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For s ∈ [ 1
2
, 1), let u solve (∂t − Δ)su = V u in Rn × [−T, 0] for some T > 0 where

||V ||C2(Rn×[−T,0]) < ∞. We show that if for some 0 < K < T and ε > 0

−
∫
[−K, 0]

u2(x, t)dt � Ce−|x|2+ε ∀x ∈ Rn,

then u ≡ 0 in Rn × [−T, 0].
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1. Introduction

Landis and Oleinik in [28] asked the following question:
Question A: Let u be a bounded solution to the following parabolic differential

inequality

|Δu − ut| � C(|u| + |∇u|) (1.1)

in Rn × [−T, 0] such that for some ε > 0

|u(x, 0)| � Ce−|x|2+ε

,∀x ∈ Rn. (1.2)

Then is u ≡ 0 in Rn × [−T, 0]?
In other words, if a solution u to (1.1) decays more than the Gaussian as |x| → ∞,

then is u ≡ 0? This is a very natural question in the study of parabolic partial
differential equations. This question was answered in affirmative in the work [17]
where among other things, the authors showed that the following decay estimate
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2 A. Banerjee and A. Ghosh

at infinity holds for bounded solutions to (1.1) provided

||u(·, 0)||L2(B1) > 0.

• ||u(·, 0)||L2(B1(x)) � e−N |x|2 log |x|, |x| � N,

where N is some large universal constant.
(1.3)

Now using estimate (1.3), the answer to the Landis–Oleinik conjecture is seen as
follows:

Assume that the decay as in (1.2) holds. Since

e−NR2 log R � e−R2+ε

,

as R → ∞, thus from (1.3) it follows that u(·, 0) ≡ 0 in B1. Now by applying the
space like strong unique continuation result in [14, 15] we deduce that u(·, 0) ≡ 0
in Rn. Subsequently by applying the backward uniqueness result in [13, 19, 34] we
find that u ≡ 0 in Rn × (−T, 0].

We also refer to [18, Theorem 4] for a related result. See also [16] for a further
sharpening of the result in [18]. The proof of inequality (1.3) in [17] is based on a
fairly non-trivial application of a Carleman estimate derived in the pioneering work
of Escauriaza–Fernandez–Vessella in [14, 15] on space like strong unique continua-
tion for local parabolic equations combined with an appropriate rescaling argument
inspired by ideas in [12]. It is to be noted that such results are also of interest in
control theory, see for instance [32]. They have also turned out to be useful in the
regularity theory for Navier Stokes equations, see [42].

Finally, in order to put things in the right historical perspective, we comment
on some related decay results in the stationary case. In 1960s, Landis (see [26])
conjectured that if v is a bounded solution to

Δv = Wv in Rn, (1.4)

with ||W ||L∞ � 1 and |v(x)| � Ce−C|x|1+ , then v ≡ 0. This conjecture was dis-
proved by Meshkov in [31] who constructed a complex valued W and a non-trivial
v satisfying |v(x)| � Ce−C|x|4/3

. Bourgain and Kenig in [12] showed that if v is a
bounded solution to (1.4) with ||W ||L∞ � 1, then one has∫

B1(x0)

v2(x)dx � Ce−|x0|4/3 log |x0|. (1.5)

Estimate (1.5) constitutes a sharp quantitative decay result for (1.4) in view of
Meshkov’s result and moreover, it was used by the authors in [12] in their res-
olution of Anderson localization for the Bernoulli problem. It remains an open
problem whether Landis’s conjecture is true for real valued W and v. In [25]
Kenig–Silvestre–Wang proved Landis’s conjecture in R2 for W � 0. This was accom-
plished by reducing the original equation to an inhomogeneous d− bar (∂) problem
and then by applying a Carleman estimate for ∂. Subsequently, the sign assump-
tion on W has been removed in [30] which thus resolves the Landis conjecture in
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the planar case. We also refer to [39] for a Landis-type decay result for fractional
Laplacian-type equations of the form

(−Δ)su = V u.

1.1. Statement of the main results

In this work, motivated by the historical developments in the local case outlined
above, we derive the following non-local analogue of the estimate in (1.3). We refer
to § 2 for the relevant notions and notations. The following is our main result.

Theorem 1.1. For s ∈ [12 , 1), let u ∈ Dom(Hs) be a solution to

(∂t − Δ)su = V u, (1.6)

in Rn × [−T, 0] where ||V ||C2(Rn×[−T, 0]) � C. Assume that for some 0 < K < T

||u||
L2
(

B√
K/2×

(
−K

4 ,0
]) � θ > 0. (1.7)

Then there exists universal M > 1, large enough depending on θ, s, n, K and C,
such that ∀x0 ∈ Rn with |x0| � M we have∫

B2(x0)×(−K,0]

u2dxdt > e−M |x0|2 log |x0|. (1.8)

As a consequence of theorem 1.1, the following ‘average in time’ version of the
Landis–Oleinik type result follows in our non-local setting.

Corollary 1.2. For s ∈ [12 , 1), let u ∈ Dom(Hs) be a solution to (1.6) in Rn ×
[−T, 0]. If for some ε > 0 and 0 < K < T , we have that

−
∫

[−K,0]

u2(x, t)dt � Ce−|x|2+ε

, ∀x ∈ Rn, (1.9)

then u ≡ 0 in Rn × [−T, 0].

The following remarks are in order.

Remark 1.3. The condition that s � 1/2 in theorem 1.1 and corollary 1.2 is
presently a technical obstruction. We need it very crucially in our analysis in the
proof of the key Carleman estimate in theorem 3.5. We also need an average in
time decay assumption in corollary 1.2 instead of the pointwise decay assumption
in question A. We refer to the subsection 1.2 below for discussion on both these
aspects as to why such restrictions are necessary in our present work.

Remark 1.4. We also mention that for the fractional heat-type operators and the
associated extension problem, so far all the strong unique continuation results in the
literature which have used Carleman estimates or the frequency function approach
as in [2, 3, 5, 8, 21] have required differentiability of the zero-order perturbation of
the weighted Dirichlet to Neumann map. It remains to be seen whether Carleman
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4 A. Banerjee and A. Ghosh

estimates can be established for the extension problem in (2.9) which only has
bounded zero-order perturbation of the associated Dirichlet to Neumann map (i.e.
when limxn+1→0+ xa

n+1∂xn+1U = V u with V ∈ L∞). If one can achieve the above,
then it is possible to upgrade our results for solutions to fractional differential
inequality of the type

|(∂t − Δ)su| � C|u|.

1.2. Key ideas in the proof of theorem 1.1:

The following are the key steps in the proof of our main result theorem 1.1.
Step 1: Via a compactness argument as in lemma 3.1 with a monotonicity in

time result in [3, Lemma 3.1], we first show that a non-degeneracy condition at
the boundary for the non-local problem as in (1.7) implies a similar non-vanishing
condition for the corresponding extension problem (2.11). See lemma 3.3 below.

Step 2: Then by means of a quantitative monotonicity in time result as in lemma
3.4 and a quantitative Carleman-type estimate as in theorem 3.5, we show by
adapting the rescaling arguments in [17] that the solution U to the corresponding
extension problem satisfies a similar decay estimate at infinity as in (1.8) above.
See theorem 4.3 below. We would like to mention that both lemma 3.4 and the
Carleman estimate in theorem 3.5 are subtle variants of the estimates recently
established by two of us in [8]. The main new feature of both the results is a
certain quantitative dependence of the estimates on the rescaling parameter R
(see (3.15) below) as R → ∞. This is precisely where we require s � 1/2.

Step 3: The decay estimate at infinity for the extension problem is then trans-
ferred to the non-local problem by using a propagation of smallness estimate derived
in [2]. Such a propagation of smallness estimate constitutes the parabolic analogue
of the one due to Ruland and Salo in [38]. It is to be noted that via the propagation
of smallness estimate in (4.30) below, the transfer of the decay information from the
bulk in the extension problem (2.11) to the boundary in the non-local problem (1.6)
occurs only in ‘space-time’ regions and not at a given time level. This is precisely
why we require an ‘average in time’ decay assumption in corollary 1.2 instead of a
pointwise decay assumption at t = 0 for the non-local Landis–Oleinik type result
to hold.

For various results on unique continuation for non-local fractional Laplacian-type
equations and its time-dependent counterpart, we refer to [2–6, 8–11, 20, 21, 27,
35–40, 44, 45], each of which are either based on Carleman estimates as in [1] or
on the frequency function approach as in [23] followed by a blowup argument.

The paper is organized as follows. In § 2, we introduce some basic notations and
notions and gather some known results that are relevant for our work. In § 3, we
prove our key estimates in lemma 3.4 and theorem 3.5. In § 4, we finally prove our
main results theorem 1.1 and corollary 1.2.

