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Abstract. We construct a geometrico-symbolic version of the natural extension of the
random β-transformation introduced by Dajani and Kraaikamp [Random β-expansions.
Ergod. Th. & Dynam. Sys. 23(2) (2003) 461–479]. This construction provides a new proof
of the existence of a unique absolutely continuous invariant probability measure for the
random β-transformation, and an expression for its density. We then prove that this natural
extension is a Bernoulli automorphism, generalizing to the random case the result of
Smorodinsky [β-automorphisms are Bernoulli shifts. Acta Math. Acad. Sci. Hungar. 24
(1973), 273–278] about the greedy transformation.
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1. Introduction
1.1. Expansions in base β. Throughout the paper, we fix a real number β, 1 < β < 2.
For x ∈ [0, 1), an expansion of x in base β is a sequence (xn)n�1 of {0, 1} such that

x =
+∞∑
n=1

xn

βn
.

Rényi [13] introduced the greedy map Tβ defined on [0, 1) by Tβ(x) = βx mod 1, which
provides a particular expansion of any real number in [0, 1), given by the sequence
xn := 1[1/β,1)(T

n−1
β (x)), for all n � 1. This expansion is called the greedy expansion of x.

In fact, almost every x ∈ [0, 1) has an infinite number of expansions in base β, and the
greedy expansion is the greatest in the lexicographic order [7].

Rényi proved that Tβ has a unique absolutely continuous invariant probability measure
νβ , and Parry [12] proved that its density is proportional to the function
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∑
n�0

1
βn

1[0,T n
β (1)]

and that the associated measure-preserving system is weakly mixing.
Smorodinsky then showed in [15] that the natural extension of this system is a Bernoulli

automorphism. This result was also obtained by Dajani, Kraaikamp, and Solomyak in [6]
through a geometric construction of this natural extension, in the form of a tower.

The greedy map can be extended to a map Tg defined on the interval Iβ := [0, 1/(β −1)]
by setting

Tg(x) :=
{

Tβ(x) for x ∈ [0, 1[,

βx − 1 for x ∈ [1, 1/(β − 1)].

We will still refer to this extended map as the greedy map. The measure νβ extended to
Iβ by setting νβ([1, 1/( β − 1)]) = 0 is still the unique absolutely continuous invariant
probability measure of Tg on Iβ .

We can obtain the smallest expansion of any real number of the interval Iβ with the lazy
map T� [7], defined by

T� : Iβ → Iβ

x �→
⎧⎨
⎩βx if x � 1

β(β − 1)
,

βx − 1 otherwise.

For x ∈ Iβ , the lazy expansion of x is given by the sequence (x ′
n) defined for all n � 1 by

x′
n = 1(1/β(β−1),1/( β−1)](T

n−1
� (x)).

Let s be the symmetry on Iβ , defined by s(x) = 1/( β − 1) − x. The pushforward
measure ν̃β := νβ ◦ s−1 is the unique absolutely continuous invariant measure for T�,
and s conjugates Tg and T�; hence the systems (Iβ , B, νβ , Tg) and (Iβ , B, ν̃β , T�) are
isomorphic [4].

In 2003, Dajani and Kraaikamp [5] introduced the random β transformation. We set
� := {g, �}N∪{0}, the set of sequences of g and �. We then define the transformation Kβ

on � × Iβ by

Kβ :
� × Iβ → � × Iβ

(ω, x) �→ (σ (ω), Tω0(x)),

where σ is the left shift on �. The sequence ω ∈ � describes the successive transforma-
tions that will be applied to the real x ∈ Iβ : once Tω0 is applied to x, we shift the sequence ω

to the left and then apply Tω1 , and so on. If we fix ω ∈ �, we obtain a particular expansion
of x in base β, by setting, for any n � 1:

xω
n :=

⎧⎨
⎩
1{π(Kn−1

β (ω,x))�1/β} if ωn−1 = g,

1{π(Kn−1
β (ω,x))>1/β(β−1)} if ωn−1 = �,

where π is the projection on Iβ . Any expansion of x can be obtain with a sequence
ω ∈ � [3].
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FIGURE 1. Extensions involved in this paper.

In the model we consider, the sequence ω will be drawn with the product Bernoulli
measure mp, where p ∈ (0, 1) is a fixed parameter. In other words, we draw each
transformation independently with probability p for Tg and 1 − p for T�. Dajani and De
Vries proved in [3] that there is a unique absolutely continuous probability measure μp on
Iβ such that mp ⊗ μp is Kβ -invariant. Kempton [11] obtained an expression of the density
ρ1/2 of μ1/2 with the construction of a natural extension of (� × Iβ , m1/2 ⊗ μ1/2, Kβ),
using two symmetric towers. Suzuki [16] then generalized this expression for any p with
the use of the Perron–Frobenius operators.

1.2. Roadmap of this paper. In this paper, we consider several extensions of the random
β-transformation. See Figure 1. In §2, we construct a first geometrico-symbolic extension
K of the random transformation. This extension is defined on two towers (the greedy tower
and the lazy tower), each tower having a ‘base’. By providing a simple invariant measure on
this extension and projecting it on Iβ , we obtain the expression of the density of μp for any
p ∈ (0, 1) (formula (8)). We then study the transformation Kg induced by K on the base of
the greedy tower, and define a particular partition of this base. We prove that this partition
is an independent generator of the induced system (Proposition 10), and thus prove that this
induced system is isomorphic to a unilateral Bernoulli shift. This provides a new proof of
the ergodicity of the random system and of the uniqueness of μp. This first extension
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is not yet invertible. In §3, we construct a geometrico-symbolic version of the natural
extension of this first extension. With the use of the relatively independent joining above
a factor, we prove that this new extension is in fact the natural extension of the random
β-transformation (Theorem 21). We then prove that this extension is isomorphic to a bilat-
eral Bernoulli shift (Theorem 26), by ‘unfolding’ the previous partition on the two towers.

2. The first extension
In this section, we extend the dynamics Kβ on two towers. Kempton [11] implemented the
same type of strategy in the case p = 1

2 , but his construction does not generalize to any p.
We construct a different extension, valid for any p ∈ (0, 1).

2.1. The domain of the extension: the greedy and lazy towers. As in [11], the towers are
made of floors. We first define the ‘base’ of each tower. Let Eg be the base of the greedy
tower G, defined by

Eg := � × {g} × [0, 1].

The label of the greedy base is (g), telling us that it is the first floor of the greedy tower G.
Likewise, E� is the base of the lazy tower L, defined by

E� := � × {�} ×
[
s(1),

1
β − 1

]
.

A floor in one of the towers is denoted by Ee, where e is the label of the floor. This floor
is of the form

Ee := � × {e} × Ie,

where Ie is a sub-interval of Iβ that will be specified later. Thus, a point in one of the two
towers is of the form c = (ω, e, x), where the following hold.
• The sequence ω ∈ {g, �}N∪{0} describes the successive transformations Tg and T� to

be applied to x.
• The label e is of the form

e = (h, ω−n, ω−n+1, . . . , ω−1)

and characterizes the floor containing the point c. The letter h indicates the tower in
which: if h = g, the floor is from the greedy tower; and if h = �, the floor is from the
lazy tower. The integer n is the level of the floor Ee. Therefore, there are 2n floors of
level n in each tower, the bases being at level 0. Finally, the symbols ω−n, . . . , ω−1
indicate the applied transformations since the last passage in one of the two bases; in
other words, the maps Tω−n to Tω−1 were applied to the real component of a point in
Ee since the base Eh.

• x represents the real component of the point c, on which will be applied the
transformation Tω0 . We have x ∈ Ie, where⎧⎨

⎩
Ie := [0, Tω−n,ω−n+1,...,ω−1(1

+)] if h = g,

Ie :=
[
Tω−n,ω−n+1,...,ω−1(s(1)−),

1
β − 1

]
if h = �,
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where the + and − signs respectively refer to the right and left limit at the considered
points, and Tω−n,ω−n+1,...,ω−1 is the composition Tω−1 ◦ · · · ◦ Tω−n . For simplification,
we will often denote Tv with v ∈ {g, �}n to refer to this type of composition.

We then define the greedy tower as the disjoint union of all floors whose label starts
with a g, and the lazy tower as the disjoint union of all floors whose label starts with an �:

G :=
⊔

e′∈{g,�}∗
Eg·e′ ,

L :=
⊔

e′∈{g,�}∗
E�·e′ ,

where the point · represents the concatenation, and the set {g, �}∗ is the set of finite
sequences (including the empty sequence) of g and �. We then denote by X := G � L
the disjoint union of the two towers, on which will be defined K. Finally, given a floor of
X, we call the length of this floor the Lebesgue measure of the associated interval.

Applying the dynamics K to a point in a tower consists in going up a level in the tower,
or going back to the base of the tower, or going to the base of the other tower, depending
on certain conditions that we will detail in the next section.

We represent the two towers in Figure 2, one above the other (the lazy tower is
represented upside down). The ω-component is represented vertically. Two points on a
same vertical line have the same real coordinate x.

