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Abstract We construct an anticyclotomic Euler system for the Rankin—Selberg convolutions of two
modular forms, using p-adic families of generalised Gross—Kudla—Schoen diagonal cycles. As applications
of this construction, we prove new results on the Bloch—Kato conjecture in analytic ranks zero and one,
and a divisibility towards an Iwasawa main conjecture.
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1. Introduction

In this paper, we study the anticyclotomic Iwasawa theory of Rankin—Selberg convolutions
of two modular forms using a new Euler system arising from p-adic families of diagonal
cycles. By an application of Kolyvagin’s methods, our construction yields results towards
the Bloch—Kato conjecture and the Iwasawa main conjecture in this setting.

1.1. Statement of the main results
Let g € S;(Ng,xg) and h € Sy, (Np, x1) be newforms of weights [ > m > 2 of the same parity
and nebentypus x4, and xp. Let K/Q be an imaginary quadratic field of discriminant
—D < 0. Let k£ > 0 be an even integer, and let 1) be a Hecke character of K of infinity
type (1 —k,0), conductor § and central character

€y = XgXh-
Fix an odd prime p{ N,Nj, such that (f,p) = 1 and an embedding ¢, : Q < @p, and let

E = Ly be a finite extension of QQ, containing the image under ¢, of the values of ¥ and
the Fourier coefficients of g and h. We consider the E-valued G k-representation

Vo = Ve @ Vi(ug)(1=c),
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The diagonal cycle euler system for GLg x GLo 3

where ¢ = (k+1+m—2)/2, V, and Vj, are the (dual of Deligne’s) p-adic Galois
representations associated to g and h, respectively, and i is a p-adic Galois character
attached to .

The cyclotomic Iwasawa theory of V; ® V), has been extensively studied in a series of
works of Lei-Loeffler—Zerbes [LLZ14, L1.Z15] and Kings—Loeffler—Zerbes [KLZ17, KL.Z20],
among others ([BLLV19], [BL21], etc.). The key tool exploited in these works is the Euler
system of Beilinson—Flach classes, a system of cohomology classes arising from certain
special elements (introduced by Beilinson [Bei84], and further studied by Flach [Fla92]
and Bertolini-Darmon—Rotger [BDR15a, BDR15b]) in the K7 of products of two modular
curves.

In contrast, the anticyclotomic Iwasawa theory of V, ® V}, (or rather of its conjugate
self-dual twists, such as V;)ph) appears to not have been studied before. The principal

contribution of this paper is the construction of an anticyclotomic Euler system for Vg’f’h.
As stated in Theorem A below (which corresponds to Theorem 6.5 in the body of the
paper), for general weights (k,I,m), our construction requires the additional assumptions
that p splits in K and pthg (the class number of K), and that both g and h are ordinary
at p, but note that for (k,I,m) = (2,1,1), Theorem 4.6 contains a version of our main result
without these additional hypotheses.

Theorem A. Suppose that p splits in K and pthg, and that both g and h are ordinary
at p. Let S be the set of all squarefree products of primes split q in K and coprime to
DNgN.f, and denote by K[n] the mazimal p-extension of K inside the ring class field of
conductor n. Then there exists a family of cohomology classes

Kap,ghynpr € H' (K[npr]ng%h)

for allneS and r >0, where T;’%h is a fived G -stable lattice inside ng’,bh, such that for
all ng € S with q prime, we have

PCI (Frgl) Kap, g, h,np" Zf q 7& b,

COT K [ngpr]/ K [npr] (K4, g, h,ngpr) = o
K, g,h,np" if q=p,

where q is any of the primes of K above ¢, and Pq(Fr‘;l) = det(1 —Frq71X|(ngf’h)v(1)).

The construction of this Euler system, which is taken up in the first part of the paper,
is based on the diagonal classes studied by Darmon-Rotger [DR14, DR17, DR22] and
Bertolini-Seveso—Venerucci [BSV22], extending earlier constructions due to Gross—Kudla
[GK92] and Gross—Schoen [GS95]. Roughly speaking, our classes Ky, g nnpr are suitable
modifications of diagonal classes for the triples (é,p,npr,g,h), where éwﬂlpr is a certain
deformation of the theta series associated to v, and the main difficulty in the proof of
Theorem A is in establishing the Euler system norm relations.

The main results in the second part of the paper are the proof of new cases of the Bloch—
Kato conjecture for th in analytic rank zero and a divisibility towards the Iwasawa main

conjecture for Vw These are obtained by applying Kolyvagin’s methods (in the form
recently developed by Jetchev—Nekovai—Skinner [JNS] in the anticyclotomic setting) to
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our Euler system. In the results that follow, we use ‘big image’ to refer to Hypothesis
(HS) in Section 8.1, for which sufficient conditions are given in Section 8.2.
Theorem B. Suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,

(b) p splits in K,

(¢) p does not divide the class number of K,

(d) V;f’h has big image.
Let

K, g,h 1= Kap, g, h,1-
If l—m < k <l+m, then the following implication holds:
Ky gn7# 0 = dimg Sel(K,V;f’h) =1,

where Sel(K7Vglf’h) C H! (GK,V;f’h) is the Bloch—Kato Selmer group.
Remark.

(1) For k =1=m =2, together with the Gross—Zagier formula for diagonal cycles by
Yuan-Zhang—Zhang [YZZ], Theorem B supports the Bloch-Kato conjecture for
Vglf’h in analytic rank one, reducing it to the expected injectivity of the p-adic étale
Abel-Jacobi map.

(2) Still in the case k =1=m = 2, combined with the p-adic Gross—Zagier formula for
diagonal cycles in forthcoming work of Hsieh—Yamana [HY], Theorem B establishes
some cases of Perrin-Riou’s p-adic Beilinson conjecture in analytic rank one.

(3) In general, by the main result of [DR14], the nonvanishing of ky 45 also follows

from the nonvanishing of a special value of the triple product p-adic L-function
Z,(f,g,h) introduced below.

In analytic rank zero, we get unconditional applications to the Bloch—Kato conjecture.
Let f =0y € Sk(Ny,ey) be the theta series associated to 1, let E@(‘/Z{}h) be the epsilon
factor of the Weil-Deligne representation associated to the restriction of V;® V, ®
Vi(1—c¢) to Gg,, and put N =lem(Ny,Ng,Np).

Theorem C. Let the hypotheses be as in Theorem B, and assume, in addition, that

6g(Vglf)h) =41 for all primes £| N,
o gcd(Ny, Ny, Ny) is squarefree.

If k>1+m, then
L(VY,0)#0 = Sel(K,V),)=0,

and hence, the Bloch-Kato conjecture for V;{’h holds in analytic rank zero.

Remark. Here, L(ngh,s) is the triple product L-function introduced by Garrett,
Piatetski-Shapiro and Rallis, which satisfies a functional equation relating its values at s
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and —s. When k > [+ m, the local root number condition in Theorem C implies that the
sign in this functional equation is +1, and so the central L-values L(ngh,O) are expected
to be generically nonzero.

A third application is to the anticyclotomic Iwasawa main conjectures for Rankin—
Selberg convolutions. Let (f,g,h) be a triple of p-adic Hida families. In [Hsi21], Hsieh
has constructed a square root triple product p-adic L-function Z,(f,g,h) whose square
interpolates the central values of the triple product L-function attached to the classical
specialisations of (f,g,h) to weights (k1,kq,k3) with k; > ko + k3. Letting g and h be the
Hida families passing through the ordinary p-stabilisations of g and h, respectively, we
obtain an element

gp(fv.%h) € Af

interpolating a square root of the above central L-values for the specialisations of f to
weights k£ > [ +m, where A is the finite flat extension of A = Z,[[1+pZ,]] generated by
the coefficients of f. Greenberg’s generalisation of the Iwasawa main conjectures [Gre94]
predicts that %, (f,g,h)? generates the Ag-characteristic ideal of a certain torsion Selmer

group X }-(Aigh). We also show that our classes ky g,n,n are universal norms in the p-
direction, therefore giving rise, in particular, to an Iwasawa cohomology class

Fapg oo € Hiy (Koo, T,

for the anticyclotomic Z,-extension K, /K. The class ky g h 00 is associated with the
triple (f,g,h), where f =f£, is a CM Hida family attached to 1 for which Af = A,., the
anticyclotomic Iwasawa algebra. Assuming the nontriviality of Ky g1 00, We can prove the
following result towards the Iwasawa main conjecture for .%,(f,g,h)%.

Theorem D. Let f =f,, and suppose that:

(a) g and h are ordinary at p, non-Eisenstein and p-distinguished,
(b) p splits in K,
(¢) p does not divide the class number of K,
(d) Vw has big image,
(e) Eg(ngh) +1 for all primes £| N,
(f) ged(Ny,Ng,Np) is squarefree.
If Ky g h,0o s MOt Ayc-torsion, then the module X}-(Af n) 8 Nac-torsion, and
Chary,, (X7(Af,,)) O (Z(f.9,h)°)
in Nac ®Zp Qp-
Remark. The classes &y g.n,n may be viewed as a counterpart in the study of the
arithmetic of ngh to systems of Heegner points and Heegner cycles for individual modular

forms. It would be interesting to see whether the methods of Cornut—Vatsal can be
extended to establish the nontriviality of Ky, ¢ h,oo-
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Remark. The ‘big image’ hypothes1s on V 5, excludes some cases of arithmetic interest;
notably, the case in which h = g* is the dual of ¢ (assuming ¢ has trivial central character)
is excluded from our applications in this paper. We study this case in [ACR22], where,
building on (a suitable projection of) the classes ky, g +.n constructed in this paper,
we obtain a new anticyclotomic Euler system for twists of the three-dimensional G-
representation ado(Vg)7 with applications to the Bloch-Kato conjecture in rank zero and
the Iwasawa main conjecture in this setting.

Remark. As already noted, the anticyclotomic Euler system classes constructed in this
paper arise from diagonal classes attached to triples (f,g,h) of modular forms in which
f varies over certain CM forms by K. A modification of this construction with ¢ and
h varying among certain CM forms for the same imaginary quadratic field K gives rise
to a new anticyclotomic Euler system for twists of Vy|g,. This construction, and its
arithmetic applications, is studied in [Do22, CD23].

Part 1. The diagonal cycle Euler system

2. Preliminaries

In this section, we begin by discussing our conventions regarding modular curves and
Hecke operators, for which we shall largely follow [Kat04, Section 2] and [BSV22,
Section 2].

2.1. Modular curves

Given integers M > 1, N >1, m>1 and n > 1 with M + N > 5, we denote by
Y (M(m),N(n)) the affine modular curve over Z[1/M Nmn]| representing the functor tak-
ing a Z[1/M Nmn]-scheme S to the set of isomorphism classes of 5-tuples (E,P,Q,C, D),

where:
e F is an elliptic curve over S,
e P isan S-point of E of order M,
e () is an S-point of F of order N,
e (U is a cyclic order-Mm subgroup of FE defined over S and containing P,
e D is a cyclic order-Nn subgroup of F defined over S and containing @),

and such that C' and D have trivial intersection. If either m =1 or n =1, we omit it from
the notation, and we will often write Y7 (V) for Y(1,N).
We will denote by

E(M(m),N(n)) =Y (M(m),N (n))

the universal elliptic curve over Y (M (m),N(n)).
Define the modular group

(M (m), N(n)) = {(‘CL Z) €S1a(Z) :a=1(M),b=0(Mm),c=0(Nn)d= 1(N)}.
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Then, letting H be the Poincaré upper half-plane, we have the complex uniformisation
Y(M(m),N(n))(C) = (Z/MZ)* x I'(M(m),N (n))\H, (2.1)
with a pair (a,7) on the right-hand side corresponding to the isomorphism class of the

5-tuple (C/Z+ Zr,at/M,1/N,(T/Mm),(1/Nn)).
If » > 1 is an integer, there is an isomorphism of Z[1/M Nmnr]-schemes

¢ Y(M(m),N(nr)) =Y (M(mr),N(n))
defined in terms of moduli by
(E.P,Q,C,D)— (E',P',Q',C",D'),

where E' = E/NnD, P’ is the image of P in E’, Q' is the image of r=*(Q)N D in E’,

C’ is the image of r=1(C) in E’ and D’ is the image of D in E’. Under the complex

uniformisations (2.1), the isomorphism ¢, sends (a,7) + (a,r-7). If
@r(E(M(mr),N(n))) =Y (M(m),N(nr))

denotes the base change of E(M(mr),N(n)) — Y (M(mr),N(n)) under ¢,, there is a

natural degree-r isogeny
Ar i E(M(m),N(nr)) = op(E(M(mr),N(n))).
2.2. Degeneracy maps
With the same notations as above, we have natural degeneracy maps
Y (M(m),Nr(n)) £ Y (M (m), N (nr)) < Y (M (m),N(n)),
Y (Mr(m),N(n)) LN Y (M (mr),N(n)) LN Y (M (m),N(n)),
forgetting the extra level structure, for example

,U'T(E7P3Q307D) = (E,P,T'Q,C,D),
VT(E’P7Q7C7D) = (E7 P7 Q’ C7T'D)'

We also define degeneracy maps

acting on the moduli space by

7T1(E7P7QaCaD) = (E,P/I‘S : Q,C,’I’tD)7

7T2(E7P5QacaD) = (E/7P,7Q/7C/3D/)7
where E' = E/NnsD, P’ is the image of P in E’, Q' is the image of t1(s-Q)ND in E’, C’
is the image of C' in E' and D’ is the image of D in E’. Under the complex uniformisations
in (2.1), the maps m and 7o correspond to the identity and to multiplication by rt,

respectively, on H. It is straightforward to check that the maps 7; and o are given by
the compositions
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Y (M (m),Nrs(nt)) LAEN Y (M(m),N (nrst)) Lty Y (M(m),N(ns)),
Y (M (m),Nrs(nt)) L2 Y (M (m), N (nrst)) £25 Y (M (mrt), N (ns)) 225 Y (M (m), N (ns)),

respectively.

2.3. Relative Tate modules
Fix a prime p. Let S be a Z[1/M Nmnpl-scheme, and let

v:E(M(m),N(n))s =Y (M(m),N(n))s

be the structural morphism. For every Z[1/M Nmnp]-scheme X, denote by A = Ax either
the locally constant constructible sheaf Z/p*(j) or the locally constant p-adic sheaf Z,,(j)
on X, for fixed t > 1 and j € Z. Set

Trt(m) N () (A) = R0 Zp(1) @z, A and Ty n(ny (A) = Hom(Tasm), v (n) (A), A).-

In particular, in the case A = Z,, this gives the relative Tate module of the universal
elliptic curve and its dual, respectively; in this case, we will often drop A from the notation.

From the proper base change theorem, both Fy(m) n(n)(A4) and 9]\}(1%)7]\,(”) (A) are

locally constant p-adic sheaves on Y (M(m),N(n))s of formation compatible with base
changes along morphisms of Z[1/M Nmnp]-schemes S’ — S.
For every integer r > 0, define

i (m), N (n),r(A) = Tsymy Tnr(my, N(n) (A)s Far(m), Ny, (A) = Symmy Ty v (n) (A)s

where, for any finite free module M over a profinite Z,-algebra R, one denotes by
Tsym, M the R-submodule of symmetric tensors in M®" and by Symm, M the maximal
symmetric quotient of M®7.

When the level of the modular curve Y (M (m),N(n))g is clear, we may use the simplified
notations

gr(A) = gM(m),N(n),r(A)v <z = gr(Zp)v yr(A) = yM(m),N(n),r(A)v S = yr(Zp)~

2.4. Hecke operators

Let ﬁ&(m)w(n) denote either Zy(m), Nn),r(A) O Far(m),Nn),r(A), and let ¢ be a
rational prime. Then there are natural isomorphisms of sheaves

V:]k (‘g\;\ﬂl(m),N(n)) = g\;\}(m,),N(nq) and D:]k(y&(m),N(n)) = ‘gZ]T\‘/I(mq),N(n)? (23)

and therefore pullback morphisms

H (Y (M(m), N (1), F i (my. n(my) — Hao (Y (M (m),N(19)) 2% 11 (1), N (ng) )

Heit (Y(M(m)7N(n))S’y]\‘l(’rn),N(n)) - Heit (Y(M(mq)7N(n))s’y;\ﬂl(’mq),N(n))?
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and traces
Hét(Y(M(m)vN(nq))57ggd(m),N(nq)) — Heit(Y(M(m)7N(n))S"g&(m),N(n))’ (2.4)

Hey (Y (M (mq),N (1)), 7 3 (may N (my) — Het (Y (M (), N (1)) 5, F 31 (), N (m))-

Also, the isogeny A, induces morphisms of sheaves

Ags T hrim).Nng) = Ca( Tt may ) Ad AL 0y (F L (ma), N n)) = F ki (m). N (ng)-
These morphisms allow us to define

Dy Hét(Y(M(m)7N(nq))Sa9;4(m)7N(nq)) - Hét(Y(M(mq)?N(n))57§]7\n/[(mq),N(n))?

&, 2 HE (Y (M(mq), N(n))ss-F 3 (mag),nny) = Hee (Y (M (m),N(nq)) 5, F 1 (1m), N(ng) )
as the compositions

Qg = pgs0Age  and <I>Z = )\Z OgO;.

We define the Hecke operators T, and the adjoint Hecke operators 7T, acting on the
étale cohomology groups

HE (Y (M(m),N (1)) 557 11(m), N (ng))
as the compositions
Ty =0g0®@pov;, and T, =vg 0P 00,
If we define pullbacks

Hey (Y (M(m),N (1)) 5, % 31 (my, () —+ Hee (Y (M (1), N (1)) 857 (), N (ng))»

Hey (Y (M (m),N (1)) 8, F b (my, N () —+ Heo (Y (M (mq), N ()5, F 11 (1), N (n))s
and pushforward

Hy (Y (M (m),N(19)) 5,7 3 1(my, N(ng)) ——+ Heo (Y (M(m),N (1)) 8, F 3 (3m), N(n)):
Hét(Y(M(m‘J)’N(“))Sag&(mq),zv(n)) = Hét(Y(M(m)»N(n))&y&m),N(n))a
as

T = V:;, T = <I>; Oﬁ;, Tix =Vge and Moy = gy 0 Py,
then we can write
T,=ma.0om and Té = 1. OTs.