2. Preliminaries

In this section, we introduce the relevant notation and gather some auxiliary results
that will be useful in the rest of the paper. Generic points in Rn × R will be denoted
by (x0, t0), (x, t), etc. For an open set Ω ⊂ Rn

x × Rt we indicate with C∞
0 (Ω) the
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set of compactly supported smooth functions in Ω. We also indicate by Hα(Ω) the
non-isotropic parabolic Hölder space with exponent α defined in [29, p. 46]. The
symbol S (Rn+1) will denote the Schwartz space of rapidly decreasing functions in
Rn+1. For f ∈ S (Rn+1) we denote its Fourier transform by

f̂(ξ, σ) =
∫

Rn×R

e−2πi(〈ξ,x〉+σt)f(x, t)dxdt = Fx→ξ(Ft→σf).

The heat operator in Rn+1 = Rn
x × Rt will be denoted by H = ∂t − Δx. Given a

number s ∈ (0, 1) the notation Hs will indicate the fractional power of H that in
[41, formula (2.1)] was defined on a function f ∈ S (Rn+1) by the formula

Ĥsf(ξ, σ) = (4π2|ξ|2 + 2πiσ)s f̂(ξ, σ), (2.1)

where we have chosen the principal branch of the complex function z → zs.
Consequently, we have that the natural domain of definition of Hs is as follows:

H 2s = Dom(Hs) = {f ∈ S ′(Rn+1) | f,Hsf ∈ L2(Rn+1)}
= {f ∈ L2(Rn+1) | (ξ, σ) → (4π2|ξ|2 + 2πiσ)sf̂(ξ, σ) ∈ L2(Rn+1)},

(2.2)

where the second equality is justified by (2.1) and Plancherel theorem. Such a
definition via the Fourier transform is equivalent to the one based on Balakrishnan
formula (see [41, (9.63) on p. 285])

Hsf(x, t) = − s

Γ(1 − s)

∫ ∞

0

1
τ1+s

(
PH

τ f(x, t) − f(x, t)
)
dτ, (2.3)

where

PH
τ f(x, t) =

∫
Rn

G(x − y, τ)f(y, t − τ)dy = G(·, τ) 
 f(·, t − τ)(x) (2.4)

the evolutive semigroup, see [41, (9.58) on p. 284]. We refer to § 3 in [5] for relevant
details.

Henceforth, given a point (x, t) ∈ Rn+1 we will consider the thick half-space
Rn+1 × R+

xn+1
. At times it will be convenient to combine the additional vari-

able xn+1 > 0 with x ∈ Rn and denote the generic point in the thick space
Rn

x × R+
xn+1

:= Rn+1
+ with the letter X = (x, xn+1). For x0 ∈ Rn and r > 0

we let Br(x0) = {x ∈ Rn | |x − x0| < r}, Br(X) = {Z = (z, zn+1) ∈ Rn × R | |x −
z|2 + |xn+1 − zn+1|2 < r2}. We also let B+

r (X) = Br(X) ∩ {(z, zn+1 : zn+1 > 0}.
When the centre x0 of Br(x0) is not explicitly indicated, then we are taking x0 = 0.
Similar agreement for the thick half-balls B+

r ((x0, 0)). We will also use the Qr for
the set Br × [t0, t0 + r2) and Qr for the set Br × [t0, t0 + r2). Likewise we denote
Q+

r = Qr ∩ {(x, xn+1) : xn+1 > 0}. For notational ease ∇U and div U will respec-
tively refer to the quantities ∇XU and divX U . The partial derivative in t will be
denoted by ∂tU and also at times by Ut. The partial derivative ∂xi

U will be denoted
by Ui. At times, the partial derivative ∂xn+1U will be denoted by Un+1.
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We next introduce the extension problem associated with Hs. Given a number
a ∈ (−1, 1) and a u : Rn

x × Rt → R we seek a function U : Rn
x × Rt × R+

xn+1
→ R

that satisfies the boundary-value problem{
LaU

def= ∂t(xa
n+1U) − div(xa

n+1∇U) = 0,
U((x, t), 0) = u(x, t), (x, t) ∈ Rn+1.

(2.5)

The most basic property of the Dirichlet problem (2.5) is that if

s =
1 − a

2
∈ (0, 1) (2.6)

and u ∈ Dom(Hs), then we have the following convergence in L2(Rn+1)

2−a Γ( 1−a
2 )

Γ( 1+a
2 )

∂a
xn+1

U((x, t), 0) = −Hsu(x, t), (2.7)

where ∂a
xn+1

denotes the weighted normal derivative

∂a
xn+1

U((x, t), 0) def= lim
xn+1→0+

xa
n+1∂xn+1U((x, t), xn+1). (2.8)

When a = 0 (s = 1/2), problem (2.5) was first introduced in [24] by Frank Jones,
who in such case also constructed the relevant Poisson kernel and proved (2.7).
More recently Nyström and Sande in [33] and Stinga and Torrea in [43] have
independently extended the results in [24] to all a ∈ (−1, 1).

With this being said, we now suppose that u be a solution to (1.6) and consider
the weak solution U of the following version of (2.5) (for the precise notion of weak
solution of (2.9) we refer to [5, Section 4])⎧⎪⎪⎨⎪⎪⎩

LaU = 0 in Rn+1 × R+
xn+1

,

U((x, t), 0) = u(x, t) for (x, t) ∈ Rn+1,

∂a
xn+1

U((x, t), 0) = 2a Γ( 1+a
2 )

Γ( 1−a
2 )

V (x, t)u(x, t) for (x, t) ∈ Rn × (−T, 0].
(2.9)

To simplify notation, we will let 2a Γ( 1+a
2 )

Γ( 1−a
2 )

V (x, t) as our new V (x, t). Note that the

third equation in (2.9) is justified by (1.6) and (2.7). From now on, a generic point
((x, t), y) will be denoted as (X, t) with X = (x, y). Further, as in [5, Lemma 5.3]
( see also [2, Lemma 2.2]), the following regularity result for such weak solutions
was proved. Such result will be relevant to our analysis. For simplicity, we assume
that T > 4. We refer to [29, Chapter 4] for the relevant notion parabolic Hölder
spaces.

Lemma 2.1. Let U be a weak solution of (2.9) where V ∈ C2(Rn × (−T, 0]). Then
there exists α′ > 0 such that one has up to the thin set {xn+1 = 0}

Ui, Ut, xa
n+1Uxn+1 ∈ Hα′

.

Moreover, the relevant Hölder norms over a compact set K are bounded by∫
U2xa

n+1dXdt over a larger set K ′ which contains K. We also have that ∇2
xU ∈
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Cα′
loc up to the thin set {xn+1 = 0}. Furthermore, we have that the following estimate

holds for i, j = 1, .., n and x0 ∈ Rn∫
B
+
1 ((x0,0))×(−1,0]

(U2
t + U2

tt)x
a
n+1 +

∫
B
+
2 ((x0,0))×(−4,0]

|∇Ut|2xa
n+1

+
∫

B
+
2 ((x0,0))×(−4,0]

|∇Uij |2xa
n+1 � C(1 + ||V ||C2)

∫
B
+
2 ((x0,0))×(−4,0]

U2xa
n+1,

(2.10)
where C is some universal constant.

We also record the following result as in [5, Corollary 5.3] that will be needed in
our work.

Lemma 2.2. Let U be as in (2.9). Then we have that ||U ||L∞(Rn+1
+ ) � C for some

universal C depending on ||u||H 2s(Rn+1) and ||V ||C2 .

For notational purposes it will be convenient to work with the following backward
version of problem (2.9).⎧⎪⎨⎪⎩

xa
n+1∂tU + div(xa

n+1∇U) = 0 in Rn+1
+ ×[0, T ),

U(x, 0, t) = u(x, t)
∂a

xn+1
U(x, 0, t) = V u in Rn × [0, T ).

(2.11)

We note that the former can be transformed into the latter by changing t → −t.
The corresponding extended backward parabolic operator will be denoted as

H̃s := xa
n+1∂t + div

(
xa

n+1∇
)
. (2.12)

We now collect some auxiliary results that will be needed in the proof of our
main Carleman estimate in theorem 3.5.

Lemma 2.3 [Lemma 2.3 in [8], [14]]. Let s ∈ (0, 1). Define

θs(t) = ts
(

log
1
t

)1+s

. (2.13)

Then the solution to the ordinary differential equation

d

dt
log
(

σs

tσ′
s

)
=

θs(λt)
t

, σs(0) = 0, σ′
s(0) = 1,

where λ > 0, has the following properties when 0 � λt � 1:

(1) te−N � σs(t) � t,

(2) e−N � σ′
s(t) � 1,

(3) |∂t[σs log σs

σ′
st ]| + |∂t[σs log σs

σ′
s
]| � 3N ,
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(4)
∣∣∣σs∂t( 1

σ′
s
∂t[log σs

σ′
s(t)t ])

∣∣∣ � 3NeN θs(γt)
t ,

where N is some universal constant.