2.2. The dynamics on the two towers. We define the dynamics K on the greedy tower
first. We consider a floor of G, with label e := (g, ω−n, . . . , ω−1). The floor Ee is split
into two parts, depending on ω0:

Ee = (Ee ∩ [g]0) � (Ee ∩ [�]0),

where Ee ∩ [g]0 abusively refers to the set of points (ω, e, x) of Ee such that ω0 = g (and
in the same way for �). The dynamics K is different on each of these parts. In the following,
we denote by t the upper bound of Ie.
(1) If ω0 = g and if t < 1/β (see Figure 3):

K :
Ee ∩ [g]0 → Ee·g
(ω, e, x) �→ (σ (ω), e · g, βx).

Here, K sends Ee ∩ [g]0 onto the floor Ee·g .
(2) If ω0 = g and if t � 1/β, the left part of the floor is sent back onto the base Eg (see

Figure 4):

K :
Ee ∩

{
ω0 = g, x <

1
β

}
→ Eg

(ω, e, x) �→ (σ (ω), g, βx);

and the right part goes up onto Ee·g:

K :
Ee ∩

{
ω0 = g, x � 1

β

}
→ Ee·g

(ω, e, x) �→ (σ (ω), e · g, βx − 1).
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FIGURE 2. Greedy and lazy towers.
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FIGURE 3. ω0 = g and t < 1/β.

FIGURE 4. ω0 = g and t � 1/β.

(3) If ω0 = � and if t < 1/β(β − 1) (see Figure 5):

K :
Ee ∩ [�]0 → Ee·�
(ω, e, x) �→ (σ (ω), e · �, βx).

The part Ee ∩ [�]0 is sent onto the floor Ee·�.
(4) If ω0 = � and if t � 1/β(β − 1) (see Figure 6), the central part of the floor is sent

onto the base E�:

K :
Ee ∩

{
ω0 = �,

s(1)

β
< x � 1

β(β − 1)

}
→ E�

(ω, e, x) �→ (σ (ω), �, βx);
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FIGURE 5. ω0 = � and t < 1/β(β − 1).

FIGURE 6. ω0 = � and t � 1/β(β − 1).

and the left and right parts go up onto Ee·�:

K :
Ee ∩

{
ω0 = �, x � s(1)

β

}
→ Ee·�

(ω, e, x) �→ (σ (ω), e · �, βx);

K :
Ee ∩

{
ω0 = �, x >

1
β(β − 1)

}
→ Ee·�

(ω, e, x) �→ (σ (ω), e · ω0, βx − 1).

On the lazy tower, the dynamics K is defined in the same way by symmetry (see
Figures 7 and 8).
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FIGURE 7. Overview of the dynamics on a floor Ee of the greedy tower, depending on the length of the floor.

We denote by π : X → � × Iβ the projection onto � × Iβ . By construction, we have

π ◦ K = Kβ ◦ π .

2.3. Construction of an invariant measure. The goal of this section is to define a
K-invariant measure μ on X, such that the projection of this measure on Iβ is absolutely
continuous. We denote the Lebesgue measure by λ, regardless of the interval on which
we consider it. We recall that mp is the product Bernoulli measure of parameter p on
� (we draw g with probability p and � with probability 1 − p, independently at each
step).

We first define the measures μg and μ� with respective support G and L as follows.
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FIGURE 8. Overview of the dynamics on a floor Ee of the lazy tower (reversed), depending on the length of the
floor.

On the bases, we set:

μg |Eg
:= mp ⊗ λ;

μ�|E�
:= mp ⊗ λ.

On the floor Eg,ω−n,...,ω−1 , the measure μg is defined by

μg |Eg,ω−n ,...,ω−1
:= 1

βn
mp([ω−n, . . . , ω−1]n−1

0 ) mp ⊗ λ,

where [ω−n, . . . , ω−1]n−1
0 is the cylinder of � containing the sequences ω whose n first

terms are (ω−n, . . . , ω−1).
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Likewise on the floor E�,ω−n,...,ω−1 , the measure μ� is defined by

μ�|E�,ω−n ,...,ω−1
:= 1

βn
mp([ω−n, . . . , ω−1]n−1

0 ) mp ⊗ λ.

On their respective tower, the measure μg and μ� are preserved by K when it goes up
in the tower, but we look for a measure μ on X, globally preserved by K. The following
theorem describes the situation in a more abstract framework, and shows the existence of
the measure μ.

THEOREM 1. Let (X, B) be a standard Borel space, K a transformation on X, and G and
L two disjoint subsets of X such that the following hold.
(1) X = G � L.
(2) There exist two sets Eg ⊂ G and E� ⊂ L such that

K(G) ⊂ G ∪ E� (1)

and

K(L) ⊂ L ∪ Eg .

(3) There exist two finite measures μg and μ� with respective support in G and L such
that

μg(Eg) = μ�(E�) = 1

and for any measurable A of G \ Eg , we have

μg(K −1(A)) = μg(A), (2)

and for any measurable A of L \ E�, we have

μ�(K −1(A)) = μ�(A).

(4) There exists positive constants g0, �0, g1, �1 such that for any measurable A of X
included in Eg , we have

μg(K −1(A) ∩ G) = g0μg(A) (3)

and

μ�(K −1(A) ∩ L)) = �0μg(A), (4)

and for any measurable A of X included in E�, we have

μg(K −1(A) ∩ G) = g1μ�(A)

and

μ�(K −1(A) ∩ L)) = �1μ�(A).

Then there exist a unique probability measure μ on X, linear combination of μg and
μ�, such that μ is K-invariant.

https://doi.org/10.1017/etds.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.79


3872 Y. Tierce

Proof. Let μ be a measure of the form

μ = �gμg + ��μ�,

with �g and �� two positive constants. We wish to determine the values of �g and �� such
that μ is a K-invariant probability measure on X.

Let A be a measurable subset of X included in G \ Eg . We have μ(A) = �gμg(A). Then,
by the assumptions in equations (1) and (2), we have

μ(K −1(A)) = �gμg(K −1(A)) = �gμg(A) = μ(A).

Similarly, for any measurable A of X included in L \ E�:

μ(K −1(A)) = ��μ�(K −1(A)) = ��μ�(A) = μ(A).

Let A be a measurable subset of X included in Eg . We have, by the assumptions in
equations (3) and (4):

μ(K −1(A)) = μ(K −1(A) ∩ G) + μ(K −1(A) ∩ L)

= �gμg(K −1(A) ∩ G) + ��μ�(K −1(A) ∩ L)

= g0�gμg(A) + �0��μg(A)

= (g0�g + �0��)μg(A).

Therefore, μ(K −1(A)) = μ(A) if and only if

g0�g + �0�� = �g . (5)

Likewise, if A is a measurable subset of X included in E�, μ(K −1(A)) = μ(A) if and
only if

g1�g + �1�� = ��. (6)

We need both the equations (5) and (6) to be satisfied. In other words, we solve the system:{
(g0 − 1)�g + �0�� = 0,

g1�g + (�1 − 1)�� = 0.
(7)

From the assumption in equation (1), we have

μg(G) = μg(K −1(G \ Eg)) + μg(K −1(Eg) ∩ G) + μg(K −1(E�) ∩ G),

and since μg(K −1(G \ Eg)) = μg(G \ Eg), we get

μg(Eg) = μg(K −1(Eg) ∩ G) + μg(K −1(E�) ∩ G).

Since μg(Eg) = 1, we deduce that

g0 + g1 = 1.

Similarly,

�0 + �1 = 1.
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Therefore, the system in equation (7) can be reduced to

�g = l0

g1
��.

For μ to be a probability measure, we must also have

�gμg(G) + ��μ�(L) = 1.

We finally obtain the (positive) values

�g = �0

�0μg(G) + g1μ�(L)

and

�� = g1

�0μg(G) + g1μ�(L)
.

With this choice of constants, the measure μ is a K-invariant probability measure on X.

Let us prove that the extension built in the previous section satisfies the assumptions of
Theorem 1.
(1) The greedy and lazy towers are disjoint.
(2) Under the action of K, any element of G can go up in the tower G, or go back to

the base Eg , or be sent in the lazy base E�, and the situation is symmetric for the
elements of the lazy tower.

(3) The measures μg and μ� have their respective support in G and L, and
μg(Eg) = μ�(E�) = 1. Let A be a measurable subset of Eg,ω−n,...,ω−1 of the form
A := [u]|u|−1

0 × {(g, ω−n, . . . , ω−1)} × [a, b], where u is a finite sequence of
elements of {g, �}, and |u| denotes the length of this sequence. Let us prove that
A and K −1(A) have the same measure. We have

μg(K −1(A)) = 1
βn−1 mp([ω−n, . . . , ω−2]n−2

0 )mp([ω−1 · u]|u|
0 )

1
β

(b − a)

= 1
βn

mp([ω−n, . . . , ω−1]n−1
0 )mp([u]|u|−1

0 )(b − a).

We then deduce that for any measurable set A of G \ Eg , we have
μg(K −1(A)) = μg(A). Similarly, for any measurable set A of L \ E�, we have
μ�(K −1(A)) = μ�(A).