Now we introduce diamond operators. For d € (Z/M NZ)*, these are defined on the
curves Y (M (m),N(n)) as the automorphisms (d) acting on the moduli space by

(E,P,Q,C,D)+ (E,d'-P,d-Q,C,D).

We can also define the diamond operator (d) on the corresponding universal elliptic curve
as the unique automorphism making the diagram
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E(M(m),N(n))s —=— E(M(m),N(n))s

P,

Y(M(m),N(n))s —— Y (M(m),N(n))s

cartesian. This, in turn, induces automorphisms (d) = (d)* and (d)’ = (d). on the group
Hét(Y(M(m),N(n))s,ﬁ]@[(m)w(n)) which are inverses of each other. In general, we will be
interested in modular curves of the form Y (1(m),N(n)). In this case, the natural pairing
2, @z, S — Ly together with cup-product yields a pairing

HL (Y (1(m),N(n))s,Z (1)) ®z, H}

et,c

(Y(l(m)ﬂN(n))SvyT) - Z;D

which becomes perfect after inverting p. The operators 17, Ty, (d), (d)" induce endomor-
phisms on compactly supported cohomology and

(Ty, Tg),  (TgTy), ((d).(d)"), and ((d),(d))

are adjoint pairs under this pairing.

2.5. Galois representations

Let f € Sp(Ny,xs) be a newform of weight k =r+2 > 2, level Ny, and character xy. Let
p be a prime, and let E be a finite extension of @, with ring of integers O containing
the Fourier coefficients of f. By the work of Eichler—Shimura and Deligne, there is a
two-dimensional representation

ps: GQ — GLQ(E)
unramified outside pNy and characterised by the property that

trace ps(Fry) = aq(f)

for all primes gt pNy, where Fr, denotes an arithmetic Frobenius element at ¢ (in fact,
this is the dual of the p-adic representation constructed by Deligne).

It will be convenient for our purposes to work with the following geometric realisation
of py. Let

HY (Y1(Nf)g (1)) @z, E — Vy

be the maximal quotient on which T, and (d)" act as multiplication by a,(f) and x(d)
for all primes ¢f Ny and all d € (Z/N;Z)*. Then V; is a two-dimensional E-vector space
affording the p-adic representation p¢, and we let Ty C V¢ be the lattice defined by the
image of

He(Y1(Ny)g 2 (1) €z, O

under the above quotient map.
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3. Hecke algebras and ring class fields

In this section, we extend the results of [LLZ15, Section 5.2], including ring class field
extensions of an imaginary quadratic field K. The resulting Corollary 3.6 will allow us to
obtain classes over ring class field extensions of K from diagonal cycles over QQ on triple
products of modular curves of varying levels.

Thus, let K be an imaginary quadratic field of discriminant —D < 0, and let ex be
the corresponding quadratic character. Let ¢ be a Grossencharacter of K of infinity type
(—1,0) and conductor f, taking values in a finite extension L/K, and let x be the unique
Dirichlet character modulo Ng/q(f), such that ¥((n)) =nx(n) for integers n coprime to
Ngo(f). Put Ny = Nk o(f)D, and let 8y, € So(Ny,xexk) be the newform attached to 1,
that is,

Op= Y w(a)grol®,
(a,f):l
Fix a prime p > 5 unramified in K, a prime p of K above p and a prime 3 of L above

p. Let E'= Ly, and let O C E be the ring of integers. Let 1z be the continuous E-valued
character of K*\Af ; defined by

o () =z (@),

where z,, is the projection of the idele z to the component at p. We will also denote
by 1y the corresponding character of G obtained via the geometric Artin map. Then
md% E (wq}l) is the p-adic representation attached to 6.

Definition 3.1. For an integral ideal n of K, we denote by H, the maximal p-quotient
of the corresponding ray class group, and by K(n) the maximal p-extension in the
corresponding ray class field. We similarly define R,, and K{[n], for each integer n > 0,
as the maximal p-quotient in the corresponding ring class group and the maximal
p-extension in the corresponding ring class field.

Let n be an integral ideal of K divisible by f, and let N = Nk q(n)D, which is of course
a multiple of Ny,. Let T (V) be the algebra generated by all the Hecke operators Ty, (d)’
acting on H'(Y1(N)(C),Z).

Proposition 3.2. With the previous definitions and notations, there exists a homomor-
phism ¢y : T)(N) — O[Hy] defined on generators by

$u(Ty) =>_¥(q)[d]
q

for every rational prime q, where the sum runs over ideals coprime to n of norm ¢; and
Pu((d)) = x(d)ek (d)[(d)].
Proof. This follows immediately from [LLZ15, Proposition 3.2.1]. O

Now let n’ = nq for some prime ideal q above a rational prime gq. Assume that n’
is coprime to p, and let N’ = Ng g(n')D. Following [LLZ15, Section 3.3], we define
norm maps
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N O[Hw ] @y (N 92y, 6,1) H;t(Yl(N/)@Zp(l)) — O[Ha] @1, (M) @7y, 6n) Helt(YI(N)@Zp(l))

by the formulae:

o ifqln,
Nt?/ =1Q@ 714
e if gfn and q is ramified or split,
N — 1@, w(l)[q] & o
e if gfn and q is inert,
N 1@, w(gz[q] &,

More generally, for n’ = nt with v a product of (not necessarily distinct) prime ideals,
we define the map Ng" by composing in the natural way the previously defined norm
maps. From now on, we assume that in the case where (p) = pp splits in K, the following
holds: If p | f, then p 1§ and wlolx( , is not congruent to the Teichmiiller character

modulo ‘B.

Theorem 3.3. Let A be the set of prime ideals of K coprime to p (respectively, p) if
p splits (respectively, is inert) in K and divisible by f. Then there is a family of Gg-
equivariant isomorphisms of O[H,|-modules

vn 2 O[Ha) @1y (N)@2,,60) Het Y1 (V) Zp(1) — Ind ) O(¥51),
for alln e A, such that for n|n' the diagram

OlHw ] @(vy(v)07,,0,) Hoe V1 (V) Zp(1)) —=— Indk ) O(vg)
Ny

O[Ha] ®(1y(3)07,,00) Het (Y1 (N)g Zp(1)) —2— Ind ) O(vhg")

commutes, where the right vertical arrow is the natural norm map.
Proof. This is [LLZ15, Corollary 5.2.6]. O

Definition 3.4. For any positive integer n with (n,pf) = 1, we let K(f)[n] be the
compositum of K (f) and K[n], and put Ry, = Gal(K(f)[n]/K).

Let T"(1,Ny(n?)) C Endz(H' (Y (1,Ny(n?))(C),Z)) be the subalgebra generated by all
Hecke operators T, and (d)’.

Lemma 3.5. There exists a homomorphism
b T'(L Ny (n%)) — O[R;,

defined on generators by the same formula as in Proposition 3.2.
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Proof. Take the modulus n = f(n). By Proposition 5.1.2 and Remark 5.1.3 in [LLZ15],
the kernel Z of the composition

T} (Nyn2) 2% O[H,| — O — O/,

where ¢, is as in Proposition 3.2, is a non-Eisenstein maximal ideal of T} (Nyn?) in
the sense of [op. cit., Definition 4.1.2]. Therefore, denoting Z-adic completions with the
subscript Z, we have an isomorphism of T} (Nyn?)z-modules

H'(Yi(Nyn®)(C),Z)z = H, (Y1(Nyn*)(C),Z)z.

On the other hand, as in the proof of [LLZ15, Lemma 4.2.4], the natural pullback map
yields an isomorphism

He (Y (1,Ny(n?))(C),Z) = H, (Y1 (Nyn®)(C),Z)%,

where A is the set of diamond operators (d)’ with d =1(mod Ny). Since A maps to 1
under the composition

T} (Nyn2) 22 O[H,| — O[Ry...),
the result follows. O

Corollary 3.6. Let B be the set of positive integers n coprime to pf. Then there is a
family of Gg-equivariant isomorphisms of O[Ry,,]-modules

Vp : O[wan] ®(T'(17N¢(n2))®2p,¢n) Helt(Y(].,Nw(’nz))@,Zp(l)) % Il’ldK(f) (’ll)m )
for all n € B, such that for n|n' the diagram

O[Rf7n/}®(’]rl(17 »(n/2))RZp, &, )H (Y(l N¢( ))@,ZP(IDHIHd K(§)[n'] (’(/J;_p)

NP

f,n

OBy n] @2 (1,8 (n2)) 92,6 H (Y (1N (12)) 5,2 (1)) ——— Tnd . ;) O(v")

commutes, where ./\/ffg " is induced by ./\fff((;)) and the right vertical arrow is the natural
norm map.

Proof. Let n=f(n), T and A be as in the proof of Lemma 3.5. Since Z is non-Eisenstein,
the natural trace map

Hoy (Y1(Nyn?)g Zp(1))a — Hey (Y (1, Ny (n?)) g Zp (1))

becomes an isomorphism after taking Z-adic completions. Since the map ¢,, of Lemma 3.5
is induced by ¢, (as shown in the proof of that result), it follows that the O[R;,,]-module

O[Rj, 1] @ (1 (1, Ny (n2)) 92y ) Her (Y (1, Ny (n?)) g, Zp(1))
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is naturally isomorphic to

OlRf,0) @oi,) (O1Hn) @ty (vun52,.60) H (Vi (Nun®)g Zy (1)) )

The result now follows from Theorem 3.3. O

4. Proof of the tame norm relations

We keep the notations introduced in Section 3. Fix two newforms (g,h) of weights (I,m) of
the same parity, levels (Ny, Nj,) and characters (x4, xn), such that xex xgxr = 1. Enlarging
L if necessary, assume that it contains the Fourier coefficients of ¢ and h.

Let N = lem(Ny,Ng,Np), and (since N will be fixed throughout) put Y (m) =
Y (1,N(m)) for every positive integer m.

Definition 4.1. Let r = (r1,72,73) be a triple of nonnegative integers, such that
r1+retrs=2r
with r € Z>¢, and r; +1; > 1, for every permutation (4,7,k) of (1,2,3). Put
L) = LN m),r (Lp) @z, L1, N (m).ro (Lp) Oz, L1, N (m), v (L))
and define
) e H' (QHZ (Y (m)2, % 2—
Kmr € Q et( (m)Qv [r]) ®Zp Qp( T)

to be the class Kx(n),r = srs 0HS 0d,(Detly () constructed as in [BSV22, Section 3] for
the modular curve Y (m).

Lemma 4.2. Let m be a positive integer, and let g be a prime number. Assume that both
m and q are coprime to p and N. Then

(7r2,7r1,7r1)*n(1) = (Tq,l,l)n(l) ; (7T1,7T2,7T2)*I£(1) =q¢" (T, 1 1)/1(1) ;

mq,r m,r’ mq,r @ m,r)
1 _ 1) . 1 _ =T / 1) .
(7(-1371—277(1)*57(712]’1- = (1,Tq,1)l€£n?r, (71-2771—1’71-2)*&7(7“)1’1- =q 2(1aTq71)"<‘-'7(n,)ra

(71'1,7'(1,71’2)*/{%2171. = (l,l,Tq)ng?r; (7’(2,7T2,7T1)*I€%217r = qrfr“"(l,l,Té)n%)r.
If q is coprime to m, we also have
(1m0 ) kg e = (@ DESs (m2,m0,ma) k) 2 = (a4 1)q" k5,

Proof. The same argument proving equations (174) and (176) in [BSV22] yields these
identities, adding the prime ¢ to the level rather than the prime p. O

We next consider the following ‘asymmetric’ diagonal classes.
Definition 4.3. For each squarefree positive integer n coprime to p and N, let
RE =" (L0 ) (L, m)ukly, € HY (QHE(Y (n)g X Y (13, %) @2, Qp(2-7))

n?2

where 71,72 : Y(n?) — Y (1) are the degeneracy maps in (2.2).
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Lemma 4.4. Let n be as above, and let q be a rational prime coprime to p, N and n.
Then

(n11,1,1)m53}r: {¢”(LLT,T)) — (g +1)g" " (1,1,1) } £2)
_ {C] 1 T/ T/ r2+T3 T/ / }’{5?2-7

(77227171)*537“11‘ {qu+T3 laT(;27< >/) (q+1) }Iin r

where m;; : Y (n?q*) — Y (n?) denotes the composite map

n,r’

(m21,1,1),53)

Y (n?¢%) Z5 Y (n2q) =5 Y (n?).

Proof. To better distinguish between the degeneracy maps 7; for different levels, in this
proof, we use w; to denote the map m; descending the level by g, so that w;ow; is the
degeneracy map 7;; in the statement of the lemma. Thus, we find

(@1,1,1)us2), =n"2q" (1,1, (ng)") (1,m1,m2) (@1, 01, @2) k52
= n"2q" (L1, (ng)) (Lmy,m2)« (LLT, )k, .
using Lemma 4.2 for the second equality; and similarly,
(@2, 1,1)ukZ), = 072q" (1,1, (ng)") (L1, m2) (2, @1, @2) o K2
=n"q"(1,1,(ng)") (Lm0, m2). (LT 1)l .

Descending the level again by ¢, this gives

(711, 1,168 = n"2q"(1,1,(ng)") (1,m1,72) (w01,51,2) (1,1, Ty ) )

n2q,r

12" (1,1, (ng)") (171,72 (@10, @10 Tywae — 4" ()1 )KL,

T2

=n"2q"(1,1,{ng)") (1,m1,m2). { (1,1,T2) — (q+1 (L1 {q)) b RlY,
=" {(LL,T,T}) — (¢ + 1)g"(1,1,1) } n"(1,1,(n)")(1 m,m)*nf}gr
={¢"(L1LT,T)) — (q+1)g" " (1,1,1 }nﬁ?}m
and similarly
(m21,1,1),6 3 = n"2q" (L1, (ng) ) (L, m2)u (@1, 1,@2) (LT DS, |
=n"2q"(1,1,{nq)")(1,m1,m2)s (w1s, Ty w014 — (Q>/W2*,w2*)ff;1)q v
:n’"?qT(LL<nq>’)(lmﬁrz)*{(I,TQ,T) (T () D)}

= {(LTT)) — ¢ (T (a) ()" " (1,1, (n) ><1,wrz>mi?r
_ {qr (1, T/ T/ r2+r3 T/ / }H(Q)

n,r’

and
(m22,1,1)us2) = n"2q" (1,1, (ng)") (1,m1,72) 4 (@2, @1, @2) (LT D)LY,

1)

=n 2q (].,]_,<’I’Lq>/)(1771'1,7'('2)*(’WQ*,quwl* - <q> w2*7w2*)l§’n2q7r
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—nr"’qr(l,l,(nq)’)(l,m,ﬂ'g)*{qr_rz(l,T;Z,) (¢g+1)¢" }/—@ -
=" {d" " (LT20)) ~ (a+ g T(l < /)3 1,1,<n> ><1,wr2>m;?,r
={¢"T(LTP(0)) - (a+ 1) }Ksm,

hence, the result. O

Projection of the classes 55121 to the (1,1,1)-component in the Kiinneth decomposition

yields classes m%l in

Y (QHL(Y ()52, (1) @ HA(Y ()52, (1) @ HL(Y ()52, (1) @2, Qp(~1 1))
Now set (r1,7r2,r3) = (0,1 —2,m — 2). Fix test vectors

FESHNxer)0s]. FESINXGgl 7 ESm(Nxn)[h-

These test vectors determine maps

He (Y () Zp(1)) = Hey (Y (1, Ny (n?))g, Zp (1))
He(Y (D)%, (1) = Heg(Yi(Ng)gsZra (1)
)

)
Hoy (Y (Vg iy (1) = Hey (Y1(Ni )20, (1)

which we use to project the classes nﬁfl to classes Ii;gib oh in
H'(Q0[R;,] @1 (1, Ny (n2)) 22, 6) Hot (Y (1, Ny (n2))@72p(1)) ®0 Ty @0 Th ®z, Qp(—=1-71)).
Let
T, =Ty @0 Ta(by ) (—1=1), Vi) =T, @z, Q).

Using the isomorphisms

Up ' O[Rf, ] (T’(l Nw(TLQ))@)Zp,d’n) H (Y(l Nw( ))szp(l)) % IndK(f)[n] (d)q_sl)

of Corollary 3.6, and taking the projection of both sides via the quotient map O[R;, ] —
O[R,], we obtain new isomorphisms

Tt O[Ru] @1 (1, Ny (n2)) 02, 60) HE (Y (LN (n2))g,Zp(1)) —— IndK[n] (Ya);

so that applying the corresponding projection map to the classes HSL) oh and using

Shapiro’s lemma, we obtain classes
Fosgnn € H (K] V,),).

Proposition 4.5. Let n be as above, and let q be a rational prime coprime to p, N and n.
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(i) If ¢ splits in K as (q¢) = qq, then

w<q>Frq1)2 _ ag(g)ag(h) (@ Fﬁ)

q qUm—172 q
L Xo(@)aa(9)® | xn(9)Mag(R)? g 41
qlfl qm72 q

- a9l (YD)t (2w i

(ii) If q is inert in K, then

xn(@) taq(h)®  (¢+1)° }/@w .

l+m—4 Xq(q
COT K [ng)/ K[n) (R, g,hna) = q { = ) .

