
Canad. Math. Bull. Vol. 57 (1), 2014 pp. 113–118
http://dx.doi.org/10.4153/CMB-2012-022-6
c©Canadian Mathematical Society 2012

A Lower Bound for the End-to-End
Distance of the Self-Avoiding Walk
Neal Madras

Abstract. For an N-step self-avoiding walk on the hypercubic lattice Zd, we prove that the mean-
square end-to-end distance is at least N4/(3d) times a constant. This implies that the associated critical
exponent ν is at least 2/(3d), assuming that ν exists.

1 Introduction

A self-avoiding walk (SAW) is a path in a lattice that does not visit any site more than
once. In theoretical physics and chemistry, the SAW is a standard simple model of a
linear polymer molecule in solution, and it is also important as a model exhibiting
critical phenomena in statistical mechanics. Seminal contributions to the nonrigor-
ous theory of the SAW have been made by, among others, Nobel laureates Paul J.
Flory (Chemistry, 1974) and Pierre-Gilles de Gennes (Physics, 1991). For a general
review, see Madras and Slade [5] or Vanderzande [8]. The SAW is also of consider-
able mathematical interest, since it is simple to define but has been very challenging
to analyze rigorously. The purpose of this paper is to prove a lower bound on a key
quantity, the mean-square end-to-end distance. Our result, Proposition 1.1, is the
only nontrivial lower bound that has been proven in 2 or 3 dimensions, which are
the most relevant dimensions in polymer physics.

We follow the notation of Madras and Slade [5]. Let Zd be the d-dimensional
hypercubic lattice (d ≥ 2 fixed). Points of Zd will often be called sites. We write a
typical element of Zd (or more generally Rd) as z = (z1, . . . , zd). We shall refer to the
following norms on Rd:

‖z‖p =
(
|z1|p + · · · + |zd|p

) 1/p
(for 1 ≤ p <∞) and

‖z‖∞ = max{|z1|, . . . , |zd|}.

In this paper, N always denotes a positive integer. An N-step self-avoiding walk
in Zd is a finite sequence ω = (ω(0), . . . , ω(N)) of sites ω(i) in Zd such that
‖ω( j + 1)− ω( j)‖1 = 1 for every j, and ω(i) 6= ω( j) whenever i 6= j; that is, ω
is a path of N nearest-neighbour steps with no repeated sites. Let SN be the set of all
N-step self-avoiding walks ω such that ω(0) is the origin. The i-th coordinate of the
k-th site of ω is denoted ωi(k).
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We shall write PN to denote the uniform probability distribution on the set SN ,
and EN to denote expectation with respect to PN . For each dimension d, there should
be a critical exponent ν such that

(1.1) EN

(
‖ω(N)‖2

2

)
∼ DN2ν as N →∞

for some constant D (with logarithmic corrections for d = 4); see [6, Section 2.1]
for further discussion. Significantly, the value of ν should depend only on d; that is,
equation (1.1) should hold with the same value of ν for every d-dimensional lattice.
While equation (1.1) is undoubtedly true, it has not yet been proven in every dimen-
sion. Hara and Slade [3, 4] proved it for d ≥ 5 with ν = 1/2, and there is progress
towards a proof for d = 4 (see Brydges and Slade [1]). For d = 2, there is strong
theoretical evidence that ν = 3/4, while for d = 3 it seems likely that ν is close to
0.588 (see Slade [7] for a current review). However, a proof of equation (1.1) remains
frustratingly elusive in low dimensions, namely d = 2, 3, 4. Even worse, so far there
are no non-trivial rigorous bounds in low dimensions, i.e., known positive numbers
DL, νL,DU , νU with νU < 1 such that

(1.2) DLN2νL ≤ EN

(
‖ω(N)‖2

2

)
≤ DU N2νU for all sufficiently large N.

