us write down each of the numbers (23) in the form(

𝐴(𝑖)
𝐵(𝑖)

)
,

where 𝐴(𝑖) � 2𝐵(𝑖), using the presentation of type (I) or of type (II).
At first (for the starting segment of the sequence), we use the presentation of type (I). It is easy to see

that when we change i by 𝑖 + 1, we have one of the two options:

◦ either deg ℎ𝑖+1 = deg ℎ𝑖 , and then 𝐴(𝑖 + 1) = 𝐴(𝑖) − 1 and 𝐵(𝑖 + 1) = 𝐵(𝑖), so that(
𝐴(𝑖 + 1)
𝐵(𝑖 + 1)

)
<

(
𝐴(𝑖)
𝐵(𝑖)

)
,

and moreover, 𝐶 (𝑖) = 𝐴(𝑖) − 2𝐵(𝑖) decreases: 𝐶 (𝑖 + 1) = 𝐶 (𝑖) − 1,
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◦ or deg ℎ𝑖+1 = deg ℎ𝑖 + 1, and then 𝐴(𝑖 + 1) = 𝐴(𝑖) and 𝐵(𝑖 + 1) = 𝐵(𝑖) + 1, so that 𝐶 (𝑖 + 1) = 𝐶 (𝑖) − 2,
and if 𝐶 (𝑖 + 1) � 0, then (

𝐴(𝑖 + 1)
𝐵(𝑖 + 1)

)
>

(
𝐴(𝑖)
𝐵(𝑖)

)
.

This is how it goes on until the ‘equilibrium’: 𝐶 (𝑖∗) � 0, but 𝐶 (𝑖∗ + 1) < 0, and after that, we use
the presentation of type (II).

Now when we change i by (𝑖 + 1), we have one of the two options:

◦ either deg ℎ𝑖+1 = deg ℎ𝑖 , and then 𝐴(𝑖+1) = 𝐴(𝑖)−1 and 𝐵(𝑖+1) = 𝐵(𝑖)−1, so that 𝐶 (𝑖+1) = 𝐶 (𝑖)+1
and (

𝐴(𝑖 + 1)
𝐵(𝑖 + 1)

)
<

(
𝐴(𝑖)
𝐵(𝑖)

)
,

◦ or deg ℎ𝑖+1 = deg ℎ𝑖+1, and then 𝐴(𝑖+1) = 𝐴(𝑖) and 𝐵(𝑖+1) = 𝐵(𝑖)−1, so that 𝐶 (𝑖+1) = 𝐶 (𝑖)+2 and(
𝐴(𝑖 + 1)
𝐵(𝑖 + 1)

)
<

(
𝐴(𝑖)
𝐵(𝑖)

)
.

Therefore, after the ‘equilibrium’, our sequence is strictly decreasing. Moreover, if(
𝐴(𝑖1)
𝐵(𝑖1)

)
and

(
𝐴(𝑖2)
𝐵(𝑖2)

)
are two numbers in our sequence, where 𝑖1 � 𝑖∗ and 𝑖2 > 𝑖∗ and 𝐵(𝑖1) � 𝐵(𝑖2), then, obviously,(

𝐴(𝑖1)
𝐵(𝑖1)

)
>

(
𝐴(𝑖2)
𝐵(𝑖2)

)
.

Recall that the degrees 𝑑𝑖 are equal or ‘almost equal’.

Lemma 8.1. For 𝑀 � 3𝑘2, the following inequality holds: 𝑖∗ < 𝑀 − 𝑚∗.

Proof. Elementary computations, using the equality 𝐶 (𝑖 + 𝑘) = 𝐶 (𝑖) − (𝑘 + 1) if 𝐶 (𝑖 + 𝑘) � 0. Q.E.D.
for the lemma. �

Therefore, the ‘equilibrium’ is reached earlier than the sequence ℎ𝑖 , . . . , ℎ𝑀−𝑚∗ comes to an end, so
that there is a nonempty segment after the ‘equilibrium’. By construction, 𝐵(𝑀 −𝑚∗) = 4. By what was
said above, the minimum of the numbers

(𝐴(𝑖)
𝐵 (𝑖)

)
for 𝑖 = 1, . . . , 𝑀 − 𝑚∗ is the minimum of the following

three numbers: (
dimΠ + 3 − 𝑘

2

)
,

(
dimΠ + 4 − 2𝑘

3

)
,

(
deg ℎ𝑀−𝑚∗ + 4

4

)
.

