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Let X be a complex Banach space and let T be a bounded linear operator on X.
Then T is decomposable if for every finite open cover {Gt}" of cr(T) there are invariant
subspaces Yt(i = 1,2,... ,n) such that

Y; is spectral maximal; (1)
X=Y, + Y2+...+Yn; (2)

a(T | Y,) c Gf for each i. (3)

(An invariant subspace Y is spectral maximal [for T] if it contains every invariant
subspace Z for which CT(T | Z) C a ( T | Y).)*

If condition (1) is suppressed, we say that T has the spectral decomposition property
(SDP). It was shown in [4] that many properties of decomposable operators generalize to
the case of SDP, including the important single-valued extension property. In this note we
show that such generalizations are possible because every operator with the SDP is in fact
decomposable. Thus decomposability is the most general type of spectral decomposition
for operators on Banach space which satisfy condition (2). An example of Albrecht [1]
shows that a weakening of (2) to

X = Y x + Y 2 + . . . + Y n

takes one strictly out of the class of decomposable operators.
Recall that for an operator T having the single-valued extension property every

vector x in X has a local resolvent, a maximally defined X-valued analytic function fx

satisfying the identity (A - T)/X(A) = x for all A e dom fx. Let C denote the complex plane.
Then <r(x) = C \dom/x is called the local spectrum of x. For F c C the set of vectors
XT(F) = {xeX:cr(x)<=F} is a linear manifold in X invariant under the commutant of T.
Suppose F is closed. Then XT(F) is a closed subspace if T is decomposable [5], Corollary
11.4, p. 75. In [8], Corollary 1, we prove that XT(F) is closed if T has the SDP and F is
convex. The main result in the present paper will follow easily once we show that this
restriction of convexity can be dropped (Lemma 3).

LEMMA 1. LetT have the SDP. If g(A) is a polynomial in A, then g(T) has the SDP.

Proof. Let {Gi}" be an open cover of <r(g(T)). Since {g~1(Gi)} is an open cover of
a(T) by the spectral mapping theorem, we can find invariant subspaces Yf such that
X= Yj+ Y2+ . . . + Yn and a(T\ Yf)<= g'^Gj) for each i. Now each Yf is also invariant
under g(T); hence

o"(g(T) | Yf) = g(cr(T | Yf)) c g(g"1(Gj)) <= Gs

for all i. Therefore, g(T) has the SDP.
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LEMMA 2. Let T have the SDP and let D be an open convex set in C. Then XT(D) and
XT(C \ D) are both closed.

Proof. Let H be any closed set such that D and interior H cover C. By definition of
SDP there are invariant subspaces Y and Z for T such that X=Y+Z, <r(T| Y ) c D and
cr(T | Z) c H. Let x be a vector in XT(C \ D) and let fx be its local resolvent. Hence /X(A)
is defined for all AeD and (A-T)/x(A) = x for AeD. Let V= Y n Z and let T v be the
operator on the quotient X/V induced by T. Now X/V may be written as the direct sum
XIV = Y/VQZ/V and hence T v may be written as a direct sum TV = R(BS. Moreover,
the image of fx under the canonical surjection X —* X/V may be written as a direct sum
g©h. We thus have

x' = y ©z = (A - K)g(A)©(A - S)h(A), (A 6 D),

where x' is the coset of x in X/V; y, g(A)eY/V; and z, h(A)eZ/V. Since R is the
operator induced on Y/V by T | Y, it follows that

o-(K) <= cr(T | Y) U cr(T | V)

(see [5], Proposition 1.14, p. 12); and since T | V is a restriction of T\Y, the spectrum
cr(T | V) is contained in the convex hull of <r(T | Y). Hence <x(R) <= D. Because x is fixed y
is also fixed; thus the analyticity of g on the neighborhood D of a{R) implies that g must
vanish. Hence y = 0 and x e Z. Since H was arbitrary, it follows that

c r (T |X T (C \D) )cC\D , or XT(C \ D)cXT(C \ D).

This proves that XT(C \_D) is closed.
To prove that XT(D) is closed, we note that the above argument may be applied to

the manifold XT(K), where K is a closed halfplane, to prove that XT(K) is closed. Let
{Ka} be a family of closed halfplanes whose intersection is D. Hence XT(D) =
XT(r\aKa)= DaXT(Ka) is also closed.

The key to our main theorem is Lemma 3 below. Its proof follows closely one of
Apostol [3], Lemma 3.2, p. 436.

