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Abstract

We prove that the space of smooth rational curves of degree e on a general complete
intersection of multidegree (d1, . . . , dm) in Pn is irreducible of the expected dimension
if
∑m

i=1 di < (2n+m+ 1)/3 and n is sufficiently large. This generalizes a result of
Harris, Roth and Starr [Rational curves on hypersurfaces of low degree, J. Reine
Angew. Math. 571 (2004), 73–106], and is achieved by proving that the space of conics
passing through any point of a general complete intersection has constant dimension if∑m

i=1 di is small compared to n.

1. Introduction

Throughout this paper, we work over the field of complex numbers. For a smooth projective
variety X ⊂ Pn and an integer e> 1, we denote by Hilbet+1(X) the Hilbert scheme parametrizing
subschemes of X with Hilbert polynomial et+ 1, and we denote by Re(X)⊂Hilbet+1(X) the
open subscheme parametrizing smooth rational curves of degree e on X. If X = Pn, then Re(X)
is a smooth irreducible rational variety of dimension (e+ 1)(n+ 1)− 4. But already in the case
of hypersurfaces in Pn, there are many basic questions concerning the geometry of Re(X) which
are still open. In this paper we address and discuss some of these questions, focusing in particular
on the dimension and irreducibility of Re(X) when X is a general complete intersection in Pn.

To study the space of smooth rational curves on X, we consider the Kontsevich moduli
space of stable maps M0,0(X, e), which compactifies Re(X) by allowing smooth rational
curves to degenerate to morphisms from nodal curves. Such moduli spaces have certain
advantages over the Hilbert schemes for the problems studied here. We refer the reader
to [BM96, dJS04, FP97, HRS04] for detailed discussions of these moduli spaces and comparisons
between them.

For every smooth hypersurface X ⊂ Pn of degree d, the dimension of every irreducible
component of M0,0(X, e) is at least e(n+ 1− d) + n− 4, and if d6 n− 1, then there is at
least one irreducible component whose dimension is equal to e(n+ 1− d) + n− 4 (see § 2). The
number e(n+ 1− d) + n− 4 is referred to as the expected dimension of M0,0(X, e). If X is an
arbitrary smooth hypersurface, M0,0(X, e) (or even Re(X)) can be reducible and its dimension
can be larger than expected (see [CS09, § 1]). By a result of Harris et al. [HRS04], if d < (n+ 1)/2
and X is a general hypersurface of degree d in Pn, then for every e> 1,M0,0(X, e) is integral of
the expected dimension and has only local complete intersection singularities. In this paper, we
generalize this result to higher-degree hypersurfaces.
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LetM0,1(X, e) denote the moduli space of 1-pointed stable maps of degree e to X. In order to
obtain the above-mentioned result, Harris et al. showed that if d < (n+ 1)/2 and X is a general
hypersurface of degree d in Pn, then the evaluation morphism

ev :M0,1(X, e)→X

is flat of relative dimension e(n+ 1− d)− 2 for every e> 1 (see [HRS04, Theorem 2.1 and
Corollary 5.6]). It is conjectured that the same holds for any d6 n− 1.

Conjecture 1.1 (Coskun, Harris and Starr [CS09]). If X is a general hypersurface of degree
d6 n− 1 in Pn, then the evaluation morphism

ev :M0,1(X, e)→X

is flat of relative dimension e(n+ 1− d)− 2 for every e> 1.

The above conjecture would imply the following one.

Conjecture 1.2 (Coskun, Harris and Starr [CS09]). If X is a general hypersurface of degree
d6 n− 1 in Pn, then for every e> 1,M0,0(X, e) has the expected dimension e(n+ 1− d) + n−
4.

Coskun and Starr [CS09] showed that Conjecture 1.2 holds for d6 (n+ 4)/2. When d= n− 1
and e> 2, M0,0(X, e) is reducible for the following reason. By Lemma 2.1, M0,0(X, e) has at
least one irreducible component of dimension 2e+ n− 4 whose general point parametrizes an
embedded smooth rational curve of degree e on X. On the other hand, the space of lines on
X has dimension at least n− 2, and therefore the space of degree-e covers of lines on X has
dimension at least (n− 2) + (2e− 2); thus M0,0(X, e) has at least two irreducible components.
It is expected that if X is general, then M0,0(X, e) is irreducible when d6 n− 2 and Re(X) is
irreducible when d6 n− 1 (see [CS09, Conjecture 1.3]).

In this paper, we prove the following theorem.

Theorem 1.3. Let X be a general hypersurface of degree d6 n− 1 in Pn. If(
n− d

2

)
> n− 1,

then the evaluation morphism ev :M0,1(X, 2)→X is flat of relative dimension 2n− 2d.

A smooth rational curve on X is said to be free if its normal bundle in X is globally generated.
The proof of the above theorem is based on an analysis of the space of non-free conics on X
passing through an arbitrary point of X. It seems quite plausible that the same approach can
be applied to the case of cubics or other higher-degree rational curves to prove the flatness of ev
when d and n satisfy the inequality of the theorem, but we have not carried out all the details,
and we restrict the discussion here to the case of conics.

Theorem 1.3, together with the results of [HRS04], gives the following theorem.

Theorem 1.4. If X ⊂ Pn is a general hypersurface of degree d < (2n+ 2)/3, where n> 23, then
for every e> 1 the following hold.

(a) The evaluation morphism M0,1(X, e)→X is flat and of relative dimension e(n+
1− d)− 2.

(b) M0,0(X, e) is an integral local complete intersection stack of expected dimension
e(n+ 1− d) + (n− 4).
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The results of Theorem 1.4 are generalized to the case of general complete intersections in
Theorem 7.1. An important application of Theorem 1.4 is that it relates the genus-zero Gromov–
Witten invariants of a general hypersurface to its enumerative geometry when the degree of
the hypersurface is in the range stated in the theorem. The Gromov–Witten invariants of any
smooth hypersurface can be defined via integrals over moduli spaces of genus-zero stable maps
with marked points, but the enumerative significance of these invariants are, in general, not
easily understood. Theorem 1.4 has the following consequence.

Corollary 1.5. Let X be as in Theorem 1.4, and let c1, . . . , ck be a sequence of integers
greater than 1 with (c1 − 1) + · · ·+ (ck − 1) = e(n+ 1− d) + n− 4. Then, for a general sequence
Γ1, . . . , Γk of linear subvarieties of Pn of codimensions c1, . . . , ck, the subscheme of Re(X)
parametrizing smooth rational curves of degree e on X which intersect each of Γ1, . . . , Γk is
a reduced 0-dimensional scheme whose total length is equal to the Gromov–Witten invariant
〈Hc1 , . . . , Hck〉X0,e[line].

Along the way to proving Theorem 1.3, we obtain the following result on the space of non-free
lines on general complete intersections.

Theorem 1.6. Let X be a general complete intersection of multidegree (d1, . . . , dm) in Pn, and
let p be an arbitrary point of X. If integers k > 1 and a> 0 are such that(

a+ k + 2
k + 1

)
> n−m,

then the family of lines L on X passing through p with h1(L, NL/X(−1))>m(k − 1) has
dimension at most a.

