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Abstract. In this paper, we prove two versions of an arithmetic analogue of Bezout's theorem,
subject to some technical restrictions. The basic formula proven is deg�V �h�X \ Y � �
h�X � deg�Y � � h�Y � deg�X � �O�1�, where X and Y are algebraic cycles varying in properly
intersecting families on a regular subvariety VS � PN

S.The theorem is inspired by the arithmetic
Bezout inequality of Bost, Gillet, and Soulë, but improve upon it in two ways. First, we obtain
an equality up to O�1� as the intersecting cycles vary in projective families. Second, we generalise
this result to intersections of divisors on any regular projective arithmetic variety.
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1. Introduction

In Arakelov theory, the height of a rational point is de¢ned to be a certain
intersection of arithmetic cycles. This suggests that theorems from classical
intersection theory could be generalised to the arithmetic setting, where one might
hope to prove arithmetic results.

The most famous theorem from classical intersection theory is Bezout's theorem,
which relates the degree of the intersection of two algebraic cycles with the degrees
of the original cycles. In their paper [Bost et al., 1994], Bost, Gillet, and Soulë prove
several versions of an arithmetic analogue of Bezout's theorem. The basic idea of all
of them is to bound from above the height of the cycle X :Y in terms of the heights
and degrees of two arithmetic cycles X and Y in PN . The purpose of this paper
is to prove two different generalisations of this theorem.

Theorem 3:1 replaces the inequality of [Bost et al., 1994] with an equality up to
O�1�, as X and Y vary in projective families satisfying two technical conditions (see
Theorem 3:1). These are that each intersection of cycles in the two families should
be proper, and that the family of such intersections should be £at. These conditions
are quite necessary, as will be described below.

We consider intersections from a geometric point of view, rather than an arith-
metic one. Given two curves X and Y on a surface V de¢ned over Q, the `height'
of their intersection ought to be the height of the Q-rational point(s) which lie
on both curves. In other words, one should measure the height of XQ:YQ, rather
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than the height of the arithmetic cycle X :Y on some Arakelov model over Z, which
may include various ¢nite components disjoint from the generic ¢bre.

For example, let V � P2
Q, let X be the line x � 5y, and let Y be the line x � 5z.

Considered over Q, their intersection is the single point �5: 1: 1�, whose height is
log 5. If we consider the arithmetic intersection on the obvious model over Z,
the intersection cycle X :Y is the sum of two irreducible components. The ¢rst is
the closure of the point �5: 1: 1� on the generic ¢bre, whose height is log 5 (given
a standard choice of Green form). The second is the entire line x � 0 on the ¢bre
over 5, whose height will be the difference between the geometric intersection height
and the arithmetic one. Geometrically, this extra component should be disregarded.

There is an obvious problem, however. The intersection of any two lines through
the origin in P2

Q will be the origin itself. Lines through the origin can have arbitrary
heights, so obviously there can be no exact formula in general for the height of
the generic part of the intersection of X and Y in terms of the heights and degrees
of X and Y .

We deal with this dif¢culty by allowing X and Y to vary in projective families, and
allow equality only up to O�1�. As in the classical case, the primary obstacle to
equality in the arithmetic Bezout theorem is improper intersections of X and Y .
Provided that X and Y always intersect properly as they vary in their respective
families, plus two other technical conditions, it is possible to replace the inequality
of the arithmetic Bezout theorem from [Bost et al., 1994] with an equality up to
O�1�. One can then further prove that in that case, the height of the intersection
overQ and the arithmetic intersection over Z do not differ by more than O�1� either,
resulting in the geometric Theorem 3:1.

Theorem 3:1 also generalises of the Bezout theorem to intersections of divisors on
more general arithmetic varieties. The theorem relies on a result on the continuity of
a certain ¢bre integral, namely Theorem 2:1.

2. Continuity of the Fibre Integral

LetM be a smooth projective complex variety of dimension d, and let T be a smooth
quasi-projective complex variety of dimension e. Let p:M � T ! T be projection
onto the second factor, and for any closed point t 2 T , let it:M !M � T map
x to �x; t�. For a cycle Z on M � T which meets properly every ¢bre M � ftg of
p, write Zt � i�t Z. Similarly, if g is a Green form for Z, write gt � i�t g for the cor-
responding Green form for pÿ1�t�, and if a is a continuous differential form on
M � T , write at � i�t a.

