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A Lower Bound for the End-to-End
Distance of the Self-Avoiding Walk

Neal Madras

Abstract. For an N-step self-avoiding walk on the hypercubic lattice Z4, we prove that the mean-
square end-to-end distance is at least N*/?) times a constant. This implies that the associated critical
exponent v is at least 2/(3d), assuming that v exists.

1 Introduction

A self-avoiding walk (SAW) is a path in a lattice that does not visit any site more than
once. In theoretical physics and chemistry, the SAW is a standard simple model of a
linear polymer molecule in solution, and it is also important as a model exhibiting
critical phenomena in statistical mechanics. Seminal contributions to the nonrigor-
ous theory of the SAW have been made by, among others, Nobel laureates Paul J.
Flory (Chemistry, 1974) and Pierre-Gilles de Gennes (Physics, 1991). For a general
review, see Madras and Slade [5] or Vanderzande [8]. The SAW is also of consider-
able mathematical interest, since it is simple to define but has been very challenging
to analyze rigorously. The purpose of this paper is to prove a lower bound on a key
quantity, the mean-square end-to-end distance. Our result, Proposition 1.1, is the
only nontrivial lower bound that has been proven in 2 or 3 dimensions, which are
the most relevant dimensions in polymer physics.

We follow the notation of Madras and Slade [5]. Let Z¢ be the d-dimensional
hypercubic lattice (d > 2 fixed). Points of Z% will often be called sifes. We write a
typical element of Z% (or more generally RY) asz = (z1,...,z;). We shall refer to the
following norms on R?:

llzll, = (|ZI|P+---+ |Zd|P)1/P (for1 < p <oo) and

|z]| o = max{|zi], ..., |z4|}

In this paper, N always denotes a positive integer. An N-step self-avoiding walk
in Z% is a finite sequence w = (w(0),...,w(N)) of sites w(i) in Z% such that
lw(G+1) —w()|li = 1 for every j, and w(i) # w(j) whenever i # j; that is, w
is a path of N nearest-neighbour steps with no repeated sites. Let Sy be the set of all
N-step self-avoiding walks w such that w(0) is the origin. The i-th coordinate of the
k-th site of w is denoted w; (k).
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We shall write Py to denote the uniform probability distribution on the set Sy,
and Ey to denote expectation with respect to Py. For each dimension d, there should
be a critical exponent v such that

(1.1) Ex([w(N)[3) ~DN* asN — oo

for some constant D (with logarithmic corrections for d = 4); see [6, Section 2.1]
for further discussion. Significantly, the value of v should depend only on d; that is,
equation (1.1) should hold with the same value of v for every d-dimensional lattice.
While equation (1.1) is undoubtedly true, it has not yet been proven in every dimen-
sion. Hara and Slade [3, 4] proved it for d > 5 with v = 1/2, and there is progress
towards a proof for d = 4 (see Brydges and Slade [1]). For d = 2, there is strong
theoretical evidence that v = 3/4, while for d = 3 it seems likely that v is close to
0.588 (see Slade [7] for a current review). However, a proof of equation (1.1) remains
frustratingly elusive in low dimensions, namely d = 2, 3, 4. Even worse, so far there
are no non-trivial rigorous bounds in low dimensions, i.e., known positive numbers
Dy, vy, Dy, vy with vy < 1 such that

(1.2) DN*' < Ey([lw(N)|]3) < DyN*" for all sufficiently large N.

The value v, = 1/2 would correspond to a “mean-field” bound, based on the in-
tuition that a self-avoiding walk should spread out more quickly than an ordinary
classical random walk. However, such a bound has yet to be proved for general di-
mensions d. Even more simply, one could reasonably expect a lower bound with
vy = 1/d, since the average distance of all points of an N-step self-avoiding walk
from w(0) must be at least of order N'/4. Alas, no rigorous proof is known even for
this bound. The purpose of this note is to prove a lower bound with v, = 2/(3d).
The relative weakness of this bound epitomizes the challenges of finding rigorous
proofs for low-dimensional self-avoiding walks.