In fact, we can modify the proof of the above theorem to say more in special cases. For
example, it follows from the proof of the theorem that if n6 5 and X is a general hypersurface,
then the space of non-free lines through any point of X is at most zero-dimensional. The proof
shows that if there is a one-parameter family of non-free lines on X through p parametrized
by C ⊂ Pn−1, then n> 2 + 2 dim Linear Span(C) (see Proposition 6.4). Of course, a general
hypersurface of degree 2 or greater in Pn, where n6 5, does not contain any 2-plane, so the
dimension of the linear span of C is at least 2. Note that for a general hypersurface X of degree d
such that 3 6 d6 n− 1, the non-free lines on X sweep out a divisor in X (Proposition 6.2).

2. Background and summary

Fix positive integers d1 6 · · ·6 dm, and set d := d1 + · · ·+ dm. Let X be a smooth complete
intersection of multidegree (d1, . . . , dm) in Pn. The Kontsevich moduli space M0,r(X, e)
parametrizes isomorphism classes of tuples (C, q1, . . . , qr, f) where:

(i) C is a proper, connected, at worst nodal curve of arithmetic genus 0;

(ii) q1, . . . , qr are distinct smooth points of C;

(iii) f : C→X is a morphism such that f∗OX(1) has total degree e on C and f satisfies the
stability condition that any irreducible component of C which is mapped to a point by f
has at least three points which are either marked or nodes.

The tuples (C, q1, . . . , qr, f) and (C ′, q′1, . . . , q
′
r, f
′) are isomorphic if there is an isomorphism

g : C→ C ′ taking qi to q′i such that f ′ ◦ g = f . The moduli space M0,r(X, e) is a proper
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Deligne–Mumford stack, and the corresponding coarse moduli space M0,r(X, e) is a projective
scheme. There is an evaluation morphism

ev :M0,r(X, e)→Xr

sending a datum (C, q1, . . . , qr, f) to (f(q1), . . . , f(qr)). We refer to [BM96, FP97] for
constructions and basic properties of these moduli spaces.

The space of first-order deformations of the map f with (C, q1, . . . , qr) fixed can be identified
with H0(C, f∗TX). If H1(C, f∗TX) = 0 at a point (C, q1, . . . , qr, f), then f is unobstructed and
the moduli stack is smooth at that point. In particular, M0,r(Pn, e) is smooth of dimension
(n+ 1)(e+ 1) + r − 4 (see, for instance, [Vak00, Appendix A] for a brief discussion of the
deformation theory of M0,r(X, e)).

Denote by C →M0,0(Pn, e) the universal curve and by h : C → Pn the universal map.

C h //

π

��

Pn

M0,0(Pn, e)

For any d> 1, the line bundle h∗OPn(d) is the pullback of a globally generated line bundle
and so it is globally generated. The first cohomology group of a globally generated line
bundle over a nodal curve of genus zero vanishes; so, by the theorem of cohomology and base
change [Har77, Theorem 12.11], E := π∗h

∗(
⊕m

i=1 OPn(di)) is a locally free sheaf of rank de+m.
If s ∈

⊕m
i=1 H

0(Pn,OPn(di)) is a section whose zero locus is X, then, by [HRS04, Lemma 4.5],
π∗h

∗s is a section of E whose zero locus as a closed substack of M0,0(Pn, e) is M0,0(X, e). The
number

dimM0,0(Pn, e)− (de+m) = e(n+ 1− d) + n−m− 3
is called the expected dimension of M0,0(X, e).

It follows that the dimension of every component of M0,0(X, e) is at least the expected
dimension, and if equality holds, then M0,0(X, e) is a local complete intersection substack
of M0,0(Pn, e). Similarly, M0,1(Pn, e) is a smooth stack of dimension (e+ 1)(n+ 1)− 3, and
M0,1(X, e) is the zero locus of a section of a locally free sheaf of rank de+m on M0,1(Pn, e).
Therefore, if dimM0,1(X, e) = e(n+ 1− d) + n−m− 2, then it is a local complete intersection
stack.

The number e(n+ 1− d) + n− 3−m can also be obtained as an Euler characteristic: if C is
a smooth rational curve of degree e on X and NC/X denotes the normal bundle of C in X, then

χ(NC/X) = χ(TX |C)− χ(TC) = e(n+ 1− d) + n−m− 3.

By [dJS06, Lemma 4.4], when X is general and d6 n− 1, M0,0(X, e) has at least one
irreducible component of the expected dimension. We prove this result here for the convenience
of the reader. By a non-free line on a subvariety X of Pn we mean a line contained in the smooth
locus of X whose normal bundle in X is not globally generated.

Lemma 2.1. Let X be a complete intersection of multidegree (d1, . . . , dm) in Pn such that
d1 + · · ·+ dm 6 n− 2. Then the following hold.

(a) The non-free lines contained in the smooth locus of X do not cover a dense subset of X.

(b) If X is smooth, then Re(X) (and hence M0,0,(X, e)) has at least one irreducible
component of the expected dimension for every e> 1.
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Proof. (a) Let J be the locally closed subscheme (with the reduced induced structure) of R1(X)
(the space of lines on X) parametrizing non-free lines contained in the smooth locus of X. Let
I ⊂ J ×X denote the incidence correspondence. We wish to show that the projection I →X
is not dominant. Let ([L], p) be a general point of I. Then TR1(X),[L]

∼=H0(L, NL/X) and, since
L is contained in the smooth locus of X, TX,p→NL/X |p is surjective. We have the following
commutative diagram.

TI,([L],p) //

��

TX,p

����
TJ,[L] // TR1(X),[L] =H0(L, NL/X) // NL/X |p

Since L is not free, the map H0(L, NL/X)→NL/X |p is not surjective; hence TI,([L],p)→ TX,p is
not surjective and thus I →X is not dominant.

(b) We first show that smooth rational curves of degree e on X sweep out a dense subset
of X. When e= 1, this is proved in [Deb01, Proposition 2.13]; we just repeat the proof here.
Let p ∈X and, without loss of generality, assume that p= (1 : 0 : · · · : 0) and X is defined
by 0 = fi = ai1x

di−1
0 + · · ·+ aidi

for 1 6 i6m, where the aij are homogeneous polynomials
in x1, . . . , xn. There are

∑
di of these aij , and they have a common non-trivial zero in

Pn−1 = {x0 = 0} since n− 1 >
∑
di. The line joining p and this common zero in Pn−1 is contained

in X. Since p was arbitrary, we see that X is covered by lines.

By part (a), any line passing through a general point of X is free. Hence there is a chain of e
free lines on X for every e> 1. By [Kol96, Theorems II.3.14 and II.7.6], this chain of lines can be
deformed to a smooth free rational curve C of degree e on X. Since C is free, its flat deformations
in X sweep out X. If R is a component of Re(X) such that the curves parametrized by its points
sweep out a dense subset of X, then the argument in part (a) shows that the normal bundle of
a general curve C parametrized by R is globally generated. Since

dim TRe(X),[C] = h0(C, NC/X)

= χ(NC/X) + h1(C, NC/X)
= e(n+ 1− d) + (n−m− 3)

and the dimension of R is at least the expected dimension e(n+ 1− d) + n−m− 3, we conclude
that R is of the expected dimension and smooth at [C]. 2

3. Deformations of rational curves

We fix some notation for normal sheaves first. If Y is a closed subscheme of a smooth variety X,
we write, as usual, NY/X for the normal sheaf of Y in X. More generally, suppose that f : Y →X
is a morphism between quasi-projective varieties and X is smooth. Denote by TY and TX the
tangent sheaves of Y and X, and denote by Nf the cokernel of the induced map TY → f∗TX .
We refer to Nf as the normal sheaf of f . We will sometimes write Nf,X instead to emphasize
the range. If Y and X are both smooth and f is generically finite, then the exact sequence
TY → f∗TX →Nf → 0 is exact on the left too. If X and Y are both smooth and g is a morphism
from a quasi-projective variety Z to Y , then we get an exact sequence of normal sheaves on Z,

Ng→Nf◦g→ g∗Nf → 0. (1)
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3.1 Characteristic maps
Let B and X be smooth quasi-projective varieties, and let π : Y →B be a smooth projective
morphism. Denote by Yb the fiber over b ∈B. Let F : Y →B ×X be a morphism over B such
that the restriction of F to every fiber of π is generically finite. Let f = F |Yb

: Yb→X and pB
(respectively, pX) be the projections from B ×X to B (respectively, X). Notice that pB ◦ F = π
and that TB×X is naturally isomorphic to p∗BTB ⊕ p∗XTX . Thus, we have a natural map

α : π∗TB →NF . (2)

Using the following diagram, we have NF |Yb
=Nf .

