Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:51:02.967Z Has data issue: false hasContentIssue false

Functional improvements associated with cranioplasty after stroke and traumatic brain injury: a cohort study

Published online by Cambridge University Press:  17 November 2023

F. Coelho
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
G.S. Noleto*
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
D.J.F. Solla
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
P.N. Martins
Affiliation:
Faculty of Medicine, Juiz de Fora Medical School, Juiz DE Fora, Brazil
A.F. Andrade
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
M.J. Teixeira
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
W.S. Paiva
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
R. Anghinah
Affiliation:
Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
*
*Corresponding author. Email: gustavosnoleto@yahoo.com.br
Get access

Abstract

Objective:

Decompressive craniectomy is part of the acute management of several neurosurgical illnesses, and is commonly followed by cranioplasty. Data are still scarce on the functional and cognitive outcomes following cranioplasty. We aim to evaluate these outcomes in patients who underwent cranioplasty following traumatic brain injury (TBI) or stroke.

Methods:

In this prospective cohort, we assessed 1-month and 6-month neuropsychological and functional outcomes in TBI and stroke patients who underwent cranioplasty at a Brazilian tertiary center. The primary outcome was the change in the Digits Test at 1 and 6 months after cranioplasty. Repeated measures general linear models were employed to assess the patients' evolution and interactions with baseline characteristics. Effect size was estimated by the partial η2.

Results:

A total of 20 TBI and 14 stroke patients were included (mean age 42 ± 14 years; 52.9% male; average schooling 9.5 ± 3.8 years; 91.2% right-handed). We found significant improvements in the Digits Tests up to 6 months after cranioplasty (p = 0.004, partial η2 = 0.183), as well as in attention, episodic memory, verbal fluency, working memory, inhibitory control, visuoconstructive and visuospatial abilities (partial η2 0.106–0.305). We found no interaction between the cranioplasty effect and age, sex or schooling. Patients submitted to cranioplasty earlier (<1 year) after injury had better outcomes.

Conclusion:

Cognitive and functional outcomes improved after cranioplasty following decompressive craniectomy for stroke or TBI. This effect was consistent regardless of age, sex, or education level and persisted after 6 months. Some degree of spontaneous improvement might have contributed to the results.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australasian Society for the Study of Brain Impairment