A recent preprint of Duminil-Copin and Hammond [2] proves that in every di-
mension d > 2, the self-avoiding walk is sub-ballistic in the sense that ||w(IN)]|, is
o(N) with high probability. More precisely, they prove that for any b > 0, there exists
an € > 0 such that Py(JJw(N)||2 > bN) < exp(—eN) for all large N. It follows that
limy_s 00 En(|lw(N)||3)/N? = 0. Informally this says that v < 1, but it does not give
an upper bound vy < 1 for equation (1.2).

The main result of this paper is the following proposition.

Proposition 1.1 Let N be a positive integer and let p be a real number in [1,c0).
Then

1 1 1 )
(Enllo5) " = (EnllwN))8) "* = -Nwm.

|

Setting p = 2 shows that we can take v, = 2/(3d) in equation (1.2).
The first inequality in the proposition is clearly trivial.
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Figure I: (a) An example of a self-avoiding walk in Z* with |||w||| = 3, L = 7, = 1, and
H = —3. The dashed lines represent the surface of the square {x : ||x||cc < 3}. (b) The walk

Tw, for the walk w from (a). In this example, the operator U is reflection through x; = —3.

2 Proof of Proposition 1.1

Before we prove the proposition, we lay some groundwork. For a self-avoiding walk
w € 8y, let
llw]ll = max{ lwk)||oo : k=0,1,... ,N}.

Then |||w]|| is the smallest value of r such that w is contained in the (hyper)cube
{x € R?: ||x||oo < r}. We shall now define a transformation T on 8y that reflects
part of each SAW through a face of this minimal hypercube. Given w € Sy, let

L=Lw)= rnin{k >0 |wk)|oo = H|w”|}>
I=I(w) =min{i: 1 <i<d, |w(L)|=]|wl|l}
and

H = H(w) = wy(L).
See Figure 1(a). Observe that

H| = [lw@)l[oo = lllw Il
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Let U be the reflection through the (hyper)plane x; = H, i.e., U(x) is the point y

such that
X ifi;ﬁ[,
YT\ oH—x ifi=1

(Our notation suppresses the dependence of the mapping U on w.) Let Tw be the
SAW 6 = (6(0), ..., 6(N)) such that

ok — {w(k) ffkgL,
Uw(k) ifk> L.

See Figure 1(b). It is not hard to see that Tw is indeed a SAW. Likewise, the following
lemma is straightforward, and we omit its proof.

Lemma 2.1 Letw € Sy. Suppose m is an integer such that ||w(N)||oo < m < |||w]||-
Then

(i) foreachi e {1,...,d} withi # I(w), we have (Tw);(N) = w;(N) € [—m, m];
(if) (Tw)iw)(N) has the same sign as H(w) ;

(i) [H(w)| < 2/Hw)| — m < [[(Tw)(N)||oo < 2|H(w)| + m;

(iv) [(Tw)rwy(N)| = [(Tw)(N)||oo -

The following lemma is also elementary.

Lemma 2.2 LetN > 3. Then ||wl||| > NV for every w in 8.

Proof It suffices to show that the number of sites of Z¢ in the hypercube {x € R? :
[[x]lso < $N'/9} is less than the number of sites in w (which is N + 1). The number
of sites in this hypercube is at most

1 1/d d ZNl/d Nl/d d

The next lemma is our key estimate.

Lemma 2.3 Let m be a real number such that1 < m < %Nl/d. Then

2.1) P( o)l < m) < (m+ DPy(wN)]|oe > %Nl/d).

Proof We shall assume that m is an integer (the non-integer case follows easily from
the integer case). Observe that if N < 3¢, then the probability on the right-hand side
of equation (2.1) equals 1; therefore, we shall assume that N > 34, By the choice of
m and Lemma 2.2, we see that m < |||w||| for every w in Sy. Let

SN<m = {w €S8N [JwN)||oo < m} and

1
Sns = {w € 8y : [lw)lso = gNl/d}.
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Lemmas 2.1 and 2.2 show that T maps Sy, <, into Sy 4. Our proof will be finished if
we can show that the restriction of T to Sy <, is at most (m + 1)-to-one.