Proof. We have the commutative diagram

HY(K[ng), V') — H'(Q Ind,, O(g!) @0 Ty ©0 Th @z, Qp(—1 - 1)
COTK [nq]/ Kn]

HY(K[n],V,,) — HY(QIndj, O(¥y") ®0 Ty @0 Th @2, Qp(~1—1)),
where the horizontal isomorphisms are given by Shapiro’s lemma and the right vertical
arrow comes from the natural norm map between induced representations. Using the
isomorphisms 7, above, the vertical arrows in the previous diagram correspond to the
map

HY(Q,0[Rng] ®,, Ht (Y (1, Ny (n*¢*)) 5.2y (1)) ®0 Ty @0 Th @z, Qp(—1—1))
NP @IdeId

HY(QO[R,] @4, HL(Y (LN, (n2))g,Zy(1) 80 Ty ©0 Tr @z, Qp(~1-1)).

If ¢ splits in K, the map J\/ffg 7 is given by
NP =y, (d)(q)[q} N w(o;)[q]) o X

21% T =224,
q q

using the notations introduced in Lemma 4.4 for the degeneracy maps, and from the
relations in that lemma, we find

N (Rep.g.hng) = [1®{q” (LLTTy) — (g+ 1) (1L,1,1)}

_ (¢(Z)[CI] + '(/}(c(l])[ }> ®{ 1 T(;’Tl;) qr2+r3 (Té7<q>/,<g)/)}

+ % ® {q”“?’ (LT (g)) — (g +1)g* (1,{a)’, <q>’)}} R.g.hn
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= |:Xh(Q)1aq(h)2qT2 +(g+1)g™"

- (W‘j]”‘” ){aq N~ xo(@)xn (@ (@) a] + @)}
{x 9?0 —x g () xn (@) (@ + 1)@ } | R, g,hn-

This imphes the result in this case. When g is inert in K, we have
xlq
Aff?:q = Ti1s — %7@2*7

and the result in this case follows by a very similar computation that we leave to the
reader. O

In particular, restricting to positive integers n as above that are divisible only by
primes ¢ which split in K, Proposition 4.5 yields the following result (note that since in
this section we assume ¢ has infinity type (—1,0), the balanced condition forces [ =m).

Theorem 4.6. Suppose the weights of g,h are | =m. Let S be the set of squarefree
products of primes q which split in K and are coprime to p and N. Assume that
H! (K[n],T;’h) is torsion-free for every n € S. There exists a collection of classes

{Kgn € HKILTY,) : nes},
such that whenever n,ng € S with q a prime, we have
COT K ng) /K [n) (Fup, g, h,nq) = Pq(Frq_l) Kap, g, h,n;s
where q is any of the primes of K above g, and Py(X) = det(1 —Frq_1X|(Vg’f’h)v(1)).

Proof. We begin by noting that the only possible denominators of the classes Ky g.h,n
are divisors of (I—2)!(m —2)! (as follows from [BSV22, Remark 3.3]), so after multiplying
them by a suitable power of p, they all have coefficients in T

Now given a prime g € S, we note that for any prime v of K above g, we have

aq(g)aq(h) P(v)
Py(X)=1- qFm=2)72 "¢ X

+ < ( ) ql(h) (q aq(g)2 _2Xg(q)Xh(q)> 7/’(”)2)(2

qm gt 7
g aq h v)3 v)?
0 e)ea ) S0 oy )

Writing (¢) = qq and using that 1(q)1(q) = x(¢)g and x4(q)xn(q)x(q) = 1, we therefore
find the congruences

Py(Fry )xg(@)xn (@) (@) Frg? = Py(Frs )xg(@)xa(a W(q)QFrq_Q(mod q—1)
= Xg(0)Xn(0)$(a)*Fry? — ag(g)aq(h)v (q)Frg*
+x9(0) " ag(9)? +Xh() tag(h)* -2
— ag(g)ag (MY @Frg" +x(0)xn(@)¥(@)*Frg? (mod ¢ — 1)
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as endomorphisms of H'(K|n], Td’ p)- Since these expressions agree modulo ¢ —1 with
the factor appearing in the norm ‘relation of Proposition 4.5(i), together with [Rub00,
Lemmas 9.6.1 and 9.6.3], the result follows. O

Remark 4.7. The condition that H'(K [n],T;fh) is torsion-free for every n € S holds, for
example, under the assumptions in Lemma 8.9 below. Indeed, since SLa(Z,) x SL2(Z,) has
no proper normal subgroups of finite p-power index, it follows from this lemma that the
residual G g [,-representation attached to T;fh is absolutely irreducible for every n € S,

so that HO(K [n],V;f’h / T;{’h) is trivial for every n € S and the condition follows.

Remark 4.8. In the inert case, writing q = (¢), we have

Py(X) =det(1—Fr; ' X|(T},)" (1))

o (ad(9)? an(q)® ¥(q)

=1 <ql_1 2xg(q)><qm_1 2Xh(Q)) q2 X
2 2 9

+<Xh(q)2(a;l(gz (0 ) ( _QXh >> _2X9(q)2Xh(Q)2> ¢f;1) X2

and similarly, as in the proof of Theorem 4.6, we find the congruence

Pa(Fry ) = xg(0) %aq(9)* + xn (@) 2aq(h)* +2x4(q) " xn(2) " aq(g)?aq(h)?q
Xo(@)'ag(9)*(a+1)  xn(a) " aq(h)*(g+1)
ql 1 qm 1

—4 +8(¢+1)(mod ¢* —1)

as endomorphisms of H(K [n],Tgujh). Similarly, as above, this expression agrees modulo

g% — 1 with the square of the Euler factor appearing in the norm relation of Proposition
4.5(1i).

Now assume that (p) = pp splits in K, with p the prime of K above p induced by our
fixed embedding ¢, Q= @p, and let f =6y be the theta series associated to 1. Assume
also that both g and h are ordinary at p. Then, for ¢ € {f,g,h}, the Gg,-representation
Ve admits a filtration

0—>VJ—>V¢—>V¢*—>O7

where V(f is one-dimensional and V" is unramified with Fr, acting as multiplication by
a, the unit root of the Hecke polynomial of ¢ at p. Letting Vg, =V @V, @ Vi (—1—1),
we can therefore consider the Gg,-subrepresentation

FVigh= Vi@V, Vi +VieV,eVh+VieViev,)(-1-r)

and define the balanced local condition H,,(Qp,Vign) C HY(Qp,Vign) to be the image of
the natural map H(Qp,-F2Vign) — HY(Qp, Vign)-
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Setting

Frl) =V eVi+V,e Vi (—1—r), Frv)) =V ey (=1-r),
(4.1)

one readily checks that under the isomorphism H'(Q,Vy,n) = H' (K, Vg%h) of Shapiro’s
lemma, the balanced local condition Hﬂ,al((@p,Vfgh) corresponds to the natural
image of

P (K FF(V))) — P H KLV,

vp vlp

This motivates the following definition. Let L/K be a finite extension, and for every finite
prime v of L, put

im(HY(Ly, FF(VY)) = HY (L, V%)) ifv]p,
H}ial(Lv;Vglf)h):{ ( 1( 1/,( g’h)) 1 ( P g’h)) . |

ker(H (Lo, V) =+ H (LL“",VM)) if v1p,
where L2' is the maximal unramified extension of L,. We then let Héal(LU,T;{)h) be the

inverse image of Héal(Lv,Vglf’h) under the natural map Hl(Lv,Tfh) — Hl(LU,Vglfh), and

let Selbal(L,T;/jh) CH 1(L,T;’fh) be the Greenberg Selmer group cut out by these local
conditions (note that this is a special case of the more general construction discussed in
Section 8.1).

Proposition 4.9. For every n € S, the class Ky, g,nn lies in the group Selbal(K[n],T;{’h).

Proof. Fix n € § and v a finite prime of K[n|. If v{p, then it follows from the Weil
conjectures that th is pure of weight —1, and hence

HY (K[n],V,)),) :=ker(H" (K[n],,V,"),) = H'(K[n]y",V,,)) =0. (4.2)

By [Rub00, Corollary 1.3.3(i)] and local Tate duality (using the fact that the G-
representation V;{’h is conjugate self-dual), it follows that

HO(K[n]vanlf}h) = H*(K[ns, Vglf}h) =0.

Repeating the argument with the roles of v and T reversed, from (4.2) and [Rub00,
Corollary 1.3.3(ii)], we conclude that

HY(K[n),,V,),) = Hi(K[n]., V) =0,

and so the inclusion res, (Ky g,n,n) € Hbdl(K[n]mT;’h) is automatic.
Now suppose v | p. As noted in [BSV22, Proposition 3.2], it follows from the results of

[NN16] that the classes mﬁ})r are geometric at p, and therefore the class res,(Ky, g,h,n) €
HY(K[n], ,T ,) lands in the inverse image of

Yo (K], V) = ker (H' (K0, V%) — H(K[n], VY, @0, Bar)

geo

https://doi.org/10.1017/51474748023000221 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000221

The diagonal cycle euler system for GLa x GLqg 21

under the natural map Hl(K[n]U,T;{’h) — Hl(K[n]U,V;f’h). Since H} (K[n]U,V;f’h) agrees

geo

with the Bloch—Kato finite subspace Hén(K[n]v,V;f’h) (see [Nek93, Proposition 1.24(2))),
and the latter agrees with H} (K [n]q,,ngh) (see Lemma 9.1 below), the result follows. O

5. Hida families and Galois representations

In the next section, we will prove that the classes £y, 4 5,n of Theorem 4.6 extend along the
anticyclotomic Zy-extension of K, that is, they are anticyclotomic universal norms and
explain the construction of sy, gn,» for more general weights. In this section, we collect
the background results we shall need, closely following the treatment in [BSV22].

5.1. Hida families
Let A =Z,[[1+pZ,]], and let

W = Spf(A)

be the weight space. Then, for any extension E of Q,, we have W(E) = Homeon (1 +
pZy,E*). Points of the form v, .(n) = e(n)n", where r is a nonnegative integer and e is
a finite order character, will be called arithmetic. We refer to k = r 42 as the weight of
Uy . Arithmetic points of the form v, = v, 1 will be called classical.

More generally, let R be a normal domain finite flat over A, and let Wg = Spf(R).

Then, a point z € Wr(Q,) will be called arithmetic if it lies above an arithmetic point

Vr,e of W(Q,), and classical if it lies above a classical point v,. of W(Q,). Again, we refer
to k =7r+2 as the weight of x.

Let M be a positive integer coprime to p. A Hida family of tame level M and character
X : (Z/MpZ)* — @; is a formal ¢g-expansion

£= 3 an(®)q" € Aellll

n>1

where Ag is a normal domain finite flat over A, such that, for any arithmetic point x €
Wi, (Q,) lying over some v, (, the corresponding specialisation is a p-ordinary eigenform
fo € Sp(Mp®,xew™™). As above, we have denoted by k the weight of z, and we can take
s =max{1,ord,(cond(e))}. We say that a Hida family f is primitive if the specialisations
fo at arithmetic points z are p-stabilised newforms. We say that it is normalised if
al(f) =1.

Let f be a normalised primitive Hida family of tame level M. For each arithmetic
point z € Wx,(Q,), let f, denote the specialisation of f at z, and let f, be the
corresponding newform. There exists a locally free rank-two Ag-module Vi equipped
with a continuous action of Gg, such that, for any arithmetic point x € Wh, (@p)7 the
corresponding specialisation Vg ®4, » Q, recovers the Gg-representation Vy, —attached
to fr. In particular, the representation V¢ is unramified at any prime ¢t Mp and
Tr(Fry) = aq(f). We refer to V¢ as the big Galois representation attached to f. If for some

(equivalently all) arithmetic point zo € Wi, (Q,) the Gg-representation T, = attached to
fxo is residually irreducible, then V¢ is a free Ag-module.
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5.2. Continuous functions and distributions

Define the semigroups

7x 7 7 7
zo@)(pzép Zz) and Eé(p)(pZ?’p Z)
P

The sets T =Z,; xZ, and T' = pZ, x Z,; bear a right action of X(p) and ¥(p),
respectively.

Let v be a character of Z;; taking values in a finite extension E of Q. Let O be the ring
of integers of £ and denote by m its maximal ideal. Let Cont(Z,,0) denote the module
of continuous functions on Z, with values in O. Define O-modules

A, ={f:T—= 0] f(1,2) € Cont(Zy,0) and f(a-t) =v(a)- f(t) foralla € Z},t €T},
A, ={f:T' = O] f(pz,1) € Cont(Zy,0) and f(a-t)=v(a)- f(t) for alla € Z},t € T'}
equipped with the m-adic topology, and O-modules
D, = Homeont, 0(A,,O), D, =Homeont,0(A.,O)

equipped with the weak-* topology. The right ¥;(p)-action on T° yields naturally a left
Yy(p)-action on A;, and a right ¥;(p)-action on D,,.

5.3. Group cohomology and étale cohomology

Let N and m be coprime positive integers which are also coprime to p, let Y =
Y (1,N(pm)), and let T" be the corresponding modular group. Let £ — Y be the universal
elliptic curve over Y, and denote by C, the canonical cyclic p-subgroup. Let .7 be the
relative p-adic Tate module of £ over Y. Fix a geometric point 71 : Spec(Q) — Y, and
choose an isomorphism 7, = Z, @ Z,,, such that the Weil pairing on .7, corresponds to
the natural determinant map on the right and the reduction modulo p of the element
(0,1) generates C,, ,,.

Let G = m§*(Y,n). The action of G on 7 yields an action of G on Z, ®Z,, and hence a
continuous representation p : G — GL2(Z,). More precisely, for any g € G,

g-(a,b) = (a,b)p(g) ™"

In fact, since the action of G preserves the canonical subgroup, we have a continuous
representation p : G — I'g(pZ,), where

To(pZy) = {(i Z) €GLa(Z,) 7| c}.
The anti-involution of GL2(Z,) given by v+ ~* = det(y)y~! restricts to I'g(pZ,) and
allows us to think of this group as acting on the right or left as convenient.

Taking the stalk at n gives an equivalence of categories between the category S;(Yet)
of locally constant constructible sheaves with finite stalk of p-power order at n and the
category My (G) of finite G-sets of p-power order. For any topological group G, define
M;(G) as we did for G. Let Mgont(G) be the category of G-modules which are filtred
unions U;er M; with M; € M¢(G), and let M(G) C Mcont (G)N be the category of inverse
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systems of objects in Mcont(G). Define S(Yet) similarly. Then, there is an equivalence of
categories between M(G) and S(Ye;). Moreover, the representation p defined above yields
a functor M(I'y(pZ,)) — M(G). Regarding this functor, we adopt the following criterion:
if an object F € M(I'g(pZ,)) is given as a left I'g(pZ,)-module, we define the left G-action
via the map p: G — I'g(pZ,); if it is given as a right I'o(pZ,)-module, we define the left G-
action via the map g+ p(g)~!. Given an inverse system of sheaves F = (F;)ien € S(Yet),
we use the notation Hgt(Y,.’F ) for continuous étale cohomology as defined by Jannsen
[Jansg8], and write B, (V,F) = Hm, HZ.(Y,F;). There is a natural surjective morphism
HJ.(Y,F) — H, (Y,F). The compactly supported cohomology groups Hgt7c(Y,.7:) and
), (Y, F) are defined similarly.

There is an isomorphism 7" (Yg;,7) = [. Thus, if F e M;(G) is a discrete G-module and
F is the corresponding object in S¢(Y,), there are natural isomorphisms

H)\(YqF)= H'(I.F) = H'(I,F). (5.1)

Let F € My(T'o(pZy)) be a left I'y(pZ,)-module, and assume that the I'g(pZ,)-action
on F extends to a left action of ¥j(p). Let S = X5(p) NGL2(Q). The pair (I',S) is then
a Hecke pair in the sense of [AS86a, Section 1.1], and there is a covariant (left) action of
the Hecke algebra D(T',S) on H!(T',F). For each g € S, let T(g) = I'gT". Following [GS93,
Section 1], we define, for each positive integer n, the Hecke operators

wer( ). wr ()

Also, for each positive integer a coprime to p, let

aer(( ) wer(C )

Finally, for each positive integer a coprime to N, choose 3, (respectively, 8) in T'o(Npm)
whose lower right entry is congruent to a (respectively, a=!) modulo N, and let

[a]N :T(ﬂa)’ [a]/N :T(/B;)

The isomorphism (5.1) is compatible with Hecke actions in the following sense. To
distinguish between different levels, we shall now write Y (m) and T'(m) for the above
Y and I, respectively. Let s be a positive integer. Choose, as above, a geometric point
n:Spec(Q) — Y (m), and let 7, : Spec(Q) — Y (ms) be a geometric point lying above 7. Let
r=14ord,(s), and choose an isomorphism 7, = Z,$Z,, such that the Weil pairing on
Ty, corresponds to the natural determinant map on the right, and the reduction modulo
p" of the element (0,1) generates the canonical subgroup C,- ... Using these choices to
define the corresponding isomorphisms between group cohomology and étale cohomology,
there are commutative diagrams
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H;to?(rfs)@,f) s H;t<Y<T>Q,f> H;td/(f)@,f) SN HMT)@;)
HY(D(ms),F) —=— HY(['(m),F) HY(D(m),F) —=— HY((ms),F).

Also, if (* 1) € Xy (p), we have the commutative diagram

Asx Psx

He (Y (ms)g F) =5 Hy(Y (ms)g o3 (F)) = HE (Y (1(s), N (pm)

N

HY([(ms), F) 5 HY(D(ms), 0% (F)) ~

and, if (1 ;) € y(p), the commutative diagram

H&(?T - F) 5 HL (v ( f SF) 5 Hgt(Y(mTWZW X H&(?(TQ,JE)
Y (F(m), F) —< B (T(1(s), N (pm)), F) —s B (F(ms), 0 (F)) — H'(F(m), F).

In the bottom lines of the previous two diagrams, ¢%(F) is F with the action of I'g(p"Z,)
conjugated by (° 1); the map As. is induced by the map F — ¢*(F) defined by ¢— (® 1) ¢;
@sx is induced by the pair of compatible maps I'(1(s), N (pm)) — T'(ms) and ¢*(F) — F
defined by v+~ (s )7 (% 1) and ¢ ¢, respectively; A is induced by the map ¢4 (F) —
F defined by ¢ (1 ,)c and ¢* is induced by the pair of compatible maps T'(m) —
I'(1(s),N(pm)) and F — @} (F) defined by v+ (* 1)y (! ,) and ¢+ c, respectively.