LEMMA 3. Let T have the SDP. If F is closed in C, then XT(F) is closed.

Proof. Suppose that XT(F) is not closed. Then we find xeX and a sequence
{xn}cXT(F) such that cr(x)£F with

x= I *n and £|k||<oo. (4)
1=0 n=0

We shall derive a contradiction. Let A o ea (x ) \F and let g be a nonconstant polynomial
such that g-^gUo)) has more than one point. Put /x = g(A0). Then there is some r > 0
sufficiently small such that the closed disc D centered at /x and of radius r has the property
that g-1(D) = Kt L)K2, where the Kt (j = 1,2) are disjoint and closed, and Kr C\F- 0 (see,
for example, [3], Lemma 1.5, p. 434). Clearly koeKl.
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Let H be the complement in C of the open disc centered at JA and having radius r/2.
Since the interiors of D and H together cover C, it follows by Lemma 1 that there are two
subspaces YUY2 invariant under S = g(T) such that X=Yl+Y2, o-(S|Y1)<=D and
ff(S|Y2)cH. Thus X = XS(D) + XS(H), and by Lemma 2 each of the latter linear
manifolds is closed. By [5], Corollary 1.7, p. 7, Xs(D) = XT(g-1(D)) = XT(K1UK2) and
XS(H) = XT(K3), where K3 = g~\H). Hence X^K^K^ and XT(K3) are closed;
moreover XT(KlL)K2) = (XT(K1) + XT(K2) by [3], Lemma 2.3, p. 435. Now, since X =
XT{K-l) + XT(K2) + XT{K3), we may apply the closed graph theorem to the mapping
y1©y2©y3-> y1 + y2+y3 (y>'eXT(Kl),j = 1, 2, 3) to obtain a constant R > 0 such that
for yeX there are y'eXT(K,) such that

y = yi + ya + y3 a n d Rllyll^llyi + lly^ + Hy3!!. (5)

For each of the above *„ eXT(F) let x,, => x\ + x^ + xl be its decomposition (5). Then for
each n = 1,2,. . . ,

o-(xj) c(FUJC2U K3) n Kx c K3,

since iCj FlK2 = 0. By (4) and (5) the series £ xJ
n converge in X to respective sums x'

n=0

(/=1,2, 3). Obviously x = x1 + x2 + x3 and, since thevXT(Kj) are all closed,

Ao e o-(x) <= o-ix1) U a(x2) U <r(x3) CZK2U K3.
Now A0^K2; hence k0eK3; but then this implies the contradiction /x = g(A0)eH. Thus
XT(F) must be closed.

THEOREM 1. Every operator with the SDP is decomposable.

Proof. Let T have the SDP and let {GJ be a finite open cover of a(T). Now let {HJ
be a second open cover of cr(T) such that Ht c Gf. Then there are invariant subspaces Yt

such that X = Y i + Y 2 + . . . + Yn and <r(TPYD^ffj. The subspaces Xi=XT(Hi) are
closed by Lemma 3; hence each Xf is spectral maximal such that a(T\Xi)<^Gi by [5],
Theorem 3.11, p. 31. Since Y| <= X; for each i, T satisfies conditions (l)-(3), and, by
definition, T is decomposable. This completes the proof.

• Theorem 1 gives a negative answer to Problem 4 posed in [5], p. 115. Aside from its
theoretical interest, this theorem also provides a sufficient condition for decomposability
which avoids the necessity of producing spectral maximal spaces explicitly. We now give
three such applications of Theorem 1. The first two corollaries provide simple proofs of
some standard, basic results in the theory of decomposable operators; the last result
(Theorem 2) is new.

COROLLARY 1. If T is decomposable and f is a scalar-valued analytic function on some
neighborhood of o-(T), then f(T) is decomposable ([5], p. 2).

Proof. Let {Gf} be an open cover of f(a(T)) so that {/~1(Gi)} is an open cover of
o-(T). Since {/"'(Q)} also covers o-(T), if we put Yf = XT(/"1(Gi)) then each subspace Yf is
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invariant under f(T) and o-(f(T)\Yi) = f(o-(T\Yi))^f(f-\Gi))^Gi. Now X =
Y\+ Y2 + - • • + Yn, since T is decomposable; hence f(T) has the SDP. By Theorem 1, f(T)
is decomposable.

COROLLARY 2. Let T be decomposable and suppose that A is a bounded operator in X
such that A(XT(F)) <= XT(F) and a{A | XT(F)) e F for each closed F. Then A is decompos-
able.