0

��

0

��
0 // TYb

��

// f∗TX //

��

Nf

��

// 0

0 // TY |Yb
//

��

F ∗TB×X |Yb
//

��

NF |Yb
// 0

NYb/Y
= //

��

π∗TB|Yb

��
0 0

Thus, upon restricting α, we get a map π∗TB,b→Nf , and since there is a natural map
TB,b→H0(Yb, π∗TB,b), we get a map

αb : TB,b→H0(Yb, Nf ), (3)

which we refer to as the characteristic map of F at b.
Now let π′ : Z→B be another smooth projective morphism and suppose that there is a

morphism G : Z→ Y over B such that the restriction of F ◦G to every fiber of π′ is generically
finite. The following lemma follows easily from the construction of the characteristic maps.

Lemma 3.1. For b ∈B, let αb and βb denote the characteristic maps corresponding, respectively,
to F and F ◦G at b. If f and g denote the restrictions of F and G to the fibers over b, then we
have the following commutative diagram.

TB,b
αb //

βb

��

H0(Yb, Nf )

��
H0(Zb, Nf◦g) // H0(Zb, g∗Nf )

3.2 Morphisms from P1 to general complete intersections
Let d1 6 · · ·6 dm be positive integers. For the rest of this section, we fix the following notation:

(i) H denotes the variety parametrizing smooth complete intersections in Pn which are of
multidegree (d1, . . . , dm);

(ii) U ⊂H× Pn denotes the universal family over H;
(iii) π1 : U →H and π2 : U → Pn denote the two projection maps.
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Suppose that B is a smooth irreducible quasi-projective variety and ψ :B→H is a dominant
morphism. Let UB ⊂B × Pn be the fiber product. Let π : Y →B be a dominant smooth
projective morphism whose fibers are connected curves, and let F : Y →UB be a morphism
over B which is generically finite on each fiber of π. We have the following exact sequence using
the sequence (1):

0→NF,UB
→NF,B×Pn → F ∗NUB/B×Pn → 0. (4)

Fix a point b ∈B and let C ⊂ Y be the fiber of π over b. Let f = F |C : C→ Pn and let X be
the complete intersection parametrized by ψ(b). Then the exact sequence (4) specializes to the
exact sequence

0→Nf,X →Nf,Pn → f∗NX/Pn → 0. (5)

Proposition 3.2. If ψ is smooth at b, then the image of the pullback map

H0(X, NX/Pn)→H0(C, f∗NX/Pn)

is contained in the image of the map H0(C, Nf,Pn)→H0(C, f∗NX/Pn) obtained from the above
short exact sequence.

Proof. Let αb : TB,b→H0(C, Nf,Pn) be the characteristic map of F at b. We have a diagram

TB,b
dψ //

αb
����

TH,[X] =H0(X, NX/Pn)

��
H0(C, Nf,Pn) // H0(C, f∗NX/Pn)

and dψ is surjective since ψ is smooth at b by our assumption. Note that dψ is the characteristic
map corresponding to the inclusion UB →B × Pn at b, so the diagram is commutative by
Lemma 3.1, and the result follows. 2

Corollary 3.3. Let X ⊂ Pn be a general complete intersection of multidegree (d1, . . . , dm),
with d1 6 · · ·6 dm. If C is a smooth rational curve of degree e on X which is d1-normal
(that is, the restriction map H0(Pn,OPn(d))→H0(C,OC(d)) is surjective for d> d1), then
H1(C, NC/X) = 0. In particular, Re(X) is smooth at [C].

Proof. Consider the relative Hilbert scheme parametrizing pairs (X, C) such that X is a smooth
complete intersection of multidegree (d1, . . . , dm) in Pn and C is a rational curve of degree e
on X. The locus B parametrizing pairs (X, C) such that C is a d1-normal smooth rational curve
and H1(C, NC/X) 6= 0 is a locally closed subscheme of this relative Hilbert scheme. If there is
a dominant morphism ψ :B→H, then by generic smoothness there is a smooth, irreducible
subvariety B0 of B such that the restriction of ψ to B0 is dominant and smooth. Let Y denote
the universal family of curves over B0 and C the fiber of Y →B0 over a smooth point of ψ. Since
NX/Pn =

⊕
OX(di) and C is di-normal for every i with 1 6 i6m, by Proposition 3.2 the map

H0(C, NC/Pn)→H0(C, NX/Pn |C) is surjective. Applying the long exact sequence of cohomology
to the sequence of normal sheaves

0→NC/X →NC/Pn →NX/Pn |C → 0,

we get a contradiction since H1(C, NC/X) 6= 0 and H1(C, NC/Pn) = 0. 2

Now assume that there exists a morphism φ :B→U so that the composition with the map
π1 : U →H is ψ. This is equivalent to saying that we are given a section σ for the map UB →B.
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Assume further that σ(B)⊂ F (Y ). Let b be a point of B, and let C denote the fiber of π over b.
Let φ(b) = ([X], p) and denote by f : C→X the restriction of F to C, so that the image of f is
a curve on X which passes through p. Let D = (f−1(p))red ⊂ C. If Ip denotes the ideal sheaf of
p in Pn, then the pullback of H0(X, NX/Pn ⊗ Ip) under f is contained in H0(C, f∗NX/Pn(−D)).
Consider the short exact sequence of normal sheaves (5) twisted with OC(−D):

0→Nf,X(−D)→Nf,Pn(−D)→ f∗NX/Pn(−D)→ 0.

Proposition 3.4. For a general point ([X], p) in the image of φ, there is a subspace

WX,p ⊂H0(X, NX/Pn(−p))

of codimension at most n−m and a non-empty open subset U ⊂ φ−1([X], p) with the following
property: for b ∈ U , if C, f and D are as above, then for every w ∈WX,p, f

∗w can be lifted to a
section of Nf,Pn(−D).

Proof. Let p be a general point in the image of π2 ◦ φ. Set Bp := (π2 ◦ φ)−1(p) with the reduced
induced structure, and let Hp ⊂H be the closure of ψ(Bp). Since p is general and ψ is dominant
by our assumption, the codimension of Hp in H is at most n.

Let b be a point in Bp, and let φ(b) = ([X], p). Then [X] ∈Hp. We can identify TH,[X] with
H0(X, NX/Pn), and we set

WX,p := THp,[X] ⊂H0(X, NX/Pn)

under this identification. Since every complete intersection which is parametrized by Hp
contains p, we have WX,p ⊂H0(X, NX/Pn ⊗ Ip). Since the codimension of Hp in H is at most n,
WX,p is of codimension at most n in H0(X, NX/Pn) and of codimension at most n−m in
H0(X, NX/Pn ⊗ Ip).