Lemma 2.4 Trace inequality. Let f ∈ C∞
0 (Rn+1

+ ). There exists a constant
C0 = C0(n, a) > 0 such that for every A > 1 one has∫

Rn

f(x, 0)2dx � C0

(
A1+a

∫
R

n+1
+

f(X)2xa
n+1dX + Aa−1

∫
R

n+1
+

|∇f(X)|2xa
n+1dX

)
.

Lemma 2.5. Assume that N � 1, h ∈ C∞
0 (Rn+1

+ ) and the inequality

2b

∫
R

n+1
+

xa
n+1|∇h|2e−|X|2/4bdX +

n + 1 + a

2

∫
R

n+1
+

xa
n+1h

2e−|X|2/4bdX

� N

∫
R

n+1
+

xa
n+1h

2e−|X|2/4bdX

holds for b � 1
12N . Then∫

B
+
2r

h2xa
n+1dX � eN

∫
B
+
r

h2xa
n+1dX (2.14)

when 0 < r � 1/2.

We also need the following Hardy-type inequality in the Gaussian space which
can be found in lemma 2.2 in [3]. This can be regarded as the weighted analogue
of lemma 3 in [15].

Lemma 2.6 (Hardy-type inequality). For all h ∈ C∞
0 (Rn+1

+ ) and b > 0 the following
inequality holds∫

R
n+1
+

xa
n+1h

2 |X|2
8b

e−|X|2/4bdX � 2b

∫
R

n+1
+

xa
n+1|∇h|2e−|X|2/4bdX

+
n + 1 + a

2

∫
R

n+1
+

xa
n+1h

2e−|X|2/4bdX.

Finally, we also need the following interpolation-type inequality as in
[2, Lemma 2.4].

Lemma 2.7. Let s ∈ (0, 1) and f ∈ C2
0 (Rn × R+). Then there exists a universal

constant C such that for any 0 < η < 1 the following holds

||∇xf ||L2(Rn×{0}) � Cηs
(
||xa/2

n+1∇∇xf ||L2(Rn×R+) + ||xa/2
n+1∇xf ||L2(Rn×R+)

)
+ Cη−1||f ||L2(Rn×{0}). (2.15)
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In particular when n = 1, we get

||ft||L2(R×{0}) � Cηs
(
||xa/2

n+1∂xn+1ft||L2(R×R+) + ||xa/2
n+1ftt||L2(R×R+)

+ ||xa/2
n+1ft||L2(R×R+)

)
+ Cη−1||f ||L2(R×{0}).

(2.16)

It should be noted that in (2.16), f is a function of t and xn+1.

3. The key lemmas

For the simplicity of exposition, we will assume that K = 1 in theorem 1.1 and
corollary 1.2. We will also assume that

||V ||C2
(x,t)(R

n×(−T,0)) � 1. (3.1)

We first show that via a compactness argument, the non-vanishing condition at
the boundary for the non-local problem (1.6) as in (1.7) implies a similar non-
vanishing for the extension problem (2.11). Since the proof is via compactness, we
show this result for a larger ‘compact’ family of solutions to (2.11).

Lemma 3.1 (Bulk non-degeneracy). Let W be a solution to{
xa

n+1∂tW + div(xa
n+1∇W ) = 0 in Rn+1

+ × [0, 25),
∂a

xn+1
W (x, 0, t) = Ṽ W in B5 × [0, 25),

(3.2)

where Ṽ satisfies (3.1). Furthermore, assume that ||W ||L∞(Q+
5 ) � C and∫

Q1/2
W 2(x, 0, t)dxdt � θ > 0. Then there exists a constant κ := κ(θ, a, n) > 0

such that ∫
Q

+
1/2

xa
n+1W

2dX dt � κ. (3.3)

Proof. On the contrary if there does not exist any κ, then for each j ∈ N there
exists Wj such that

∫
Q1/2

W 2
j (x, 0, t)dxdt � θ,∫

Q
+
1/2

xa
n+1W

2
j dX dt <

1
j
, (3.4)

and

||Wj ||L∞(Q+
5 ) � C. (3.5)

Moreover, Wj solves the problem{
xa

n+1∂tWj + div(xa
n+1∇Wj) = 0 in Q+

5

∂a
xn+1

Wj(x, 0, t) = VjWj in Q5,
(3.6)

with Vj ’s satisfying the bound in (3.1).
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Now from the regularity estimates in lemma 2.1 and (3.5), we note that the Hölder
norms of W ′

js are uniformly bounded. So using Arzelá–Ascoli, possibly passing
through a subsequence, Wj → W0 in Hα(Q+

2 ) up to {xn+1 = 0} for some α > 0.
Consequently, using (3.4) and uniform convergence, we have∫

Q
+
1/2

xa
n+1W

2
0 dX dt = 0. (3.7)

Again
∫

Q1/2
Wj(x, 0, t)2dxdt � θ implies by uniform convergence that∫

Q1/2
W0(x, 0, t)2dxdt � θ > 0. This contradicts (3.7) and thus the conclusion

follows. �

We now record the following important consequence of lemma 3.1.

Lemma 3.2. Let U be as in (2.11) and
∫

Q1/2
u2(x, t)dxdt � θ > 0. Then there exists

γ > 0 and some t0 ∈ [0, 1
4 − γ) such that∫

B
+
1/2

xa
n+1U

2(X, t0) dX � κ. (3.8)

Proof. We choose t0 as

t0 = inf
{

t ∈ (0, 1/4) :
∫

B
+
1/2

xa
n+1U

2(X, t) dX � κ

}
. (3.9)

Thanks to (3.3) (which also applies to U), the corresponding set is non-empty and
t0 exists. The existence of γ follows from the fact that from (3.3), lemma 2.1 and
the definition of t0 as in (3.9), we have

κ �
∫

Q
+
1/2

xa
n+1U

2 =
∫ t0

0

∫
B
+
1/2

xa
n+1U

2 +
∫ 1/4

t0

∫
B
+
1/2

xa
n+1U

2 � κt0 +
(

1
4
− t0

)
C̃

(3.10)

where C̃ = C2
∫

B
+
1/2

xa
n+1dX, with C as in lemma 3.1, i.e. ||U ||L∞(Q+

5 ) � C. From

(3.10) we find using t0 � 1/4 that the following inequality holds

κ � κ

4
+
(

1
4
− t0

)
C̃,

which in turn implies that (
1
4
− t0

)
� 3κ

4C̃
. (3.11)

Therefore, γ can be taken as 3κ
4C̃

which implies the desired conclusion. �

Lemma 3.2 combined with the monotonicity in time result in [3, Lemma 3.1]
implies the following non-degeneracy estimate for U in space-time.
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Lemma 3.3. With the assumptions as in lemma 3.2 above, we have that there exist
0 < δ̃ < γ (γ as in lemma 3.2 above) and κ̃ ∈ (0, 1) such that for t̃ ∈ [t0, t0 + δ̃),
we have ∫

B
+
1

xa
n+1U

2(X, t̃)dX � κ̃. (3.12)

Proof. First, we note that from lemma 3.2, there exist γ > 0 and t0 ∈ [0, 1
4 − γ)

such that ∫
B
+
1/2

xa
n+1U

2(X, t0)dX � κ. (3.13)

Then by applying the monotonicity result in [3, Lemma 3.1], we have that for
c0, c1 ∈ (0, 1) depending on n, s, κ and C in lemma 2.2, the following inequality
holds for all t ∈ [t0, t0 + c0)∫

B
+
1

xa
n+1U

2(X, t)dX � c1κ. (3.14)

We now let δ̃ = min(c0, γ), κ̃ = c1κ and thus the conclusion follows. �

3.1. Rescaled situation

Fix some x0 ∈ Rn with |x0| � M where M is large enough and will be adjusted
later. Let Rρ = 2|x0| where ρ will be chosen as in theorem 4.1 corresponding to κ̃ in
lemma 3.3. Then given t̃ ∈ [t0, t0 + δ̃) with δ̃ as in lemma 3.3, the rescaled function

UR(X, t) := U(RX + (x0, 0), R2t + t̃) (3.15)

satisfies the following estimate as a consequence of lemma 3.3

R(n+a+1)

∫
B
+
ρ

U2
R(X, 0)xa

n+1 dX =
∫

B
+
2|x0|((x0,0))

U2(X, t̃)xa
n+1 dX

�
∫

B
+
1

xa
n+1U

2(X, t̃)dX � κ̃. (3.16)

Here onwards we shall look into the rescaled scenario and derive results for the
rescaled function UR and eventually we will scale back to U . We have that
corresponding to U in (2.11), UR satisfies the following equation:⎧⎪⎨⎪⎩

xa
n+1∂tUR + div(xa

n+1∇UR) = 0 in B+
5 ×[0, 1

R2 ),
UR(x, 0, t) = uR(x, t)
∂a

xn+1
UR(x, 0, t) = R2sVRUR in B5 × [0, 1

R2 ),
(3.17)

where

VR(x, t) := V (Rx + (x0, 0), R2t + t̃). (3.18)

We now derive our first monotonicity result which is the non-local counterpart of
[17, Lemma 1]. It is to be mentioned that although similar results have appeared
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in the previous works [3, 8] which deals with the local asymptotic of solutions to
(2.11), the new feature of the result in lemma 3.4 below is the validity of a similar
monotonicity result in time for t ∈ [0, 1/R2] under a certain asymptotic behaviour
(in R) of the weighted Dirichlet to Neumann map as R → ∞. More precisely, we
are interested in deriving an inequality as in (3.20) below when the zero-order
perturbation Ṽ := R2sVR of the weighted Neumann derivative ∂a

xn+1
UR satisfies

||Ṽ ||L∞ � R2s. Note that such a bound on Ṽ holds in view of (3.1).