THEOREM 2.1. Let Z1 and Z2 be two smooth cycles on M � T, of respective
codimensions p1 and p2, with p1 > 0. Assume Z1:Z2 is also smooth. Let g be a Green
form for Z1 of log type along jZ1j and let a be a continuous closed �k; k�-form on
M � T, k � d � eÿ p1 ÿ p2. Suppose that Z1 and Z2 meet properly and that, for
any t 2 T, Z1, Z2, and jZ1j \ jZ2j meet M � ftg properly, and consider the current
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a:g:dZ2 on M � T and the currents at:gt:dZ2;t on M. Then the integral

f�t� �
Z
M
at:gt:dZ2;t

depends continuously on t 2 T.
([Bost et al., 1994, Prop. 1.5.1] proves this and a bit more in the case dimT=1. There
is no smoothness hypothesis on the Zi in [Bost et al., 1994], and indeed it seems
unlikely that the smoothness hypothesis should be necessary.)

Proof. The proof is a combination of techniques from [Bost et al., 1994] and Stoll,
1967. First, assume that Z2 �M � T , giving f�t� � RM at:gt. It suf¢ces to prove the
result for a single Green form g for Z1 of log type along Z1. If g0 is another such
form, then there exists u 2 Ap1ÿ1;p1ÿ1�M � T � such that g0 ÿ gÿ u is a @ and @-closed
form. This implies that g0t ÿ gt ÿ ut is also a @ and @-closed form, so by Stokes'
Theorem:Z

M
at:g0t �

Z
M
at:gt �

Z
M
at:ut

and the last integral is clearly a continuous function of t.
Now ¢x any b 2 T . We will show that f�t� � RM at:gt is continuous in an open

neighbourhood of b. Fix a compact neighbourhood C of b 2 T .
By blowing up Z1, we obtain a smooth variety N and a proper map

p:N !M � T . The exceptional divisor E � pÿ1�Z1� is a divisor given locally by
the Equation z � 0, and p is an isomorphism on the complement of E. Moreover,
since g is of log type along jZ1j, there exists a @ and @-closed form b and a smooth
form g locally on ~N � pÿ1�M � C� such that locally on ~N ÿ E, p��g� � b log jzj2 � g.

We will use the following result of Stoll [Stoll, 1967, Theorem 4.9]:

LEMMA 2.2. Let X be a pure m-dimensional, complex manifold. Let Y be a pure
p-dimensional, normal complex space with 0 < p < m. De¢ne q � mÿ p. Let
f :X ! Y be a holomorphic map with pure q-dimensional ¢bres. Let k be a
non-negative integer. Let g:X ! Cs be a holomorphic map. Let b 2 Y. Suppose that
g is not identically zero on any branch of any ¢bre of f . Let w be a continuous
differential form of bidegree �q; q� on X. Let K be a compact subset of X such that
f ÿ1�b� \ gÿ1�0� \ K 6� ;. Then:Z

f ÿ1�w�\K
nf �log jgj�kw!

Z
f ÿ1�b�\K

nf �log jgj�kw

as w! b, where nf denotes the multiplicity of the ¢bre of f over w.

In fact, Stoll proves much more than this, but the above will suf¢ce for our
purposes. For details, see Stoll, 1967.
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We apply Lemma 2:2 with X � N, Y � T , w � b or g, g � z, k � 0 or 1, and
f � p � p. The smoothness of Z1, together with the fact that Z1 intersects properly
with each ¢bre of p, implies that the map f has pure dimensional ¢bres. The con-
tinuity of f follows.

Now drop the assumption that Z2 �M � T . Let g2 be a Green form of log type for
Z2. Then g � g2 is a Green current for the intersection cycle I � Z1:Z2, and there is a
Green form h of log type along I such that h � g � g2 � @u1 � @v1 for some currents u1
and v1.