We shall denote by 72, and 75, respectively, the composition of the maps in the rows of
the previous two diagrams, both in étale cohomology and in group cohomology. Similarly,
we shall also use 7. and 7] to denote the corresponding corestriction and restriction
maps.

For any rational prime ¢, a simple calculation shows that the following identities hold
in group cohomology whenever the maps involved are defined:

* / *
Tq:ﬂ-l*oﬂ—27 Tq:ﬂ-Q*oﬂ—l‘

Therefore, under the isomorphism (5.1), the covariant action of the operators Ty, T, ; on
étale cohomology corresponds to the covariant action of the operators Ty, T, é on group
cohomology, whenever defined. Similarly, the covariant action of the operators (d), (d)’
on étale cohomology corresponds to the covariant action of the operators [d]y, [d])y on
group cohomology.

The anti-involution ¢ extends to Matay2(Z,) in the obvious way, and turns a left
(respectively, right) action of X (p) into a right (respectively, left) action of Xf(p). Thus,
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given an object F € M(T'g(pZ,)) whose right I'g(pZ,)-action extends to a right Xj(p)-
action, there is an isomorphism Helt(Y@,.’F) =~ HY(T,F) under which the contravariant
action of the operators T, T,, (d), (d)’ on étale cohomology corresponds to the
contravariant action of the operators T, T, [d]n, [d])y on group cohomology, whenever
defined.

Consider the modules A;, and D;, defined earlier in this section. The action of I'o(pZ,)
on T’ is transitive and the stabiliser of the element (0,1) € T’ is the subgroup

P ={(5 1) et}

so we can identify T’ with P(Z,)\I'o(pZ,). Similarly, the action of I'¢(pZ,) on T is
transitive and the stabiliser of the element (1,0) € T is the subgroup

Py ={(,. o) €CL@n},

so we can identify T with P(Z,)"\I'¢(pZ,). For any positive integer j, let

Nz, ={ (4 ) €6La(z,): e=0 (nod ). 4= 1 (mod ).

Fie'2)" = {(50 Z) € GLy(Zy) :a=1 (mod p’),b=0 (mod pj—1>}.
Then, for any positive integers 7,7, we can define

Vi =1 TP Zy)\Lo(pZy) — O/m" | fa-v) =v(a)- f(7)
for all a € Z;, v e Fl(pin)\Fo(pr)},

Avig =1 T Zp) " \Lo(pZp) — O/m' | f(a-7) = v(a)- f(7)
for all a € Z),y € D1 (0 Zyp) " \To(pZp) } -

The objects A, ; ; can be regarded as left O[¥;(p)]-modules. Let A, ;, = lii>nj A, i
Then A, =1lim A, ;. We denote by A, the object in S(Ye) corresponding to {A;, ,;}; €
M(To(pZy)). We also define D, ; = Homo (A, ; ;,0/m"). These objects can be regarded as
right O[3, (p)]-modules, and we have D;, = lim, D, ;. We denote by D, the object in S(Yet)
corresponding to {D;, ;}; € M(I'g(pZy)). There are natural morphisms of O-modules

He}t(Y@ﬂ"ty) — H(let(Y@aAu) &= HI(F7AV)
and
Hy(YgD,) =8y (Y, D,) = H'(I\D;)

compatible with the action of Hecke operators. We also have Hecke-equivariant isomor-
phisms

1
Het,c

(Yg:D,) =H,

et,c

(Yo D,) = H. (T, D;),
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where HI(I',—) = Hi~Y(T', Homz(Div"(P*(Q)),—)). These isomorphisms allow us to define
continuous Gg-actions on the groups H'(I',4;), H*(I,D;) and H}(T,D;,)).

Given a character x : Z — O*, let O(x) be the module O with I'o(pZ,) acting via
x odet, where det : I'g(pZ,,) — Z) is the determinant map.

The natural G-equivariant evaluation map A, ® D;, — O yields a Gg-equivariant cup-
product pairing

HY(T,A,)®0 H:(T,D,) — O(-1), (5.2)

under which the Hecke operators Ty, T, [d]n, [d])y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right.

Let det : T"x T — Z be the function defined by det((z1,22),(y1,92)) = 21y2 — T2y1,
and let det, be the composition of this function with v :Z; — O. Evaluation at this
function defines a G-equivariant map D), @ D, — O(—v) which yields a Gg-equivariant
cup-product pairing

HY(D,D,) ©0 H(I,D,) — O()(~1), (5.3)

where v = voeg. : Ggp — OX. Under this pairing, the Hecke operators Ty, Té, [d]n,
[d]y acting contravariantly on the left, whenever defined, are adjoint to the Hecke
operators Ty, Ty, [d]'y, [d]x acting contravariantly on the right. We obtain a similar
pairing interchanging the roles of D, and D,.

5.4. Ordinary cohomology

For any Z,-algebra B, let S.(B) be the set of two-variable homogeneous polynomials of

degree 7 in B[zy,z2]. It is a left B[X;(p)]-module with the action of ¥j(p) defined by
gP('IlaxQ) = P((xler) g)

for all g € £y(p) and P(z1,22) € S (B). To the p-adic I'g(pZ,)-representation S, = S, (Z,),
there corresponds the locally constant p-adic sheaf .#. on Y defined in Section 2.3.
Therefore, we have an isomorphism

H;t(Y@ayT) = Hl(rasr)

which is Hecke-equivariant when we consider the covariant action of Hecke operators on
both sides, and we use this isomorphism to define an action of Gg on H(T,S,).

We also define L,(B) = Hompg(S,(B),B), which we regard as a right B[ (p)]-module
defining the X (p)-action by

(k- g)(P(x1,22)) = p(gP(x1,22))

for all g € £4(p), pp € L, (B) and P(z1,22) € Sr(B). To the p-adic I'y(pZ,)-representation
L, = L,(Z,), there corresponds the locally constant p-adic sheaf .2, on Y. Therefore,
we have an isomorphism

Helt(Y@wZ) = Hl (FaLT)
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which is Hecke-equivariant when we consider the contravariant action of Hecke operators
on both sides, and we use this isomorphism to define an action of Gg on H(T,L,.).

The natural T'g(pZp)-equivariant evaluation map S, ®z, L, — Z, yields a Gg-
equivariant cup-product pairing

H'(T,S,)®z, H}(T,L,) — Zy(—1), (5.4)

under which the Hecke operators T, Ty, [d]n, [d]’y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right. This
pairing becomes perfect after inverting p.

Let v, : Z,0 — Z, be the character defined by v,.(2) = 2". Evaluation at the polynomial
(r1y2 — 2201)" € S; ®z, S, defines a I'g(pZy)-equivariant map L, ®z, L, — Zy(—v,) and
thus yields a Gg-equivariant cup-product pairing

H'(T,L,)®z, H (T,L,) — Zy(r — 1), (5.5)

under which the Hecke operators Ty, T,, [d]n, [d])y acting contravariantly on the
left, whenever defined, are adjoint to the Hecke operators Ty, Ty, [d])y, [d]n acting
contravariantly on the right. This pairing becomes perfect after inverting p.

Combining these two pairings, we can define a morphism

Sret HY(T,5,(Qp)) — H'(T, L, (Qy))(—1).

This map is Gg-equivariant and intertwines the covariant action of the operators T,
[d]n, [a], on the source with the contravariant action of the operators Ty, [d])y, [a];, on
the target. We can also define s, directly via the isomorphism S,.(Qp) = L, (Qp)(vr)
arising from the perfect pairing L,(Q,) ®q, Lr(Qp) — Q,(—;) defined by evaluation at
(x1y2 — 22y1)". Therefore, the denominators introduced by this map are bounded by 7!,

that is, an element in
im (H'(I,S,) = H'(I,5,(Qy)))

is mapped to an element in
1.
—im (H'(T\,L,) » H'(I,L.(Qy))),

as follows from [BSV22, Remark 3.3].

To slightly simplify the notation, we will write A;. and D,. for A, and D,, , respectively.
Regarding two-variable polynomials as functions on T°, we obtain a natural morphism
of left Z,[2;(p)]-modules S, — A... Also, dualizing this map, we obtain a morphism of
right Z,[X;(p)]-modules D, — L,. Thus, we have Gg-equivariant and Hecke-equivariant
morphisms

HYT,S,) = H'T,A,) and H'(T,D,)— H'(T,L,).

Applying Hida’s (anti-)ordinary projector e, 4 := limn_,oo(TI',)"!, the previous mor-
phisms become isomorphisms

e;)rdHl(Fv ST) = e;)rdHl(FvA;ﬂ)v 6(-)rd[I1 (FvDr) = e;)rdHl(Fer)'
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Under these isomorphisms, the pairings (5.4) and (5.5) correspond to the pairings (5.2)
and (5.3), respectively, after applying the corresponding (anti-)ordinary projector to every
term involved.

5.5. A-adic Poincaré pairing

It will be convenient to write {(a;b), with a € (Z/NZ)* and b€ (Z/p"Z)*, for the diamond
operator (d), where d € (Z/Np")* is congruent to a modulo N and to b modulo p”. We
also write ey : Gg — (Z/NZ)* for the mod N cyclotomic character.

For any positive integer r, let

G,.=1+p(Z/p"Z), G.=(Z/p"Z)",
and define
A =Z,(G) R =Z,(G) A=lmA, =Z,[1+pZ,)), A=lmA, =Z,[[z}])

We have natural factorisations (Z/p"Z)* = p,—1 x (1+pZ/p"Z) and Z,\ = pi,—1 X (1+pZy)
which give natural embeddings A, < A, and A < A. We define idempotents

1 .
“=.1 Z ¢*[¢]
CEpp—1

for any integer 7 modulo p—1. Let &, : Z — A* be the character defined by z — w'(2)[(2)],
and let K; = K; 0€cye : Gg — A*.
We will shorten notation by writing

X (m) = X(LNp"(m)),  He(Xoo(m)g,Zp) = lim Ho (X, (m)g, Zy). (5.6)

We have a natural action of A, and A on the previous groups defined by letting group-like
elements [u] act like the diamond operators (1;u)’.

Fix compatible primitive p-power roots of unity (,~ and a primitive N-th root of unity
¢n. Then one can define Atkin—Lehner automorphisms w, and w for the curve X,.(m)
similarly as in [DR17, Section 1.2]. More precisely, X, (m) parameterises quadruples
(E,P,Q,C), where F is an elliptic curve, P is a point of order N, @ is a point of order p”
and C' is a cyclic subgroup of E of order Nm containing P. Then, we define

’LUT(E,P,Q,C) = (E/C’Q,P—FCQ,Q,+OQ,O+CQ/CQ),

where Cg C E is the subgroup generated by @, and Q' € E[p"] satisfies (Q,Q") = (pr.
Similarly, we define

w(E,P,Q,C)=(E/C,P'+C,Q+C,E[Nm]/C),

where P’ € E[N] satisfies (P,P’) = (. These Atkin-Lehner automorphisms satisfy, for
any o € Gg,

wy = (Li€cye(0))wy, w? = (en(0);1)w.

We let w and w, act on cohomology via pullback.
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Define Gg-equivariant pairings

(G, eiHelt(Xr(m)@Zp) x efiHelt(Xr(m) Zp) — Ar(—1)

[0}
by the formula

<a7b>GT - Z <a",b>r-a_1,

ceG,
where (,), stands for the natural Poincaré pairing. These pairings are A,-linear and
antilinear in the first and second argument, respectively. Then we get Gg-equivariant
A, -pairings
[, s eiHey (X (m)g Zy) % eiHey (X (m) g Zp) ((ex'31)') — Ar(ki)(—1)

via the following modification of the previous pairing:

[a,b]a, = (a,ww, - (T,)"-b)q, -

These pairings are compatible in the sense that the diagram

[’]G7‘+1

eiH (X1 (m)g Zp) x e Hy (X1 (m)g Zy) ({ey'51)) —— Arga(i)(—1)

Jﬂl* X 1 l

Lle,

eiHgy (X (m)g Zp) % e:HY (X1 (m)g Zy) ((ex'31)) ——— Ar(ki)(~1)

commutes, which can be proved as in [DR17, Lemma 1.1]. This yields a A-adic perfect
Gg-equivariant pairing

eiH o (Xoo (M) Zp) ™ % €3 Hop (Xoo (m) g Zp) ™ ((ex:1)") — Alki) (—1), (5.7)

Q@
where HL (X (m)@Zp)ord =el JHY (Xoo(m)g,Zp). All Hecke operators are self-adjoint
for this pairing.

5.6. Big Galois representations

Let my be the maximal ideal of A, let Cont(Z,,A) be the A-module of continuous functions
on Z, with values in A and let x be any of the x; above. Define the A-module

A, ={f:T' = A| f(pz1) € Cont(Zy,A) and f(a-v)=r(a)- f(y) for all a € Z), v € T'},
equipped with the my-adic topology, and the A-module
D; — Homcont,A(Aij)a

equipped with the weak-* topology. As in Section 5.2, we can regard A/, (respectively,
D) as a left (respectively, right) A[Z{(p)]-module.
Similarly to what we did in Section 5.3, define, for any positive integers j,7,

A = T Zp)\Lo(pZp) = AJmi | fla-7) = r(a)- f(7)
for all a € Z,~v € T1(p"Zy)\To(pZy) }
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and A ; = hﬂr"%,jm' Then A/, = @j Al ;. We denote by A the object in S(Ye)
corresponding to { A}, ;}; € M(T'o(pZy)). We also define Dy, ; = Homy (A, ; ;,A/m}), so

that Dl = @j D, ;, and denote by D;; the object in S(Y,;) corresponding to {Dy, ;}; €

K,J)
M(T'¢(pZy)). There are natural Hecke-equivariant morphisms of A-modules

HY (Vg AL) — B (Y Ar) = HY (T, AY),
HY (Yg,Dy,) =0, (YD) = H (T, Dy,

Hl

et,c

(Y@vll):c) = Hét,c(Y@aD;@) = Hcl(vai@)v
which allow us to define continuous Gg-actions on the groups H!(I',A.), H'(I',D.,) and
H(I,Dy).

The evaluation map A/, ®A D), — A yields a Gg-equivariant cup-product pairing

H' T, A )@ HYT, D) — A(—1), (5.8)

under which the Hecke operators Ty, Ty, [d]n, [d]’y acting covariantly on the left, whenever
defined, are adjoint to these same operators acting contravariantly on the right.

Recall that in this section, we have set I' =T'(1,N(pm)), and let S = 3{(p) N GL2(Q).
For any positive integer r, define

!/ T\ Zp Zp _ /! T _ T
0= (8 g )e S =S0NCLAQ). T, =T LNy ()

We define compatibility of Hecke pairs as in [AS86a, Definition 1.1.2] but changing
left-right conventions. More precisely, we say that the Hecke pair (T'y,S,) is compatible
to the Hecke pair (I'g,S3) if (Ta,Sa) € (I'3,58), Sal'pg =53 and I'g NnS;tS, =T,. With
this definition, the Hecke pair (T';,S,) is compatible to the Hecke pair (I'y,S;), if r > ¢,
and to the Hecke pair (T',5).

Suppose that the Hecke pair (T',,S,) is compatible to (I'g,Sg), and that I', has finite
index in I'g. For any right S,-module F, we define

Indp! B ={p:Ts = E | p(ay) = p(y)a~" for all 2 € To,y € I }.

This module is equipped with a right action of Sg: given ¢ € Ind?i E and g € Sp

(e9)(@) = _e(v)vgz ",
1

where the sum is over representatives «y for the cosets in I',\['N S,xzg~".
Now define

Al = {1 D1 Z)\Lo(pZy) = A | fla-y) = k(a) - f(7)
for all a € Z;, v e I‘l(pTZp)\Fo(pr)},
and let Dy . = Homy, (4] ,,A;). With these definitions, Dj = m, Dy . Let S, act

trivially on Z, and consider the right Z,[S:]-module Indll:i Z,. Let R be a set of
representatives for the cosets in I';,\I';. The map Ind?i Zy, — Dy, . defined by
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o [f > o) f(r)]

reR

is an isomorphism of right Z,[S1]-modules. Therefore, there are natural isomorphisms
HY(Ty,D.) LH (T',D NL YT, Z,).

According to [AS86a, Lemma 1.1.3] and [AS86a, Lemma 1.1.4], both corestriction and
the Shapiro isomorphism commute with the action of D(T',S) via restriction of Hecke
algebras, so the previous isomorphisms are Hecke-equivariant.

Similarly to (5.6), but omitting m from the notation, we let Y, =Y (1, Np”(m)) and put

1 1
Het 00 Qa LHet r@v

where the inverse limit is with respect to the maps m1,. Then

Hl(l—‘hD;) gl.&nHl(Ferp) gHelt(Y Zy),

oo,@’
where the last isomorphism is defined by choosing a compatible system of geometric points
for the curves Y, and suitable compatible bases for the corresponding Tate modules.
Under the isomorphisms above, the contravariant operators T, [d]ly, [a];, on the first
term correspond to the contravariant operators T, (d; 1), (1;a)’ deﬁned on the last term
via the compatibility of these operators with the pushforward maps 7.

Also, according to [AS86a, Lemma 1.1.5], the restriction map yields a Hecke-equivariant

isomorphism
Hl (F7DII€) = eiHl (Plvpllg)

(recall that we have set k = ;). Combining this isomorphism with the previous ones, we
obtain a Hecke-equivariant isomorphism

HY(D,D}) = e, HY (Y, 0. 2,):
Similarly, using [AS86b, Proposition 4.2], one proves that there is a Hecke-equivariant
isomorphism
H;(D,Dy) 2 el (Y, 5. Lp)- (5.9)

6. Proof of the wild norm relations

Assume that p splits in K as (p) = pp, and that it does not divide the class number hg.