Lemma 3.4 (Monotonicity). Let UR be as in (3.15) and

R(n+a+1)

∫
B
+
ρ

U2
R(X, 0)xa

n+1 dX � κ̃, (3.19)

for some κ̃, ρ ∈ (0, 1) and R � 10. Then there exists a large universal constant
M = M(n, a, κ) such that

M

∫
B
+
2ρ

U2
R(X, t)xa

n+1 dX � R−(n+a+1), (which follows from (3.16)), (3.20)

for all 0 � t � c
R2 , where c is sufficiently small.

Proof. For simplicity, we show it for ρ = 1. Let f = φ UR, where φ ∈ C∞
0 (B2) is a

spherically symmetric cutoff such that 0 � φ � 1 and φ ≡ 1 on B3/2. Considering
the symmetry of φ in xn+1 variable and the fact that UR solves (3.17), we obtain

⎧⎪⎨⎪⎩
xa

n+1ft + div(xa
n+1∇f) = 2xa

n+1〈∇U,∇φ〉 + div(xa
n+1∇φ)U in B+

5 ×[0, 1
R2 ),

f(x, 0, t) = u(x, t)φ(x, 0)
∂a

xn+1
f(x, 0, t) = R2sVRf in B5 × [0, 1

R2 ).
(3.21)

Define

H(t) =
∫

R
n+1
+

xa
n+1f(X, t)2G(Y,X, t)dX,

where G(Y, X, t) = p(y, x, t)pa(xn+1, yn+1; t), and p(y, x, t) is the heat-kernel
associated to (∂t − Δx) and pa is the fundamental solution of the Bessel operator
∂2

xn+1
+ a

xn+1
∂xn+1 . It is well-known that pa is given by the formula

pa(xn+1, yn+1; t) = (2t)−
1+a
2 e−

x2
n+1+y2

n+1
4t

(xn+1yn+1

2t

) 1−a
2

I a−1
2

(xn+1yn+1

2t

)
,

(3.22)
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where Iν(z) the modified Bessel function of the first kind defined by the series

Iν(z) =
∞∑

k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + 1 + ν)
, |z| < ∞, | arg z| < π. (3.23)

Also, for t > 0, G = G(Y, ·) solves div(xa
n+1∇G) = xa

n+1∂tG. We refer the reader to
[22] for the relevant details. Differentiating with respect to t, we find

H ′(t) = 2
∫

xa
n+1fftG +

∫
xa

n+1f
2∂tG (3.24)

= 2
∫

xa
n+1fftG +

∫
f2div

(
xa

n+1∇G)
= 2

∫
xa

n+1fftG −
∫

xa
n+1〈∇(f2),∇G〉

= 2
∫

xa
n+1fftG +

∫
div(xa

n+1∇(f2))G + 2R2s

∫
{xn+1=0}

VRf2G

= 2
∫

fG (xa
n+1ft + div

(
xa

n+1 · ∇f
))

+ 2
∫

xa
n+1G|∇f |2 + 2R2s

∫
{xn+1=0}

VRf2G

= J1 + J2 + J3. (3.25)

• For every Y ∈ B+
1 and 0 < t � 1

R2 we have (keeping in mind equation (3.13)
in [3])

J1 � −Ce−
1

Nt NR4. (3.26)

This can be seen as follows. Following the proof of inequality (3.13) in [3],
we find

|J1| � Ce−
1

Nt

∫
B
+
2

xa
n+1(|∇UR|2 + U2

R). (3.27)

Since UR solves (3.17), by invoking the L∞ bounds on UR, xa
n+1∂xn+1UR, ∇xUR

using lemma 2.1, we find that (3.26) follows. We then observe that since t �
1/R2, for a different N , it follows from (3.26) that the following holds

J1 � Ce−
1

Nt . (3.28)

• We now recall the inequality in [3, (3.21)]. Keeping in mind that only L∞

norm of R2sVR appears in the expression, we find that for every Y ∈ B+
1 and

0 < t � 1/R2 one has

|J3| � C(n, a)R2s

(
A1+a

∫
f2Gxa

n+1dX +
n + a + 1

4t
Aa−1

∫
f2Gxa

n+1dX

+ Aa−1

∫
|∇f |2Gxa

n+1dX

)
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� C(n, a)R2s

(
t−

1+a
2

∫
f2Gxa

n+1dX + t−
1+a
2

∫
f2Gxa

n+1dX

+ t
1−a
2

∫
|∇f |2Gxa

n+1dX

)
(putting A ∼ 1√

t
). (3.29)

Combining (3.28) and (3.29) we obtain

H ′(t) � −Ce−1/Nt + 2
∫

xa
n+1G|∇f |2

− CR2st−
1+a
2 H(t) − CR2st

1−a
2

∫
|∇f |2Gxa

n+1dX. (3.30)

For 0 � t � c
R2 using (2.6) we have R2sts � 1, provided c is sufficiently small. This

in turn ensures that the second term absorbs the last one in (3.30). Thus, we find

H ′(t) � −Ce−1/Nt − CR2st−
1+a
2 H(t). (3.31)

As a conclusion we get(
eCR2st

1−a
2 H(t)

)′
� −CeR2st

1−a
2 e−1/Nt. (3.32)

Keeping in mind that 0 < t � c
R2 , integrating (3.32) from 0 to t we get using

lim
t→0+

H(t) = UR(Y, 0)2 (see [3, (3.6)]), (3.33)

that the following inequality holds

eCR2st
1−a
2 H(t) − UR(Y, 0)2 � −CN

∫ t

0

eR2sη
1−a
2 e−1/Nηdη

=⇒ MH(t) � UR(Y, 0)2 − CNteR2st
1−a
2 e−1/Nt.

Again integrating with respect to Y in B+
1 and exchanging the order of integra-

tion, using
∫ G(Y, X, t)ya

n+1dY = 1 and by renaming the variable Y as X we obtain
using (3.19)

M

∫
B
+
2

UR(X, t)2xa
n+1dX �

∫
B
+
1

UR(X, 0)2xa
n+1dX − CNteR2st

1−a
2 e−1/Nt

� κ̃R−(n+a+1) − CNteR2st
1−a
2 e−1/Nt � R−(n+a+1),

where we have used that for 0 � t � c
R2 , eR2st

1−a
2 is uniformly bounded and the

quantity e−
1

Nt can be made suitably small. The conclusion thus follows. �

We now state and prove our main Carleman estimate in the rescaled setting (3.17)
which is needed to obtain the desired lower bounds at infinity for solutions to the
extension problem (2.11). As remarked earlier, the main new feature of theorem 3.5
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is the validity of the Carleman estimate in (3.35) below in presence of the prescribed
limiting behaviour (in R) of the weighted Dirichlet to Neumann map as R → ∞.

Theorem 3.5 (Main Carleman estimate). Let s ∈ [12 , 1) and H̃s be the backward
in time extension operator in (2.12). Let w ∈ C∞

0 (B+
4 × [0, 1

eλ )) where λ = α
δ2 for

some δ ∈ (0, 1) sufficiently small. Furthermore, assume that ∂a
xn+1

w ≡ R2sVRw on
{xn+1 = 0}(with VR as in (3.18)) and

α � MR2, (3.34)

where M is a large universal constant. Then the following estimate holds

α2

∫
R

n+1
+ ×[c,∞)

xa
n+1σ

−2α
s (t) w2 G + α

∫
R

n+1
+ ×[c,∞)

xa
n+1σ

1−2α
s (t) |∇w|2 G (3.35)

� M

∫
R

n+1
+ ×[c,∞)

σ1−2α
s (t)x−a

n+1 |H̃sw|2 G

+ σ−2α
s (c)

{
− c

M

∫
t=c

xa
n+1 |∇w(X, c)|2 G(X, c) dX

+ Mα

∫
t=c

xa
n+1 |w(X, c)|2 G(X, c) dX

}
.