(4) We set

g0 := μg(K −1(Eg) ∩ G) =
+∞∑
n=0

1
βn+1

∑
v∈{g,�}n

Tv(1+)�1/β

mp([v · g]n0),

�0 := μ�(K −1(Eg) ∩ L) =
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

Tw(s(1)−)�1/β

mp([w · g]n0),
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g1 := μg(K −1(E�) ∩ G) =
+∞∑
n=0

1
βn+1

∑
v∈{g,�}n

Tv(1+)�1/β(β−1)

mp([v · �]n0),

l1 := μ�(K −1(E�) ∩ L) =
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

Tw(s(1)−)�1/β(β−1)

mp([w · �]n0).

Let A ⊂ Eg of the form A = [u]|u|−1
0 × {g}×]a; b[, with 0 � a � b � 1. Then,

K −1(A) ∩ G =
⊔
n�0

⊔
v∈{g,�}n

Tv(1+)�1/β

Eg·v ∩
{
x ∈

]
a

β
;

b

β

[
; ω ∈ [g · u]|u|

0

}
.

Therefore,

μg(K −1(A) ∩ G) =
∑
n�0

∑
v∈{g,�}n

Tv(1+)�1/β

1
βn

× mp([v]n−1
0 ) × mp([g · u]|u|

0 ) × 1
β

(b − a)

= g0μg(A).

We obtain the three other formulas with a similar computation.
Therefore, by setting �g := �0/(�0μg(G) + g1μ�(L)) and �� := g1/(�0μg(G) +

g1μ�(L)), the measure μ := �gμg + ��μ� is a K-invariant probability measure on X.
On each floor of the two towers, the measure μ can be represented as the product of mp

on � and a multiple of λ. Thus, we get the following proposition.

PROPOSITION 2. By projecting the measure μ on � × Iβ , we obtain the measure
mp ⊗ μp, where μp has for density

ρp(x) :=
+∞∑
n=0

1
βn

(
�g

∑
ω1,...,ωn∈{g,�}n

mp([ω1, . . . , ωn]n−1
0 )1[0,Tω1,...,ωn (1+)](x)

+ ��

∑
ω1,...,ωn∈{g,�}n

mp([ω1, . . . , ωn]n−1
0 )1[Tω1,...,ωn (s(1)−);1/( β−1)](x)

)
. (8)

As a consequence, the natural projection π : X → � × Iβ is a factor map from the
system (X, μ, K) to (� × Iβ , mp ⊗ μp, Kβ).

2.4. Properties of the extension. The aim of this section is to prove that the system
(X, μ, K) is ergodic. For that, we first study the properties of K when following paths
on the towers. We then study the induced transformation of K on the greedy base Eg ,
and prove that the induced system is Bernoulli. From this, we derive the ergodicity of
the system (X, μ, K), which implies the ergodicity of the initial random system and
the uniqueness of μp (as an absolutely continuous probability measure on Iβ such that
mp ⊗ μp is Kβ -invariant).

To study the behavior of the dynamics along paths in the towers we first define a class
of functions that will be useful in the following definition.
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FIGURE 9. Function from the class Fn.

Definition 3. Let n ∈ N. We define the class of functions Fn (see Figure 9) as the set of
functions f satisfying, up to a set of zero measure:
• there exists a finite number of disjoint intervals I1, . . . , Ir and a sub-interval J of Iβ

such that f : I1 � · · · � Ir → J ;
• the function f is non-decreasing on its definition domain;
• on each interval Ii , f is a linear map with slope βn;
• f (

⊔r
i=1 Ii) = ⊔r

i=1 f (Ii) = J .

In particular, the intervals (Ii) are in the same order as the intervals (f (Ii)), and we
have

λ(I1 � · · · � Ir ) = 1
βn

λ(J ). (9)

LEMMA 4. Let n1, n2 ∈ N and f ∈ Fn1 , g ∈ Fn2 such that the definition domain Df of f
is included in the image of g. Then, f ◦ g|g−1(Df ) ∈ Fn1+n2 .

Proof. We denote g : I1 � · · · � Ir1 → J and f : J1 � · · · � Jr2 → L and h = f ◦
g|g−1(Df ). Then, g−1(Df ) is the disjoint union of the intervals g−1(Ji) ∩ Ij (when this
set is not empty). Therefore, h is defined on

⊔
i,j g−1(Ji) ∩ Ij with values in L. As the

composition of non-decreasing functions, h is non-decreasing on its definition domain.
Moreover, h is the composition of two linear maps of slope βn1 and βn2 on each non-empty
g−1(Ji) ∩ Ij , so it is a linear map of slope βn1+n2 . Finally, for all i ∈ {1, . . . , r2}, we have⊔

j

g(g−1(Ji) ∩ Ij ) = Ji ,
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and thus

⊔
i,j

h(g−1(Ji) ∩ Ij ) = L.

We denote by E := {g, �}∗ \ {∅} the set of non-empty finite sequences of {g, �}, in other
words, the set of labels. For e ∈ E, we denote by e(0) the first term of e and e(−1) its last
term.

We define the oriented graph G on E describing the set of admissible sequences of
labels. A label e ∈ E can be followed by the label e′ ∈ E (we then denote e → e′) if
μ(K −1(Ee′) ∩ Ee) > 0. In other words, we have e → e′ if the map K sends a subset of
positive measure of the floor Ee onto the floor Ee′ .

We use the new class of functions Fn to describe the dynamics along paths in the two
towers.

PROPOSITION 5. Let C = (e0 = e, e1, . . . , en = e′) (n � 1) be a finite sequence of labels
of E corresponding to a path in the graph G. We have

EC :=
n⋂

k=0

K−kEek
= [e1(−1), . . . , en(−1)]n−1

0 × {e} × JC

with:
(1) JC is a finite union of disjoint intervals I1, . . . , Ir ;
(2) Te1(−1),...,en(−1)|JC

∈ Fn.
In particular, the intervals (Ii) are in the same order as the intervals

(Te1(−1),...,en(−1)(Ii)), λ(JC) = 1/βnλ(Ie′) and the mapping Kn : EC → Ee′ is a bijection.

Proof. We prove each point by induction on the length of the path C. Suppose
that C = (e, e′) is an edge in the graph of transitions of E. Set ω0 = e′(−1).
Without loss of generality, we can suppose that e(0) = g. Finally, set Ie = [0, t], with
t ∈ [0, 1/(β − 1)[.
• If ω0 = g, then EC = [g]0 × {e} × JC with

– if t < 1/β, then JC = Ie,
– if t � 1/β, either e′ = (g), then JC = [0, 1/β[, or e′ = e · g then JC = [1/β, t].

• If ω0 = �, then EC = [�]0 × {e} × JC with
– if t < 1/β(β − 1), then JC = Ie,
– if t � 1/β(β − 1), either e′ = (�) then JC =]s(1)/β; 1/β(β − 1)], or e′ = e · �

then JC = [0, s(1)/β]�]1/β(β − 1), t].
In each case, JC is a finite union of disjoint intervals. Moreover, Tω0 : JC → Ie′ is a
function of F1.

Suppose now that C = (e = e0, e1, . . . , en+1 = e′). Set C′ = (e1, . . . , en+1). The
path C′ is a path of length n in the graph of transitions of E, such that EC′ satisfies the
conclusions of the proposition.
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• EC′ = [e2(−1), . . . , en+1(−1)]n−1
0 × {e1} × JC′ where JC′ is a finite union of dis-

joint intervals.
• Te2(−1),...,en+1(−1)|JC′ ∈ Fn.

We then have EC = Ee ∩ K −1(EC′).
The component in � is indeed [e1(−1), e2(−1), . . . , en+1(−1)]n0.
Set g = Te1(−1)|Je0,e1

and f = Te2(−1),...,en+1(−1)|JC′ . We have g ∈ F1 and f ∈ Fn. By

setting JC := g−1(JC′), we do have that JC is a finite union of disjoint intervals and

EC = [e1(−1), e2(−1), . . . , en+1(−1)]n0 × {e} × JC .

Furthermore, Te1(−1),e2(−1),...,en+1(−1)|JC
= f ◦ g|JC

. Applying Lemma 4, the function
Te1(−1),e2(−1),...,en+1(−1)|JC

is in Fn+1.

We now study the induced transformation of K on the base Eg . We denote by Kg this
induced transformation. The measure μ(.|Eg) is the measure μg , and is preserved by the
induced map Kg [1, Proposition 3.6.1, pp. 58]. In the following, we identify the base Eg

with � × [0, 1].
We consider the set C of possible paths for a first return to the base Eg . In other words,

C is the set of paths of the form C = (e0 = (g), e1, . . . , en = (g)) (where |C| := n is the
length of the path C), with ek �= (g) for 1 � k � n − 1 such that

μ

( n⋂
k=0

K−k(Eek
)

)
> 0.

We then define the set P of subsets of Eg by

P := {EC , C ∈ C}.

LEMMA 6. The set P is a countable partition of Eg , up to a set of zero measure.

Proof. If we consider two distinct paths C, C′ ∈ C, then it is clear that EC and EC′ are
disjoint. Additionally, since μg-almost every a in Eg has a finite return time, there exists
C ∈ C such that a ∈ EC .

For almost every a ∈ Eg , we call P-name of a the unique sequence (Pn)n�0 of atoms
of P such that for any n � 0, Kn

g (a) ∈ Pn.