Assume 0,9 € Sy <, and T = T¢ = 1. By Lemma 2.1(i), (iv), we see that
I(0) = 1(¢). If H(0) also equals H(¢), then 6 must equal ¢. By Lemma 2.1(iii),

[N oo +m
5 :

Thus, given 1) = T0, there are at most m + 1 possible values for H(6) (we have also
used Lemma 2.1(ii) here). It follows that T is at most (1 + 1)-to-one on 8y, <, and
the lemma follows. [ |

We are now ready to prove Proposition 1.1.

Proof of Proposition 1.1 Observe that ||w(N)||s > 1 for every SAW w in Sy; hence

the lower bound in the proposition is trivial for N < 6. So it suffices to consider
fixed N > 6.

Let B = By = (Ex||w(N)|5%)V?. If B > éNl/d, then we are done, so we shall
assume that B < IN'/4. Then

Py([|w(N)[loe = 2B) = Py ([lw@V)], > (2B))

En|jw(N)|5% .
< % (by Markov’s Inequality)
p— 1 .
=5
hence we have (since p > 1)
1 1
(2.2) Py (wN) oo < 2B) 21— 20> -

By Markov’s Inequality and Lemma 2.3 (recall that we have assumed 2B < IN 1/d),

1/d
B = Bl > (0) (el > 2n1)
NPp/d
> mpl\f( ) [loo < ZB)
NPp/d
Z 3920B) [by Equation (2.2)].

The above inequalities tell us that B> > N/ /(37*12B), which is equivalent to B?*! >
N?/4/(3P+12), The proposition follows upon taking (p + 1)-th roots of both sides of
this final inequality. ]

https://doi.org/10.4153/CMB-2012-022-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2012-022-6

118 N. Madras

Acknowledgments I constructed this proof several years ago, but did not write it up
because the result was disappointingly weak. I was hoping that the argument could
be improved, for example, by showing that the restriction of T to Sy <, is typically
much better than (m + 1)-to-one. However, no such improvement was apparent, and
Gordon Slade was encouraging me to publish the result. In the meantime, Michael
Newman independently rediscovered the result and a very similar proof.

I thank Gord Slade for his gentle but resolute prompting for me to write up this
work.

References

[1]  D.Brydges and G. Slade, Renormalisation group analysis of weakly self-avoiding walk in dimensions
four and higher. In: Proceedings of the International Congress of Mathematicians, Volume IV,
Hindustan Book Agency, New Delhi, 2010, pp. 2232-2257.

[2]  H.Duminil-Copin and A. Hammond, Self-avoiding walk is sub-ballistic. arxiv:1205.0401

[3]  T.Haraand G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm.
Math. Phys. 147(1992), no. 1, 101-136.  http://dx.doi.org/10.1007/BF02099530

, The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys.
4(1992), no. 2,235-327.  http://dx.doi.org/10.1142/50129055X9200008X

[5]  N.Madras and G. Slade, The self-avoiding walk. Probability and its applications. Birkhduser, Boston,
1993.

[6]  G. Slade, The lace expansion and its applications. Lectures from the 34th Summer School on
Probability Theory held in Saint-Flour, July 6-24, 2004. Lecture Notes in Mathematics, 1879.
Springer-Verlag, Berlin, 2006.

, The self-avoiding walk: A brief survey. In: Surveys in stochastic processes, EMS Ser. Congr.
Rep., European Mathematical Society, Zurich, 2011, pp. 189-199.

[8]  C.Vanderzande, Lattice models of polymers. Cambridge University Press, Cambridge, 1998.

(4]

(7]

Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3] 1P3
e-mail: madras@mathstat.yorku.ca

https://doi.org/10.4153/CMB-2012-022-6 Published online by Cambridge University Press


http://arxiv.org/abs/1205.0401
http://dx.doi.org/10.1007/BF02099530
http://dx.doi.org/10.1142/S0129055X9200008X
https://doi.org/10.4153/CMB-2012-022-6