Here σs is as in lemma 2.3, G(X, t) = 1

t
n+1+a

2
e−

|X|2
4t and 0 < c � 1

5λ .

Proof. We partly follow the arguments as in the proof of theorem 3.1 in [8]. How-
ever, the reader will notice that the proof of estimate (3.35) involves some very
delicate adaptations due to the presence of an ‘amplified’ boundary condition as
in (3.17) for R → ∞. Before proceeding further, we mention that throughout the
proof, the solid integrals below will be taken in Rn × [c, ∞) where 0 < c � 1

λ and
we refrain from mentioning explicit limits in the rest of our discussion. Note that

x
− a

2
n+1H̃s = x

a
2
n+1

(
∂t + div(∇) +

a

xn+1
∂n+1

)
.

Define

w(X, t) = σα
s (t)e

|X|2
8t v(X, t).

Therefore,

div(∇w) = div
(

σα
s (t)e

|X|2
8t

(
∇v +

X

4t
v

))
= σα

s (t)e
|X|2
8t

[
div(∇v) +

〈X,∇v〉
2t

+
( |X|2

16t2
+

n + 1
4t

)
v

]
.
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Now we define the vector field

Z := 2t∂t + X · ∇. (3.36)

Note that Z is the infinitesimal generator of the parabolic dilations {δr} defined
by δr(X, t) = (rX, r2t). Then

x
− a

2
n+1σ

−α
s (t)e−

|X|2
8t H̃sw = x

a
2
n+1

[
div (∇v) +

1
2t
Zv +

(
n + 1 + a

4t
+

ασ′
s

σs

)
v

− |X|2
16t2

v +
a

xn+1
∂n+1v

]
.

Next we consider the expression∫
σ−2α

s (t)t−μx−a
n+1e

− |X|2
4t

(
tσ′

s

σs

)− 1
2

|H̃sw|2

=
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2
[
div (∇v) +

1
2t
Zv +

(
n + 1 + a

4t
+

ασ′
s

σs

)
v

− |X|2
16t2

v +
a

xn+1
∂n+1v

]2
, (3.37)

where

μ =
n − 1 + a

2
. (3.38)

Then we estimate integral (3.37) from below with an application of the algebraic
inequality ∫

P 2 + 2
∫

PQ �
∫

(P + Q)2 ,

where P and Q are chosen as

P =
x

a
2
n+1t

−μ+2
2

2

(
tσ′

s

σs

)− 1
4

Zv,

Q = x
a
2
n+1t

−μ
2

(
tσ′

s

σs

)− 1
4
[
div (∇v) +

(
n+ 1 + a

4t
+

ασ′
s

σs

)
v− |X|2

16t2
v +

a

xn+1
∂n+1v

]
.

We compute the terms coming from the cross product, i.e. from
∫

PQ. We write∫
PQ :=

4∑
k=1

Ik,

where

I1 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 1

2t
Zv

(
n + 1 + a

4t
+

ασ′
s

σs

)
v,
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I2 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 Zv

2t
div (∇v) ,

I3 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 Zv

2t

(
−|X|2

16t2

)
v,

I4 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 Zv

2t

a ∂n+1v

xn+1
.

The terms Ii’s for i = 1, 2, 3, 4 are handled as in [8]. We nevertheless provide
the details for the sake completeness.
Estimate for I1 :

I1 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 1

2t
Zv

(
n + 1 + a

4t
+

ασ′
s

σs

)
v.

We estimate the first term. By integrating by parts in X and t we have

n + 1 + a

8

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 1
2

Z
(

v2

2

)

=
n + 1 + a

8

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 1
2
(

t∂t(v2) +
〈

X

2
,∇(v2)

〉)
(3.39)

=
n + 1 + a

8

∫
xa

n+1t
−μ−2(μ + 1)

(
tσ′

s

σs

)− 1
2

v2

+
(n + 1 + a)

16

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
v2

−
(

n + 1 + a

8

)
c−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1v

2(X, c) dX

−
(

n + 1 + a

8

)∫
n + 1 + a

2
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 1
2

v2, (3.40)

where in the last line we used that div(Xxa
n+1) = (n + 1 + a)xa

n+1. If we now let

μ =
n − 1 + a

2
(3.41)

in (3.40), then the first and fourth terms on the right-hand side cancel each other.
Moreover, for this choice of μ, we find using integration by parts

α

2

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

) 1
2

Z
(

v2

2

)

= −α

4

∫
div(xa

n+1t
−n+3+a

2 Z)
(

tσ′
s

σs

) 1
2

v2 − α

4

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2
(

tσ′
s

σs

)′
v2
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− α

2
c−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫

t=c

xa
n+1v

2(X, c) dX

= −α

4

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2
(

tσ′
s

σs

)′
v2

− α

2
c−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1v

2(X, c) dX. (3.42)

Here we used that div(xa
n+1t

−n+3+a
2 Z) = 0. Therefore, for large enough α we obtain

for some universal N > 1

I1 :=
(n + 1 + a)

16

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
v2

−
(

n + 1 + a

8

)
c−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1v

2(X, c)

− α

4

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2
(

tσ′
s

σs

)′
v2

− α

2
c−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1v

2(X, c) dX

� α

N

∫
xa

n+1t
−μ−1 θs(λt)

t
v2 − αc−μ−1

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1v

2(X, c) dX.

(3.43)

Notice that the fact −( tσ′
s

σs
)′ is comparable to the quantity θs(λt)

t which follows from
lemma 2.3 is being used in the last inequality.
Estimate for I2 : Now we consider the term I2 which finally provides the posi-
tive gradient terms in our Carleman estimate. This is obtained via a Rellich-type
argument. We have

I2 =
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2 Zv

2t
div (∇v)

=
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2
(

∂tv +
X.∇v

2t

)
div (∇v) =: I21 + I22. (3.44)

We estimate them individually. Using divergence theorem, we have

I21 = −
∫

xa
n+1t

−μ

(
tσ′

s

σs

)− 1
2

vi∂t(vi) − a

∫
xa−1

n+1t
−μ

(
tσ′

s

σs

)− 1
2

vn+1∂tv

− R2s

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

VR(x, t)v∂tv (using ∂a
xn+1

v = R2sVRv)
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=
1
2

∫
xa

n+1(−μ)t−μ−1

(
tσ′

s

σs

)− 1
2

|∇v|2

− 1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
|∇v|2

+
1
2

∫
{t=c}

xa
n+1c

−μ

(
cσ′

s

σs

)− 1
2

|∇v(X, c)|2

−a

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 1
2 Zv

2t

∂n+1v

xn+1︸ ︷︷ ︸
−I4

+
a

2

∫
xa−1

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇v)∂n+1v

− R2s

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

VR(x, t) v∂tv. (3.45)

We also have

I22 = −1
2

∫
t−μ−1

(
tσ′

s

σs

)− 1
2

〈∇ (xa
n+1〈X,∇v〉) ,∇(v)〉

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t)v〈x,∇xv〉

= −a

2

∫
xa−1

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇v)∂n+1v

− 1
2

∫
t−μ−1

(
tσ′

s

σs

)− 1
2

xa
n+1(Xivip + vp)vp

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t) v〈x,∇xv〉

= −a

2

∫
xa−1

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇v)∂n+1v

− 1
2

∫
t−μ−1

(
tσ′

s

σs

)− 1
2

xa
n+1|∇v|2

− 1
4

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇(|∇v|2))

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t) v〈x,∇xv〉.

https://doi.org/10.1017/prm.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.9


20 A. Banerjee and A. Ghosh

Now by integrating by parts the following term

−1
4

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇(|∇v|2))

in the above expression we obtain

I22 = −a

2

∫
xa−1

n+1t
−μ−1

(
tσ′

s

σs

)− 1
2

(X,∇v)∂n+1v

+
μ

2

∫
t−μ−1

(
tσ′

s

σs

)− 1
2

xa
n+1|∇v|2

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t) v〈x,∇xv〉. (3.46)

Combining (3.44), (3.45) and (3.46) with I4 we have

I2 + I4 = −1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
|∇v|2

+
1
2

∫
{t=c}

xa
n+1c

−μ

(
cσ′

s

σs

)− 1
2

|∇v(X, c)|2

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t) v 〈x,∇xv〉

− R2s

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

VR(x, t)∂t

(
v2

2

)
. (3.47)

Recall that

∇v = σ−α
s (t)e−

|X|2
8t

(
∇w − X

4t
w

)
. (3.48)

Let us now consider the term − 1
4

∫
xa

n+1t
−μ( tσ′

s

σs
)−

3
2 ( tσ′

s

σs
)′|∇v|2. Using (3.48) we

obtain

− 1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
〈∇v,∇v〉 (3.49)

= −1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
σ−2α

s (t)
〈
∇w − X

4t
w,

(
∇w − X

4t
w

)〉
e−

|X|2
4t

= −1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′

× σ−2α
s (t)

(
〈∇w,∇w〉 +

|X|2
16t2

w2 − 1
4t

〈X · ∇(w2)〉
)

e−
|X|2
4t
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= −1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
σ−2α

s (t)
(
〈∇w,∇w〉 − |X|2

16t2
w2

)
e−

|X|2
4t

− 1
16

∫
t−μ−1

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
div
(

xa
n+1X

)
w2e−

|X|2
4t

= −1
4

∫
xa

n+1t
−μ

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
σ−2α

s (t)
(
|∇w|2 − |X|2

16t2

)
e−

|X|2
4t

− n + 1 + a

16

∫
xa

n+1t
−μ−1

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
σ−2α

s (t)w2e−
|X|2
4t .