PROPOSITION 7. The sequence of partitions (K−n
g (P))n�0 is independent for the measure

μg , that is, for any integer n ∈ N, the partitions K−n
g P and

∨
0�k�n−1 K−k

g P are
independent.

Proof. Consider a path

C = (e0 = (g), e1, . . . , eN = (g))

starting and ending with the label of the greedy base Eg . Then, this path is a unique
concatenation of paths C0, . . . , Ck ∈ C, and
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EC =
k⋂

i=0

K−i
g ECi

=
N⋂

i=0

K−i (Eei
) = [e1(−1), . . . , eN(−1)]N−1

0 × JC

with λ(JC) = (1/βN)λ(I(g)) = 1/βN , from Proposition 5. Then, we have

μg(EC) = mp([e1(−1), . . . , eN(−1)]N−1
0 ) × 1

βN
,

and we have a similar equality for all Cj , 0 � j � k. Therefore, it is clear that

μg(EC) =
k∏

j=0

μg(ECj
).

From Proposition 5, each atom of P is of the form [ω0, . . . , ωr−1] × JC . Likewise, for
each N � 0, each atom of

∨N
j=0 K−j

g P is again of this form.

Definition 8. Let N ∈ N ∪ {0} and (ω, x) ∈ Eg such that there exists an atom of∨N
j=0 K−j

g P containing (ω, x). We denote C the associated path. Then, we define the
set AN(ω, x) included in the interval [0, 1] by

AN(ω, x) := JC .

LEMMA 9. For almost every (ω, x) ∈ Eg , for all n ∈ N ∪ {0} and m ∈ N, there exists
N � n and t ∈ [0, 1] such that

AN+m(ω, x) = AN(ω, x) ∩ [0, t].

Proof. Let P0 = [g]0 × [0, 1/β[. The set P0 is an atom of the partition P, of positive
measure, corresponding to the set of points returning to the base Eg in one step. The
process that maps a point in Eg to its P-name (defined for almost every (ω, x) ∈ Eg) is a
Bernoulli process. Therefore, for almost every (ω, x) ∈ Eg , the orbit of (ω, x) under Kg

meets infinitely often the atom P0. Even better, for any m ∈ N, the orbit of (ω, x) meets
the atom P0 m times in a row, infinitely often.

Let n ∈ N ∪ {0}. For such a point (ω, x), let N � n be an integer such that

KN
g (ω, x), . . . , KN+m−1

g (ω, x) ∈ P0.

Observe that the atom of
∨N

j=0 K
−j
g P containing (ω, x) is of the form

[ω0, . . . , ωr−1]r−1
0 × AN(ω, x).

If we note AN(ω, x) = I1 � · · · � Im, Proposition 5 implies

[0, 1] = Tω0,...,ωr−1I1 � · · · � Tω0,...,ωr−1Im,

where Tω0,...,ωr−1Ii is an interval for every 1 � i � m, and the order of the intervals
(Tω0,...,ωr−1Ii) is the same as the order of the intervals (Ii).

Since KN
g (ω, x) ∈ P0, we have

AN+1(ω, x) =
{
y ∈ AN(ω, x), Tω0,...,ωr−1(y) ∈

[
0,

1
β

[}
.
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FIGURE 10. Passage from AN(ω, x) to AN+1(ω, x).

Then, there exists t1 ∈ [0, 1] such that Tω0,...,ωr−1(AN(ω, x) ∩ [0, t1]) = [0, 1/β[. See
Figure 10. Hence,

AN+1(ω, x) = AN(ω, x) ∩ [0, t1].

Finally, since KN
g (ω, x), . . . , KN+m−1

g (ω, x) ∈ P0, we can apply the same reasoning m
times, which implies the existence of t ∈ [0, 1] such that

AN+m(ω, x) = AN(ω, x) ∩ [0, t].

This real number t is such that λ(AN(ω, x) ∩ [0, t]) = (1/βm)λ(AN(ω, x)).

Let F be the factor σ -algebra F := ∨+∞
j=0 K−j

g P. The partition P provides a Bernoulli
process, and we want to show that this process generates the induced system by proving
the following proposition.

PROPOSITION 10. The σ -algebra F is (up to zero measure sets) the Borel σ -algebra
on Eg . In other words, the partition P is a generator of the induced system, which is
isomorphic to a one-sided Bernoulli shift.

LEMMA 11. F contains the σ -algebra generated by the ω-component.

Proof. Let N ∈ N. As said earlier, every atom of
∨N

j=0 K−j
g P is of the form

[ω0, . . . , ωr−1]r−1
0 × JC , with r � N . Therefore, for any N ∈ N, (ω0, . . . , ωN−1) is

F-measurable.

To prove Proposition 10, it suffices to show that for any continuous function ϕ :
Eg → R+, the conditional expectation E[ϕ|F] satisfies

E[ϕ|F] = ϕ, μg almost surely.
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The existence of the regular conditional probability implies that for almost every
(ω, x) ∈ Eg , there exists a measure μ(ω,x) on Eg such that for any positive continuous
function ϕ : Eg → R+,

E[ϕ|F](ω, x) =
∫

ϕ dμ(ω,x).

We want to prove that for almost every (ω, x) ∈ Eg , the measure μ(ω,x) equals the Dirac
measure on (ω, x), which leads to the announced result. Lemma 11 implies that, for almost
every (ω, x) ∈ Eg , the measure μ(ω,x) is of the form δω ⊗ μ̃(ω,x), where μ̃(ω,x) is a measure
on [0, 1]. In the following, we identify the measures μ(ω,x) and μ̃(ω,x). Therefore, it remains
to prove that μ(ω,x) is the Dirac measure on x.

Let ϕ : Eg → R+ be a continuous function depending only on the real variable x, that
is, ϕ(ω, x) = f (x), where f is a continuous function from [0, 1] into R

+.
By the martingale convergence theorem, we have the almost sure convergence:

E

[
ϕ

∣∣∣∣
N∨

j=0

K−j
g P

]
→ E[ϕ|F].

Thus, for almost every (ω, x) ∈ Eg , we have the convergence

E

[
ϕ

∣∣∣∣
N∨

j=0

K−j
g P

]
(ω, x) →

∫
f (y) dμ(ω,x)(y).

With N fixed, and for almost every (ω, x) ∈ Eg , we have

E

[
ϕ

∣∣∣∣
N∨

j=0

K−j
g P](ω, x) = 1

λ(AN(ω, x))

∫
AN(ω,x)

f (y) dy.

Set μAN(ω,x) := (1/λ(AN(ω, x)))λ|AN(ω,x) as the normalized Lebesgue measure on
AN(ω, x). For almost every (ω, x) ∈ Eg , the sequence of measures (μAN(ω,x))N converges
weakly to the measure μω,x .

We define the set Ēg of full measure as the set of points (ω, x) ∈ Eg satisfying the
following conditions.
• There exists a probability measure μ(ω,x) on Eg such that for any continuous function

ϕ : Eg → R+, we have

E[ϕ|F](ω, x) =
∫

ϕ dμ(ω,x).

• For any continuous function ϕ : Eg → R+, E[ϕ| ∨n
j=0 K−j

g P](ω, x) tends to
E[ϕ|F](ω, x).

• For any integer N, the point (ω, x) belongs to an atom of the partition
∨N

j=0 K−j
g P

and satisfies Lemma 9.
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FIGURE 11. Graph of the function fε .

• For any integer N and for any continuous function ϕ : Eg → R+ such that there exists
a continuous function f : R → R+ such that ϕ(ω, x) = f (x) for any (ω, x) ∈ Eg ,
we have

E

[
ϕ

∣∣∣∣
N∨

j=0

K−j
g P

]
(ω, x) =

∫
f (y) dμAN(ω,x)(y).

LEMMA 12. Let (ω, x) ∈ Ēg . Let [a, b] ⊂ [0, 1] such that μ(ω,x)[a, b] = 1. Then one of
these two propositions is true:
(i) μ(ω,x)[a, (a + b)/2] = 1;

(ii) μ(ω,x)](a + b)/2, b] = 1.

Proof. Suppose that proposition (ii) does not hold. Set η := μ(ω,x)([a, (a + b)/2]) > 0.
Let m be a large enough integer so that 1/βm < η/2. Let ε > 0. Let fε be the continuous
function defined on [0, 1] by fε = 0 on [a, (a + b)/2], fε = 1 on [(a + b)/2 + ε, b], and
fε is a linear map on [(a + b)/2, (a + b)/2 + ε]. See Figure 11.

Then, ∫
fε dμ(ω,x) � 1 − η.

Therefore, since the sequence (μAn(ω,x))n converges weakly to μ(ω,x), there exists N0 ∈ N,
such that for any n � N0, ∫

fε dμAn(ω,x) � 1 − η

2
.
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Thus, for any n � N0,

μAn(ω,x)

([
a + b

2
+ ε, b

])
� 1 − η

2
� 1 − 1

βm
.

It then implies that

μAn(ω,x)

([
a,

a + b

2
+ ε

[)
>

1
βm

.