The value νL = 1/2 would correspond to a “mean-field” bound, based on the in-
tuition that a self-avoiding walk should spread out more quickly than an ordinary
classical random walk. However, such a bound has yet to be proved for general di-
mensions d. Even more simply, one could reasonably expect a lower bound with
νL = 1/d, since the average distance of all points of an N-step self-avoiding walk
from ω(0) must be at least of order N1/d. Alas, no rigorous proof is known even for
this bound. The purpose of this note is to prove a lower bound with νL = 2/(3d).
The relative weakness of this bound epitomizes the challenges of finding rigorous
proofs for low-dimensional self-avoiding walks.

A recent preprint of Duminil-Copin and Hammond [2] proves that in every di-
mension d ≥ 2, the self-avoiding walk is sub-ballistic in the sense that ‖ω(N)‖2 is
o(N) with high probability. More precisely, they prove that for any b > 0, there exists
an ε > 0 such that PN (‖ω(N)‖2 > bN) ≤ exp(−εN) for all large N. It follows that
limN→∞ EN (‖ω(N)‖2

2)/N2 = 0. Informally this says that ν < 1, but it does not give
an upper bound νU < 1 for equation (1.2).

The main result of this paper is the following proposition.

Proposition 1.1 Let N be a positive integer and let p be a real number in [1,∞).
Then (

EN‖ω(N)‖p
p

) 1/p ≥
(

EN‖ω(N)‖p
∞
) 1/p ≥ 1

6
N

p
(p+1)d .

Setting p = 2 shows that we can take νL = 2/(3d) in equation (1.2).

The first inequality in the proposition is clearly trivial.
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Figure 1: (a) An example of a self-avoiding walk in Z2 with 9ω9 = 3, L = 7, I = 1, and
H = −3. The dashed lines represent the surface of the square {x : ‖x‖∞ ≤ 3}. (b) The walk
Tω, for the walk ω from (a). In this example, the operator U is reflection through x1 = −3.

2 Proof of Proposition 1.1

Before we prove the proposition, we lay some groundwork. For a self-avoiding walk
ω ∈ SN , let

9ω9 = max
{
‖ω(k)‖∞ : k = 0, 1, . . . ,N

}
.

Then 9ω9 is the smallest value of r such that ω is contained in the (hyper)cube
{x ∈ Rd : ‖x‖∞ ≤ r}. We shall now define a transformation T on SN that reflects
part of each SAW through a face of this minimal hypercube. Given ω ∈ SN , let

L = L(ω) = min{k > 0 : ‖ω(k)‖∞ = 9ω9},

I = I(ω) = min{i : 1 ≤ i ≤ d, |ωi(L)| = 9ω9}

and

H = H(ω) = ωI(L).

See Figure 1(a). Observe that

|H| = ‖ω(L)‖∞ = 9ω 9 .
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Let U be the reflection through the (hyper)plane xI = H, i.e., U (x) is the point y
such that

yi =

{
xi if i 6= I,

2H − xi if i = I.

(Our notation suppresses the dependence of the mapping U on ω.) Let Tω be the
SAW θ = (θ(0), . . . , θ(N)) such that

θ(k) =

{
ω(k) if k ≤ L,

U (ω(k)) if k > L.

See Figure 1(b). It is not hard to see that Tω is indeed a SAW. Likewise, the following
lemma is straightforward, and we omit its proof.

Lemma 2.1 Let ω ∈ SN . Suppose m is an integer such that ‖ω(N)‖∞ ≤ m ≤ 9ω9.
Then

(i) for each i ∈ {1, . . . , d} with i 6= I(ω), we have (Tω)i(N) = ωi(N) ∈ [−m,m];
(ii) (Tω)I(ω)(N) has the same sign as H(ω) ;
(iii) |H(ω)| ≤ 2|H(ω)| −m ≤ ‖(Tω)(N)‖∞ ≤ 2|H(ω)| + m;
(iv) |(Tω)I(ω)(N)| = ‖(Tω)(N)‖∞ .