Set

Yp = π−1(Bp)

and

Zp = (F−1(Bp × {p}))red ⊂ Yp.
By generic smoothness, there is a dense open subset B0

p ⊂Bp such that for every b ∈B0
p the

following hold.

(i) The induced map on Zariski tangent spaces dψ : TBp,b→ THp,[X] =WX,p is surjective.

(ii) The map Zp→Bp is étale over b, so that Zp|b =D.

Let b ∈B0
p , and let αb : TBp,b→H0(C, Nf,Pn) be the characteristic map of Yp→Bp × Pn at b.

Let g :D→X be the restriction of f to D, and let βb : TBp,b→H0(D, Ng,Pn) = f∗TPn |D be the
characteristic map of Zp→Bp × Pn at b. Then βb is clearly the zero map. The following diagram
is commutative by Lemma 3.1.

f∗TPn |D =H0(D, Ng,Pn)

��

TBp,b
dψ // //

αb

��

βb=0oo WX,p ⊂H0(X, NX/Pn)

��
Nf,Pn |D H0(C, Nf,Pn) //oo H0(C, f∗NX/Pn)

So, for any w ∈WX,p, f∗w can be a lifted to a section of Nf,Pn which vanishes over D. Thus, for
any ([X], p) in φ(B0

p), the open set U :=B0
p ∩ φ−1([X], p) has the desired property. 2
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4. Conics in projective space

Let Hilb2t+1(Pn) denote the Hilbert scheme of subschemes of Pn with Hilbert polynomial 2t+ 1.
In this section we prove the following result.

Proposition 4.1. Let p be a point of Pn, and let R⊂Hilb2t+1(Pn) be an irreducible projective
subscheme of dimension r such that every curve parametrized by R is a smooth conic through
p. If W ⊂H0(Pn,OPn(d)⊗ Ip) is a subspace of codimension c with

c <min
((

r + 1
2

)
, (d− 1)

⌊
r + 1

2

⌋
+ 1
)
,

then for a general [C] ∈R and every 2 6 k 6 2d, the image of the restriction map

W →H0(C,OC(d))

contains a section of OC(d) which has a zero of order k at p.

We start with a lemma.

Lemma 4.2. If L is a line in Pn through p, then there is no complete one-dimensional family of
smooth conics through p that are all tangent to L.

Proof. Assume to the contrary that there is such a family B. By passing to a desingularization
we can assume that B is smooth. Let Y ⊂B × Pn be the universal family over B and g : Y → Pn
the projection map.

The point p gives a section σp of the family Y →B. Fix a point q 6= p on L. Then
B × {q} ∩ Y = ∅. Thus the projection from q defines a morphism g : Y →B × Pn−1. For any
point b ∈B, this map is a map from a conic to a line and thus g is a two-to-one map to its image.
Let R⊂ Y be the ramification locus. Then the map R→B is a double cover. But B × {p} ⊂R
and the residual part is a section of Y →B, which we denote by σq. Since σq1 and σq2 are
disjoint if q1 and q2 are two distinct points of L, we have that Y 'B × P1. Since the section
σp is contracted by g, by the rigidity lemma [Mum70] g factors through the projection map
B × P1→ P1. Thus the image of g should be one-dimensional, which is a contradiction. 2

Corollary 4.3. Suppose that R⊂Hilb2t+1(Pn) is a closed subscheme such that every curve
parametrized by R is a smooth conic through p. Then the following hold.

(a) dimR6 n− 1.

(b) If the 2-planes spanned by the curves parametrized by R all pass through a point q 6= p,
then dimR6 1.

Proof. (a) If we associate to any r ∈R the tangent line through p to the conic corresponding
to r, then this assertion follows from Lemma 4.2, since the family of lines through p is (n− 1)-
dimensional.

(b) Set r = dimR. Let L be the line through p and q, and let R′ be the closed subscheme of R
parametrizing conics tangent to L. By Lemma 4.2, if R′ is not empty, then it is zero-dimensional.
Since every conic parametrized by the complement of R′ intersects L in a point other than p,
there should be a point q′ ∈ L and a closed subvariety of dimension r − 1 in R parametrizing
conics passing through p and q′. By [HRS04, Lemma 5.1], in any projective one-dimensional
family of conics passing through p and q there are reducible conics, so r 6 1. 2
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We fix a hyperplane Γ in Pn which does not pass through p and choose a homogeneous system
of coordinates for Pn so that p= (1 : 0 : · · · : 0) and Γ = {x0 = 0}. With the same hypothesis as
in Proposition 4.1, we fix the following notation.

Notation 4.4. For [C] ∈R, we denote by qC the intersection of Γ with the line tangent to C at
p, by LC the line of intersection of Γ with the 2-plane spanned by C, and by Y the subvariety
of Γ swept out by the points qC , [C] ∈R.

Lemma 4.5. For every section f ∈H0(Γ,OΓ(i)) whose restriction f |LC
vanishes to order j at

qC , the restriction xd−i0 f vanishes to order i+ j at p as a section of H0(C,OPn(d)|C).

Proof. Let P be the 2-plane spanned by C. Then the divisor of x0 in this plane is just LC . The
divisor of f |LC

is jqC + E where E is an effective divisor of degree i− j whose support does not
contain qC . Then the divisor in P of xd−i0 f is (d− i)lC + jT + E′ where T is the tangent line of
C at p and E′ is a union of i− j lines passing through p, none of which are equal to T . Thus,
the order of its restriction to C at p is just 2j + (i− j) = i+ j. 2

Lemma 4.6. Let Z be a k-dimensional irreducible subvariety of Pn, and let IZ denote the ideal
sheaf of Z in Pn.

(a) The codimension of H0(Pn, IZ(t)) in H0(Pn,OPn(t)) is at least
(
t+k
k

)
.

(b) If k > 1 and Z spans a linear subvariety of dimension s in Pn, then the codimension of
H0(Pn, IZ(t)) in H0(Pn,OPn(t)) is at least st+ 1.

Proof. (a) If π : Z→ Pk is a general linear projection, then π is a finite map, and so the induced
map π∗ :H0(Pk,OPk(t))→H0(Z,OZ(t)) is injective. We have the following commutative
diagram.

H0(Pk,OPk(t)) � � //
� _

π∗

��

H0(Pn,OPn(t))

vvlllllllllllll

H0(Z,OZ(t))

Therefore the codimension of the kernel of the restriction map H0(Pn,OPn(t))→H0(Z,OZ(t))
is at least dimH0(Pk,OPk(t)) =

(
t+k
k

)
.

(b) Let C ⊂ Z be an irreducible curve whose span is equal to the span of Z; this can always
be achieved by taking an irreducible curve passing through finitely many linearly independent
points on Z. Since IZ ⊂ IC , it is clear that we need to prove the lemma only for C, and thus we
may assume k = 1.

We can assume that the codimension-2 subvariety of Pn defined by {x0 = x1 = 0} does not
intersect Z. Then the surjective map

O⊕tZ
(xt−1

0 ,xt−2
0 x1,...,x

t−1
1 )

−−−−−−−−−−−−−−−→OZ(t− 1)

gives a short exact sequence

0→O⊕t−1
Z →OZ(1)⊕t→OZ(t)→ 0.