We keep most of the notations from Section 4. In particular, (g,h) is a pair of newforms
of weights (I,m) of the same parity, levels (IVy, N},) and characters (x4, xn), and we assume
that the ring of integers O C E = Ly contains the Fourier coefficients of g and h. In
addition, we assume that p does not divide Ny nor Nj, and that both g and h are
ordinary at p.

We now allow the Grossencharacter 1 to have infinity type (1 —k,0) for any even integer
k> 2, and let f be the conductor of 1, which we assume to be coprime to p. Let x be the
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unique Dirichlet character modulo Ny q(f), such that 1((n)) =n*"!x(n) for integers n
coprime to Nk /o(f)-

As in [BL18, Section 3.2.1], we denote by 1o the unique Grossencharacter of infinity
type (—1,0), conductor p and whose associated p-adic Galois character factors through
I'y, the Galois group of the unique Zp-extension of K unramified outside p. Then we
can uniquely write 1 = a¢§ ~1. where « is a ray class character of conductor dividing fp.
Since (f,p) =1 and k is even, it easily follows that ¢ is non-Fisenstein and p-distinguished,
meaning that

Oﬂ/’ob;p # w (mod P), (6.1)

where w is the Teichmiiller character.
Let 1y be the continuous E-valued character of K> \Afx(,f defined by

Yo () = 2y M(a),

where x, is the projection of the idele z to the component at p. We will also denote
by 9y the corresponding character of G obtained via the geometric Artin map. Then
Ind% E(wq}l) is the p-adic representation attached to 6y, and we note that by (6.1),
the associated residual representation is absolutely irreducible and p-distinguished (see
[LLZ15, Remark 5.1.4]).

Consider the g-expansion

0= > [ag" e € Ol[Hp]|[la]]
(a,fp)=1

where Hjp denotes the maximal pro-p quotient of the ray class group of K of conductor
fp°°, and [a] is the image of a in Hjp~ under the geometric Artin map. Since we assume
that p does not divide hg, we can factor Hjpes = H; x I'y. Hence, we have © € O[H;j] ®o
O[Ty]][[¢]], and we can specialise this to

£= 3 a(la))vo(la)[alg™</e® € Ag[[q]] (6.2)

(a,fp)=1

where Af = O[[T']]. We identify 'y, with I' = 1+ pZ,, via the isomorphism I' = Og?p —T,
defined by u +— artp(u)_l7 where art, stands for the geometric local Artin map, and in
this way, we identify Af with Ao = A®z, O. We can therefore regard f as a primitive
Hida family specialising to
fo= Y a(la)do(a]) gV € SENyp, xackw )
(a,fp):l
at the arithmetic point vy, where Ny = DNg/q(f) and xa(n) = a((n)). Note that f

has character y = yow!'™%, and f;, = Hl(pp)

is the ordinary p-stabilisation of 6.

Let xq@ be the adelic character attached to x, let xx = xgo Nk/q and let ¢* = X]_(lzb.
We can define a primitive Hida family f* attached to the Gréssencharacter ¢* in the
same way that we defined the Hida family f attached to . This is just the Hida family

foxy !
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We assume that xexXxgXxn =1, that is, the product of the characters of 0y, g and h
is trivial. Similarly to what we did in Section 4, set (r1,72,73) = (k —2,l —2,m —2). For
every positive integer m, let

Y (m) =Y (1,N(pm)), where N =lem(Ny,N,,Np),

and denote by f‘(m) the corresponding modular group. Let k= i, : Z; — A, and choose
a square root of this character defined by x'/2(u) = w(u)*=2/2[(u)1/2].
We can define classes

Dett?" € H (Y (m), A}, @ Ay, @ Ary (=62 = V(1 11y /2)),

as in [BSV22, Section 8.1], but replacing the Hida families g,h in their construction
by our g,h and working with modules of continuous functions instead of modules of
locally analytic functions. Similarly to what is done in loc. cit., and adopting some of the
notations there, we define the cohomology classes

’igrlz,)fgh = (€ora @ €ord ® €ora) 0K oHS 0 d, (Detfgh),

inside the group

H' (QH (D(m), A )™ S H (D(m). A, ™ SH ([ (m), Ary )™ (812 424 (ra +75)/2))

where k1/2 = g1/2

we define

O €cyc; and, for each squarefree positive integer n coprime to p and N,

Kk on = Xex () (n) 0 (Id@1d @[]y ) (Id @, @ m2.)k ¢

lying in the group
HE(QH (F(0%), A, G (1), A )G (P, A )" (612 424 (12 14) /2))

Now we can prove norm relations for A-adic classes, as we did for the classes in the
previous section.

Lemma 6.1. Let m be a positive integer, and let g be a prime number. Assume that both
m and q are coprime to p and N. Then

Tox @M1 R 14 ) Koy, fghf(T’®Id®Id) K e on
s @ Tox & Mo K fqh—n “2(g)q (T2+’"3)/2(Tq®ld®1d)n(l)

( )it

( ) m,fgh’
(T12 @ T @M1 )K ) g, = (1AST @A)y
(772*®7T1*®7T2*)"f quh_ml/Q( )q (e~ TQ)/Q(Id@)T ©1d)x mfgh;
(771*®7T1*®7T2*)"f quh—(1d®1d®T/) fv?fgh’

(720 @ a0 @1 )ip e = £/ 2(0)g "> 2 (1A DTART, )5 gy,
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If q is coprime to m, we also have

(7'('1* & T4 ®7T1*)K'(rrlu)1,fgh = (q + 1)H£rlz,)fgh;

(7T2* ®7T2*®7T2*)K£7}L?;,fgh = (Q+1)H1/2( ) (ratrs)/2 ETIL) fgh-

Proof. As in Lemma 4.2, the same arguments proving equations (174) and (176) in
[BSV22] apply mutatis mutandis to yield the proof of these identities. O

Lemma 6.2. Let n be a squarefree positive integer coprime to p and N, and let q be a
rational prime coprime to p, N and n. Then

(M1 ®1ARIA)RE ¢ = {x(@)r(q) " g (1@ 1A @[q) ' T2)
—x(@)r(@) g+ D> (lde1deld) }xh .
(ma1s @1d@IA)wicn ¢ = {x (@)K (@)g =) 2 (1T, © T,)
—x(9)a(@) a7 (aln) ' Ty @ la)n @ alw) bk Chns
(M2, @Td@TA)R ¢ ) = {x(0)q"™ (ST @ [q]n)
—x(a)(g+1)g"™ " (ld@[q| NI g

where ;5. denotes the composition
H'(T(n’q?),F) =5 H (T (nq),F) = H' (T(n”),F).

Proof. This can be deduced from Lemma 6.1 by the same calculation as in
Lemma 4.4. O

Let T'(m) =T(1,Np(m)), and write Y (m) and X (m) for the corresponding affine and
projective modular curves. The pairing in equation (5.8) yields a map

H' (f‘(m)Af{) - HOHIA(H'C1 (F(m)7D;)=A)(_1) = HomA(ehHelt,c(YOO(m)@ﬂzp)7A)(_1)7

where the isomorphism comes from equation (5.9). Let Z,, be the maximal ideal in Hida’s
big ordinary Hecke algebra T(1,Np>(n?))/ 4 corresponding to the Hida family £*; by (6.1)
this ideal corresponds to a non-Eisenstein maximal ideal in T(1,Np(n?))’, so there are
isomorphisms

Hy (Yoo () Zp) 0 22 e (Xoo (0 ) Zp) T 2= Hy (Yoo (n) g Zp) 210

Hence, the pairings (5.7) and (5.8) together with the isomorphism (5.9) yield a morphism
sene 0 H'(D(n?), AL — er, Hoy (Yoo (%), Zp) 2 (e 31) ) (— K.
This map is Gg-equivariant and intertwines the covariant action of the operators Ty, [d]'y,

[a];, on the source with the contravariant action of the operators Ty, (d;1)’, (1;a)" on the
target.
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Fix a level-N test vector f for f, and let = f'®xi16K. Fix also test vectors
.5 € Sl(Nan)[g]a 7L € Sm(N7Xh)[hL

and write g, and he for the corresponding ordinary p-stabilisations.
Define maps

Onr: T(LNyp" (%)) org — O[ Ry ]

attached to the Grossencharacter ax;}lwo as in Lemma 3.5, and let
Pn,o0 : T(LNyp™ (n®))ora — Ol[Rgpee )] = O[R; ] @0 O[T ]]
be the inverse limit 1'£1T @n,r. The test vector £* determines a degeneracy map

Hey (Yoo (n® ) Zp (1)) — Hop (Y (1,Nyp™ (n?))g, Zp (1)),

[0
Composing this degeneracy map with the natural quotient map, we get a morphism

- eny Hoy (Yoo (n*)g. O(1)Z = (O[Rn] ©0 O[Ty]]) @6, . Het (Y (L,Nyp™ (n*))g O(1))".

The test vectors g, and he determine degeneracy maps

HL(V (1) 22y (1)) 225 HL (Vi (Np)y 2oy (1)) = HE (Vi (N ) Zoy (1)

Q
He, (Y (g2 (1)) s, Hy (Yi(Np)gZrs (1) = Hey(Yi(Np)g 2o (1))-

Composing these maps with projection to the g-isotypic and h-isotypic quotient,
respectively, we obtain

Ty el yHY (T(1),L,,(1)) ®z, O — Ty
Tt e HY(T(1), Ly (1)) @7, O — Th.
For the ease of notation, we write
H'(,f.n) = (O[B;,,] ©0 O[[L4]]) 4, .. Hi(Y (LNyp™ (n*)g0)" ((exh: 1)) (571/%)
and put H'(¢,n) = O[R,,] ®0lR; ] H'(¢,§,n). Then we define the class

”s)fgh = (Tgx @Tg @ Tp) 0 (Sgs D Spys ® Srs*)”g)fgh (6.3)

lying in the group

H" (QH'(,n)&0(Ty ®0 Th) @z, Qp(—1— (r2+73)/2)) .

Let I'yc be the Galois group of the anticyclotomic Zy-extension of K. We can
identify this group with the antidiagonal in (1+ pZ,) x (1+ pZ,) = Og?p X (’)g)E via
the geometrically normalised Artin map. Let kac : T'ac — Z, be the character defined by
mapping ((14+p)~Y2,(1+p)/?) to 1+ p, and let Ko : Tae — AX be the character defined
by mapping ((1+p)~'/2,(1+p)/?) to the group-like element [1+p]. We use the same
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notation for the corresponding characters of Gg. There is a Gg-equivariant isomorphism
of Ap[Ry,]-modules

H () = Tnd% ) Ao (g w22 (—r1/2). (6.4
Let
Ty, =T,®0 Th(%{;l)(*l =), Vg h= T 1 ®z, Qp.

g,
In light of the isomorphism (6.4), using Shapiro’s lemma, the classes 111(13)f gh yield classes

Fug.hn,oo € HY (K] Aok 0Ty, (k12/%)) ©0 E (6.5)
for every squarefree integer n coprime to p and N.

Proposition 6.3. Let n be as above, and let q be a rational prime coprime to p, N and n.
Then:

(i) If q splits in K as (q) = qq,

—(k—2)/2 1 2
— KRac 1#;43(F1" )
COT K g/ K n] (Fp,g,hmg,00) = ¢ F 4{Xg(Q)Xh(Q)Q< e —Fr,*
—(k—2)/2 -
aq(g)aq(h) Fa D/ Yo (Fry 1)F71
T Emea/z 71 g
Xo(@) 'ag(9)® | xn(9) lag(h)® ¢ +1
+ 1—2 + m—1 B
q q q
—(k—2)/2 _
ag(9)ag(h) (e > wm(Fral)F B
h qm=1)/2 gk 1 I3

—(k—2)/2 _ 2
" ( I{ac( )/ il)sp(Fral)F _1 B
Xg(2)Xn(2)q e I Fiap, g,h,m, 00"

(ii) If q is inert in K,

COT K [ng)/ K [n] (Fup, g, by, 00)

_ g { Xo(0) ' aq(0)?

+

qgm—1 q

xn(@) tag(h)?*  (g+1)?
ql72 Kw,g,h n,00"

Proof. The proof of this proposition is similar to the proof of Proposition 4.5. We just
remark that the maps s¢ ,« interchange the degeneracy maps m; and my, and under the
isomorphism

H'(K[n],Ao(k,, )®0T¢ (k&2 @0 E
HYQH' (,n)®0(Ty ©0 Th) @z, Qp(—1— (r2+73)/2))
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arising from (6.4), the corestriction corg(,q)/x[n] corresponds, in the case where (¢q) = qq
splits in K, to the map

—(k—=2)/2 1 —(k—2)/2 1y
- _ _ Rac WB(FT Ja]  kac w‘ﬁ(Fr* )]
N =mie =X Hg)w™ 2)/2((1)( 772 — 772 : 21
—1 k—2
+ X (Q);j 22,

and similarly in the case where ¢ is inert in K. Since the result can be deduced from
Lemma 6.1 by virtually the same calculation as in the proof of Lemma 4.4, we omit the
details. O

Definition 6.4. For any E-valued G g-representation V, put
Hy (K [np™]T) == lm H' (K [np"|,T),  Hy (K[np™],V) := Hy, (K [np™].T) ®0 E,

where T C V is a Galois stable O-lattice.

By another application of Shapiro’s lemma, the classes Ky, g.h,n,o0 in (6.5) naturally live

in Hllw(K[npoo],V;/’h(ngﬁ_mm)). We thus arrive at the following theorem, which is the
main result of this section.

Theorem 6.5. Suppose that:

e [ >m >2 have the same parity and k > 2 is even,
o p splits in K,
e p does not divide the class number of K.

Let S be the set of squarefree products of primes q which split in K and are coprime to p
and N. Assume that Hl(K[npS},T;:h) is torsion-free for every n € S and for every s > 0.
There exists a collection of classes

{Kungnnoo € B (Knp™)T3,) : ne S},
such that whenever n,ng € S with q a prime, we have
COT K gl K n] (K, g, ma,00) = Pa(Frg ) Ky g b, o0
where q is any of the primes of K above g, and Pq(X) = det(1 fFrqle|(Vg1f’h)V(l)).
Proof. The same argument as in the proof of Theorem 4.6 (but using Proposition 6.3)
yields a system of Iwasawa cohomology classes with the stated norm-compatibilities for

the representation ngh(ngﬁ_m/ %). By the twisting result of [Rub00, Theorem 6.3.5), the

theorem follows. O

We conclude this section by proving that the classes Ky, g n,n,00 land in the balanced
Selmer group

Selbal(K[npo"],Tzh) = l'ngelbal(K[npr],T;{’h);
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in the terminology introduced in Section 8.1 below, this is the same as the Greenberg
Selmer group Selg, (K [npoo],T;j ,,) associated to the G, -invariant subspaces F," (ngh) C

Vglf’h in (4.1) at the primes v | p.
Proposition 6.6. For alln € S, we have Ky, g,hn,00 € Selbal(K[npoo},T;%h).

Proof. Let v1p be a finite prime of K[np*>], and for every r > 0, denote also by v the
prime of K[np"] below v. As in the proof of Proposition 4.9, we have

HY(K[np"]0, V) = Hoe (K np"],, V) = 0,
and hence
Hl(K[in]vaT:jh) =H' (K[npr]vyT;{)h)tors = Hcl}r (K[npr}v,ngjh),

where the first equality follows from the local Euler characteristic formula. Hence,
the inclusion resy(Ky, g h,n,00) € lim_ Hér(K[npr]v,T;%h) follows. Since, by [BSV22,
Corollary 8.2], it follows that the classes Ky, g h,n,00 satisfy the balanced local condition
at the primes above p, this concludes the proof. O

Part 2. Arithmetic applications

7. Iwasawa main conjectures

In this section, we formulate Iwasawa main conjectures (IMCs) for triple products of
modular forms. We give two formulations: one in terms of the triple product p-adic
L-function (Conjecture 7.7) and another in terms of diagonal cycle classes (Conjec-
ture 7.9). In Theorem 7.15, we establish the equivalence of the two formulations.

7.1. Triple product p-adic L-function

Fix a triple (f,g,h) consisting of a primitive Hida family f of tame level N¢ and character
xr and two p-ordinary newforms g,h of weights I[,m > 2, levels Ny, N, prime-to-p and
nebentypus xg4,xn. Assume that f has coefficients in a ring A¢ as in Section 5.1. Assume
that xexgXxn =w"™ for some even integer r1, and put

N = ICm(Nf,Ng,Nh).

Let g and h be primitive Hida families with coefficients in Az and Ay, passing through g
and h, respectively. More precisely, there exist arithmetic points yo € W, (@p) and zg €
Wi, (Q,), such that g,, and h., are the ordinary p-stabilisations of g and h, respectively.
The rings Ag and Ap need not be regular. However, for our purposes, we can consider
the A-adic families, denoted again g and h, that result from embedding Ag and Ay in

the rings of functions of suitable wide open connected subsets Ug and Upn of W(Q,) =

Spf(A)(Q,) defined over some finite extension E of Q, and containing the points yo
and zg, respectively. From now on, it is these rings of functions that we will denote by Ag
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and Ajp. These rings are now noncanonically isomorphic to O[[T]], where O is the ring
of integers of E; in particular, they are regular. Let I —[ and m —m be generators in Ag
and Ay, of the prime ideals corresponding to the points yo and zp, respectively.

We can and will assume that Ag is a finite flat extension of Ap, and we will only consider
arithmetic points in Wy, (@p) lying in Homcont’O(Af,@p)

Recall that in Section 5.5, we defined a character r,, : Z; — A* given by u

w™ (u)[(u)], and in Section 6, we fixed a square root ni{ ? of this character given by

w = W2 (u)[(u)/?). We let ke and n;/Q be the composition of &,, and /{il/z, respectively,
with the embedding A* < A". We also define a character kgp : Ly — (Ag(ﬁi)oAh)X by

(1) = w(u) T ) Pt

and choose a square root of this character defined by n;{f(u) = w(u)Hm=9/2(y)(Hm=4)/2,
Let Afgh = As®0Ag®0An, and consider the Aggn[Ggl-module

—1,.-1/2,.-1/2 (7.1)

VI‘gh = Vf@ng®th(Efgh), where Efgh = €cychis gh

and V¢, Vg and Vy, are the big Galois representations attached to f, g and h, respectively.
Then Vlgh is a self-dual twist of the tensor product of these representations. Consider
also the A¢[Ggl-module

2—1— 2 —1/2
gyc ™)/ K .