Let n � N0 such that Kn
g (ω, x), . . . , Kn+m−1

g (ω, x) ∈ P0. Then from Lemma 9, there
exists a real number t ∈ [0, 1] such that An+m(ω, x) = An(ω, x) ∩ [0, t]. Moreover,
λ(An+m(ω, x)) = (1/βm)λ(An(ω, x)). It implies that An+m(ω, x) ⊂ [a, (a + b)/2 + ε[,
and hence, for any n′ � n + m,

μAn′ (ω,x)

([
a + b

2
+ ε, b

])
= 0.

Furthermore, we have ∫
f2ε dμAn(ω,x) →

∫
f2ε dμ(ω,x).

We then get that for any ε>0, μ(ω,x)([(a + b)/2 + 2ε, b])=0, and hence μ(ω,x)(](a+b)/

2, b]) = 0.

By dichotomy, we deduce that for any (ω, x) ∈ Eg , the measure μ(ω,x) is the Dirac
measure on x, which proves Proposition 10. In particular, the induced transformation Kg

is isomorphic to a one-sided Bernoulli shift.

LEMMA 13. There exists a floor of the greedy tower with length greater than or equal
to 1/β(β − 1). In particular, it is always possible to go from the tower G to the tower L
under K.

Proof. We set

n0 = min
{
n ∈ N ∪ {0}, T n

� (1) � 1
β(β − 1)

}
.

Such an integer n0 exists for any β > 1: if 1 < 1/β(β − 1), then T�(1) = β × 1. Iterating
T� from 1 is just a multiplication by β, as long as the images are less than 1/β(β − 1).
Thus, the length of the floor Eg�n0 is greater than or equal to 1/β(β − 1). Then we have

K
(

Eg�n0 ∩
{
ω0 = �, x ∈

]
s(1)

β
,

1
β(β − 1)

]})
= E�.

THEOREM 14. The system (X, μ, K) is ergodic.
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Proof. The induced transformation of K on Eg is Bernoulli, and hence ergodic. Therefore,
it suffices to prove that, up to a zero measure set,⋃

n�1

K−n(Eg) = X.

In other words, we want to prove that almost every point in X reaches the base Eg in a
finite number of iterations of K.

We first prove that almost every point in X can be reached from the base Eg . By
construction of K, every floor of the greedy tower is the image of a part of Eg by a power
of K. More precisely, for any e ∈ E such that e(0) = g, we have

Ee = K|e|−1
( |e|−1⋂

k=0

K−k(Ee(0),...,e(k))

)
.

Similarly, every floor of the lazy tower is the image by a power of K of a part of the base
E�. Finally, from Lemma 13, we can pass from the greedy tower to the lazy tower.

Additionally, almost every point in the base Eg returns to Eg in a finite number of
iterations of K (from Poincaré recurrence theorem). Denote by Ng the set of points of Eg

which do not return to Eg . Then Ng is a zero measure set. Therefore, the set
⋃

n�0 Kn(Ng)

is measurable, and of measure zero. Indeed, let n ∈ N ∪ {0}. Then

Kn(Ng) =
⋃

|C|=n

Kn(Ng ∩ EC).

For any path C of length n, the transformation Kn is invertible on Ng ∩ EC from
Proposition 5. Therefore, μ(Kn(Ng ∩ EC)) = 0 and μ(Kn(Ng)) = 0.

Let a ∈ X \ ⋃
n�0 Kn(Ng). There exist a0 ∈ Eg and n ∈ N ∪ {0} such that

Kn(a0) = a. Moreover, a0 /∈ ⋃
n�0 Kn(Ng) so there exists a path Ca

0 ∈ C such that
a0 ∈ PCa

0
. It implies that a will return to the greedy base in a finite number of iterations of

K (following the path Ca
0 ).

Since the system (� × Iβ , mp ⊗ μp, Kβ) is a factor of the system (X, μ, K), we have
the following corollary.

COROLLARY 15. The system (� × Iβ , mp ⊗ μp, Kβ) is ergodic.

COROLLARY 16. The measure μp is the unique absolutely continuous probability mea-
sure on Iβ such that mp ⊗ μp is Kβ -invariant.

Proof. From Lemma 13, for any 1 < β < 2, there exists a floor of the greedy tower whose
length is greater than or equal to 1/β(β − 1). Symmetrically, there exists a floor of the
lazy tower whose left limit is less than or equal to 1/β. It implies that the support of μp is
the full interval Iβ , and that mp ⊗ μp is equivalent to mp ⊗ λ.

Let ν be an absolutely continuous probability measure (with respect to λ, and so with
respect to μp) such that mp ⊗ ν is Kβ -invariant. Then the measure mp ⊗ ν is absolutely
continuous with respect to the ergodic measure mp ⊗ μp, and hence mp ⊗ ν = mp ⊗ μp

and ν = μp.

https://doi.org/10.1017/etds.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.79


3884 Y. Tierce

In [16], Suzuki proves that the density of μp is proportional to the function

B0(β, p)

(
1[0,1] +

∞∑
n=1

1
βn

∑
v∈{g,�}v

mp([v]n1)1[0,Tv(1)]

)

+ B0(β, 1−p)

(
1[s(1),1/(β−1)] +

∞∑
n=1

1
βn

∑
w∈{g,�}n

mp([w])n11[Tw(s(1)),1/(β−1)]

)
, (10)

where

B0(β, p) = p

(
1 −

∞∑
n=1

1
βn

∑
w∈{g,�}n−1

1S(Tw(s(1)))mp([w, �]n1)
)

.

By uniqueness of μp, we know that the density in equation (8) and the expression obtained
by Suzuki (10) are equal. This result can be easily proved in the case where β is not a root of
a polynomial of the form Xn0 − Xn1 − · · · − Xnk − 1 with n0 > n1 > · · · > nk (which
is equivalent to say that 1 has no finite expansion in base β).

Indeed, we prove that, in this case, �0 = B0(β, p). On one hand, we recall that

�0 =
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n,Tw(s(1)−)�1/β

mp([w · g]n0).

Since β is not a root of a polynomial of the form Xn0 − Xn1 − · · · − Xnk − 1, then
Tw(s(1)−) = Tw(s(1)) for any w ∈ {g, �}n. Moreover, Tw(s(1)−) � 1/β is equivalent to
Tw(s(1)) < 1/β. Therefore, after adjusting the index of summation, we have

�0 =
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

1R(Tw(1))mp([w · g]n0).

On the other hand, after a new reindexing in �1, we have

�0 =1 − �1 = 1 −
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

1S∪R(Tw(1))mp([w · �]n0)

=1 −
+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

1S(Tw(1))mp([w · �]n0) − 1 − p

p
�0.

Thus,

�0 = p

(
1 −

+∞∑
n=0

1
βn+1

∑
w∈{g,�}n

1S(Tw(1))mp([w · �]n0)

)
= B0(β, p).

By symmetry, we also obtain that g1 = B0(β, 1 − p), and the equality of the two densities
follows.

In the case where 1 has a finite expansion in base β, there exists n ∈ N and a sequence
w ∈ {g, �}n such that Tw(1) = 0, and the right limit Tv(1+) and the value Tv(1) can
differ, thus complicating the identification of the two formulas. For the simple case where
β = (1 + √

5)/2, we refer to the computations in the appendix of [17].
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3. The natural extension
3.1. Construction of the new extension. Any point in X which is not in a base has a
unique preimage by K. However, a point in one of the two bases can come from several
floors. Indeed, at each return to a base, the map K ‘forgets’ from where it comes. This lack
of information prevents K from being invertible.

We wish to construct a natural extension of K, denoted by K̃. In some sense, it is the
smallest invertible extension of K. Therefore, to construct K̃, we need to extend the set X
such that the information of the past floors is available. We recall the definition of a natural
extension of a system (see for example [2]).

Definition 17. The system (Y , C, ν, F) is a natural extension of the system (X, B, μ, T ) if
there exist two sets X∗ ∈ B and Y ∗ ∈ C such that μ(X∗) = ν(Y ∗) = 1 and a measurable
mapping π : Y ∗ → X∗ such that:
(1) F is a bijection of Y ∗;
(2) μ = ν ◦ π−1;
(3) π ◦ F = T ◦ π ; and
(4) C = ∨

n�0 Fn(π−1(B)).

Moreover, all natural extensions of a system are isomorphic [14]. We now construct
the extension K̃ of K, and then prove that it is one of its natural extensions. In the initial
definition of the towers G and L, each floor has a label e. More precisely, a label e is a
finite sequence of g and �, where the first term of e describes the present tower and the
following terms of e (when there are) describe which transformations have been applied
since the base: the label describes the recent past of a point in the floor. Therefore, instead
of ‘erasing’ the label at each return to a base, we will keep track of every past label, so that
we can uniquely determine the past orbit of almost any point in the two towers.

We denote by Z the set of left-infinite sequences generated by the graph G, that is,

Z := {(ej )j∈Z�0 ∈ EZ�0 : for all j � −1, ej → ej+1}.
A sequence of labels in Z contains in particular the information of the sequence of past

transformations. Given a sequence e in Z, we will denote e0 its term of index 0.
For e ∈ E, we set

Ze := {e ∈ Z : e0 = e}.
We then define the base of the two towers by

Ẽg := � × Z(g) × [0, 1]

and

Ẽ� := � × Z(�) ×
[
s(1),

1
β − 1

]
.