Since Z spans a linear subvariety of dimension s, the image of the restriction map
H0(Pn,OPn(1)⊕t)→H0(Z,OZ(1)⊕t) has dimension at least (s+ 1)t, and so the image of
the map H0(Pn,OPn(1)⊕t)→H0(Z,OZ(t)) has dimension at least (s+ 1)t− (t− 1) = st+ 1.
Therefore the image of the restriction map H0(Pn,OPn(t))→H0(Z,OZ(t)) is at least (st+ 1)-
dimensional. 2
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We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Fix a hyperplane Γ in Pn which does not pass through p. We will follow
Notation 4.4. Set r = dimR, and notice that by Lemma 4.2 we have dim Y = r.

For 1 6 i6 d, multiplication by xd−i0 identifies H0(Γ,OΓ(i)) with a subspace of
H0(Pn,OPn(d)⊗ Ip). Let Wi ⊂H0(Γ,OΓ(i)) be the intersection of W with H0(Γ,OΓ(i)) under
this identification. The codimension of W in H0(Pn,OPn(d)⊗ Ip) is c, so the codimension of Wi

in H0(Γ,OΓ(i)) is less than or equal to c. There are three cases.
(i) 2 6 k 6 d. Since dim Y = r, by Lemma 4.6(a) the codimension of the space of sections

of OΓ(k) which vanish on Y is at least
(
r+2

2

)
. Since the codimension of Wk in H0(Γ,OΓ(k)) is

smaller than
(
r+2

2

)
, there is gk ∈Wk which does not vanish on Y . Hence xd−k0 gk is in W and its

restriction to a general curve parametrized by R has a zero of order k at p by Lemma 4.5.
(ii) d+ 1 6 k 6 2d− 2. Let Γ∨ denote the space of hyperplanes in Γ, and consider

the incidence correspondence {([C], [H]) | [C] ∈R, [H] ∈ Γ∨, LC ⊂H}. Projection to the first
component shows that the dimension of the incidence correspondence is r + n− 3. Since
dim Γ∨ = n− 1, for a general hyperplane H there is either no C with LC ⊂H, or the locus
of curves C with LC ⊂H is of dimension r − 2. Now fix a general hyperplane H in Γ, and
set Y ′ = Y ∩H. Let R′ be the locus in R parametrizing conics C for which qC ∈ Y ′. Then
dimR′ = dim Y ′ = r − 1 by Lemma 4.2, and for a general C parametrized by R′, LC does not
lie on H.

Choose a system of homogeneous coordinates for Pn so that p= (1 : 0 : · · · : 0), Γ is given by
x0 = 0, and H is given by x0 = x1 = 0. Consider the vector space U of all polynomials of the form
xk−d1 f ∈H0(Γ,OΓ(d)) where f is a homogeneous polynomial of degree 2d− k > 2 in x2, . . . , xn,
and let U0 be the subspace of U consisting of those xk−d1 f such that f vanishes on Y ′. Then the
codimension of U0 in U is at least

(
(r−1)+2

2

)
by Lemma 4.6(a). Since

(
r+1

2

)
is greater than the

codimension of Wd in H0(Γ,OΓ(d)), there is an element of the form xk−d1 f in Wd such that f
does not vanish on Y ′. So, for a general C parametrized by R′, f does not vanish on qC . Also,
LC does not lie on H, so x1 does not vanish on LC , and by Lemma 4.5 the order of vanishing of
xk−d1 f |C at p is k.

(iii) k = 2d− 1 or 2d. We first show that if s= b(r + 1)/2c and C1, . . . , Cs are general
conics parametrized by R, then LC1 , . . . , LCs are linearly independent, i.e. they span a linear
subvariety of dimension 2s− 1. Let s′ be the largest number for which there are conics
C1, . . . , Cs′ parametrized by R such that LC1 , . . . , LCs′ are linearly independent. Let Σ be
the linear span of LC1 , . . . , LCs′ . Then for any curve C parametrized by R, LC intersects Σ.
By Corollary 4.3, for every point q in Σ, there is at most a one-dimensional subscheme of R
parametrizing conics C such that LC passes through q. Therefore, dimR6 dim Σ + 1 = 2s′,
and so s= b(r + 1)/2c6 b(2s′ + 1)/2c= s′. Hence there are s conics parametrized by R whose
corresponding lines of intersection LC are linearly independent, and so the same is true for s
general conics parametrized by R.

First, let k = 2d. If r = 1, then c= 0 by our assumption and there is nothing to prove. So
assume r > 2, and put s= b(r + 1)/2c. Let [C1], . . . , [Cs] be general points of R. By the above
argument, LC1 , . . . , LCs are linearly independent. Choose points q′Ci

6= qCi on LCi . Denote by
H ′ the (s− 1)-dimensional linear subvariety spanned by the points q′Ci

, 1 6 i6 s, and let H
be a general linear subvariety of Γ which has codimension s and contains qC1 , . . . , qCs (note
that n− 1− s> s− 1 by Corollary 4.3, so such H exists). Then H and H ′ are disjoint. Since
C1, . . . , Cs and H are general and r − s> 1, by Bertini’s theorem the locus R′ in R parametrizing
curves C such that qC ∈H is irreducible.
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For [C] ∈R′, let ΣC be the linear subvariety spanned by H and LC . Since for each 1 6 i6 s,
LCi does not lie on H, for a general [C] ∈R′, LC does not lie on H, and so ΣC is of codimension
s− 1 in Γ and intersects H ′ at a point q′C . Since R′ is irreducible, the points q′C span an irreducible
quasi-projective subvariety Z of H ′. Since Z is irreducible and contains q′C1

, . . . , q′Cs
, it is non-

degenerate in H ′ and has dimension at least 1.
Set U :=H0(H ′,OH′(d)), which can be considered as a subspace of H0(Γ,OΓ(d)). By

Lemma 4.6(b), forms of degree d on H ′ which vanish on Z form a subspace of codimension
at least d(s− 1) + 1 in U . Therefore, if d(s− 1) + 1> c, there is a form f ∈Wd ∩ U which does
not vanish at the generic point of Z. If [C] is such that f does not vanish at q′C , then f does not
vanish at any point of ΣC which is not on H, so f cannot be identically zero on LC . Hence
f ∈Wd and f |LC

has a zero of order d at qC , and so f |C has a zero of order 2d at p.
If k = 2d− 1, then upon repeating the above argument with d replaced by d− 1 and choosing

a form h of degree 1 on Γ which does not vanish on H, we see that if (d− 1)(s− 1) + 1> c, then
there is a form g of degree d− 1 in H0(H ′,OH′(d− 1)) such that gh ∈Wd and gh|LC

has a zero
of order d− 1 at qC . This completes the proof of Proposition 4.1. 2

5. Proof of Theorem 1.3

Let X be a general hypersurface of degree d in Pn. In this section we show that the evaluation
map

ev :M0,1(X, 2)→X

is flat of constant fiber dimension 2(n− d) if d is in the range given in Theorem 1.3. Recall from
§ 2 that M0,1(Pn, 2) is a smooth stack of dimension 3n and that M0,1(X, 2) is the zero locus of
a section of a locally free sheaf of rank 2d+ 1 overM0,1(Pn, 2). If the fibers of ev are of expected
dimension 2(n− d), then M0,1(X, 2) has dimension 2(n− d) + n− 1 = 3n− (2d+ 1), and so it
is a local complete intersection and, in particular, a Cohen–Macaulay substack of M0,1(Pn, 2).
Since a map from a Cohen–Macaulay scheme to a smooth scheme is flat if and only if it has
constant fiber dimension [Mat86, Theorem 23.1], to prove the theorem it is enough to show that
ev has constant fiber dimension 2(n− d). Note that dimM0,1(X, 2) is at least 3n− (2d+ 1),
and ev is surjective, so every irreducible component of any fiber of ev has dimension at least
2(n− d).