VI‘gh =Ve®o Tg ®o T}, (Efgh>, where Efgh =€

Given test vectors (f,gj,iz) for (f,g,h) of level N, as explained in [HT01] and [DR14,
Section 4.2], a generalisation of Hida’s p-adic Rankin—Selberg convolution produces an
element gp(i g, il) in the fraction field of Af whose specialisations to arithmetic points
x € Wa,(Q,) of even weight k > 1+ m recover (a square root of) the central critical
values of the triple product L-function L(VL gh»S) for the specialisation of VI on At z by
virtue of Harris-Kudla’s proof of Jacquet’s conjecture, [HK91]. A recent result by Hsieh
[Hsi21] constructs test vectors (f, 9 ﬁ) for which a precise interpolation property for the

resulting Xp(f, g, ﬁ) is proved. To recall the result in the form that will be used here, for

any arithmetic point x € Wh,(Q,) as above, we set

fo=1f, ap=ap(fy), Bri= Xf(p)p’“‘lailv

let og4,08, be the roots of the Hecke polynomial of g at p with ord,(cy) =0, and
define ap, ), similarly. As recalled in [op. cit., Section 1.4], when the residual Galois
representation pg associated to f is absolutely irreducible and p-distinguished, the local
ring Ag is known to be Gorenstein and, by a result of Hida’s the congruence module of
f, is isomorphic to Ag/(€) for some nonzero £ € Ag. We call (§) the congruence ideal of f.
Finally, denote by ¢, (Vlk gh) € {£1} the epsilon factor of the Weil-Deligne representation

attached to the restriction of Vlkgh to Gg,-
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Theorem 7.1. In addition to xgxgXn =w"™, assume that:
(a) pr is absolutely irreducible and p-distinguished,
(b) for some arithmetic point & € Wa,(Q,), we have Eg(VI-kgh) =+1 for all primes {| N,
(c) ged(Ng,Ng,Ny) is squarefree.

Let € be a generator of the congruence ideal of f£. There exist test vectors ( ,9,h ) for
(f,g,h) of level N, and an element

ZE(£,5,h) € Ay,

such that for all arithmetic points x € Wh, (@p) of even weight k> 14+m with k=r; +2
(mod 2(p—1)) we have

$§(£7g,ﬁ)(fﬂ) 2 o F(lﬁ,l,m) 8 fk7g, H fkgh’o)
& el gy (62 (6)7 LT ket )2

where:
T(k,lm)=(c—=1)!-(c=m)!-(c=D! - (c+1—=1—m)!, withc= (k+1+m—2)/2,
a(k,l,m) € Ag is a linear form in the variables k, I, m,

. 5(fk,g,h) _ (1 _ Bk(;gcgah )(1 o ﬁklggah )(1 _ 5k;gﬁh )(1 _ ﬂkﬁgﬁh )’

Eo(fy) = (1—25), &1(fy) = (1— 22,
Ty 18 an explicit nonzero rational number independent of k,
f,g 1s the newform associated to the p-stabilised newform fy,

and ||f,§||2 is the Petersson norm of f,g.

Proof. Letting g,h be the primitive Hida families of tame level Ny, N}, passing through
the ordinary p-stabilisations of g,h, this follows by specialising the three-variable p-
adic L-function in [Hsi2l, Theorem A] attached to (f,g,h) and the congruence ideal
generator &. O

Definition 7.2. For the test vectors (f,g,ﬁ) of level N provided by Theorem 7.1, we set
LP(fvgvh) = gpg(fvgaﬁ)Qa

where £ is any fixed generator of the congruence ideal of f.

Note that L,(f,g,h) depends on the choice of £, but the principal ideal in A¢ it generates
is of course independent of that choice.

7.2. Reciprocity law for diagonal cycles

Keep the notations in the previous subsection and without loss of generality assume that
I >m (reordering g and h if necessary).

Assume that the Galois representations attached to f, ¢ and h are all residually
irreducible and p-distinguished. Let ¢ € {f,g,h}. As a Gq,-representation, Vg admits
a filtration

05V =2Ve—V, =0 (7.2)
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with each Vi free of rank one over Ay, and with the Gg,-action on V, given by the
unramified character sending Fr, — a,(¢). This induces an obvious three-step filtration

0C F3VL, C F2VL, c FVL, c Vi,
by Gq,-stable Aggn-submodules of ranks 1, 4 and 7, respectively, given by
91V}Lgh = (Vf®ovg®ovg +Vf®oV§®th +Vf+®ovg®ovh)(5fgh),
ﬁQVIgh = (Vf@(gvg@)@vg —&-V?@@Vg@(gVﬁ +V§®@V2®@Vh)(5fgh)7 (7.3)
TV, = VE®oVE @0V (Ergn).
The middle term % QV}Lgh will play a special role in the following, and we note that
TV TV, 2 VE e VR eV, (7.4)

where V?h = (V ®0oVE®oV})(Eggn) and similarly for the other two direct summands.
We similarly denote the induced subquotients on the specialisations of Vlgh (that is,
ﬁiVIgh,Vgh, etc.).

Consider the class /1532" g defined in (6.3) for the choice of level-N test vectors (f, g, h)

given by Theorem 7.1, and let x(f,g,h) € Hl(Q,V;gh) be the image of this class via the
morphism obtained from the augmentation map O[R;] — O. By [BSV22, Corollary 8.2],
the image of k(f,g,h) under the restriction map at p is contained in

Héal(Qp’VI'gh) = lm(Hl (QP"QQVI'gh) — Hl (QINVIgh)) .
It is easily seen that this map is an injection, so we may and will view res,(k(f,g,h)) as
a class in Hl((@p,ﬁﬂ\’;gh). Let
h
Pr(r, gt T Vigy — V7

be the map induced by the projection onto the first direct summand in (7.4). The
‘reciprocity law’ from [BSV22, DR22]| recalled in Theorem 7.4 below relates the image of
res,(k(f,g,h)) under the natural projection

h
Pr (g, g h)« :Héal(QimVI'gh) — Hl(Qp,Vg )

to the triple product p-adic L-function of Section 7.1. Recall that £ € A¢ denotes a
generator of the congruence ideal of f.

Proposition 7.3. There is an injective Ag-module homomorphism with pseudo-null
cokernel

Log® : HY(Q,,VI") — A¢

characterised by the following interpolation property: for all 3 € Hl(Qp,Vgh) and all

classical points x € Wa,(Q,) of weight k> 1+m with k =ry+2(mod 2(p—1)), we have
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£ -1
S = e (1 ) (124 )
x p D
_q\e—k .
%'Gogp@k)ﬂ?fk ®ng®whm>dR, ifl—m<k<l+m,

(k—c—1)! (exp(3k),mg, Qwg, ®whm>dR, if k>1+m,
where c= (k+1+m—2)/2.

Proof. The construction of £og® will follow by specialising the three-variable p-adic
regulator constructed in [BSV22, Section 7.1] (building on a generalisation of the
construction in [LZ14] given by Kings—Loeffler—Zerbes [KLZ17]).
Let 9gp, : Afgh — Ag be the map given by reduction modulo (I —I,m —m). This induces
isomorphisms
~ h ~ wgh
VI‘gh O Asgn Ag = Vz‘ghv V% DA ggn Ag= V? )
and a natural map

Dgne : H (Qp, VE") @ s, Ar — H'(Q,VE").

This map is clearly injective, and its surjectivity can be shown easily by an application of
local Tate duality and the Ramanujan—Petersson conjecture (cf. proof of [BSV22, (154)]).
Letting

L HY(Q,,VEY) — Aggn

be the p-adic regulator % defined as in [BSV22, Proposition 7.3] and multiplied by &,
the map defined by the composition
9L ZEeid
Log® s HY(Qp, VI~ HY(Qyp, VE®) @ ngg Ar —— Ag

satisfies the interpolation properties in the statement of the proposition.

It remains to see that ,Elogg is injective with pseudo-null cokernel. By definition, we
have

h h —1/2 1/2
VE" = UF (ccyerse *ngh).

h . . . . . .
where U§" is an unramified Gg,-module on which an arithmetic Frobenius Fr,, acts as

multiplication by inl(p)ap(f)ap(g)*lap(h)’l, and % is obtained by specialising the

four-variable p-adic regulator map in [KLZ17, Theorem 8.2.3] for the module [U%h, paired
against the differential 7 ® wg @wn. In light of [KLZ17, Remark 8.2.4], the fact that Log®
has the above properties can therefore be deduced from the vanishing of H O(Qp,Ugh),
where UZ" is the image of U® under 9y, O

Theorem 7.4 (Reciprocity law). We have the following equality
Sogg(resp(/ﬁ(f,gﬁ))) = fpg(f,g,ﬁ)

Proof. This is the specialisation of the three-variable reciprocity law of Theorem A in
[BSV22] to (f,g,h) (see also [DR22, Theorem 10]). O
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7.3. Selmer groups and formulation of the main conjectures
Let (f,g,h) be as in the preceding subsection. Throughout the rest of this section, we
assume that hypotheses (a)-(c) in Theorem 7.1 hold, so the p-adic L-function L,(f,g,h)
in Definition 7.2 is available.
Recall the G, -stable rank-four Aggp-submodule .7 QVIgh C Vlgh in (7.3), and set
V{gh = V;@ngé@th (Efgh).

As before, we let .#2Vg,), and V{ oh denote the corresponding specialisations.
Fix a finite set ¥ of places of Q containing co and the primes dividing Np, and let Q>
be the maximal extension of Q unramified outside X.

Definition 7.5. For £ € {bal, F} define the Selmer group Sel, (Vlgh) by

HY(Qp, V)
Sele (V] ,) =ker <H1(@E/Q,V} L) — 9),
! ! HE(Qp, V)
where
ker (H(Qp, Vi ;) — HY(Qp, V], /F2V] ) if £=bal,

H[1: (QP’VIgh) = .
ker (H(Qp, Vi ;) — HY(Q,Vi,,/VE,) if £=F.

We call Selbal(V; on) (respectively, Sel;(VI on)) the balanced (respectively, f-unbalanced)
Selmer group.

Remark 7.6. The pairs
(VL ok €Zsy s I-m<k<l+m}), (Vi,{k€Z: k>I+m})

satisfy the Panchishkin condition in [Gre94]. Thus, Selbal(VIgh) and Sel }-(VI on) may be
viewed as instances of Greenberg’s Selmer groups attached to different ranges of critical
specialisations of VI oh-

Let
AI‘gh = HOIIIZP (VI‘ghhupx )

Then for £ € {bal,F}, we define the Selmer groups Selc(AIgh) as above, taking

Hé(Qp,Aingh) to be the orthogonal complement of HE(QP,VIgh) under the local Tate
duality

Hl(QZ”VI'gh) x Hl(QP7AIgh) — Qp/Zy,

and set
Xﬁ(AI‘gh) = Homcont (Selﬁ(AI‘gh)7Qp/Zp)‘

In light of Remark 7.6, the next conjecture may be viewed as an instance of the
Iwasawa—Greenberg main conjectures [Gre94]. In the two formulations below, we also
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assume conditions (b) and (c) from Theorem 7.1, so that the p-adic L-function L,(f,g,h)
n (7.2) is defined.

Conjecture 7.7 (IMC ‘with p-adic L-functions’). The modules Selz(V fgh) and
X;(Azgh) are both Ag-torsion, and

Chara, (X7(Al,,)) = (Lp(f,9,h))
mn Af ®Zp Qp-

Remark 7.8. An integral formulation of the equality of ideals in Conjecture 7.7 would, in
general, involve certain Tamagawa factors, accounting for the fact that the construction of
L,(f,g,h) uses Hida’s congruence number, while, by definition, the classes in the Selmer
group X }-(A;[ on) are trivial at the places v € X\ {p,co}, rather than just unramified
(cf. [PW11)).

Under the local root number hypothesis (b) in Theorem 7.1, for all arithmetic point
x € Wi, (Q,) of even weight k > 2 with [ —m < k <l—m, the sign in the functional
equation for L(Vf gh»$) 18 —1, so that the central value L(VI gh:0) vanishes. Therefore, in
the spirit of Perrin-Riou’s main conjecture [PR87, Conjecture B] in the setting of Heegner
points, a natural formulation of the Iwasawa main conjecture for Selbal(VIgh) takes the
following form.

Note that it follows from [BSV22, Corollary 8.2] that x(f,g,h) lands in Selbal(VIgh).

Conjecture 7.9 (IMC ‘without p-adic L-functions’). Suppose k(f,g,h) € Selpal(Q, Vlgh)
is not Ag-torsion. Then the modules Selbal(VIgh) and Xbal(Afgh) have both rank one, and

2
Selbal (VI‘gh) )

CharAf (Xbal(Afgh)tOrb) CharAf (Af ) I{(f g h)

in Af ®z, Qp, where the subscript tors denotes the Ag-torsion submodule.

Remark 7.10. Working under different hypotheses on the local signs ensuring that
L(V}kgh,s) has sign +1 (rather than —1) for weights k > 2 with [—-m <k <l—m
the Iwasawa main conjecture would relate the characteristic ideal of Xbal(Attgh) to the
balanced triple product p-adic L-function constructed in [Hsi21, Theorem B| (see also
[GS20]), rather than diagonal classes. In this setting, the f-unbalanced Selmer group
Sel }-(Vlgh) should have Ag-rank one, but the expected nontorsion Selmer class seems to
not have been constructed yet.

7.4. Equivalence of the formulations

In this subsection, we show that the two formulations of the Iwasawa main conjecture
in the previous subsection are essentially equivalent, focusing on the case where f is a
CM Hida family' as in Section 6. Similar equivalences between IMC ‘with’ and ‘without’

IThis case will suffice for our applications in this paper, and makes some of the arguments
simpler, but we expect the equivalence to hold in general.
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p-adic L-functions appear in [Kat04, Section 17], [KLZ17, Section 11] and, in a setting
more germane to ours, [Wan20] and [Cas17, Appendix].
The following intermediate Selmer groups will allow us to bridge between Selp,; (V; . )

and Self(VIgh) in the comparison. Set
I+ _ /S 2yt fu+ _ y/f 2yt
Vfgh _Vfghmy Vfgh7 Vfgh _Vfgh—’_y Vfgh’

which are Gg,-stable Ag-submodules of V;gh of ranks 3 and 5, respectively. Define
Sel (VIgh) for £ € {FN+,FU+} by the same recipe as in Definition 7.5, with

Jas! (@ VT ) keI‘(Hl(QpaVI-gh) — H! (Q%VI‘gh/VfJfQ}j—)) if L= FN+,
£\\ep> VEgh) =
o ker(H'(Qp Vi) = HY(Q, Vi, /Vign)) i L=Fu+.

We define the Selmer groups Selfm+(AI-gh) and Sel]:u_l,_(AIgh) taking H}ﬁ+((@p,A;gh)
and H}-UJF(QP,AIQ,L) to be the orthogonal complements of H}-UJF(QP,V;gh) and
H }-n +(QP,VIgh), respectively. As in the preceding section, we also define the
corresponding X]:ﬂJr(AI'gh) and X]:U+(Al'gh)‘

Throughout this subsection, we keep the setting from Section 6. In particular, f € A¢[[q]]
is the CM Hida family in (6.2) associated with the Hecke character ¢ of conductor f. In
addition, we assume conditions (b) and (c) from Theorem 7.1, so the p-adic L-function
L,(f,g,h) € Af is defined, and let x(f,g,h) € HI(Q,VIgh) be as above.

For every height one prime £ of Af away from p, let Sq be the integral closure of
Ae/9Q, and let &4 be the fraction field of Sg. Let Vighﬂ be the extension of scalars of

Vi,,/QVE, to Sq, and let AL, o =Hom(V},, o./1,~). Following [MR04], define

HL (Q vi - ker(Hl(QmVIgh,Q) — H( Er,Vzghﬂ@(pQ))’ if vtp,
bal\"¢v> Y £gp. /) - — |

ker(Hl(QwVI‘gh,Q) — Hl((@”’(vlgh?D/ﬁZV;gh,D) ®©Q)), lf v |p7

(7.5)

and let HQ(Q,VIQ,LQ) be the associated Selmer group. Taking HQ(QU,AIM’Q) to be
the orthogonal complement of H@(QU,VI oh. o) under local Tate duality, we define the
Selmer group H@(Q,A} gh.0y) similarly.

Define V‘;h = Ao(n;cl)®oT$h<K£é/2), and let A;Z”h = Hom((Vih)C,upoc), where (V;p’h)c
denotes V’; , With the G-action twisted by complex conjugation. Note that Vlgh =
Ind%V;p’h, so we can define Selmer conditions for V;b’h using Shapiro’s lemma and for

Azﬁh by duality. Define Azhﬂ = Hom((VihVQ)c,upoo). We have natural maps

VYL /AVE SV o AL, o — AL (9] (7.6)

preserving both the Gk and the A-modules structure in the same way as in [How04,
p. 1461]. Note that in the quotient V;Ph/QVZ’h and in the submodule A;ﬁh[ﬂ], we can
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define Selmer conditions by propagating the balanced conditions for V;bh and Az’h,
respectively, and we denote these conditions in the same way.

Lemma 7.11. For every height one prime Q C Ag as above and every place v of K, the
maps (7.6) induce natural maps

Héal(vath/Qvgh) - HQ(KwVZ}h,Q)a
Hp (KA, o) — Hio (Ko, A, Q)
with finite kernel and cokernel, of order bounded by constants depending only on [Sq :

A/,

Proof. For the primes v 1 p, the same argument as in the proof of [MR04, Lemma 5.3.13]
applies, so it remains to consider the case v | p. Put

Fi(Ty,) = (T @ T+ T, @ T ) (') (—1 =),
FHT,) = (T @ T ) (') (~1 ).