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorim, R. L., Bor-Seng-Shu, E., Gattás, G., Paiva, W., de Andrade, A. F., & Teixeira, M. J. (2012). Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. Journal of Neuroradiology, 39(5), 346349. doi: 10.1016/j.neurad.2012.02.006 CrossRefGoogle ScholarPubMed
Ashayeri, K., M.J., E., Huang, J., Brem, H., & Gordon, C. R. (2016). Syndrome of the trephined: a systematic review. Neurosurgery, 79(4), 525534. doi: 10.1227/neu.0000000000001366 CrossRefGoogle ScholarPubMed
Chibbaro, S., & Tacconi, L. (2007). Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surgical Neurology, 68(6), 632638. doi: 10.1016/j.surneu.2006.12.046 CrossRefGoogle ScholarPubMed
Chieregato, A. (2006). The syndrome of the sunken skin flap: a neglected potentially reversible phenomenon affecting recovery after decompressive craniotomy. Intensive Care Medicine, 32(10), 16681669. doi: 10.1007/s00134-006-0302-7 CrossRefGoogle ScholarPubMed
Coelho, F., Oliveira, A. M., Paiva, W. S., Freire, F. R., Calado, V. T., Amorim, R. L., …, & Neville, I. S (2014). Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty. Neuropsychiatric Disease and Treatment, 10, 695701. doi: 10.2147/NDT.S52875 Google ScholarPubMed
Corallo, F., De Cola, M. C., Lo Buono, V., Cammaroto, S., Marra, A., Manuli, A., & Calabrò, R. S. (2020). Recovery of severe aphasia after cranioplasty: considerations on a case study. Rehabilitation Nursing, 45(4), 238242. doi: 10.1097/rnj.0000000000000212 CrossRefGoogle ScholarPubMed
Corallo, F., De Cola, M. C., Lo Buono, V., Marra, A., De Luca, R., Trinchera, A., …, & Calabrò, R. S. (2017). Early vs late cranioplasty: what is better? International Journal of Neuroscience, 127(8), 688693. doi: 10.1080/00207454.2016.1235045 CrossRefGoogle ScholarPubMed
Cushing, H. (1905). The establishment of cerebral hernia as a decompressive measure for inaccessible brain tumors: with the description of intermuscular methods of making the bone defect in temporal and occipital regions. Surgery Gynecology & Obstetrics, 1, 297314.Google Scholar
Di Stefano, C., Rinaldesi, M. L., Quinquinio, C., Ridolfi, C., Vallasciani, M., Sturiale, C., & Piperno, R. (2016). Neuropsychological changes and cranioplasty: a group analysis. Brain Injury, 30(2), 164171. doi: 10.3109/02699052.2015.1090013 CrossRefGoogle ScholarPubMed
Erdogan, E., Düz, B., Kocaoglu, M., Izci, Y., Sirin, S., & Timurkaynak, E. (2003). The effect of cranioplasty on cerebral hemodynamics: evaluation with transcranial doppler sonography. Neurology India, 51(4), 479481.Google ScholarPubMed
Farrington, P. R. (1945). Closure of a defect of the skull with tantalum. Rocky Mountain Medical Journal, 42, 842844.Google ScholarPubMed
Flint, A. C., Manley, G. T., Gean, A. D., Hemphill, J. C., & Rosenthal, G. (2008). Post-operative expansion of hemorrhagic contusions after unilateral decompressive hemicraniectomy in severe traumatic brain injury. Journal of Neurotrauma, 25(5), 503512. doi: 10.1089/neu.2007.0442 CrossRefGoogle ScholarPubMed
Fodstad, H., Love, J. A., Ekstedt, J., Fridén, H., & Liliequist, B. (1984). Effect of cranioplasty on cerebrospinal fluid hydrodynamics in patients with the syndrome of the trephined. Acta Neurochirurgica (Wien), 70(1-2), 2130. doi: 10.1007/BF01406039 CrossRefGoogle ScholarPubMed
Grant, F. C., & Norcross, N. C. (1939). Repair of cranial defects by cranioplasty. Annals of Surgery, 110(4), 488512. doi: 10.1097/00000658-193910000-00002 CrossRefGoogle ScholarPubMed
Grantham, E. C., & Landis, H. P. (1948). Cranioplasty and the post-traumatic syndrome. Journal of Neurosurgery, 5(1), 1922. doi: 10.3171/jns.1948.5.1.0019 CrossRefGoogle ScholarPubMed
Honeybul, S. (2010). Complications of decompressive craniectomy for head injury. Journal of Clinical Neuroscience, 17(4), 430435. doi: 10.1016/j.jocn.2009.09.007 CrossRefGoogle ScholarPubMed