Lemma 8.2. For dimΠ � 3𝑘 + 1, the following inequality holds:(
dimΠ + 4 − 2𝑘

3

)
>

(
dimΠ + 3 − 𝑘

2

)
.

Proof. Elementary computations. Q.E.D. �

Lemma 8.3. For 𝑀 � 2
√

3𝑘2, the following inequality holds:(
deg ℎ𝑀−𝑚∗ + 4

4

)
>

(
dimΠ + 3 − 𝑘

2

)
.
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Proof. It is easy to check the inequalities

(𝑀 − 2𝑘)2
2

�
(
dimΠ + 3 − 𝑘

2

)
and (

deg ℎ𝑀−𝑚∗ + 4
4

)
�

1
24

(
𝑀

𝑘
+ 1

) (
𝑀

𝑘

) (
𝑀

𝑘
− 1

) (
𝑀

𝑘
− 2

)
,

so that it is sufficient to show that for 𝑀 � 2
√

3𝑘2, the inequality(
𝑀2

𝑘2 − 1
) (

𝑀2

𝑘2 − 2
𝑀

𝑘

)
> 12(𝑀 − 2𝑘)2

holds or, equivalently, 𝑀 (𝑀2 − 𝑘2) > 12𝑘4 (𝑀 − 2𝑘). It is easy to check the last inequality, considering
the cubic polynomial

𝑡3 − (12𝑘4 + 𝑘2)𝑡 + 24𝑘5

in the real variable t. Q.E.D. for the lemma. �

The work that was carried out above gives the inequality

codim(B ⊂ G (𝑑)) �
(
𝑀 + 3 − 2𝑘 − 𝜀(𝑘)

2

)
.

From here, by elementary computations (taking into account the variation of the subspace Π, see
Subsection 8.1), it is easy to obtain the required inequality codim(B𝑅1 ⊂ P (𝑜)) � 𝛾 + 𝑀 . This
completes the proof in the case of smooth points.

It is easy to see that the methods used above give a stronger estimate for the codimension of the set
B𝑅2 because the dimension of the subspace Π is higher. The computations are completely similar to the
computations given above for the case of a non-singular point. For that reason, we do not consider the
case of a quadratic point, and we move on to estimating the codimension of the sets B𝑅3.1 and B𝑅3.2.

8.4. Regularity at the multi-quadratic points

Let us estimate the codimension of the set B𝑅3.2(𝜉,Π), where Π ⊂ P(𝑇𝑜𝐹) is an arbitrary subspace
of codimension 𝜀(𝑘). Our arguments are completely similar to the arguments of Subsection 8.3 for a
non-singular point and give a stronger estimate for the codimension. We just point out the necessary
changes in the constructions of Subsection 8.3. Set

G (𝑑) =
𝑀−𝑚∗∏
𝑖=1

Pdeg ℎ𝑖 ,dimΠ+1.

Denote by the symbol B the subset in G (𝑑), consisting of the sequences that do not satisfy the condition
(R3.2). Again, we break B into subsets:

B =
𝑀−𝑚∗⊔
𝑖=1

B𝑖 ,
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where B𝑖 has the same meaning as in Subsection 8.3 (but for the multi-quadratic point o). Again, the
codimension of B𝑖 in G (𝑑) is bounded from below by the number (23), and for k and M fixed, the worst
estimate corresponds to the case of equal or ‘almost equal’ degrees 𝑑𝑖 .

Arguing precisely in the same way as in the non-singular case (Subsection 8.3), we see, since the
dimension of the subspace Π is higher than in the non-singular case, that the claim of Lemma 8.1 is true.
Note that if 𝑚∗ = 0, then in the notations of Subsection 8.3, we have 𝐵(𝑀 − 𝑚∗) � 4. Thus, replacing
𝐵(𝑀 −𝑚∗) by 4, we get that codim(B ⊂ G (𝑑)) is bounded from below by the least of the three numbers(

dimΠ + 3 − 𝑘

2

)
,

(
dimΠ + 4 − 2𝑘

3

)
,

(
deg ℎ𝑀−𝑚∗ + 4

4

)
.