The boundary integral in (3.47) above, i.e. the term

1
2
c−μ

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1〈∇v,∇v〉(X, c)

can be computed in a similar fashion to obtain the following

1
2
c−μ

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1〈∇v,∇v〉(X, c) dX

=
1
2
c−μσ−2α

s (c)
(

cσ′
s(c)

σs(c)

)− 1
2
∫
{t=c}

xa
n+1

(
〈∇w,∇w〉 − |X|2

16c2
w2 +

n + 1 + a

4c
w2

)
e−

|X|2
4c dX.

Estimate for I3: Let us now compute I3. We have

I3 = − 1
16

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 1
2 Zv

2t
|X|2v (3.50)

= − 1
32

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 1
2

|X|2 ∂t(v2)

− 1
64

∫
xa

n+1t
−μ−3

(
tσ′

s

σs

)− 1
2

|X|2 〈X,∇(v2)〉

= −n + 3 + a

64

∫
xa

n+1t
−μ−3

(
tσ′

s

σs

)− 1
2

|X|2 v2 (using μ =
n − 1 + a

2
)

− 1
64

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
|X|2v2

+
1
32

c−μ−2

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1|X|2v2

+
1
64

∫
t−μ−3

(
tσ′

s

σs

)− 1
2

|X|2(n + 1 + a)xa
n+1v

2
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+
1
32

∫
xa

n+1t
−μ−3

(
tσ′

s

σs

)− 1
2

|X|2v2

= − 1
64

∫
xa

n+1t
−μ−2

(
tσ′

s

σs

)− 3
2
(

tσ′
s

σs

)′
|X|2σ−2α

s (t)w2e−
|X|2
4t

+
1
32

c−μ−2

(
cσ′

s(c)
σs(c)

)− 1
2
∫
{t=c}

xa
n+1|X|2σ−2α

s (t)w2e−
|X|2
4t . (3.51)

Now we use the fact that −( tσ′
s

σs
)′ ∼ θs(λt)

t since the term tσ′
s

σs
is positively bounded

from both sides in view of lemma 2.3 and combining the above estimates ((3.43),
(3.47) and (3.51)) we get for a new universal N that the following estimate holds

I1 + I2 + I3 + I4

� α

N

∫
xa

n+1σ
−2α
s (t)

θs(λt)
t

Gw2 +
1
N

∫
xa

n+1

θs(λt)
t

σ1−2α
s (t) G |∇w|2

− Nασ−2α
s (c)

∫
{t=c}

xa
n+1w

2(X, c)G(X, c)

+
c

N
σ−2α

s (c)
∫
{t=c}

xa
n+1|∇w|2G dX

− 1
2
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

VR(x, t) v 〈x,∇xv〉

− R2s

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

VR(x, t)∂t

(
v2

2

)
. (3.52)

Let us estimate the boundary terms in (3.52). Using the divergence theorem we
obtain the following alternate representation of such boundary terms.

K1 :=
1
4
R2s

∫
{xn+1=0}

t−μ−1

(
tσ′

s

σs

)− 1
2

(VR(x, t)n + 〈x,∇xVR(x, t)〉)v2,

K2 := −R2s

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

VR(x, t)∂t

(
v2

2

)
.

It is to be noted that using (3.1) and (3.18) we have

|∇xVR| � R, |∂tVR| � R2. (3.53)

Using the trace inequality lemma 2.4 and (3.53) we find

|K1| � R2s+1

∫
t−μ−1σ−2α

s

∫
Rn

e−
|x|2
4t w2 (3.54)

� R2s+1

∫
t−μ−1σ−2α

s

(
A(t)1+a

∫
R

n+1
+

xa
n+1e

−|X|2/4tw2
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+ A(t)a−1

∫
R

n+1
+

xa
n+1

∣∣∇w − w
X

4t

∣∣2e−|X|2/4t

)

� R2s+1

∫
t−μ−1σ−2α

s

(
A(t)1+a

∫
R

n+1
+

xa
n+1e

−|X|2/4tw2

+ A(t)a−1

∫
R

n+1
+

xa
n+1|∇w|2e−|X|2/4t

+ A(t)a−1

∫
R

n+1
+

xa
n+1w

2 |X|2
16t2

e−|X|2/4t

)
(3.55)

for A(t) > 1. The choice of A(t) will be crucial to complete our proof. Also, it follows
from the Hardy inequality in lemma 2.6 that the following estimate holds∫

R
n+1
+

xa
n+1w

2 |X|2
16t2

e−|X|2/4t �
∫

R
n+1
+

xa
n+1

n + 1 + a

4t
e−|X|2/4tw2

+
∫

R
n+1
+

xa
n+1e

−|X|2/4t|∇w|2. (3.56)

Plugging estimate (3.56) in (3.55) and by using (3.41) yields

|K1| � R2s+1

(∫
A(t)1+aσ−2α

s xa
n+1Gw2 + 2

∫
A(t)a−1xa

n+1σ
−2α
s |∇w|2G

+
∫

A(t)a−1σ−2α−1
s xa

n+1Gw2

)
. (3.57)

In the last inequality in (3.57) above, we used that σs(t) ∼ t. Now we choose A(t) >
1 in such a way that the above terms can be absorbed in the positive terms on the
right-hand side in (3.52) above, i.e. in the terms α/N

∫
xa

n+1σ
−2α
s (t) θs(λt)

t w2G and
1/N

∫
xa

n+1
θs(λt)

t σ1−2α
s (t)|∇w|2G. Therefore, given the value of μ as in (3.41), we

require ⎧⎪⎨⎪⎩
A(t)1+aR2s+1 � α

10N
θs(λt)

t ,

A(t)a−1R2s+1 � 1
10N θs(λt),

A(t)a−1

t R2s+1 � α
10N

θs(λt)
t .

(3.58)

It is easy to see that the third inequality automatically holds if the second one
is satisfied since α is to be chosen large. Therefore, it is sufficient to choose A(t)
satisfying the first two inequalities. Recall that a = 1 − 2 s, and if we set

A(t) =
(

10NR2s+1

θs(λt)

)1/2s

,

then the second inequality in (3.58) is valid. Note that A(t) > 1 as θs(t) → 0 as
t → 0. Moreover, the above choice of A will also satisfy the first inequality in (3.58)
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if (
10NR2s+1

θs(λt)

) 2(1−s)
2s

R2s+1 � α

10N

θs(λt)
t

,

which is same as the following(
10NR2s+1

θs(λt)

) 1
s θs(λt)

10NR2s+1
R2s+1 � α

10N

θs(λt)
t

.

Further simplification will allow us to rewrite the above inequality as

10NR2s+1 � αst−sθs(λt). (3.59)

Finally, observe that θs(λt) = (λt)s(log 1
λt )

1+s � (λt)s since log 1
λt � 1 on [0, 1

eλ ],
so inequality (3.59) is ensured if we choose α large enough such that

αst−s(λt)s � 10NR2s+1.

Consequently, since λ = αδ2, by choosing some arbitrary δ ∈ (0, 1), we conclude
that the choice of A(t) above satisfies the set of inequalities in (3.58) provided

α2s � (1 + N)R2s+1.

The above is ensured for α � MR2 with M large and R > 1 provided s ∈ [12 , 1).
For K2, applying integration by parts we observe

|K2| =
∣∣∣∣R2s 1

2

∫
{xn+1=0}

(−μ)t−μ−1

(
tσ′

s

σs

)−1/2

VR(x, t)v2

+ R2s 1
2

∫
{xn+1=0}

t−μ−1
2

(
tσ′

s

σs

)−3/2(
tσ′

s

σs

)′
VRv2

+ R2s 1
2

∫
{xn+1=0}

t−μ

(
tσ′

s

σs

)−1/2

∂t(VR)v2

+ R2s 1
2

∫
{xn+1=0; t=c}

c−μ

(
cσ′

s(c)
σs(c)

)−1/2

VR(x, c)v2(x, c)
∣∣∣∣.

Using (3.53), the fact that ( tσ′
s

σs
) ∼ 1 and also that 0 � t < 1

R2 , we observe that the
first and third terms on the right-hand side of the above expression can be bounded
by

CR2s

∫
{xn+1=0}

t−μ−1σ−2α
s e−|x|2/4tw2.