Let p be a point in X and M an irreducible component of ev−1(p). We claim that if
there is a reducible conic parametrized by M, then M has the expected dimension. Let M′
be the substack ofM parametrizing stable maps with reducible domains. Since X is general, by
[HRS04, Theorem 2.1], the space of lines through every point of X has dimension n− d− 1, so
dimM′ 6 2n− 2d− 1. Since M0,1(Pn, 2) is smooth of dimension 3n, and since the fibers of the
evaluation map

ẽv :M0,1(Pn, 2)→ Pn

are all isomorphic, ẽv−1(p) is smooth of dimension 2n. Since the space of lines through every
point of Pn has dimension n− 1, the stable maps with reducible domains form a divisor in
ẽv−1(p). Therefore, sinceM′ is non-empty, dimM′ = dimM− 1 or dimM′ = dimM, and hence
dimM6 2n− 2d. This proves the claim.

Now assume to the contrary that for a general hypersurface of degree d, there is a point p
such that ev−1(p) is larger than expected. If 1 6 d6 (n+ 4)/2, then, by [HRS04, Theorem 1.2
and Corollary 5.5], ev is flat of relative dimension 2n− 2d, and hence (n+ 4)/2< d6 n− 1.
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Let H be the space of smooth hypersurfaces of degree d in Pn, and let B be the subscheme of
H× Pn ×Hilb(Pn) parametrizing triples (X, p, C) such that C is a smooth conic on X which
passes through p and [C] belongs to a larger than expected component of ev−1(p). Let ψ :B→H
and φ :B→U be the projection maps. By our assumption, ψ is dominant, and, by passing to
the irreducible components of B, we can assume that B is irreducible. By Proposition 3.4,
for a general point ([X], p) in the image of φ, there is a subspace WX,p ⊂H0(X, NX/Pn ⊗ Ip) of
codimension at most n− 1 and an open subset U ⊂ φ−1([X], p) such that for every ([X], p, [C]) ∈
U and every w ∈WX,p, w|C can be lifted to a section of NC/Pn(−p) under the map

ρ :H0(C, NC/Pn(−p))→H0(C, NX/Pn |C(−p)).

We show that this implies that for a general ([X], p, [C]) in U , the map ρ as above is surjective.
Let M be a larger than expected irreducible component of ev−1(p) which contains [C]. Any

map parametrized by M should be either an isomorphism onto a smooth conic through p or a
double cover of a line through p. For any line L⊂X through p, there is a 2-parameter family of
degree-2 covers of L (determined by the two branch points), and, by [HRS04, Theorem 2.1], the
family of lines through p on X has dimension n− d− 1. So the substack of M parametrizing
double covers of lines has dimension at most n− d+ 1. Therefore, there is an irreducible closed
subscheme R of dimension n− d− 1 in M which contains [C] and parametrizes only smooth
embedded conics through p on X. Since d > (n+ 4)/2, we have(

n− d
2

)
6 (d− 1)

⌊
n− d

2

⌋
+ 1.

So, by Proposition 4.1, if n6
(
n−d

2

)
, then for every 2 6 i6 2d there exists si ∈H0(C, NX/Pn |C) =

H0(C,OC(d)) which has a zero of order i at p and can be lifted to a section of NC/Pn(−p). The
next lemma shows that there is a section of NX/Pn |C which has a zero of order 1 at p and can
be lifted to a section of NC/Pn(−p). Hence ρ is surjective.

Lemma 5.1. Let X be a smooth complete intersection of multidegree (d1, . . . , dm) in Pn. Let C
be a smooth curve on X and p a point on C. For every j with 1 6 j 6m, there exists a section
α of NX/Pn |C =

⊕
OC(di) such that the jth component of α has a zero of order 1 at p, the ith

component of α has a zero of order at least 2 at p for i 6= j, and α can be lifted to a section of
NC/Pn(−p) under the map

NC/Pn →NX/Pn |C .

Proof. Suppose that X is given by f1 = · · ·= fm = 0 in Pn, and consider the commutative
diagram

On+1
C

A // //

����

NX/Pn |C(−p) =
m⊕
i=1

OC(di − 1)

TPn |C(−p) // // NC/Pn(−p)

OOOO

where A is the m× (n+ 1) matrix whose (i, j)th entry is ∂fi/∂xj . Since X is smooth at p,
A has rank m at p. Hence, for every j with 1 6 j 6m, there is an element in the image of
H0(X,OC(1)n+1)→H0(C,

⊕
OC(di)) whose ith component vanishes to order 1 at p if i= j

and vanishes to order 2 or greater at p if i 6= j. Such a section can be lifted to a section of
NC/Pn(−p). 2
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Applying the long exact sequence of cohomology to the short exact sequence

0→NC/X(−p)→NC/Pn(−p)→OC(d)(−p)→ 0,

we get that H1(C, NC/X(−p)) = 0; thus

h0(C, NC/X(−p)) = χ(NC/X(−p)) = χ(TX |C(−p))− χ(TC(−p)) = 2(n− d).

On the other hand, the Zariski tangent space to ev−1(p) at [C] is isomorphic toH0(C, NC/X(−p)),
so dimM should be at most 2(n− d), which is a contradiction.

6. Non-free lines on complete intersections

In this section we prove Theorem 1.6, and when k = 1 and X is a hypersurface, we prove a result
which sometimes gives a stronger bound (Proposition 6.4).

Proof of Theorem 1.6. Assume to the contrary that every smooth complete intersection of
multidegree (d1, . . . , dm) has a family of lines of dimension a+ 1 passing through one point such
that for every line L in the family, h1(L, NL/X(−1)) > k. Let H be the space of smooth complete
intersections of multidegree (d1, . . . , dm) in Pn, and let U be the universal family over H. Let
Fp,k(X) be the subvariety of the Grassmannian of lines on X passing though p parametrizing lines
L with h1(L, NL/X(−1)) > k, and let B be the closed subvariety of U ×Gr(1, n) parametrizing
triples (X, p, L) such that dim Fp,k(X) at [L] is larger than a.

Denote by φ :B→U and π1 : U →H the projection maps. By our assumption, ψ = π1 ◦ φ is
dominant. We replace B by an irreducible component of B for which ψ is still dominant. By
Proposition 3.4, for a general point ([X], p) in the image of φ, there is a non-empty open subset
U of φ−1([X], p) and a subspace

WX,p ⊂H0(X, NX/Pn ⊗ Ip)

of codimension at most n−m such that for every b= ([X], p, [L]) ∈ U and w ∈WX,p, w|L can
be lifted to a section of NL/Pn(−p) under the map

ρ :H0(L, NL/Pn(−p))→H0(L, NX/Pn |L(−p)).

Let ([X], p, [L]) be a point of U , and let Γ be a hyperplane in Pn which does not pass through
p. Choose a system of coordinates for Pn so that p= (1 : 0 : · · · : 0) and Γ is given by x0 = 0. Let
F be an irreducible component of Fp,k(X) containing [L] whose dimension is larger than a. The
cone of lines parametrized by F intersects Γ along a subvariety Y of dimension at least a+ 1.

For positive integers i and j with 1 6 j 6m and 1 6 i6 dj , multiplication by xdj−i
0 identifies

H0(Γ,OΓ(i)) with a subspace of H0(X,OX(dj)⊗ Ip) which is itself a direct summand of
H0(X, NX/Pn ⊗ Ip). Set

Wi,j :=WX,p ∩ x
dj−i
0 H0(Γ,OΓ(i)).