If e = (g, ω−n, . . . , ω−1), n ∈ N, we set

Ẽe := � × Ze × [0, Tω−n,...,ω−1(1
+)].
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If e = (�, ω−n, . . . , ω−1), n ∈ N, we set

Ẽe := � × Ze ×
[
Tω−n,...,ω−1(s(1)−),

1
β − 1

]
.

We note

G̃ :=
⊔

e∈E,e(0)=g

Ẽe

and

L̃ :=
⊔

e∈E,e(0)=�

Ẽe.

We finally note X̃ := G̃ � L̃. We set

π
X̃,X :

X̃ → X

(ω, e, x) �→ (ω, e0, x)

as the projection from X̃ onto X.
Let a = (ω, e, x) ∈ X̃. Then π

X̃,X(a) = (ω, e0, x). We have K(ω, e0, x) = (σ (ω), e′,
Tω0(x)), where the label e′ depends on e0, ω0, and x, according to the previous
construction. By construction of K, we obviously have e0 → e′ in the graph G.

Applying the new dynamics K̃ on a consists in concatenating the new label e′ to the
sequence e (we denote by e · e′ this new sequence), in addition to shifting the sequence ω

and applying Tω0 to x: we retain every past labels in memory.
In other words, the dynamics K̃ is defined on X̃ by

K̃ :
X̃ → X̃

(ω, e, x) �→ (σ (ω), e · e′, Tω0(x)),

where e′ is the label associated with the point K(ω, e0, x) ∈ X.
The projection π

X̃,X is measurable and we have by construction

K ◦ π
X̃,X = π

X̃,X ◦ K̃.

Denote by B the Borel σ -algebra on X and by B̃ the Borel σ -algebra on X̃. Let us prove
that

B̃ =
∨
n�0

K̃n
(π−1

X̃,X
(B)). (11)

The inclusion
∨

n�0 K̃n
(π−1

X̃,X
(B)) ⊂ B̃ is clear.

Let k and n be two non-negative integers. We consider a set A of B̃ of the form
A = [ω0, ω1, . . . , ωn]n0 × [e−k , . . . , e0]0−k × [a, b]. We then have

A = (� × [e−k , . . . , e−1]−1
−k × [a, b]) ∩ ([ω0, ω1, . . . , ωn]n0 × [e0]0 × [a, b]).

Set A− = � × [e−k , . . . , e−1]−1
−k × [a, b] and A+ = [ω0, ω1, . . . , ωn]n0 × [e0]0 × [a, b].
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Then, A− ∈ K̃k
(π−1

X̃,X
(B)) and A+ ∈ π−1

X̃,X
(B), which implies that A ∈ ∨

n�0 K̃n

(π−1
X̃,X

(B)), and proves equation (11).

We can now define the measure μ̃ on X̃. For A ∈ ∨N
n=0 K̃n

(π−1
X̃,X

(B)), we set

μ̃(A) := μ(π
X̃,X(K̃−N

(A))).

In some sense, the measure μ̃ of this set A is obtained by ‘shifting’ the set A to the
future, so that it can be viewed as a set in the first extension X. No information is lost
by projecting it on X, allowing us to use the measure μ. The measure μ̃ is well defined: if
A ∈ ∨N

n=0 K̃n
(π−1

X̃,X
(B)), then for any integer k ∈ N, we have

μ(π
X̃,X(K̃−N

(A)) = μ(π
X̃,X(K̃−N−k

(A))

since μ is K-invariant. For any B ∈ B, we have μ̃ ◦ π−1
X̃,X

(B) = μ(B), and the measure μ̃

is K̃-invariant.
Finally, by construction, K̃ is one to one on X̃. It implies that (X̃, μ̃, K̃) is a natural

extension of (X, μ, K). Moreover, the natural extension of an ergodic system is ergodic,
which provides the following result, as a direct consequence of Theorem 14.

COROLLARY 18. The system (X̃, μ̃, K̃) is ergodic.

3.2. Natural extension of the initial system. The goal of this section is to prove that
the previous extension is in fact a natural extension of the initial system (� × Iβ , mp ⊗
μp, Kβ). To do so, we first introduce a canonic way to construct a natural extension of the
initial system, then prove that the two extensions are isomorphic.

We adapt the construction described in [1, pp. 62], which provides a natural extension
of Kβ . We set

X := {(ω, x) ∈ {g, �}Z × IZβ : for all k ∈ Z, Tωk
xk = xk+1}.

Let B be the σ -algebra generated by the cylinders of X. We define the measure μ on every
set of the form A = [ωk , . . . , ωn+k]n+k

k × [Ik , . . . , In+k]n+k
k , with k ∈ Z, n ∈ N, and for

any k � i � n + k, ωi ∈ {g, �}, and Ii sub-interval of Iβ by

μ(A) = mp ⊗ μp

(
[ωk , . . . , ωn+k]n0 ×

n⋂
i=0

T −i
ωk+i

(Ik+i )

)
.

We denote by K the shift on X.

PROPOSITION 19. [1] The dynamical system (X, μ, K) is a natural extension of the system
(� × Iβ , mp ⊗ μp, Kβ).

Let (ω, e, x) ∈ X̃. We denote by ω = ω(ω, e) the sequence of {g, �}Z defined by
ω(k) = ωk if k � 0 and ω(k) = ek+1(−1) if k � −1. The sequence ω is the bi-infinite
sequence of applied transformations in the past, and transformations to be applied in
the future. For any k ∈ Z, we denote by xk the real component of K̃k

(ω, e, x), and
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x := (xk)k∈Z. We define the application

φ :
X̃ → X

(ω, e, x) → (ω, x).

One easily checks the following lemma.

LEMMA 20. The application φ is a factor map from (X̃, μ̃, K̃) to (X, μ, K).

THEOREM 21. The factor map φ is an isomorphism. Therefore, the system (X̃, μ̃, K̃) is a
natural extension of (� × Iβ , mp ⊗ μp, Kβ).

To prove this theorem, we use the notion of relatively independent joinings above a
factor (see for example [8, pp. 126–127]).

Let P be the relatively independent self-joining of the system (X̃, μ̃, K̃) above its factor
X, that is, the measure on X̃ × X̃ such that for two measurable sets A, B ∈ X̃,

P(A × B) =
∫

X̃

μ̃(A|F)μ̃(B|F) dμ̃,

where F = φ−1(B(X)) is the factor σ -algebra associated to the factor (X, μ, K). We have
the following properties:
• P is a self-joining so its marginals on the first and second coordinate are μ̃, and P is

K̃ × K̃-invariant;
• the measure P is supported on the set {(a, b) ∈ X̃ × X̃ : φ(a) = φ(b)};
• P is supported on the diagonal of X̃ × X̃ if and only if the factor map φ is an

isomorphism.
Let a = (ω, e, x) and b = (ω′, e′, x′) be two elements of X̃ such that φ(a) = φ(b). We

then have ω(ω, e) = ω(ω′, e′) and x = x′. In other words, a and b describe two trajectories
in the towers, starting from the same real number x and with the same transformations ω,
but possibly following different floors e and e′. Proving that P is supported by the diagonal
of X̃ × X̃ consists in proving that for P-almost every (a, b) ∈ X̃ × X̃, the two sequences
of floors e and e′ are actually equal.

The idea of the proof consists in taking two trajectories in X̃ starting from the same real
number x, with the same transformations, and proving that they end up in the same floor.
Once these trajectories come at the same time in the same floor, they coincide in the future
and in the past by injectivity.

We first work on the extension X. Let k ∈ N and consider the set of positive measure

Ck :=
{
(ω, e, x) ∈ X : x <

1
βk

, ω0 = ω1 = · · · = ωk−1 = g

}
.

The set Ck describes the points of X whose real component is close to 0, and on which
the greedy transformation will be applied k times in a row. The label e does not take part
in the definition of Ck , which means that the event Ck is measurable with respect to the
factor X: given two trajectories with the same real component and the same sequence of
transformations, the event Ck happens almost surely (by ergodicity of K̃ and because Ck

is of positive measure) and at the same time for both trajectories. Knowing that Ck is
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realized actually gives some information about the label. We will prove that for large k and
conditionally to Ck , both trajectories are in a floor of the greedy tower whose interval is
large, with high probability.

Let Ak be the union of the floors of G whose length is less than 1/βk . Let Bk be the
complementary set of Ak in G. Then the set Ck can be divided into three parts: Ck ∩ L,
Ck ∩ Ak , and Ck ∩ Bk . The set Ck ∩ Bk is particularly interesting since a point in this set
will end up in the greedy base Eg in at most k iterations: such a point will remain in the left
part of its floor under the action of K, and the length of the floor will eventually be larger
than 1/β, allowing the point to go to Eg in less than k iterations (see Figures 3 and 4). In
the following, we prove that for large k and knowing Ck , the event Ck ∩ Bk happens with
high probability.

We first introduce the following technical lemma.

LEMMA 22. The intervals of the lazy tower L never contain 0.