The second term is dominated by R2s
∫
{xn+1=0} t−μ

∣∣∣∣− ( tσ′
s

σs
)′
∣∣∣∣v2, which in turn is

bounded by

CR2s

∫
{xn+1=0}

t−μ−1σ−2α
s e−|x|2/4tw2,
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considering the fact that −( tσ′
s

σs
)′ is comparable to θs(λt)

t and θs(λt) → 0 as t → 0.
Combining the above arguments we have

|K2| � R2s

∫
{xn+1=0}

t−μ−1σ−2α
s e−|x|2/4tw2

+
∣∣∣∣R2s 1

2

∫
{xn+1=0}

c−μ

(
cσ′

s(c)
σs(c)

)−1/2

VR(x, c)v2(x, c)
∣∣∣∣. (3.60)

The first term in (3.60) can be handled similarly as K1, see (3.54)–(3.59). For the
last term in (3.60), using trace inequality and performing similar calculations as in
(3.57), we obtain that∣∣∣∣R2s 1

2

∫
{xn+1=0;t=c}

c−μ

(
cσ′

s(c)
σs(c)

)−1/2

VR(x, c)v2(x, c)
∣∣∣∣

� cR2s

∫
{xn+1=0}

c−μ−1σ−2α
s (c) e−

|x|2
4c w2(x, c)

� R2s

(
cσ−2α

s (c)A1+a

∫
xa

n+1G(X, c)w2(X, c)

+ 2cAa−1σ−2α
s (c)

∫
xa

n+1|∇w(X, c)|2G(X, c)

+ Aa−1 c
n + 1 + a

4c

∫
σ−2α

s (c)xa
n+1G(X, c)w2(X, c)

)
(3.61)

holds for any A > 1. If we now choose A sufficiently large, say

A2s ∼ 100NR2s, (3.62)

then the term

2cR2sAa−1σ−2α
s (c)

∫
xa

n+1|∇w(X, c)|2G(X, c)

in (3.61) can easily be absorbed by the term c
N σ−2α

s (c)
∫

t=c
xa

n+1|∇w|2G dX in
(3.52). Corresponding to this choice of A as in (3.62), we find by also using that
c � 1

α ∼ 1
R2 , the remaining terms in the last expression in (3.61) above can be

estimated as

R2s

(
cσ−2α

s (c)A1+a

∫
xa

n+1G(X, c)w2(X, c)

+ Aa−1 c
n + 1 + a

4c

∫
σ−2α

s (c)xa
n+1G(X, c)w2(X, c)

)
� Nασ−2α

s (c)
∫
{t=c}

xa
n+1w

2(X, c)G(X, c).

Therefore, from the above discussion, the contributions from K1 and K2 can be
absorbed appropriately by the first four terms in (3.52) so that for large α satisfying
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α � MR2 for a large M the following holds∫
σ−2α

s (t)t−μx−a
n+1e

−|X|24t

(
tσ′

s

σs

)− 1
2

|H̃sw|2 (3.63)

� I1 + I2 + I3 + I4

� α

N

∫
xa

n+1σ
−2α
s (t)

θs(λt)
t

Gw2 +
1
N

∫
xa

n+1

θs(λt)
t

σ1−2α
s (t) G |∇w|2

− Nασ−2α
s (c)

∫
{t=c}

xa
n+1w

2(X, c)G(X, c) +
c

N
σ−2α

s (c)
∫
{t=c}

xa
n+1|∇w|2G dX.

Also, we have θs(λt)
t � λ = α

δ2 , hence

N

∫
σ−2α

s (t)t−μx−a
n+1e

− |X|2
4t

(
tσ′

s

σs

)− 1
2

|H̃sw|2

� α2

∫
xa

n+1σ
−2α
s (t) w2G + α

∫
xa

n+1σ
1−2α
s (t)|∇w|2G

− Nασ−2α
s (c)

∫
{t=c}

xa
n+1w

2(X, c)G(X, c) +
c

N
σ−2α

s (c)
∫
{t=c}

xa
n+1|∇w|2G dX

(3.64)

possibly for a new universal constant N. Finally, the conclusion follows from (3.64)
since ∫

R
n+1
+ ×[c,∞)

σ−2α
s (t)t−μx−a

n+1e
− |X|2

4t

(
tσ′

σ

)− 1
2

|H̃sw|2

∼
∫

R
n+1
+ ×[c,∞)

σ1−2α
s (t)x−a

n+1 |H̃sw|2 G.

�

4. Proof of the main results

Given the Carleman estimate in theorem 3.5, we now argue as in the proof of [17,
Lemma 5] to obtain the following L2 lower bounds for the rescaled function UR in
(3.15) which solves (3.17).

Theorem 4.1. Given κ̃ ∈ (0, 1], there exist large universal constant M = M
(n, s, κ̃) and ρ ∈ (0, 1) such that the following holds true:

If UR is as in (3.15) with R(n+a+1)
∫

B
+
ρ

U2
R(X, 0)xa

n+1 dX � κ̃ ( note that this
inequality in turn is assured by (3.16)). Then

(1) For sufficiently small ε > 0 and R � M we have∫
B
+
2

xa
n+1 UR(X, 0)2 e−

|X|2R2

ε dX � e−MR2 log
(

1
ε

)
. (4.1)
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(2) For all 0 � r < 1
2 , we have∫

B
+
r

U2
R(X, 0)xa

n+1dX � e−MR2 log
(

2
r

)
. (4.2)

Proof. Let us highlight the key steps in the proof. The key ingredients are the
quantitative Carleman estimate in theorem 3.5 and the improved monotonicity in
time result in lemma 3.4.

Step 1: Let f = η(t)φ(X)UR, where φ ∈ C∞
0 (B3) is a spherically symmetric cut-

off such that 0 � φ � 1 and φ ≡ 1 on B2. Moreover, let η be a cutoff in time such
that η = 1 on [0, 1

8λ ] and supported in [0, 1
4λ ). Since UR solves (2.11), we see that

the function f solves the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
xa

n+1ft + div(xa
n+1∇f) = φxa

n+1URηt

+2xa
n+1η〈∇UR,∇φ〉 + η div(xa

n+1∇φ)UR

in B+
5 ×[0, 1

R2 ),

f((x, 0, t) = UR(x, 0, t)φ(x, 0)η(t)
∂a

xn+1
f(x, 0, t) = R2sVRf in B5 × [0, 1

R2 )

(4.3)

Since φ is symmetric in the xn+1 variable, we have φn+1 ≡ 0 on {xn+1 = 0}. Since
φ is smooth, the following estimates are true, see [3, (3.31)].{

supp(∇φ) ∩ {xn+1 > 0} ⊂ B+
3 \B+

2

|div(xa
n+1∇φ)| � Cxa

n+1 1
B
+
3 \B

+
2
.

(4.4)

Step 2: The Carleman estimate (3.35) applied to f (more precisely, a shifted in time
version of (3.35)) yields the following inequality for sufficiently large α satisfying
α � MR2 and 0 < c � 1

5λ

α2

∫
R

n+1
+ ×[0,∞)

xa
n+1(σs(t + c))−2α f2 G(X, t + c)

+ α

∫
R

n+1
+ ×[0,∞)

xa
n+1(σs(t + c))1−2α |∇f |2 G(X, t + c)

� M

∫
R

n+1
+ ×[0,∞)

σ1−2α
s (t + c)x−a

n+1 |φxa
n+1URηt

+ 2xa
n+1η〈∇UR,∇φ〉 + η div(xa

n+1∇φ)UR|2 G(X, t + c)

+ σ−2α
s (c)

{
− c

M

∫
t=0

xa
n+1 |∇f(X, 0)|2 G(X, c) dX

+ αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX

}
� Mλ2

∫
R

n+1
+ ×[0,∞)

(σs(t + c))1−2α G(X, t + c)xa
n+1|UR|21[ 1

8λ , 1
4λ )

+ M

∫
R

n+1
+ ×[0,∞)

xa
n+1σ

1−2α
s (t + c){|∇UR|2 + |UR|2}1B3\B2η

2G(X, t + c)
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+ σ−2α
s (c)

{
− c

M

∫
t=0

xa
n+1 |∇f(X, 0)|2 G(X, c) dX

+ αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX

}
. (4.5)

Step 3: Now we plug the following estimate ( see [8, (4.24)])

σ1−2α
s (t + c)G(X, t + c) � M2α−1λ2α+ n+a+1

2 ,

(X, t) ∈ B+
3 ×[0, 1/4λ) \ B+

2 ×[0, 1/8λ) (4.6)

in (4.5) yielding

α2

∫
R

n+1
+ ×[0,∞)

xa
n+1(σs(t + c))−2α f2 G(X, t + c)

+ α

∫
R

n+1
+ ×[0,∞)

xa
n+1(σs(t + c))1−2α |∇f |2 G(X, t + c)