Since the codimension of WX,p in H0(X, NX/Pn ⊗ Ip) is at most n−m, the codimension of Wi,j

in x
dj−i
0 H0(Γ,OΓ(i)) is at most n−m. For every i with i> k + 1, we have(

a+ 1 + i

i

)
> n−m.

Since dim Y > a+ 1, by Lemma 4.6(a) we have that for every i and j with 1 6 j 6m and
k + 1 6 i6 dj , there is fi,j = x

dj−i
0 gi,j ∈Wi,j such that gi,j does not vanish on Y . So fi,j |L is a
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section of NX/Pn |L =
⊕m

i=1 OL(di) with the following properties.

(i) The lth component of fi,j is zero for l 6= j.

(ii) The jth component of fi,j |L has a zero of order equal to i at p.

(iii) The element fi,j |L can be lifted to a section of NL/Pn(−p).

Combining this with Lemma 5.1, we see that the dimension of the image of ρ is at least
d1 + · · ·+ dm −m(k − 1). Applying the long exact sequence of cohomology to

0→NL/X(−p)→NL/Pn(−p)→NX/Pn |L ⊗OL(−p)→ 0,

we get h1(L, NL/X(−p)) 6m(k − 1), which is a contradiction. 2

For a general complete intersection X ⊂ Pn of multidegree (d1, . . . , dm), it is likely that
a similar strategy as in the proof of [HRS04, Theorem 2.1] could be applied to show that if∑

i di 6 n− 1, then the space of lines on X through every point of X has dimension equal to
n−

∑
i di − 1; however, in the first part of the following theorem, we get a weaker result as an

immediate corollary to Theorem 1.6.

Theorem 6.1. Let X ⊂ Pn be a general complete intersection of multidegree (d1, . . . , dm), and
set d= d1 + · · ·+ dm.

(a) If
(
n−d+2

2

)
> n−m, then the evaluation map ev :M0,1(X, 1)→X is flat of relative

dimension n− d− 1.

(b) If
(
n−d

2

)
> n−m, then the evaluation map ev :M0,1(X, 2)→X is flat of relative

dimension 2n− 2d.

Proof. (a) As was shown in the proof of Theorem 1.3, to prove the flatness of ev it suffices to
show that the fibers of ev have constant dimension n− d− 1. But the fibers of ev have dimension
at least n− d− 1, and if there is an irreducible component M of ev−1(p) whose dimension is
larger than n− d− 1, then every line parametrized by M should be non-free. But, by taking
k = 1 and a= n− d− 1 in Theorem 1.6, we see that this is not possible.

(b) This follows easily from the proofs of Theorems 1.3 and 1.6. 2

For the rest of this section, we consider general hypersurfaces in Pn.

Proposition 6.2. If X is a general hypersurface of degree d in Pn where 3 6 d6 n− 1, then
the non-free lines on X sweep out a divisor.

Remark 6.3. If d= 1, this set is clearly empty. The same is true when d= 2. We have already
seen in Lemma 2.1 that the codimension of this set is at least 1.

Proof. Let H be the projective space of hypersurfaces of degree d in Pn. Consider the subvariety
I ⊂ Pn ×H consisting of pairs (p, [X]) such that there is either a non-free line on X through
p or a line on X through p which intersects the singular locus of X. Denote by π1 and π2 the
projection maps from I to Pn and H. We show that the dimension of the fibers of π1 is equal to
dimH+ n− 2.

Since all the fibers of π1 are isomorphic, we can assume p= (1 : 0, . . . : 0). A hypersurface X
which contains p is given by an equation of the form xd−1

0 f1 + · · ·+ fd = 0 where fi is homogenous
of degree i in x1, . . . , xn for 1 6 i6 d. The space of lines through p on X, which we denote by
Fp(X), is isomorphic to the scheme V (f1, . . . , fd) in Pn−1, so dim Fp(X) > n− d− 1. If Fp(X)
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is singular at [L], then we see that ([X], p) ∈ π−1
1 (p) as follows. Since

TFp(X),[L]
∼=H0(L, NL/X(−p)),

if Fp(X) is singular at [L], then

h0(L, NL/X(−p))> dim Fp(X) > n− d− 1.

So either L is not contained in the smooth locus of X, or it is contained in the smooth locus of
X and

h1(L, NL/X(−p)) = h0(l, NL/X(−p))− χ(NL/X(−p))
= h0(L, NL/X(−p))− (n− d− 1)
> 0.

Hence L is non-free.

If 2 6 d6 n− 1 and fi is a general homogeneous polynomial of degree i in x1, . . . , xn for
2 6 i6 d, then the intersection Y := V (f2, . . . , fd) is a smooth complete intersection subvariety
of Pn−1 of dimension n− d> 1. By [Ein86, Proposition 3.1], the dual variety of Y in Pn−1∨ is a
hypersurface, so there is a codimension-1 subvariety of H0(Pn−1,OPn−1(1)) consisting of forms f1

such that Y ∩ {f1 = 0} is singular. This shows that the space of tuples (f1, . . . , fd) for which the
scheme V (f1, . . . , fd) is singular is of codimension 1 in the space of all tuples (f1, . . . , fd). So
the fibers of π1 over p form a subvariety of codimension at most 1 in the space of all hypersurfaces
which contain p, and dim I > dimH+ n− 2.

Consider now the map π2 : I →H. Since the fibers of π2 have dimension at most n− 1, either
π2 is dominant or its image is of codimension 1 in H. We show that the latter cannot happen. For
any hypersurface X, the space of lines which are contained in the smooth locus of X and are not
free cannot sweep out a dense subset in X by Lemma 2.1, so if dim π−1

2 ([X]) = n− 1, then the
lines passing through the singular points of X should sweep out X. The locus of hypersurfaces
which are singular at least along a curve is of codimension greater than 1 in H, and so is the
locus of hypersurfaces which are cones over hypersurfaces in Pn−1 when d> 3. Therefore π2 is
dominant, and dim I = dimH+ n− 2, so a general fiber of π2 has dimension n− 2. 2

The proof of Theorem 1.6 yields stronger results if we know the dimension of the linear span
of Y defined in the proof of the theorem. The next proposition gives such a result when k = 1.

Proposition 6.4. Suppose that X is a general hypersurface of degree d in Pn and Σ is a cone of
lines on X over a curve Y ⊂ Pn−1. If the linear span of Y has dimension greater than (n− 2)/2,
then a general line parametrized by Y is free.

Proof. The proof is similar to that of Theorem 1.6 except that we apply Lemma 4.6(b) to Y . We
follow the proof of Theorem 1.6. Let s be the dimension of the linear span of Y , and let p be the
vertex of the cone over Y . Since X is general, there is a subspace WX,p ⊂H0(X,OX(d)⊗ Ip) of
codimension at most n− 1 such that for every w ∈W and a general line L parametrized by Y ,
w|L can be lifted to a section of NL/Pn(−p). By Lemma 4.6(b), if 2s+ 1> n− 1, then for every
2 6 i6 d there is a section fi = xd−i0 gi ∈WX,p such that gi does not vanish on Y . So fi has a
zero of order i at p and is contained in the image of ρ. The image of ρ also contains a section
which has a simple zero at p by Lemma 5.1, so ρ is surjective and H1(L, NL/X(−p)) = 0. 2
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7. Dimension and irreducibility of M0,0(X, e)

For a complete intersection X of multidegree (d1, . . . , dm) in Pn with
∑
di 6 n, the threshold

degree of X is defined to be

E(X) :=
⌊

n−m+ 2
n+ 1−

∑
di

⌋
.