Let o � ddcg� dZ1 . It is a smooth closed form of type �p1; p1�, and we have:

g:dZ2 � g � g2 ÿ o:g2 � hÿ o:g2 ÿ @u1 ÿ @v1
We also have: gt:dZ2;t � ht ÿ ot:g2;t � @u2 � @v2 for some currents u2 and v2. Since at is
@- and @-closed, it follows that:Z

M
at:gt:dZ2;t �

Z
M
at:ht ÿ

Z
M
at:ot:g2;t

Thus, it is enough to prove Theorem 2:1 with �Z1;Z2; a; g� replaced by
�I;M � T ; a; h� or �Z2;M � T ; ao; g2�. This we have already done. &

3. The Main Theorem

Let S be the ring of integers of a number ¢eld K, and let V be a regular arithmetic
subvariety of PN

S of pure relative dimension n over S. Let Z1 � V �S B1 and
Z2 � V �S B2 be families of effective �d1 � 1�- and �d2 � 1�-cycles in VS,
parametrised by projective S-schemes B1 and B2 over S. Denote by pi the map
pi:Zi ! Bi. Let pi:VS � B1 � B2 ! VS � Bi be the projection maps, and de¢ne
Z � p�1�Z1�:p�2�Z2�. Thus, Z is the family of cycles in VS parametrised by
�B1 � B2��S�, such that the cycle corresponding to �a; b� is the intersection of the
cycles corresponding to a and b in Z1 and Z2, respectively.

THEOREM 3.1. Assume that either V � PN, or that d1 � d2 � nÿ 1. Asume further
that the following conditions are satis¢ed:

(1) Bi;K is a smooth algebraic variety.
(2) The map pK :ZK ! B1;K � B2;K is £at, and the cycles Z1;K, Z2;K, and ZK are

smooth over the number ¢eld K.
(3) Any member of the family Z1 intersects properly over S with any member of the

family Z2.
(4) Any two members of the family Zi;K are linearly equivalent on the generic ¢bre.

Let X and Y be K-rational members of the families Z1 and Z2, respectively. Assume
that d1 � d2 XN. Then we have the following equality:

degK �V �h�XK :YK � � degK �X �h�Y � � degK �Y �h�X � �O�1� �1�
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where the bound on theO�1� term depends only on VS, on the families Z1 and Z2, and on
the degree �K:Q�. (Note that the intersection above is on the generic ¢bre; XK :YK

denotes the closure in VS of XK :YK.)

Remarks. The regularity assumption in Theorem 3:1 is not always necessary. All
of the degrees and heights used in the statement of Theorem 3:1 depend only on
the geometric properties of the embedding of V in projective space, up to O�1�.
Let L be the restriction of O�1� on PN

S to VS. If VS is regular, then Theorem 3:1
will be true for any projective map f:VS ! PM

S such that f�K �O�1��K � LK ,
regardless of the regularity of the image of f.

Furthermore, note that if two purely horizontal divisors over S intersect prop-
erly on the generic ¢bre, then they must also intersect properly over S. Therefore,
if Z1 and Z2 are families of divisors, we may replace criterion (3) with a criterion
for proper intersections on the generic ¢bre, which is much easier criterion to
verify.

Finally, note that condition (4) is automatically satis¢ed in the case that VS � PN
S .

Proof. First, we will show that Equation �1� holds if h�XK :YK � is replaced by
h�X :Y �, the height of the intersection of X and Y over S.

In the case VS � PN
S , this follows easily from [Bost et al., 1994, Proposition 5.4.2]

and Theorem 2:1. Fix an X and Y . By [Bost et al., 1994, Proposition 5.4.2], we have
the following equality:

h�X :Y � � degK �X �h�Y � � degK �Y �h�X �
� bd1d2 �K :Q� degK �X � degK �Y � ÿ

1
2

Z
PN
C

dXgYmd1�d2ÿN�1

where bd1d2 is a constant depending only on d1 and d2, dX is the current of integration
on XC, gY is a m-normalised Green current for Y , of log type along the support of Y ,
and m � c1�O�1�� is the Ka« hler form on PN

C . The crucial term is clearly the following
complex integral:Z

PN
C

dXgYmd1�d2ÿN�1 �2�

By Theorem 2:1, this integral varies continuously with X and Y . But X and Y are
parametrised by the compact set Bs