The following lemma is also elementary.

Lemma 2.2 Let N > 3d. Then 9ω9 > 1
3 N1/d for every ω in SN .

Proof It suffices to show that the number of sites of Zd in the hypercube {x ∈ Rd :
‖x‖∞ ≤ 1

3 N1/d} is less than the number of sites in ω (which is N + 1). The number
of sites in this hypercube is at most(

2
( 1

3
N1/d

)
+ 1

) d

<
( 2N1/d

3
+

N1/d

3

) d
= N.

The next lemma is our key estimate.

Lemma 2.3 Let m be a real number such that 1 ≤ m ≤ 1
3 N1/d. Then

(2.1) PN

(
‖ω(N)‖∞ ≤ m

)
≤ (m + 1)PN

(
‖ω(N)‖∞ ≥

1

3
N1/d

)
.

Proof We shall assume that m is an integer (the non-integer case follows easily from
the integer case). Observe that if N ≤ 3d, then the probability on the right-hand side
of equation (2.1) equals 1; therefore, we shall assume that N > 3d. By the choice of
m and Lemma 2.2, we see that m ≤ 9ω9 for every ω in SN . Let

SN,≤m =
{
ω ∈ SN : ‖ω(N)‖∞ ≤ m

}
and

SN,+ =
{
ω ∈ SN : ‖ω(N)‖∞ ≥

1

3
N1/d

}
.

https://doi.org/10.4153/CMB-2012-022-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-022-6


End-to-End Distance of the Self-Avoiding Walk 117

Lemmas 2.1 and 2.2 show that T maps SN,≤m into SN,+. Our proof will be finished if
we can show that the restriction of T to SN,≤m is at most (m + 1)-to-one.

Assume θ, φ ∈ SN,≤m and Tθ = Tφ = ψ. By Lemma 2.1(i), (iv), we see that
I(θ) = I(φ). If H(θ) also equals H(φ), then θ must equal φ. By Lemma 2.1(iii),

‖ψ(N)‖∞ −m

2
≤ |H(θ)| ≤ ‖ψ(N)‖∞ + m

2
.

Thus, given ψ = Tθ, there are at most m + 1 possible values for H(θ) (we have also
used Lemma 2.1(ii) here). It follows that T is at most (m + 1)-to-one on SN,≤m, and
the lemma follows.

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1 Observe that ‖ω(N)‖∞ ≥ 1 for every SAW ω in SN ; hence
the lower bound in the proposition is trivial for N ≤ 6d. So it suffices to consider
fixed N > 6d.

Let B = BN = (EN‖ω(N)‖p
∞)1/p. If B ≥ 1

6 N1/d, then we are done, so we shall

assume that B < 1
6 N1/d. Then

PN

(
‖ω(N)‖∞ ≥ 2B

)
= PN

(
‖ω(N)‖p

∞ ≥ (2B)p
)

≤ EN‖ω(N)‖p
∞

(2B)p
(by Markov’s Inequality)

=
1

2p
;

hence we have (since p ≥ 1)

(2.2) PN

(
‖ω(N)‖∞ < 2B

)
≥ 1− 1

2p
≥ 1

2
.

By Markov’s Inequality and Lemma 2.3 (recall that we have assumed 2B < 1
3 N1/d),

Bp = EN‖ω(N)‖p
∞ ≥

( N1/d

3

) p
PN

(
‖ω(N)‖∞ ≥

1

3
N1/d

)
≥ N p/d

3p(2B + 1)
PN

(
‖ω(N)‖∞ ≤ 2B

)
≥ N p/d

3p2(3B)
[by Equation (2.2)].

The above inequalities tell us that Bp ≥ N p/d/(3p+12B), which is equivalent to Bp+1 ≥
N p/d/(3p+12). The proposition follows upon taking (p + 1)-th roots of both sides of
this final inequality.
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