Isago, T., Nozaki, M., Kikuchi, Y., Honda, T., & Nakazawa, H. (2004). Sinking skin flap syndrome: a case of improved cerebral blood flow after cranioplasty. Annals of Plastic Surgery, 53(3), 288292. doi: 10.1097/01.sap.0000106433.89983.72 CrossRefGoogle ScholarPubMed
Jelcic, N., Della Puppa, A., Mottaran, R., Cecchin, D., Manara, R., Dam, M., & Cagnin, A. (2013). Case series evidence for improvement of executive functions after late cranioplasty. Brain Injury, 27(13-14), 17231726. doi: 10.3109/02699052.2013.844857 CrossRefGoogle ScholarPubMed
Jiang, J. Y., Xu, W., Li, W. P., Xu, W. H., Zhang, J., Bao, Y. H., …, & Luo, Q.-Z. (2005). Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. Journal of Neurotrauma, 22(6), 623628. doi: 10.1089/neu.2005.22.623 CrossRefGoogle ScholarPubMed
Julio-Costa, A., Moura, R., & Haase, V. (2018). Compêndio de testes neuropsicológicos: atenção, funções executivas e memória, In In (2a ed.). São Paulo: Hogrefe.Google Scholar
Kemmling, A., Duning, T., Lemcke, L., Niederstadt, T., Minnerup, J., Wersching, H., & Marziniak, M. (2010). Case report of MR perfusion imaging in sinking skin flap syndrome: growing evidence for hemodynamic impairment. BMC Neurology, 10(1), 80. doi: 10.1186/1471-2377-10-80 CrossRefGoogle ScholarPubMed
Kim, B. W., Kim, T. U., & Hyun, J. K. (2017). Effects of early cranioplasty on the restoration of cognitive and functional impairments. Annals of Rehabilitation Medicine, 41(3), 354361. doi: 10.5535/arm.2017.41.3.354 CrossRefGoogle ScholarPubMed
Kjellberg, R. N., & Prieto, A. (1971). Bifrontal decompressive craniotomy for massive cerebral edema. Journal of Neurosurgery, 34(4), 488493. doi: 10.3171/jns.1971.34.4.0488 CrossRefGoogle ScholarPubMed
Kondziolka, D., & Fazl, M. (1988). Functional recovery after decompressive craniectomy for cerebral infarction. Neurosurgery, 23(2), 143147. doi: 10.1227/00006123-198808000-00002 CrossRefGoogle ScholarPubMed
Kuo, J. R., Wang, C. C., Chio, C. C., & Cheng, T. J. (2004). Neurological improvement after cranioplasty - analysis by transcranial doppler ultrasonography. Journal of Clinical Neuroscience, 11(5), 486489. doi: 10.1016/j.jocn.2003.06.005 CrossRefGoogle ScholarPubMed
Langfitt, T. W. (1969). Increased intracranial pressure. Clinical Neurosurgery, 16(Supplement 1), 436471. doi: 10.1093/neurosurgery/16.cn_suppl_1.436 CrossRefGoogle ScholarPubMed
Lezak, M. (1995). Neuropsychological Assessment (3rd edition), Oxford University Press.Google Scholar
Maeshima, S., Kagawa, M., Kishida, Y., Kobayashi, K., Makabe, T., Morita, Y., …, & Tsubahara, A. (2005). Unilateral spatial neglect related to a depressed skin flap following decompressive craniectomy. European Neurology, 53(3), 164168. doi: 10.1159/000086129 CrossRefGoogle ScholarPubMed
Malloy-Diniz, L., Fuentes, D., Mattos, P., & Abreu, N. (2018). Avaliação Neuropsicológica-2, Artmed Editora.Google Scholar
Nakamura, T., Takashima, T., Isobe, K., & Yamaura, A. (1980). Rapid neurological alteration associated with concave deformity of the skin flap in a craniectomized patient. Case report. Neurologia Medico-chirurgica (Tokyo), 20(1), 8993. doi: 10.2176/nmc.20.89 CrossRefGoogle Scholar
Ng, D., & Dan, N. G. (1997). Cranioplasty and the syndrome of the trephined. Journal of Clinical Neuroscience, 4(3), 346348. doi: 10.1016/s0967-5868(97)90103-x CrossRefGoogle ScholarPubMed
Nitrini, R., Caramelli, P., Bottino, C. M., Damasceno, B. P., Brucki, S. M., Anghinah, R., & Neurologia, A. B.d (2005). [Diagnosis of Alzheimer’s disease in Brazil: cognitive and functional evaluation. Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology]. Arquivos de Neuro-Psiquiatria, 63(3A), 720727. doi: 10.1590/s0004-282x2005000400034 CrossRefGoogle ScholarPubMed
PV, W. (2015). Alterações cognitivas e de qualidade de vida após cranioplastia para reconstrução de craniectomia descompressiva. Porto Alegre.: Universidade Federal do Rio Grande do Sul.Google Scholar