1 � Bs
2 , so this integral must be bounded inde-

pendently of the choice of X and Y , and the result follows.
The case of intersection of divisors is more complicated. Let p:VS ! SpecS be the

structure morphism. For any arithmetic cycle Z, de¢ne �Z� to be the well-de¢ned
element of dCH��V � given by associating to Z the normalised Green current gZ
satisfying ddc�gZ� � dZ � H�dZ� and H�gZ� � 0, where H is harmonic projection
of currents.
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LEMMA 3.2. Let X be an effective divisor on VK. As an abuse of notation, we will
write �X � for �X �, where X denotes the closure of X in VS. There exists a ¢nite
set R of vertical divisors in dCH1�V � such that for any Y rationally equivalent to
X on the generic ¢bre, one may write �X � � �Y � � p�b� R for some b 2dCH1�S�,
and some R 2 R. Equality is taken in dCH��V �.

Proof. Fix a Y rationally equivalent to X on the generic ¢bre. Then �X � ÿ �Y � is
linearly equivalent (in dCH��V �) to a divisor D which is entirely supported on closed
¢bres of p.

Any component of D supported on an irreducible ¢bre of p must be a multiple of
the entire ¢bre, and therefore the pullback of a divisor from Spec�S�. All but ¢nitely
many ¢bres of p are irreducible, so we may choose b 2dCH1�S� so that
R � �X � ÿ �Y � ÿ p�b is supported only on reducible ¢bres of p. Moreover, since
R is completely supported on ¢nite ¢bres, its Green form is bounded. Up to linear
equivalence, the Green form can be chosen to be harmonic and therefore constant,
and so if b is chosen correctly the Green form (and hence the Green current)
for R will be 0.

Let F be any reducible ¢bre of p. It is a closed subscheme of PN
k for some ¢nite ¢eld

k, with divisors Xk and Yk, induced from X and Y . The degrees of Xk and Yk are
bounded by the degree of X , so since k is ¢nite, there are only ¢nitely many possible
choices for Xk ÿ Yk, independent of the choice of Y . Thus, up to linear equivalence,
there are only ¢nitely many choices for the components of R supported on F . Since
there are only ¢nitely many reducible ¢bres, there are only ¢nitely many choices
for R. &

Let m̂ be the restriction of ĉ1�O�1�� to VS � PN
S . Fix ¢bres AX of Z1 and AY of Z2,

and write �X � � �AX � � p�b1 � R1 and �Y � � �AY � � p�b2 � R2. Then we have:

degK �V �h��X ��Y ��
� degK �V �ddeg�p��m̂nÿ2��AX � � p�b1 � R1���AY � � p�b2 � R2���
� degK �V �ddeg�p��m̂nÿ2�AX ��AY � � m̂nÿ2�AX �R2 � m̂nÿ2R1�AY ��
� m̂nÿ2R1R2 � �p�b2�m̂nÿ2�AX � � �p�b1�m̂nÿ2�AY ���
� degK �V �ddeg�b2p��m̂nÿ2�AX �� � b1p��m̂nÿ2�AY ��� �O�1�
� degK �V � degK �AX �ddeg�b2� � degK �V � degK �AY �ddeg�b1� �O�1�
� degK �AX ��h��Y �� ÿ h��AY ����
� degK �AY ��h��X �� ÿ h��AX ��� �O�1�
� degK ��X ��h��Y �� � degK ��Y ��h��X �� �O�1�

where the O�1� depends only on the Ri, m̂, AX , and AY , and hence only on V and the
Zi.

Unfortunately, �X :Y � and �X ��Y � are not the same, since the star product of
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normalised Green forms is not itself normalised. Therefore, we must appeal to the
following lemma to control the difference:

LEMMA 3.3 (Bost et al., 1994, Proposition 5.3.1).We have the following equality in
the group dCH��V �Q: �X :Y � � �X ��Y � ÿ �0;H�gXdY �� where H denotes harmonic
projection of currents, gX is a normalised Green form for X, and dY is the current
of integration along Y.