Under the isomorphism H!(Q, Vfgh) HY(K,Ao(k, )®@Tu’ (kit/?)) coming from

Shapiro’s lemma, the balanced local condition Hbal(Qim £ gh) corresponds to
H' (Kp Ao (ko )00 Ff (Ty),) (k%) @ H (Kp Ao (ke Y @0 Fy (Ty),) (k147%)).
Let A =T, ®Q,/Zy, and define A;r, A, and Az similarly. Arguing as in the proof of
[How04, Lemma 2.2.7], we reduce to showing that the groups
HY (Koo, (Ay @ A7) (0 kit ) (=1 =1)), HY (Koo (AF © A)) (U w72/ 2) (=1 =)

are both finite, which follows from the fact that agasy(p)/pt=! # 1 and Byan(p) # 1,
and this is a consequence of the Ramanujan—Petersson conjecture since we are assuming
that pt N. Note that the other pieces in the quotient decomposition can be treated
similarly. This yields the required bounds on the kernel and cokernel of the first map in
the statement of the lemma, and the result for the second map follows as well by local
duality. O

Let X5 be the set of height one primes of A¢ consisting of p and those for which either
H?(Q*/Q,V},,)[Q] is infinite or H?(Q,,V},,)[Q] is infinite. Since H?(Q*/Q,V} ) and
HZ(QP,VIM) are both finitely generated A-modules, the set X, is finite.

Proposition 7.12. For every height one prime Q & X, the maps (7.6) induce natural
maps

Selbal( fgh)/Qselbal( ) — Selbal(VI‘gh,Q)7
Se@migh,g) — Selbai(Af,,) [

with finite kernel and cokernel bounded by a constant depending only on [Sq : As/Q].
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Proof. This follows from Lemma 7.11 as in the proof of [MR04, Proposition 5.3.14] (see
also [How04, Lemma 2.2.8] and [How07, Lemma 3.2.10]). O

For every height one prime  C A¢ as above, let mg = (mq) be the maximal ideal of Sq.

Lemma 7.13. Assume that there is a perfect pairing ngh X T;{’h — O(1), such that

(x7,y°7¢) = (x,y)? for all x,y € T;/jh and for all o € Gi, where ¢ stands for complex
congugation. The following hold:

(1) rankp, Selbal(VIgh) =ranky, Xbal(AI‘gh);

(2) rankp, Sel]:(VIgh) =ranky, X]:(A;gh),

(3) rankp, Xfu+(AI.gh) = 1+4ranky, Xfﬁ+(AI-gh) and

Chara, (X704 (A )tors) = Chara, (Xzns (AL )tors),
in A ®z, Qp.

Proof. For part (1), it suffices to show that for all height one primes Q C Ay with Q ¢ ¥y,
the modules Selbal(VIgh) /QSelbal(VI gh) and Selbal(AI gh)[ﬂ] have the same rank over
Af/Q. Since Selﬂ(VIgh,Q) is the mq-adic Tate module of Sel@(AIgh,Q) (indeed, this is
a consequence of [How04, Lemma 1.3.3] since Al: oha = VIgh’ a®Qy/Zy), the result thus
follows from Proposition 7.12.

For part (2), under the isomorphism Hl(Q,VIqh) ~ HYK,Ao (n;cl)@)@T(;{’h(ngé/Q)), the

f-unbalanced local condition H}_—(QP,VI gh) corresponds to

H' (K, Ao (k) @0Ty,) @{0},

and hence an analogue of Lemma 7.11 for the f-unbalanced Selmer groups follows from
the finiteness of H (K, 5,44 ®Ah(¢q_31/£2é/2)(—1 —r)). By the same reason as above, this
yields the equality of ranks in part (2).

Finally, for the proof of part (3), we can argue similarly as in [AH06, Theorem 1.2.2].
Keeping with the above notations, let SeI&(A;ng) and Selﬂ(AIghﬂ) be the Selmer
groups defined by the obvious analogues of (7.5), so from another application of the
argument in Lemma 7.11, we obtain natural maps

SEIM(AIgh,Q) g SelfU+(AI‘gh)[D]7
Selm(AI‘gh,Q) — Sel}-ﬂJr (A;r'gh)[g]

with finite kernel and cokernel bounded by a constant depending only on [Sq : Ag/9Q)].
Since the local condition F N+ is the orthogonal complement of F U -+ under the local
Tate pairing at p induced by the self-duality of V;[ g from [MRO4, Theorem 4.1.13], we
obtain

Selzus (A a)[mh] = (2a/5a)" [rh] @ Selzny (A, o)[rh] (7.7)
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for all 4, where r is given (by the Greenberg—Wiles formula in [MR04, Proposition 2.3.5])
by

corankg,, H! (QP,A{;;Q) — corankg, HO(R, Aighﬂ),

so 7 =5—4 = 1. The proof of part (3) now follows from (7.7) as in [AHO6, Lemma
1.2.6]. O

Remark 7.14. The existence of the pairing in the previous lemma is not too restrictive.
In particular, this holds automatically if ¢ and A are non-Eisenstein.

We are now ready to establish that both formulations of the Iwasawa main conjecture
are equivalent.

Theorem 7.15. Keep the assumptions of the previous lemma and suppose k(f,g,h) is
not Ag-torsion. Then the following are equivalent:

(1) ranky, Selpa (V} 5) = ranky, Xbml(Attgh) =1;
(2) rankp, Sel]-‘(VI- p) = ranka, X]:(Afgh) 0;

and, in that case, we have Selbal(V}Lgh) = Sel}-u+(VI~gh) and

Selpar(VEy,)

2
Af,‘i(f,g7h)> 7CharAf(Xbal(Afgh)tors) (Lp(f,g,h))

Charp, (X £(A fgh)) CharAf<

in Af @z, Qp. In particular, Conjectures 7.7 and 7.9 are equivalent.

Proof. The Poitou—Tate global duality gives rise to the exact sequence

0— Selfm+(Vfgh) — Selpal (Vfgh) =5 HY(Q,, V") (78)

— XFU+(AI'gh) — Xbal (Algh) — 0.

Assume that Selbal(VIgh) and Xbal(AI'gh) have both Ag-rank one. Since Hl(Qp,Vgh)

has Ag-rank one, from (7.8) and Theorem 7.4, we see that Sel;mr(VIgh) is Ag-torsion

and X_FU+(AI-gh) has Ag-rank one. By Lemma 7.13(3), it follows that Xfﬂ+(AI-gh) is
Ag-torsion, and from the exact sequence

I‘CSp

H'Y(Q,, V")

— Xr(A ) — Xray (AL ,) — 0

0 — Sel(Vf,,) — Selruy (Vi) — 79)

we get that X;(A;gh) and Self(VIgh) are both Ag-torsion by Lemma 7.13(2). This
proves the implication (1) = (2) in the statement of the theorem, and the converse
is shown similarly. Moreover, from (7.9), we see that rankAfSelfUJr(VIgh) =1, and

hence the quotient Sel;u+(Vlgh)/Selbal(VIgh) is a torsion Ag-module injecting into
Hl(Qp,VﬁJ/ﬂQVIgh); since this is Ag-torsion free by Proposition 7.3, it follows that

Selpai(VE,;) = Selzur (VE,,)- (7.10)
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Now suppose that either (1) or (2) in the statement of theorem holds. Since pgg is
absolutely irreducible by our hypotheses, the module H*(Q*/ Q,Vl o) is Ag-torsion free by

[PROO, Section 1.3.3]. Being Ag-torsion, it follows that the module Sel x4 (VI gh) vanishes,
and therefore from (7.8), we deduce the exact sequence
Selpai(VE,;) ., H'QV
Af"‘i(fvgah’) Af'pf*(resp(ﬁ(fagvh)))
Together with Theorem 7.4, it follows that

—> coker(res,) — 0. (7.11)

Selbal(VE,;) L
_ T tghy <)) — S(f 5
Char,, (Af e (Egh) Chary, (coker(res,)) = (5 (£,4,h)). (7.12)

On the other hand, in light of (7.10), from (7.8) and (7.9), we deduce exact sequences
0 — coker(res,) — X]-‘U+(Al-gh> — Xbal(AIgh) — 0,
0 — coker(res,) — XF(AIng — X;m+(AIgh) — 0.
Taking characteristic ideals, these imply
Chary, (X}-(Algh) = Charp, (Xrny (Azgh)) -Chary, (coker(res,))
= Charp, (X}'U+(AIgh)tors) -Chary, (coker(res,)) (7.13)
= Chary, (Xbal(AIgh)torS) -Char, (coker(res, ))?,
using Lemma 7.13(3) for the second equality. Multiplying (7.13) by the square of a

generator of the characteristic ideal of Selbal(VIgh)/Af -k(f,g,h) and using (7.12), the
result follows. O

8. Anticyclotomic Euler systems

In this section, we highlight results from the recent work of Jetchev—Nekovai—Skinner
[JNS], where a general theory of Euler systems germane to [Rub00] is developed in the
anticyclotomic setting.

8.1. The general theory

Let K be an imaginary quadratic field, and let p be an odd prime. If n is an integral
prime ideal of K, we denote by K (n)° the ray class field of conductor n; as in the previous
sections, we write K (n) for the maximal p-subextension in K (n)°. For any positive
integer n, we denote by K[n] the maximal p-subextension in the ring class field of K
of conductor n. We denote by K, the anticyclotomic Z,-extension of K.

Let E be a finite extension of Q, with ring of integers O and maximal ideal m. Let T be a
free O-module of finite rank endowed with a continuous G g-action unramified outside
a finite set of primes, and let V =T ®p F. Assume that there exists a nondegenerate
symmetric O-bilinear pairing

G):TxT— O(),

https://doi.org/10.1017/51474748023000221 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000221

50 R. Alonso, F. Castella and O. Rivero

such that (x7,y°¢) = (x,y)? for all z,y € T and o € Gk, where ¢ is complex conjugation.
Thus, V¢~ VVY(1), where V¢ denotes the representation V with the G k-action twisted
by ¢, and, if the above pairing is perfect, we also have T ~ TV (1). We also define the
Gg-module A=V/T.

If L is a finite extension of K and v is a finite place of L, we write v = v¢. Then, the
pairing above induces a local pairing

HY(L,,V)x H (L V) — E,

and similarly replacing V by T and E by O. The pair of compatible maps G, —
G, and V — V¢ defined by o +— coc and w — w, respectively, induces an isomorphism
HY(Lz V) = HY(L,,V¢) = HY(L,,V"V(1)), whereby the above local pairing is just the
natural cup-product pairing.

For the results we shall discuss, we consider two different types of ‘big image’ hypotheses,
(HW) for the weaker ones, and (HS) for the stronger ones.

Hypothesis (HW).

(1) V is absolutely irreducible as a G g-representation.

(2) There exists an element o € Gal (K /K (1)°K (ppe)), such that the E-dimension of
V/(oo—1)V is one.

Hypothesis (HS).

(1) The residual representation T'=T//mT is absolutely irreducible.

(2’) There exists an element oo € Gal (K /K (p>)°), such that T'/(co—1)T ~ O is a free
O-module of rank one.

(3’) There exists an element 79 € Gk, such that 7o — 1 acts on T as multiplication by
a unit a,, € 0O* with a,, —1€ O*.

(4’) The above pairing T'x T'— O(1) is perfect.
For each prime p of K above p, choose a Gk, -stable O-submodule f;r (T') of T, and let

Fy (T) =T/FF(T). We also define Ff (V) =F, (T)®0 ECV and F, (V) =V/F (V).
Let L be a finite extension of K. For each place v of L, we define a local condition

ker (H'(L,,V) — H' (L2, V) if v1p,
Hy (Lo, V) =
ker (H'(Ly,V) = H' (L, Fy (V))) if v|p for some p | p.
We define the Greenberg Selmer group

Selgr(L,V) =ker (H'(L,V) = [T H' (Lo, V)/HE (L, V) ),

where the product is over all finite places of L.
We also define local conditions for 7' and A by propagation of the local conditions
for V, that is, for each place v of L, we define
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o HL (L,T) as the preimage of HY (L,,V) by the map H'(L,,T) — H'(L,,V),
and
o HL (L,A) as the image of H}, (L,,V) by the map H'(L,,V)— H'(L,,A),

and use these to define the Selmer groups Selg,(L,T) and Selg,(L,A) as above. Finally,
for each positive integer n, we also put

Sela, (K [np™],T) = @SelGr(K[npr],T) and Selg, (K[np™],A) = ligSelGr(K[in],A),
where the limits are with respect to the corestriction and restriction maps, respectively,
and we define

X (Knp™),A) = Homeont (Selar (K [np™], A),Qp/Zy).

Let NV be an ideal of K divisible by p and all the primes at which T is ramified, and let
S be the set of all squarefree products of primes of Q which split in K and are coprime

to N.

Definition 8.1. A ‘split’ anticyclotomic Euler system for (T, {F) (T)}ypN) is a
collection of classes

& = {k, € Selg;(K[n],T) : neS},
such that, whenever ¢ is a rational prime and n,nq € S,
COT K [nq)/ K [n] (Fing) = Py (Fr;l) K (8.1)

where q is any of the primes of K above ¢ and Py(X) = det(1 —Frq_lX\TV(l)).
Similarly, a ‘split’ A-adic anticyclotomic Euler system for (T, {F, (T)}ppN) is a
collection of classes

Koo = {Kn,c0 € Selg (K [np™],T) : ne S}
satisfying the previous norm relations. In this case, the classes
Kn = DT[] (Fn,00) € Selar (K[n],T)

form an anticyclotomic Euler system in the previous sense, and we say that the Euler
system Kk = {ky, }» extends along the anticyclotomic Z,-extension.

A (A-adic) anticyclotomic Euler system for (T,{F, (T)},|,) is just a (A-adic) anticy-
clotomic Euler system for (T,{F; (T)},|,.\) for some A as above. We shall usually drop
{F (T)}p)p if there is no risk of confusion.

If k is an anticyclotomic Euler system for T, we define

K 1= COI'K[l]/K(I‘fl) € SelGr(KvT)‘
If it extends along the anticyclotomic Z,-extension, we similarly define
Koo i= COI'K[l]/K(Hl,oo) € Selgr(KomT)a

where Koo = {kn, 00} is the A-adic anticyclotomic Euler system extending .
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When we have an Euler system as above, we will be interested in ensuring that the
following orthogonality hypothesis holds.

Hypothesis (HO). For all n € S and for all places v of K[n] above p, the local conditions
HL (K[n],,V) and H, (K[n]5,V) are orthogonal complements under the local pairing

HY(K[n],,V) x H'(K[n]sV) — E.

Remark 8.2. The condition in hypothesis (HO) holds automatically for all places away
from p, by [Rub00, Proposition 1.4.2]. Observe also that if (HO) holds, then for alln € S
and for all places v of K[n], the local conditions H} (K|[n],,T) and H}, (K[n]5T) are
also orthogonal complements under the local pairing

HY(K[n],,T) x H (K [n)s,T) — O,

as follows easily from the definitions using [Rub00, Proposition B.2.4] and the commuta-
tive diagram

HY(K[n),,T)x HY(K[n]sT) — O

|

HY(K[n],,V) x H\(K[n]3,V) — E.

We assume in the rest of this subsection that hypothesis (HO) holds for our choice of
local conditions at p.

Theorem 8.3 [JNS]. Assume that p splits in K and that Hypothesis (HW) is satisfied,
and let & = {knp}tn be an anticyclotomic Euler system for T which extends along the
anticyclotomic Z,-extension. If ko # 0, then the Selmer group Selg.(K,T) has O-rank
one.

Remark 8.4. One can replace the assumptions that p splits in K and the Euler system
extends along the anticyclotomic Zj,-extension by the assumption that there exists an
element v € G fixing the extension K (1)°(pp=,(O5)/P”) and such that v —1 acts
invertibly on V.

Under the stronger Hypothesis (HS), granted the nontriviality of a A-adic anticyclo-
tomic Euler system, the results of [JNS] yield a divisibility towards a corresponding
Iwasawa main conjecture.

Theorem 8.5 [INS]. Assume that p splits in K and that Hypothesis (HS) is satisfied,
and let k be a A-adic anticyclotomic Fuler system for T.

(a) If ko #0, then Selg,(K,A) has O-corank one, Selgy(K,T') has O-rank one and

Sel, (K, T) )

lengthy, (Selg: (K, A) /aiv) < 2 lengthy, ( 0
. /{0

where (—)/aiv denotes the quotient of (—) by its mazimal divisible submodule.

https://doi.org/10.1017/51474748023000221 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748023000221

The diagonal cycle euler system for GLa x GLqg 53

(b) If Koo is not Aye-torsion, then Xar (Koo, A) and Selgy (Koo, T) have both A,.-rank
one, and

Sela: (Koo, T) > 2

Charp, (Xar(Koos A)tors) D Chary,, ( A

where (—)tors denotes the maximal A,c-torsion submodule of (—).

8.2. Big image results

We now give conditions under which the hypotheses in the general results of Section 8.1
are verified in our setting. To that end, we shall build on [Loel7].

As before, let K/Q be an imaginary quadratic field of discriminant —D, let (g,h) be
a pair of newforms of weights (I,m) of the same parity, levels (Ng,N) and characters
(Xg>Xn), and let 1) be a Grossencharacter of K of infinity type (1 —k,0) for some positive
even integer k and of conductor f. We denote by x the unique Dirichlet character modulo
Nk q(f), such that ¥((n)) = n*~'x(n) for integers n coprime to N g(f), and we assume
that xexxgxn = 1.

We now make the further assumptions that:

e neither g nor h are of CM type,
e ¢ is not Galois-conjugate to a twist of h.