Proof. This property holds by construction of the extension K. Indeed, if an interval of
a floor of L contained 0, it would have to be the image by Tg of an interval whose lower
bound is 1/β. However, if the lower bound of an interval of L equals 1/β, we are in the
case where the part of the floor satisfying x ∈ [1/β, 2/β[ is sent to the greedy base when
applying Tg .

For any label e ∈ E, we set Ye := � × {e}, and we have Ee = Ye × Ie. We then set
Y := ⊔

e∈E Ye, which is represented vertically in Figure 2. Let us define the measure ν on
Y by, for any e ∈ E with e = (h, ω−n, . . . , ω−1),

ν|Ye = 1
βn

�hmp([ω−n, . . . , ω−1]n−1
0 )mp,

where �h is one of the two constants �g and �� defined in Theorem 1. In this way, we have

μ|Ee = ν|Ye ⊗ λ|Ie .

Finally, we denote πX,Y the projection from X onto Y.
Let ε > 0 be small enough, so that 1 − (1 + 2(β − 1))/(β − 1)μ(G)ε > 0.5. Let

N ∈ N be such that the measure μ of the floors beyond the level N in L is less than ε. By
the previous lemma, there exists k0 ∈ N such that no floor of L up to the level N has an
interval whose lower bound is less than 1/βk .

As previously said, we have

μ(Ck) = μ(Ck ∩ L) + μ(Ck ∩ Ak) + μ(Ck ∩ Bk). (12)

We want to estimate each term of the right-hand side of equation (12). We will prove
that for large k, Ck ∩ L and Ck ∩ Ak have a small measure, and that Ck ∩ Bk represents
more than half of the measure of Ck .

LEMMA 23. For k large enough, we have

μ(Ck ∩ L) � 2pk β − 1
βk

ε.
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Proof. Let k � k0. A floor of L can intersect Ck only if the lower bound of its interval
is less than 1/βk . The integer N is fixed such that every floor below the level N does not
contain 1/βk . Therefore, only the floors beyond the level N can intersect Ck . Additionally,
for any e ∈ E, we have, by definition of the measure μ on each floor,

μ

({
(ω, e, x) ∈ Ee : ω0 = · · · = ωk−1 = g, x <

1
βk

})
= pkμ

(
Ee ∩

{
x <

1
βk

})
.

We then have

μ(Ck ∩ L) = pk
∑

e∈E,e(0)=�,|e|�N+1

ν(Ye)λ

(
Ie ∩

[
0;

1
βk

])
.

For a floor Ee of the lazy tower such that Ie ∩ [0; 1/βk] �= ∅, we have

λ(Ie) >
1

β − 1
− 1

βk
.

For k large enough, we then have

λ(Ie) >
1

2(β − 1)
.

It implies that

λ

(
Ie ∩

[
0;

1
βk

])
� 1

βk
� 2

β − 1
βk

λ(Ie)

and hence

μ(Ck ∩ L) � 2pk β − 1
βk

ε.

LEMMA 24. For k large enough, we have

μ(Ck ∩ Ak) �
pk

βk
ε.

Proof. Let k ∈ N.

μ(Ck ∩ Ak) = pk
∑

e∈E,Ee⊂Ak

ν(Ye)λ

(
Ie ∩

[
0;

1
βk

])
.

If Ee is a floor of Ak , then λ(Ie ∩ [0; 1/βk]) � 1/βk . Therefore,

μ(Ck ∩ Ak) �
pk

βk
ν(πX,Y (Ak)).

We have ⋂
k�1

Ak = ∅

and hence

πX,Y

( ⋂
k�1

Ak

)
= ∅.
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Since the intersection of the Ak is decreasing, we have⋂
k�1

πX,Y (Ak) = ∅.

It implies that

lim
k→∞ ν(πX,Y (Ak)) = 0.

We can choose k large enough, so that ν(πX,Y (Ak)) < ε. Therefore,

μ(Ck ∩ Ak) �
pk

βk
ε.

PROPOSITION 25. For k large enough, we have

μ(Ck ∩ Bk)

μ(Ck)
> 0.5.

Proof. Let k ∈ N be large enough such that Lemmas 23 and 24 are both satisfied. We have

μ(Ck ∩ Bk)

μ(Ck)
= 1 − μ(Ck ∩ Ak) + μ(Ck ∩ L)

μ(Ck)
.

From Lemmas 23 and 24, we then have

μ(Ck ∩ Bk)

μ(Ck)
� 1 − (pk/βk)ε + 2pk(( β − 1)/βk)ε

μ(Ck)

� 1 − (pk/βk)ε + 2pk(( β − 1)/βk)ε

μ(Ck ∩ G)
.

However,

μ(Ck ∩ G) = pk
∑

e∈E,e(0)=g

ν(Ye)λ

(
Ie ∩

[
0;

1
βk

])
.

For any floor Ee of G, we have the minoration λ(Ie ∩ [0, 1/βk]) � λ(Ie)(β − 1)/βk and
hence

μ(Ck ∩ Bk)

μ(Ck)
� 1 − (pk/βk)ε + 2pk((β − 1)/βk)ε

pk((β − 1)/βk)μ(G)
= 1 − 1 + 2(β − 1)

(β − 1)μ(G)
ε.

The real ε is such that 1 − (1 + 2(β − 1))/(β − 1)μ(G)ε > 0.5, which gives the
result.

All these computations are also valid on the extension X̃. Indeed, π−1
X̃,X

(Ck) ∈ π−1
X̃,X

(B),

which implies μ̃(π−1
X̃,X

(Ck)) = μ(Ck). In the following, we will still denote Ck instead of

π−1
X̃,X

(Ck).

Since K̃ is ergodic and μ(Ck) > 0, almost every trajectory in X̃ encounters Ck

with frequency μ(Ck). Therefore, for P-almost every couple of trajectories in X̃, both
trajectories simultaneously encounter Ck (since Ck is measurable with respect to the
factor X) with frequency μ(Ck) (since P is a self-joining of μ). In other words, we have,
for P-almost every (a, b) ∈ X̃ × X̃, for any n ∈ N ∪ {0}:
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• K̃n
(a) ∈ Ck if and only if K̃n

(b) ∈ Ck;
• (1/N)

∑N
i=1 1Ck

(K̃i
(a)) = (1/N)

∑N
i=1 1Ck

(K̃i
(b)) → μ(Ck).

The ergodicity of K̃ and Proposition 25 also imply that among the occurrences of Ck ,
the event Ck ∩ Bk occurs with a frequency greater that 0.5 for the orbits of P-almost
every (a, b) ∈ X̃ × X̃ under K̃. Therefore, for P-almost every (a, b) ∈ X̃ × X̃, there
exists n0 ∈ N ∪ {0} such that K̃n0

(a) ∈ Ck ∩ Bk and K̃n0
(b) ∈ Ck ∩ Bk . Once the two

trajectories are in Ck ∩ Bk simultaneously, they will end up in the greedy base in at most k
iterations (note that even if one of the two points goes in the base before the other, it will
‘wait’ for the second one to join it. Since its real component is small enough, the point is in
the atom P0). In conclusion, for P-almost every (a, b) ∈ X̃ × X̃, if we note a = (ω, e, x)

and b = (ω, e′, x), there exists an integer M = M(ω, x, e, e′) such that eM = e′
M = (g).

Let δ > 0. There exists an integer Mδ such that

P(M > Mδ) < δ.

Therefore, we have P(eMδ = e′
Mδ

) � 1 − δ. Since P is K̃ × K̃-invariant, we deduce that
for any integer k ∈ Z and any δ > 0,

P(ek = e′
k) � 1 − δ

and hence e = e′. We proved that P is supported by the diagonal of X̃ × X̃, which implies
that φ is an isomorphism. Therefore, (X̃, μ̃, K̃) is a natural extension of the initial system,
which concludes the proof of Theorem 21.

3.3. Bernoullicity. We know that the natural extension of the initial random system is
ergodic. In fact, we have the following stronger result.

THEOREM 26. The natural extension of the random β-transformation is isomorphic to a
Bernoulli shift.

To prove this theorem, we introduce a generating partition of the two towers. We then
prove that this partition is weak-Bernoulli, by an argument on countable state space Markov
chains of Ito, Murata, and Totoki [9], which implies the theorem. In the following, we
denote μ̃g := μ̃(·|Ẽg), and by K̃g the induced transformation of K̃ on the base Ẽg .

LEMMA 27. Let (X, μ, T ) be an ergodic dynamical system, and A a measurable set of X
with positive measure. Denote by (X̃, μ̃, T̃ ) a natural extension of the system, and by π a
factor map from X̃ onto X. Then the system induced by T̃ on π−1(A) is a natural extension
of the system induced by T on A.