Proof. See [Bost et al., 1994, Proposition 5.3.1]. &

Therefore, we get

degK �V �h�X :Y �
� degK �V �h��X :Y ��
� degK �V �h��X ��Y � ÿ �0;H�gXdY ���
� degK ��X ��h��Y �� � degK ��Y ��h��X �� � degK �V �h��AX ��AY ��ÿ
ÿddeg�p��0;H�gXdY ��� �O�1�
� degK �X �h�Y � � degK �Y �h�X � ÿ

Z
V �C�

gXdYmnÿ2 �O�1�

As in the case of VS � PN
S , Theorem 2:1 implies that this integral varies continuously

with X and Y . But X and Y are parametrised by the compact set Bs
1 � Bs

2 , so this
integral must be bounded independently of the choice of X and Y , and the desired
result follows.

We are not yet done with the proof of Theorem 3:1, since X :Y may contain
some components completely supported over ¢nite points of SpecS, which will
cause h�X :Y � to be a bit greater than h�XK :YK �. It remains only to show that
these ¢nite components are bounded in size over the families Zi. Recall from
the statement of the theorem that Z is de¢ned to be the intersection cycle of
Z1 and Z2.

LEMMA 3.4.Let Z1 � V �S B1 and Z2 � V �S B2 be families of effective arithmetic
cycles on a generically smooth, projective, regular arithmetic subvariety ofPN

S of pure
dimension. Assume they satisfy conditions (2) and (3) listed in the statement of
Theorem 3:1. Let X and Y be K-rational members of the families Z1 and Z2,
respectively. Then h�XK :YK � � h�X :Y � �O�1�.

Proof. Since ps is £at, it follows by the faithful £atness of C over K that the cor-
responding map pK :ZK ! B1;K � B2;K is also £at. Therefore, there is a non-empty
open subset of SpecS over which p:Z! B1 � B2 is £at, and hence only ¢nitely many
primes of S over which �Z1�x and �Z2�y can intersect improperly (and hence con-
tribute ¢nitely-supported components of X :Y ).

The £atness of pK also implies that for any prime p of S, the extension pp of pK to
the completion Kp must also be £at; in particular, the ¢bres of pp are of constant
dimension r. Fix some ¢nite prime p over which p is not £at.
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CLAIM 3.5.There exists a positive integer n, depending on p but not on X and Y, such
that mod pn, no intersection X :Y contains the reduction of any cycle C on Kp of
dimension greater than r.

Proof. Assume not. Then we may construct an in¢nite sequence of irreducible
cycles Cn of ¢xed dimension m > r such that for some Xn and Yn, the intersection
Xn:Yn contains the reduction of Cn modulo pn. Since S=pn is ¢nite, we may further
demand that Ci � Cj mod pk for all i, j greater than or equal to k.

By the completeness of Kp, there exists a cycle C of dimension m such that
C � Cn mod pn for each n. Consider the two in¢nite sets xn � pp�Xn� and
yn � pp�Yn�. By the properness of B1 and B2, these two sets must have accumulation
points x and y, respectively. But then C has to be a subscheme of pÿ1p �x�:pÿ1p �y�,
and C has dimension m > r, which contradicts the £atness of pp. &

The claim, together with the previous observation that the n in the claim can be
taken to be 0 for all but ¢nitely many p, implies that there is a uniform bound
(independent of X , Y , and C) on the length of the module OX ;C=I�X \ Y �, where
I�X \ Y � denotes the ideal of the scheme-theoretic intersection X \ Y in the local
ring OX ;C of X along a component C of X :Y .

By [Fulton, 1998, Proposition 7.1 and the Remarks in ½20.1, p. 395], the
intersection multiplicity of X :Y along any proper component C is bounded
above by the length of OX ;C=I�X \ Y �. Therefore, since by hypothesis X and
Y intersect properly, it follows that for any prime p, the multiplicity of any
component of X :Y supported over p must be bounded independently of X
and Y .

Moreover, there are only ¢nitely many possibilities for any component of X :Y
supported over p, since the degree and dimension of any such component
are bounded above independently of X and Y by �degX ��degY � and
minfdimX ; dimY g. Since there are only ¢nitely many primes which can support
any component of X :Y , h�X :Y � and h�XK :YK � can only differ by O�1�. &

Hence, Theorem 3:1 follows. &
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