As in [Loel7, Section 3.1], we define the open subgroups H, and Hj of Gg, the
quaternion algebras B, and Bj, and the algebraic groups G4 and Gy, and put

BZBgXBh7 GZGg XGm Gh.

We define H to be the intersection of H,, Hj; and Gk (note that in loc. cit., H is
defined to be the intersection of H, and Hj, so our H might be a finite index subgroup
of his H, but this will not affect the results that follow). We have an adelic representation

Pg.h : H— G(Q), and representations
Pg.hp H— G(Qp)

for every rational prime p, and, by [Loel7, Theorem 3.2.2], pg n,p(H) = G(Z,) for all but
finitely many p.

Remark 8.6. Note that the representations studied in [Loel7] are the dual to the ones
studied in this paper, but as pointed out in [Loel7, Remark 2.1.2], this difference is
unimportant when considering the image.

Let L be a finite extension of K containing the Fourier coefficients of g and h and the
image of 1. Let *B be a prime of L above some rational prime p, and let E = Lg;.

Definition 8.7. We say that the prime B is good if the following conditions hold:

* p=T;
e p is unramified in B;
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e p is coprime to f, Ny, and Np;
* pgnp(H)=G(Zy);
o E=Q,.

Remark 8.8. Observe that all but the last condition exclude only finitely many primes.
The last condition could be somewhat relaxed in some cases, and will be used largely for
simplicity. Note also that the above set of conditions holds for a set of primes of positive
density.

From now on, we assume that both ¢ and h are ordinary, non-Eisenstein and
distinguished with respect to 3.

Lemma 8.9. Assume that there is at least one prime which divides D but not Ny and
one prime which divides D but not Ny,. Then, if ‘P is a good prime,

(Pg,p X pr,p) (H NGk (poeyo) = SLa(Zy) x SLa(Zy).

Proof. Let Q(p,) and Q(pp,) be the Galois extensions of Q cut out by the representations
pg and py, attached to g and h, respectively. These extensions are unramified outside pN,
and pN},, respectively. Therefore, the condition on D implies that K NQ(p,) = Q and
KNQ(pn) = Q. Moreover, since any Galois extension of Q contained in K, must itself
contain K, we also have Ko, NQ(py) = Q and Ko, NQ(p) = Q.

The conditions on P imply that

(Pg,3 % P,y ) (H NGopu,e)) = SLa(Zp) x SLa(Zy),

and, from the remarks in the previous paragraph, it follows that

(pqu:; X ph,m)(HﬂGKoo(up(x,)) = SLQ(ZP) X SLQ(ZP)

Finally, since H NG g (pe)o is a normal subgroup of H NGk (y,) Of index dividing p—1
and there are no such subgroups in SLy(Z,,) x SL2(Z,,), the lemma follows. O

Now we are able to give conditions under which the results of [JNS] can be applied to
our setting, that is, to the representation T;ph defined above.

Proposition 8.10. Assume that there is at least one prime which divides D but not Ny
and one prime which divides D but not Ny. Let B be a good prime. Suppose that there
exists 0 € G (pye, such that (o) # g3(0) modulo p. Then, hypotheses (HS) hold

b
for T, .

Proof. Since ¢y is trivial when restricted to H NG g (peeyo, condition (1°) follows easily
from the previous lemma.

To prove condition (2’), we closely follow the proof of [Loel7, Proposition 4.2.1].
Write x4(0) and xp (o) for the images of o by x4 and x, via the natural identifications
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Gal(Q(un,)/Q) = (Z/NyZ)* and Gal(Q(pun,)/Q) = (Z/NyZ)*. Then, by the previous
lemma, the image of o H NG g ()0 under py oz X pp s contains all the elements of the form

((3 xl)?g(a)>’<g y1>(<)h(o)>>’ zy €Ly,

Now choose z € Z, such that 7?x4(0) # 1 (mod p) and z*xy(0)yp(0) ™ # 1 (mod p),
which is possible since p > 7, and let y = 2~ '9q5(0). Choose og € oH NG peyo whose
image under py o X pp g is given by the element above, with the choices of z and y
which we have just specified. Then, the eigenvalues of oy acting on T::h are 1, x*2xg(a),
2?xn (o) (o) 72 and Y (0)p (o), which proves condition (27).

To check condition (3’), we can argue as in [KLZ17, Remark 11.1.3]. By the previous
lemma, we can find an element 7o € H NG (poe)o, such that

o xmaw = (30 %) (5 1))

so Tp acts on T%h as multiplication by —1.
Finally, condition (4’) follows from the assumption that g and h are non-Eisenstein and
p-distinguished. O

Remark 8.11. If we are just interested in ensuring that hypotheses (HW) hold for T;fh,
we can relax some of the assumptions above. For example, we do not need to require g
and h to be non-Eisenstein, and we can require that there exist 0 € G (1)o(y,00), Such
that g (o) # 1 (o), without requiring this inequality to hold modulo p.

9. Proof of Theorems B, C and D

Let the setting be as in the Introduction. In particular, g € S;(Ny,x4) and h € Sy, (Nn, Xr)
are newforms of weights | > m > 2 of the same parity, K/Q is an imaginary quadratic
field of discriminant —D < 0, ¢ is a Grossencharacter for K of infinity type (1 —k,0) for
some even integer k > 2 and we consider the G i-representation

Vo = Va®r Vi) (1~ 0),
where c= (k+1+m—2)/2.
Lemma 9.1. The Bloch—-Kato Selmer group of V;}/’h is given by

Selbat(K,V.Y,) if l—=m <k <l+m,

Sel(K,VY,) =
(Vo) {self(K,vg%h) if k> 1+m.

Proof. Note that by Shapiro’s lemma H'!(K, V;f’h) > HY(Q,Vygn), where f =0y is the
theta series of 1, and Vygy is the specialisation of the big Galois representation V}gh in
(7.1) to weights (k,l,m). One immediately checks that the Hodge-Tate weights of the G, -

subrepresentation .F 2V}, C Vigp (respectively, fogh C Vign) are all <0 (with the p-adic
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cyclotomic character e, having Hodge-Tate weight —1) if and only if [ —m <k <l4+m
(respectively, k > 1 +m). The result follows. O

Here, we collect a set of hypotheses for our later reference. For any nonzero m € Z,
prime(m) denotes the set of primes that divide m, and prime®(m) its complement.

Hypotheses 9.2.

(h1) ¢ and h are ordinary at p, non-Eisenstein and p-distinguished.
(h2) p splits in K,

(h3) p does not divide the class number of K,

(hd) Yqpley poeye 7 UiplGr ey modulo p,

(h5) neither ¢g nor h are of CM type,

(h6)

(h7) prime(D)Nprime®(Ny) # 0, and prime(D) N prime®(Ny,) # 0,
(h8) B

g is not Galois-conjugate to a twist of h.

is a good prime in the sense of Definition 8.7.

9.1. Proof of Theorem B

Let Ky, g,h,1,00 € HIIW(K[p‘X’},T;{’h) be the Iwasawa cohomology class of conductor n =1
from Theorem 6.5, and set

Kap.g.n = Fapg,n1 € H (KT, (9.1)

where £y, g n1 = Dl (K. g.h,1,00)-
If I]—m < k <l+m, the next result recovers Theorem B in the Introduction. Note,
however, that the result does not require these inequalities to hold.

Theorem 9.3. Assume hypotheses (h1)-(h8). Then the following implication holds:
Fopgn 70 =  dimgSelpa (K, Vg%h) =1.

In particular, if | —m <k <l+m and Ky, gn 7 0, then the Bloch-Kato Selmer group
Sel(K,V;f’h) is one-dimensional.

Proof. By Proposition 6.6, the classes Ky ghn = er[n](fw,g,MmOO) land in
Selpa (K [n], Tgwh) and by Theorem 6.5, they form an anticyclotomic Euler system for
Vglf’h. Therefore, the result follows from Theorem 8.3 and Proposition 8.10. O

Remark 9.4. If k=2 and [ =m > 2, working with the classes rxy, 4 1 n from Theorem 4.6,
rather than those from Theorem 6.5 as above, hypotheses (h2)—(h3) in Theorem 9.3 can be
replaced by the assumption that there exists an element v € G satisfying the conditions
in Remark 8.4. Further, (h1) and (h4) can be relaxed as discussed in Remark 8.11.

9.2. Proof of Theorem C

Recall that 6, € Sp(Ny,xex) is the theta series attached to ¢, and put N =
ICHI(Nw,Ng,Nh).
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The next theorem, establishing cases of the Bloch—Kato conjecture for quh in analytic
rank zero, recovers Theorem C in the Introduction.

Theorem 9.5. Assume hypotheses (h1)-(h8), and, in addition, that:

o c¢(0y,9,h) =+1 for all primes £ | N,
o gcd(Ny, Ny, Ny,) is squarefree.

If k > 1+m, then the following implication holds:

LV0)#£0 = Sel(K,VY,

)=0.
Proof. We continue to denote by Ky g5 the image of the class in (9.1) under the

isomorphism
HY(K,V,,) = H'(Q Vign)

coming from Shapiro’s lemma. If & > [+ m, the central value L(ng)bh,()) is in the range
of interpolation of the triple product p-adic L-function of Theorem 7.1, and so by
Proposition 7.3 and Theorem 7.4, its nonvanishing implies that the image of k¢ 5 under
the natural map

resy : Selpat (Q,Vign) — H! (QP,VJ‘?h)

is nonzero. In particular, Ky g5 # 0, and therefore by Theorem 9.3, the balanced Selmer
group Selp (K, V;{’h) = Selpal(Q, Vign) is one-dimensional.
From the exact sequence

resp

0 — Selrn+(Q,Vign) — Selpal(Q,Vygn) — Hl(@p7vf‘gh)
— Selrus (Q Vign)" — Selpal(Q, Vign) —0
coming from global duality (adopting notations similar to those in Theorem 7.15), we

thus see that Selrny(Q,Vign) =0 and that Selrut (Q,Vign) = Selpai(Q, Vign). Together
with the exact sequence

Selru (QVygn) —2 H(Qy, V™) — Sel#(Q,Vign)¥ — Selzns (Q,Vign)” — 0,

it follows that Selz(Q,V¢gn) =0, and combined with Lemma 9.1, this concludes the proof.
O

Refining the proof of Theorem 9.5, we can further bound the size of the Bloch-Kato
Selmer group for the discrete module Ai = Vglf’h /ngjh in terms of L-values. For the
statement, let f be the Hida family associated to 1 as in Section 6, so that fj is the
ordinary p-stabilisation of 6, and, keeping with the notations in Theorem 7.1, put oy =
(p) and B = 1¥(p). Let also £¢(0y,9,h) = €¢(Vgn) denote the epsilon factor associated
to Vfgh\g@e, where f=0,.

Theorem 9.6. Assume hypotheses (h1)-(h8), and, in addition, that:

o c¢(0y,g,h) =+1 for all primes £| N,
e gcd(Ny,Ng,Ny) is squarefree,
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o Hl(Qp,TJ?h) is torsion-free,
o HL(QuTygn) is torsion-free for L € {bal,F,FN+,FU+}.

Ifk>14+m and L(V;f’mO) # 0, then the O-module Sel;(K,AZih) is finite and

(I=2)m—2)! & (f)
(k—c—1)  &(fu.g:h)

lengtho(Selx(K, A ,)) < 2vy ( s (iéﬁ)(k)) ,

where 51(fk) _ ( B &), E(fk,g,h) _ (1 _ akaqah,)(l B Bkﬁzah)(l B ,Bkazﬁh)(l o Bkﬁgﬁh)

Pk pe P p P
and c= (k+1+m—2)/2.

Proof. As in the proof of Theorem 9.5, if kK > [+ m and L(V;{’,L,O) #£ 0, then the class
K, g, 15 nonzero. Since by Theorem 6.5 this is the bottom class of an anticyclotomic Euler
system for V;/;L, from Theorem 8.5 and Proposition 8.10, we deduce that Selpa (K, Ai n)
has O-corank one, with

Selpa (K, TY
Selum (KT, ) 9’h)). (9.2)

lengtho (Selbal (K, Aj 1) jaiv) < 2 length
engthe (Selbai (K, Ay 1) /aiv) < 2 leng O( O Ky, g.h

By the exact sequence (7.8) specialised to weight k, it follows that Selzy (K ,AZ’) ,) has

also O-corank one. Thus, both Selbal(K,T;:h) C Sel;UJr(K,T;{’h) have O-rank one, and
therefore

Selpal (K, Ty,) = Selru (K, Ty ), (9.3)

since their quotient is O-torsion free. Moreover, letting 7 € O be a uniformiser, as in the
proof of Lemma 7.13, we find that

Selruy (K, AY ) [r'] = E/O[x'] @ Selrny (K, AV )]

for all 7, and hence length, (Sel}'U_F(K,AZb’h)/div) =lengthy (Selrn+ (K, A‘;h)).

The finiteness of Selx(K 7Aigb_ ,) with the stated bound on its O-length thus follows from
(9.2) by the same argument as in the proof of Theorem 7.15, noting that by Theorem 7.4
and the same calculation as in [BSV22, Section 8.5] (see especially, the equality following
[op. cit., (189)]), the map

&k - <€XP;(—),77f®wg ®w,;>7

where f =60, and ¢, is the weight k£ specialisation of the congruence ideal generator
£ € Ag, gives an isomorphism HI(QP,TJ?h) — O taking Ky g5 to

(1=2)!-(m=2)! Eo(fx)-E1(f)

o
(k—c—1)! E(Erg:h) Z; (£,9.h)(k),

where & (fy) = (1 — 2—’;) is a p-adic unit.
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More precisely, under the freeness assumption in the statement, the weight & speciali-
sations of (7.8) and (7.9) yield the exact sequences

0 — coker(res,) — Sel;UJr(K,A;b’h)V — Selbal(K,AZh)V —0, (9.4)
0 — coker(res,) — Sel;(K,A;h)V — Sel;:m+(K,A1;h)v — 0,

where the two terms coker(res,) are equal in light of (9.3). Thus, we find

lto(Selx(K,AY ) =1lto(Selx(K,AY )V) =lto(Selrns (K, AL )Y) +1to(coker(res, )
(Selrut (K, AY 1) jaiv) ") +1bo (coker(res,))
(Selpal (K, AY ) aiv) ) + 21to (coker (res,))

lto (Selpal (K, Aih)/div) + 21t (coker(resy)),

Ito

Ito

(
(
(
(

where the third equality follows from (9.4) and Lemma 9.7 below, concluding the
proof. 0

Lemma 9.7. Let 0 - AL B — C — 0 be an exact sequence of finitely gemerated
O-modules, and assume that A is finite. Then Biors/j(A) = Ciors-
In particular, if B',C’ are cofinitely generated O-modules, and we have an ezact

sequence 0 — AL (B')Y — (C")Y — 0 with A finite, then
(Baiv) " /3(4) = (Clqi) "
and s0 lto((B4;,)") =1to(A4) +1to((C)4,)")-

Proof. Writing B~ O" @ Bioys, C = O° @ Ciors, we have, by the finiteness of A, r = s and
](A) C Btorsa 50

OT @Ctors = O = B/](A) = Or S5 (BtOTS/j(A))7

which implies the result. O

Remark 9.8. The condition that H I(QP,T]"Z h) is torsion-free is equivalent to the
vanishing of HO(QP,AfJih)7 which is satisfied if k+ 2 # [ +m modulo 2(p —1) or if
X7 (p)agap/ar # 1 modulo p. Similarly, the last condition in the statement of Theorem 9.6
can be recast in terms of the vanishing of the corresponding 0-th cohomology groups.

Remark 9.9. By Theorem 7.1, the nonvanishing of L(Vg’{’h,()) implies that
Zpg (f, g, ﬁ) (z) # 0, so the upper bound provided by Theorem 9.6 is nontrivial. Moreover,
by the interpolation formula in Theorem 7.1, this upper bound can be expressed in terms
of the central L-value L(Vglf’h,O), thus giving a result towards the Tamagawa number

conjecture of [BK90].
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9.3. Proof of Theorem D

As before, let f be the Hida family attached to v as in Section 6. Let Ky, g,5,1,00 be the
A-adic class of conductor n =1 constructed in Theorem 6.5, and set

Fapguh oo = Fapg.h 100 € Hiy (Koo, T ).
As noted before the proof of Proposition 6.6, under the Shapiro isomorphism
7Y (QV},,) = H'(K,Ao(ky)@0T, ) = Hi (Koo, Ty ),

the balanced Selmer group Selbal(Q,VI gh) of Section 7.3 is identified with the Greenberg
Selmer group SelGr(Koo,Tg”’f’h) of Section 8.1 attached to Gk, -invariant subspaces
Fif (ngh) C V;f’h in (4.1) at the primes v | p. Moreover, under this isomorphism, the class
(f,g,h) in Section 7.2 corresponds to the class Ky, g, h, oo-

The next result, establishing one of the divisibilities predicted by the Iwasawa main
conjectures from Section 7.3, recovers Theorem D in the Introduction.

Theorem 9.10. Assume hypotheses (h1)-(h8), and, in addition, that:

o c¢(0y,9,h) =41 for all primes ¢| N,
o gcd(Ny, Ny, Ny) is squarefree.

If k(f,g,h) is not Ag-torsion, then the following hold:
a) The modules Selya vi and Xpal Al have both Ag-rank one and
fgh fgh

2
Selbal(V; n)
Chary, (Xbal(AI‘gh)mrS) > Chary, (Afﬁ(f,gf]h) .

(b) The modules Sel}-(VIgh) and X;(V;[gh) are both Ag-torsion and
CharAf (XF(AI'gh)) ) (L;D(fmgah))
in A @z, Qp.

Proof. The nontriviality assumption on k(f,g,h) implies that £y g n oo 1S DOt Ag-torsion.
Since, by Theorem 6.5, the class Ky g.h 0o i the bottom class of a A-adic Euler system
for Vglf’h, part (a) follows from Theorem 8.5 and Proposition 8.10. By Theorem 7.15, part
(b) of the theorem follows from part (a), so this concludes the proof. O
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