Proof. We first prove that cr(A) = o-(T). By hypothesis cr(A) = a{A \ XT(cr(T)))c
a{T). It A e a(T) \ a (A), then there is a closed disc D such that (interior D) n CT(T) ̂  0
and Dncr(A) = 0. Since XT(D)/(0) we have 0^CT(A | XT(D))cD; hence
(r(A)no-(A |XT(D)) = 0. But the last equality is impossible for any nonzero invariant
subspace of A. It follows that cr(A) = <r(T); hence every open cover {GJ of cr(A) is also
one for cr(T). In this case X = XT(G!) + •_• • +XT(Gn). By hypothesis each XT(G,) is
A-invariant and such that a(A | XT(G())c Gf. This proves that A has the SDP, and hence
is decomposable.

LEMMA 4. Let T be decomposable and let G c C be open such that GPICT(T)^ cr(T).
Let Y = XT{G), and let TY be the operator induced by T on X/Y. Then (1) cr(T| Y) =
Gna(T) and (2) cr(TY) = o-(T) \ cr(T | Y).

Proof. Since XT(G) = XT(G ncr(T)), it is clear that o-(T| Y)c Gn<r(T). To see the
opposite inclusion, let k e G Pia(T). Then for e >0 sufficiently small there is a disc De of
radius e and center A such that De n a ( T ) c a ( T | Y). Hence \ea(T\ Y) and statement
(1) is proved.

To prove (2), let F=c r (T) \ a (T | Y). The inclusion Fc(r(TY) follows from the
identity <r(T) = a(TY) U cr(T | Y) by [5], Proposition 2.2, p. 15. In order to see that
a{TY)^F, suppose _Aecr(TY)\F. Let {HUH2} be an open cover of cr(T) such that
Hx^F,kiH^ and H 2 n F = 0. Note first that X = XT(Hi) + XT(H2) because T is decom-
posable. Further, H2n(a(T)\a(T\ Y)) = 0; hence H2 n cr(T) c CT(T | Y) = G ncr(T) by
(1). Hence we may suppose that H2r\o-(T)^Gr\cr(T). It follows that XT(H2)c Y. Let
x e X b e arbitrary so that x = x1 + x2, XjeXT(Hi). By choice of Hx there is yjeXj-CH,)
such that x1 = (A-T)y1. Letting u' denote the coset u + Y of u, we see that x'=
(A - TY)yi; that is A - TY is surjective. We obtain a contradiction if we show that A - TY

is also injective. But A - TY has the single-valued extension property [7], Theorem 3 and
Lemma 1; thus A - T Y is injective by [6], Corollary 7. Therefore (2) is proved.

Conclusion (2) of Lemma 4 fails without the restriction G D cr(T) f cr(T). For let X be
the Banach space of complex-valued continuous functions on the closed unit disc D and
let G be the open unit disc. The operator T defined on X by (Tx)(A) = Ax(A), x e X, A e D,
is decomposable, and Y = XT(G) generates the spectrum <r(T| Y) = G = D = cr(T). Now

X and a{TY) + 0, but a(T) \ a(T \ Y) = 0.

THEOREM 2. Let T be decomposable such that T \ Z is also decomposable for every
spectral maximal Z. Let G be open such that G f) a(T) j= o-(T) and let Y = XT(G). Then the
induced operator TY is decomposable.
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Proof. Let {Ht}" be an open cover of a(TY). Without loss of generality we may
suppose that {HJ actually is a cover for C. For each i = 1,2,. . . , n let Z( =
XT(HiUo-(T| Y)). Then each Zf is spectral maximal for T,Y<=-Zt for each i and

. . . + Zn. Since each Hf is open, it is evident from Lemma 4 that
<x(T | Zj)nG^cr(T| Z,) for each i. Put Z = ZX for some fixed i. An easy argument shows
that Y = XT(G) = ZS(G), where S = T | Z. If we now apply Lemma 4 to T | Z, (each i), we
obtain the inclusions

a(TY | (Z./Y)) = cr((T | Z,)Y) = <r(T | Zf \ <r(T | Y) c [Hj Ua(T | Y)]\a(T | Y) (= H,

since X/Y = (Zi/Y)+. . .+(Zn/Y), TY has the SDP. Thus TY is decomposable by
Theorem 1.

NOTE. After this paper had been submitted for publication, the author discovered
that the main result had been obtained independently and a different method by Ernst
Albrecht [2].
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