Theorem 7.1. Let X ⊂ Pn be a general complete intersection of multidegree (d1, . . . , dm). If n
is sufficiently large and d < (2n+m+ 1)/3, then the evaluation map ev :M0,1(X, e)→X is flat
and has relative dimension e(n+ 1− d)− 2 for every e> 1.

Proof. By [HRS04, Corollary 5.5], if the evaluation map ev :M0,1(X, e)→X is flat of relative
dimension e(n+ 1− d)− 2 for every 1 6 e6 E(X), then it is flat of relative dimension e(n+
1− d)− 2 for every e> 1. If d < (2n+m+ 1)/3, then E(X) 6 2, so to prove the statement it
is enough to prove it for e= 1, 2. If n is large compared to m, and if d < (2n+m+ 1)/3, then(
n−d

2

)
> n−m (if m= 1, for example, it is enough to have n> 23). Thus, by Theorem 6.1, ev is

flat of the expected relative dimension for e= 1, 2. 2

Remark 7.2. It is proven in [CS09] that when m= 1, the threshold degree could be improved to

E(X) =
⌊

n−m
n+ 1−

∑
di

⌋
.

The same proof works for an arbitrary m. This improved bound shows that the statement of the
above corollary is true for d < (2n+m+ 3)/3 and n sufficiently large.

Theorem 7.3. With the same assumptions as in Theorem 7.1, M0,0(X, e) is an integral
complete intersection stack of dimension e(n+ 1− d) + n−m− 3 for every e> 1.

Proof. By Theorem 7.1,

dimM0,0(X, e) = dimM0,1(X, e)− 1 = e(n+ 1− d) + n−m− 3.

The stack M0,0(X, e) is the zero locus of a section of a locally free sheaf of rank de+m
over the smooth stack M0,0(Pn, e) (see § 2). Since dimM0,0(Pn, e) = (e+ 1)(n+ 1)− 4, and
since M0,0(X, e) has the expected dimension dimM0,0(Pn, e)− (de+m), it is a local complete
intersection stack.

Next, we prove that M0,0(X, e) is irreducible. By [HRS04, Corollary 6.9], if X is a smooth
complete intersection, then M0,0(X, e) is irreducible for every e> 1 if all of the following hold.

(i) The evaluation map ev :M0,1(X, e)→X is flat of relative dimension e(n+ 1− d)− 2 for
every e> 1.

(ii) General fibers of ev are irreducible.
(iii) There is a free line on X.
(iv) M0,0(X, e) is irreducible for every 1 6 e6 E(X), where M0,0(X, e) denotes the stack of

stable maps of degree e with irreducible domains.

By Theorem 7.1 the first property is satisfied, and property (iii) holds for every smooth
complete intersection which is covered by lines, i.e. every smooth complete intersection with d6
n− 1. By Corollary 3.3, for every line L on X we have H1(L, NL/X) = 0, soM0,0(X, 1) and hence
M0,1(X, 1) are smooth. Therefore, by generic smoothness, a general fiber of ev :M0,1(X, 1)→X
is smooth. Since every fiber of this map has the expected dimension n− d− 1, it is a complete
intersection of dimension at least 1 in Pn−1, so it is also connected and therefore irreducible.
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To show that property (iv) holds, we need to show thatM0,0(X, e) is irreducible for e= 1, 2.
When X is a smooth hypersurface of degree at most 2n− 4 in Pn, where n> 4, thenM0,0(X, 1)
is irreducible by [Kol96, V.4.3]. The same proof can be generalized to the case of complete
intersections. The irreducibility of the space of lines on general complete intersections with
d6 n− 1 is also proved in [dJS06, Corollary 4.5].

By [Sta04, Corollary 7.6],M0,0(X, 2) is irreducible for a general hypersurface X of degree at
most n− 2 in Pn (see also [Del04]). Let us explain how one can generalize the same argument
to the case of general complete intersections with d6 n− 2. Since the dimension of M0,0(X, 2)
is 3n− 2d−m− 1, and since the space of double covers of lines on X has dimension

dimM0,0(X, 1) + 2 = 2n− d−m< 3n− 2d−m− 1,

every irreducible component of M0,0(X, 2) contains an open subscheme parametrizing smooth
embedded conics on X. Therefore, to prove that M0,0(X, 2) is irreducible, it is enough to
show that Hilb2t+1(X) is irreducible. To this end, let I ⊂Hilb2t+1(Pn)×H be the incidence
correspondence parametrizing pairs (C, X) such that C is a conic on X, and let π1 : I →
Hilb2t+1(Pn) and π2 : I →H denote the two projection maps. Since Hilb2t+1(Pn) is smooth and
irreducible and the fibers of π1 are products of projective spaces, I is smooth and irreducible.

Let J be the closed subscheme of I parametrizing pairs (C, X) where C is a non-reduced
conic, so that the support of C is a line on X. Then J is smooth and irreducible since J maps
to the Grassmannian of lines in Pn and the fibers are smooth and irreducible. Let π′2 : J →H
be the projection map. Note that for any smooth complete intersection X and L⊂X, the space
of non-reduced conics on X whose support is L can be identified with P(H0(L, NL/X(−1))). If
[X] ∈H is general, then the space of lines on X is irreducible, and thus the fiber of π′2 over [X]
is connected. By generic smoothness, π′−1

2 ([X]) is smooth and therefore irreducible.

By [dJS06, Lemma 3.2], if i :N →M and e :M → Y are morphisms of irreducible schemes
and i maps the generic point of N to a normal point of M , then e has irreducible general
fibers provided that e ◦ i is dominant with irreducible general fibers. We apply this result to
the case where N = J , M = I, Y =H, i is the inclusion map, and e= π2. Since d6 n− 2,
h0(L, NL/X(−1)) > 1 for any smooth X parametrized by H and any line L⊂X; so e ◦ i= π′2 is
dominant and we have shown that its general fibers are irreducible. Since I is smooth, a general
fiber of π2 is irreducible.

Finally, sinceM0,0(X, e) is a local complete intersection irreducible stack and is smooth and
hence reduced over the dense open substack parametrizing embedded smooth free rational curves
of degree e, it is everywhere reduced. 2

Proof of Corollary 1.5. Let ev = (ev1, . . . , evk) :M0,k(X, e)→Xk denote the evaluation map.
By Theorem 1.4, M0,0(X, e) and hence M0,k(X, e) are irreducible of the expected dimension; so,
by definition,

〈Hc1 , . . . , Hck〉X0,e[line] =
∫
M0,k(X,e)

ev∗1Γ1 ∪ · · · ∪ ev∗kΓk.

There is a smooth dense open subscheme U of M0,k(X, e) such that every stable map
parametrized by U is a smooth embedded rational curve of degree e on X. Upon applying
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the Kleiman–Bertini theorem [Kle74] to the diagram

U

ev
��

Γ1 × · · · × Γk
� � // (Pn)k

we see that for general Γ1, . . . , Γk, ev−1(Γ1 × · · · × Γk) is reduced of dimension equal to
dim U + dim Γ1 + · · ·+ dim Γk − dim(Pn)k = 0. Another application of the Kleiman–Bertini
theorem shows that ev−1(Γ1 × · · · × Γk) does not intersect the complement of U in M0,k(X, e),
and so we get the desired result. 2
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