Richaud, J., Boetto, S., Guell, A., & Lazorthes, Y. (1985). [Effects of cranioplasty on neurological function and cerebral blood flow]. Neurochirurgie, 31(3), 183188, (Incidence des crânioplasties sur la fonction neurologique et le débit sanguin cérébral).Google ScholarPubMed
Royall, D. R., Mahurin, R. K., & Gray, K. F. (1992). Bedside assessment of executive cognitive impairment: the executive interview. Journal of the American Geriatrics Society, 40(12), 12211226. doi: 10.1111/j.1532-5415.1992.tb03646.x CrossRefGoogle ScholarPubMed
Sakamoto, S., Eguchi, K., Kiura, Y., Arita, K., & Kurisu, K. (2006). CT perfusion imaging in the syndrome of the sinking skin flap before and after cranioplasty. Clinical Neurology and Neurosurgery, 108(6), 583585. doi: 10.1016/j.clineuro.2005.03.012 CrossRefGoogle ScholarPubMed
Schiffer, J., Gur, R., Nisim, U., & Pollak, L. (1997). Symptomatic patients after craniectomy. Surgical Neurology, 47(3), 231237. doi: 10.1016/s0090-3019(96)00376-x CrossRefGoogle ScholarPubMed
Segal, D. H., Oppenheim, J. S., & Murovic, J. A. (1994). Neurological recovery after cranioplasty. Neurosurgery, 34(4), 729731. doi: 10.1227/00006123-199404000-00024 discussion 731.Google ScholarPubMed
Stiver, S. I. (2009). Complications of decompressive craniectomy for traumatic brain injury. Neurosurgical Focus, 26(6), E7. doi: 10.3171/2009.4.FOCUS0965 CrossRefGoogle ScholarPubMed
Stiver, S. I., Wintermark, M., & Manley, G. T. (2008a). Motor trephine syndrome: a mechanistic hypothesis. Trends in Neurovascular Interventions, 102, 273277. doi: 10.1007/978-3-211-85578-2_51 Google ScholarPubMed
Stiver, S. I., Wintermark, M., & Manley, G. T. (2008b). Reversible monoparesis following decompressive hemicraniectomy for traumatic brain injury. Journal of Neurosurgery, 109(2), 245254. doi: 10.3171/JNS/2008/109/8/0245 CrossRefGoogle ScholarPubMed
Stula, D. (1985). [Intracranial pressure measurement in large skull defects]. Neurochirurgia (Stuttg), 28(4), 164169. doi: 10.1055/s-2008-1054190 Google ScholarPubMed
Sujit Kumar, G., Chacko, A. G., & Rajshekhar, V. (2004). Unusual presentation of the “syndrome of the trephined". Neurology India, 52(4), 504505.Google Scholar
Suzuki, N., Suzuki, S., & Iwabuchi, T. (1993). Neurological improvement after cranioplasty. Analysis by dynamic CT scan. Acta Neurochirurgica (Wien), 122(1-2), 4953. doi: 10.1007/BF01446986 CrossRefGoogle ScholarPubMed
Tabaddor, K., & LaMorgese, J. (1976). Complication of a large cranial defect. Case report. Journal of Neurosurgery, 44(4), 506508. doi: 10.3171/jns.1976.44.4.0506 CrossRefGoogle ScholarPubMed
Winkler, P. A., Stummer, W., Linke, R., Krishnan, K. G., & Tatsch, K. (2000). Influence of cranioplasty on postural blood flow regulation, cerebrovascular reserve capacity, and cerebral glucose metabolism. Journal of Neurosurgery, 93(1), 5361. doi: 10.3171/jns.2000.93.1.0053 CrossRefGoogle ScholarPubMed
Yamaura, A., & Makino, H. (1977). Neurological deficits in the presence of the sinking skin flap following decompressive craniectomy. Neurologia Medico-chirurgica (Tokyo), 17(1 Pt 1), 4353. doi: 10.2176/nmc.17pt1.43 CrossRefGoogle ScholarPubMed
Yang, X. J., Hong, G. L., Su, S. B., & Yang, S. Y. (2003). Complications induced by decompressive craniectomies after traumatic brain injury. Chinese Journal of Traumatology, 6(2), 99103.Google ScholarPubMed
Yoshida, K., Furuse, M., Izawa, A., Iizima, N., Kuchiwaki, H., & Inao, S. (1996). Dynamics of cerebral blood flow and metabolism in patients with cranioplasty as evaluated by 133Xe CT and 31P magnetic resonance spectroscopy. Journal of Neurology, Neurosurgery & Psychiatry, 61(2), 166171. doi: 10.1136/jnnp.61.2.166 CrossRefGoogle ScholarPubMed
Supplementary material: File

Coelho et al. supplementary material

Figures S1-S4

Download Coelho et al. supplementary material(File)
File 150.3 KB