The claim of Lemma 8.2 is true since, as we noted above, dimΠ in the multi-quadratic case is higher
than in the non-singular case. Obviously, 𝑚∗ < 𝑚∗, so that deg ℎ𝑀−𝑚∗ � deg ℎ𝑀−𝑚∗ , and the claim of
Lemma 8.3 is also true. As a result, we get the inequality

codim(B ⊂ G (𝑑)) �
(
𝑀 + 2 + 𝑙 − 𝑘 − 𝜀(𝑘)

2

)
,

where dim 𝜉 = 𝑘 − 𝑙. The minimum of the right-hand side is attained for 𝑙 = 2, and it is easy to see
that this minimum is significantly higher than in the non-singular case. It is easy to check, taking into
account the variation of the subspace Π, that

codim(𝐵𝑅3.2 ⊂ P (𝑜)) > 𝛾 + 𝑀.

This completes our consideration of the condition (R3.2) in the multi-quadratic case.

8.5. The condition (R3.1)

In order to estimate the codimension of the set B𝑅3.1(𝜉, 𝑃), we need the following known general fact.
Take 𝑒 � 1 and let 𝑤 = (𝑤1, . . . , 𝑤𝑒) ∈ Z𝑒 be a tuple of integers, where 2 � 𝑤1 � · · · � 𝑤𝑒.

Set

P (𝑤) =
𝑒∏
𝑖=1

P𝑤𝑖 ,𝑁+1

to be the space of tuples 𝑔 = (𝑔1, . . . , 𝑔𝑒) of homogeneous polynomials in 𝑁 + 1 variables, deg 𝑔𝑖 = 𝑤𝑖 ,
which we consider as homogeneous polynomials on P𝑁 . Let

B∗(𝑤) ⊂ P (𝑤)

be the set of tuples 𝑔, such that the scheme of their common zeros is not an irreducible reduced subvariety
of codimension e in P𝑁 .

Theorem 8.1. The following inequality holds:

codim(B∗(𝑤) ⊂ P (𝑤)) � 1
2
(𝑁 − 𝑒 − 1) (𝑁 − 𝑒 − 4) + 2.

Proof. This is Theorem 2.1 in [2]. �

Let us estimate the codimension of the set B𝑅3.1(𝜉,Π). In order to do this, consider in the projective
space P a hypersurface 𝑃♯ that does not contain the point o – for instance, the intersection of the
hyperplane ‘at infinity’ with respect to the system of affine coordinates (𝑧1, . . . , 𝑧𝑀+𝑘 ) with the subspace
P. If the scheme of common zeros of the tuple of polynomials, consisting of
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𝑓1 |𝑃 , . . . , 𝑓𝑘 |𝑃

and the polynomials 𝑓𝑖,2 |𝑃 for i such that 𝑑𝑖 � 3 is not an irreducible reduced subvariety of codimension
𝑘 + 𝑘�3 in P (that is, the condition (R3.1) is violated; see Subsection 1.4), then the scheme of common
zeros of the set of polynomials

𝑓1 |𝑃♯ , . . . , 𝑓𝑘 |𝑃♯ , 𝑓𝑖,2 |𝑃♯ for 𝑑𝑖 � 3, (24)

respectively, is reducible, non-reduced or of codimension < 𝑘 + 𝑘�3 in 𝑃♯. However, for each i, such
that 𝑑𝑖 � 3, the homogeneous polynomials

𝑓𝑖 |𝑃♯ = 𝑓𝑖,𝑑𝑖 |𝑃♯ and 𝑓𝑖,2 |𝑃♯

on the projective space 𝑃♯ are linear combinations of disjoint sets of monomials in 𝑓𝑖 , so that the
coefficients of those polynomials belong to disjoint subsets of coefficients of the polynomial 𝑓𝑖 . Therefore
(re-ordering the polynomials of the tuple (24) so that their degrees do not decrease), applying Theorem
8.1 to the tuple (24), we get that the codimension of the set B𝑅3.1(𝜉, 𝑃) is at least

1
2
(dim 𝑃♯ − 𝑘 − 𝑘�3 − 1) (dim 𝑃♯ − 𝑘 − 𝑘�3 − 4) + 2,

where dim 𝑃♯ = 𝑀 + 𝑙 − 𝜀(𝑘) − 1, dim 𝜉 = 𝑘 − 𝑙. It is easy to check by elementary computations that
this estimate (with the correction due to the variation of the subspace P and the set of linear forms 𝜉) is
stronger than we need.

This completes the proof of the estimate for the codimension of the complementP\F in Theorem 0.1.
Note that (for the technique of estimating the codimension that we used) the estimate of Theorem 0.1

is optimal for the condition (MQ2); that requirement turns out to be the strongest.
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