Proof. We start by introducing the necessary notation. The natural extension of the system
(X, μ, T ) can be described by a two-sided shift T̃ on the set

X̃ := {x = (xn)n∈Z ∈ XZ, for all n ∈ Z, T (xn) = xn+1},
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with the factor map π given by π((xn)n∈Z) = x0, and the measure μ̃ defined by

μ̃([Ak , Ak+1, . . . , An+k]n+k
k ) = μ

( n⋂
i=0

T −i (Ak+i )

)
,

where Ak , . . . , An+k are measurable sets of X and [Ak , Ak+1, . . . , An+k]n+k
k := {x ∈ X̃ :

for k � i � n + k, xi ∈ Ai}.
Denote by Ã := π−1(A) = {(xn) ∈ X̃, x0 ∈ A} and (Ã, μ̃

Ã
, T̃

Ã
) the system induced by

T̃ on Ã. The transformation T̃
Ã

is defined by T̃
Ã
(x) = T̃ rA(x0)(x) for every x ∈ Ã, where

rA(x0) is the return time of x0 in A, which is the same as the return time of x in Ã.
We denote by (A, μ(·|A), TA) the system induced by T on A. The natural extension

of this induced system can also be described by a two-sided shift T on the set A = {x =
(xn)n∈Z ∈ AZ, for all n ∈ Z, TA(xn) = xn+1}, with the measure μ defined in the same
way as μ̃.

We want to prove that the two systems (Ã, μ̃
Ã

, T̃
Ã
) and (A, μ, T ) are isomorphic. We

define the map ϕ as

ϕ :
Ã → A

x �→ ((T̃ n

Ã
(x))0)n∈Z.

The map ϕ consists in keeping only the terms of the sequence x that belong to A.
We clearly have that ϕ ◦ T̃

Ã
= T ◦ ϕ and that μ is the pushforward measure μ̃

Ã
◦ ϕ−1:

the map ϕ is a factor map from (Ã, μ̃
Ã

, T̃
Ã
) to (A, μ, T ).

We now prove that ϕ is an isomorphism. Let y = (yn)n∈Z ∈ A. Let n ∈ Z. From yn, we
can construct the finite sequence of the iterates of yn:

s(yn) := (yn, T (yn), . . . , T rA(yn)−1(yn)),

stopping just before yn+1 = T rA(yn)(yn). Then the sequence x obtained by concatenating
the sequences s(yn) for all n ∈ Z is, by construction, a sequence of Ã such that ϕ(x) = y.

Let us prove that ϕ is one-to-one. Let w, x ∈ Ã such that ϕ(w) = ϕ(x). Then
w0 = x0, which implies that for any n ∈ N, T n(w0) = T n(x0), that is, xn = wn. Let
j0 := max{j < 0, T̃ j (w) ∈ Ã} and j1 := max{ j < 0, T̃ j (x) ∈ Ã}. The existence of
the integers j0 and j1 is assured by Poincaré’s recurrence theorem applied to T̃ −1.
Note that T̃ j0(w) = T̃ −1

Ã
(w) and T̃ j1(x) = T̃ −1

Ã
(x). Since ϕ(w) = ϕ(x), we get that

T̃ j0(w) = T̃ j1(x), that is, wj0 = xj1 . The integer −j0 is the return time of wj0 in A,
which implies that j0 = j1, and wn = xn for n � j0. By induction, we prove that w = x,
and ϕ is an isomorphism, which concludes the proof.

COROLLARY 28. The system (Ẽg , μ̃g , K̃g) is a natural extension of the system
(Eg , μg , Kg).

PROPOSITION 29. The partition P̃ := π−1(P) is a generator of the system

(Ẽg , μ̃g , K̃g).

Proof. μg-almost every point a ∈ Eg is associated to a unique sequence (Ca
n)n�0 of

C N∪{0} such that for any n ∈ N ∪ {0}, Kn
g(a) ∈ ECa

n
: the sequence (Ca

n)n�0 can be
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viewed as the P-name of the point a. Denote by φP the application defined almost
everywhere on Eg by φP(a) = (Ca

n)n�0. Denote by ν the image measure of μg by φP
and by σ the left shift on C N∪{0}. The application φP is a factor map from the system
(Eg , μg , Kg) to the one-sided Bernoulli shift (C N∪{0}, ν, σ). From Proposition 10, the
partition P is a generator of the system (Eg , μg , Kg). Therefore, the application φP is an
isomorphism.

We can construct a natural extension of the system (C N∪{0}, ν, σ) the same way we did
for K . Doing so, we construct the system (C Z, ν̃, σ), which is a two-sided Bernoulli shift
on C Z. Since the natural extensions of a system are isomorphic to one another, we deduce
from the previous lemma that the systems (C Z, ν̃, σ) and (Ẽg , μ̃G, K̃g) are isomorphic,
and thus conclude the proof.

From this partition P̃, we construct the set

P
X̃

:= {K̃k
(ẼC), C ∈ C, 0 � k � |C| − 1}.

This family is obtained by ‘unfolding’ the partition P̃ on the two towers: each path C of
C is not only described by the first atom ẼC , but by the sequence of successive images of
this atom by K̃.

LEMMA 30. The set P
X̃

is a partition of X̃.

Proof. Two distinct sets of P
X̃

are clearly disjoint.
However, let (ω, e, x) ∈ X̃. Almost surely, there exists k ∈ N ∪ {0} such that e−k = (g)

(applying Poincaré recurrence theorem to K̃−1
). Let k0 := min{k ∈ N ∪ {0}, e−k = (g)}.

The integer −k0 corresponds to the last visit of the greedy base in the past orbit of (ω, e, x).
Almost surely, there exists a unique C ∈ C such that K̃−k0

(ω, e, x) ∈ ẼC . Since k0 is
minimal, we have 0 � k0 � |C| − 1, and (ω, e, x) ∈ K̃k0

(ẼC).

PROPOSITION 31. The partition P
X̃

is a generator of the system (X̃, μ̃, K̃).

Proof. The goal is to prove that almost every point in X̃ is uniquely determined by its
P

X̃
-name.
Let (ω, e, x) ∈ X̃. Almost surely, we can define the integer k0 as in the previous proof:

k0 := min{k ∈ N ∪ {0}, e−k = (g)}.

We note a := K̃−k0
(e, x) ∈ Ẽg . Almost surely, a is characterized by its P̃-name (Cn)n∈Z.

To each path, Cn corresponds to a unique sequence of length |Cn| of atoms of P
X̃

:

the sequence (K̃k
(ẼCn), 0 � k � |Cn| − 1). Therefore, a is characterized by the unique

sequence (Pn)n∈Z of elements of P
X̃

such that for any n ∈ Z,

K̃n
(a) ∈ Pn.
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We deduce that the point (ω, e, x) is uniquely determined by the sequence
(Pn+k)n∈Z.

We then define the isomorphism ϕ, which associates to almost every point in X̃ its
P

X̃
-name. We denote by η the image measure of μ̃ by ϕ and by σ the left shift on PZ

X̃
.

Then ϕ is a factor map from (X̃, μ̃, K̃) to (PZ

X̃
, η, σ).

The measure η is the Markov measure generated by the invariant distribution
(μ̃(P ))P∈P

X̃
and the following transition probabilities.

• From an atom K̃k
(ẼC) with C ∈ C and 0 � k � |C| − 2, the process goes to the atom

K̃k+1
(ẼC) with probability 1.

• From an atom K̃|C|−1
(ẼC) with C ∈ C, the process can go to ẼC′ for any C′ ∈ C with

probability μg(EC′).
Therefore, we can identify the natural extension (X̃, μ̃, K̃) with a Markov shift on PZ

X̃
.

This Markov shift is irreducible and recurrent, since K̃ is ergodic. Moreover, it is aperiodic
(the atom [g]0 × {(g)} × [0, 1/β[ can appear twice in a row, for example). Proposition 2
on pp. 579 of [9] implies that the partition P

X̃
is weak-Bernoulli, and the system (X̃, μ̃, K̃)

is isomorphic to a Bernoulli shift. This concludes the proof of Theorem 26.

3.4. Open questions.
(1) Can we generalize the extensions of this paper to any β > 2? We must take

into account the different branches of the greedy and lazy transformations in the
construction of the natural extension, especially the branches that induce a return to
a base.

(2) It seems natural to apply this kind of construction to other dynamical systems, either
deterministic or random ones. It seems that it can be generalized to random systems
with piecewise linear maps, even when the branches have different slopes. Indeed,
with the construction of the towers, we can keep track of the exact branch that is
being applied at each step.

However, systems based on continued fraction expansions should pose many more
difficulties. In [10], the authors highlight a bijection between the β parameter of the
non-integer base expansions and the λ parameter of λ-continued fractions. The first
question would be to identify the analog of the greedy and lazy transformations in
this case, and then to closely study this bijection.

(3) The description of the extension (X, μ, K) provides a better understanding of the
random β-transformation. The extension shows off some nice renewal times at each
passage to the greedy base, which provided a proof of the Bernoullicity of the natural
extension. We can hope to get limit theorems as well thanks to this property. Indeed,
in [18], Young describes a certain class of dynamical systems with renewal properties
on reference sets. Young shows that the tail distribution of the return time to this
reference set is directly linked to the convergence to equilibrium and limit theorems.
In our setup, an estimation of the length of paths of C should help in this direction.
Could we then obtain a central limit theorem for the digit sequences in base β

following a fixed sequence ω? Or an average on ω?
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(4) Our construction heavily relies on the independent choice of the transformations at
each step. Could we adapt some of these constructions to more general stationary
measures on �? For example, Markov measures?
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