� M2α+ n+a+1
2 α2α+ n+a+1

2

∫
[0, 1

4λ )

∫
B
+
3

xa
n+1{|∇UR|2 + |UR|2}

+ σ−2α
s (c)

{
− c

M

∫
t=0

xa
n+1 |∇f(X, 0)|2 G(X, c) dX

+ αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX

}
� M2α+ n+a+1

2 α2α+ n+a+1
2 R4

(using lemma 2.1 for U which implies the derivative bounds for UR)

+ σ−2α
s (c)

{
− c

M

∫
t=0

xa
n+1 |∇f(X, 0)|2 G(X, c) dX

+ αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX

}
. (4.7)

Step 4: Since φ = 1 on B2 and η = 1 on [0, 1
8λ ), for small enough ρ < 1

2 , which will
be chosen later and 0 < c � ρ2

8λ , we obtain

α2

∫
R

n+1
+ ×[0,∞)

xa
n+1σ

−2α
s (t + c) f2 G(X, t + c)

� α2

∫
[0, 1

8λ )

∫
B
+
2

σ−2α
s (t + c) xa

n+1U
2
R G(X, t + c)

� α2

∫
[0, ρ2

4λ )

∫
B
+
2ρ

σ−2α
s (t + c) (t + c)−

n+a+1
2 e−

|X|2
4(t+c) xa

n+1U
2
R

� α2

∫
[0, ρ2

4λ )

(t + c)−2α(t + c)−
n+a+1

2 e−
ρ2

(t+c)

∫
B
+
2ρ

xa
n+1U

2
R
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� α2

∫
[c,c+ ρ2

4λ )

t−2αt−
n+a+1

2 e−
ρ2

t

∫
B
+
ρ

xa
n+1U

2
R(X, 0)

� α2 1
M

∫
[ ρ2
8λ , ρ2

4λ )

t−2αt−
n+a+1

2 e−
ρ2

t R−(n+a+1) (using (3.20))

� α2 1
M

(
ρ2

4λ

)−
(
2α+ n+a+1

2

)
e−8λ

(
ρ2

4λ

)
R−(n+a+1)

� δ242α+ n+a+1
2 λ2α+ n+a+1

2 +1

8M
(e4/δ2

ρ2)−2αρ2−(n+a+1)R−(n+a+1).

Step 5: The above computation and (4.7) implies that

δ242α+ n+a+1
2 λ2α+ n+a+1

2 +1

8M
(e4/δ2

ρ2)−2αρ2−(n+a+1)R−(n+a+1) (4.8)

� M2α+ n+a+1
2 α2α+ n+a+1

2 R4

+ σ−2α
s (c)

{
− c

M

∫
t=0

xa
n+1 |∇f(X, 0)|2 G(X, c) dX

+ αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX

}
. (4.9)

To absorb the first term in the right-hand side into the left, we need

δ242α+ n+a+1
2 λ2α+ n+a+1

2 +1

8M
(e4/δ2

ρ2)−2αρ−
n+a+1

2

� 8M2α+ n+a+1
2 α2α+ n+a+1

2 R4Rn+a+1. (4.10)

In view of the fact that α ∼ R2, (4.10) will be guaranteed if we choose ρ such that

δ242α+ n+a+1
2 λ2α+ n+a+1

2 +1

8M
(e4/δ2

ρ2)−2αρ−
n+a+1

2

� 8M2α+ n+a+1
2 λ2α+ n+a+1

2 R4Rn+a+1 (since λ � α). (4.11)

Since ρ < 1, we have that ρ−
n+a+1

2 > 1. Therefore, (4.11) is further implied by
the validity of the following inequality

δ242α+ n+a+1
2 (e4/δ2

Mρ2)−2α � 64M
n+a+1

2 +1R4Rn+a+1. (4.12)

This in turn follows provided

(e4/δ2
Mρ2)−2α � M

n+a+1
2 +1 (as δ242α+ n+a+1

2

� 64R4Rn+a+1 considering α ∼ R2). (4.13)
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Finally, (4.13), and therefore (4.12), are seen to hold when

e4/δ2
Mρ2 � 1

16
. (4.14)

Therefore, for α � MR2, (4.9) and the fact that σs(c) � ce−N implies that

α2αe−2Nαc2α � αM

∫
t=0

xa
n+1 |f(X, 0)|2 G(X, c) dX. (4.15)

Now letting α � MR2 with M >> e2N , we now put c = ε
4R2 where ε � ρ2δ2

2M and
consequently obtain from above∫

B
+
2

xa
n+1 UR(X, 0)2 e−

|X|2R2

ε dX � e−MR2 log
(

1
ε

)
.

This finishes the proof of (1).
We now proceed with the proof of (2).
For the above mentioned choice of ρ as in (4.14) and by taking large α, (4.9)

implies for c � ρ2

8λ ∼ ε
R2 that the following inequality holds

c

M

∫
xa

n+1 |∇f(X, 0)|2 G(X, c) dX � R2M

∫
xa

n+1 |f(X, 0)|2 G(X, c) dX

(4.16)

=⇒ 2c

∫
xa

n+1 |∇f(X, 0)|2e− |X|2
4c +

n + a + 1
2

∫
xa

n+1 |f(X, 0)|2e− |X|2
4c dX

� M3R2

∫
t=0

xa
n+1 |f(X, 0)|2e− |X|2

4c dX. (4.17)

At this point (4.17) combined with lemma 2.5 allow us to infer for a new M that
the following doubling inequality holds∫

B
+
2r

U2
R(X, 0)xa

n+1dX � eMR2
∫

B
+
r

U2
R(X, 0)xa

n+1dX (4.18)

for all 0 � r < 1
2 . Now given r � 1/2, choose k ∈ N such that 2−k � r � 2−k+1.

Iterating the above doubling inequality when r = 2−j with j = 0, . . . , k − 1 we
obtain ∫

B
+
1

U2
R(X, 0)xa

n+1dX � e2MR2 log(1/r)

∫
B
+
r

U2
R(X, 0)xa

n+1dX. (4.19)

The conclusion follows from (4.19) with a new M by noting that∫
B
+
1

U2
R(X, 0)xa

n+1dX �
∫

B
+
ρ

U2
R(X, 0)xa

n+1dX � R−(n+1+a)κ̃.

�

From theorem 4.1, we obtain the following decay estimates at infinity for the
solution U to (2.11).
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Theorem 4.2. Let U be a solution of the original problem (2.11).

(1) There exists a universal large constant M such that for all x0 ∈ Rn with
|x0| � M we have∫

B
+
|x0|/2((x0,0))

U2(X, t̃)xa
n+1dX � e−M |x0|2 , (4.20)

for t̃ ∈ [t0, t0 + δ̃) where t0 is as in lemma 3.2 and δ̃ is as in lemma 3.3.

(2) Also we have∫
B
+
1 ((x0,0))

U2(X, t̃)xa
n+1dX � e−M |x0|2 log(|x0|), t̃ ∈ [t0, t0 + δ̃). (4.21)

Proof. Under the hypothesis of theorem 1.1 ( with K = 1), we have from lemma 3.3
that there exist κ̃ ∈ (0, 1) and δ̃ such that for t̃ ∈ [t0, t0 + δ̃) we have∫

B
+
1

xa
n+1U

2(X, t̃)dX � κ̃. (4.22)

Now let ρ be the number associated to κ̃ as in theorem 4.1. For each t̃ and x0 such
that |x0| � M , let R := 2|x0|/ρ and UR be as in (3.15), i.e. UR(X, t) := U(RX +
(x0, 0), R2t + t̃). From (3.16) we have

R(n+a+1)

∫
B
+
ρ

U2
R(X, 0)xa

n+1 dX =
∫

B
+
2|x0|((x0,0))

U2(X, t̃)xa
n+1 dX

�
∫

B
+
1

xa
n+1U

2(X, t̃)dX � κ̃. (4.23)

Thus, UR satisfies the hypothesis in theorem 4.1. Hence, for small ε > 0 we have∫
B
+
2

xa
n+1 UR(X, 0)2 e−

|X|2R2

ε dX � e−MR2 log
(

1
ε

)
. (4.24)

This in turn is equivalent to the following inequality∫
B
+
2R((x0,0))

xa
n+1 U(X, t̃)2 e−

|X−(x0,0)|2
ε dX � Rn+a+1e−MR2 log

(
1
ε

)
. (4.25)

Further, (4.25) implies that(∫
B
+
|x0|/2((x0,0))

.. +
∫

B
+
4|x0|/ρ

(x0)\B
+
|x0|/2(x0)

..

)
� Rn+a+1e−MR2 log

(
1
ε

)
, (4.26)

which in turn implies the following inequality∫
B
+
|x0|/2((x0,0))

xa
n+1 U(X, t̃)2 dX + CRn+a+1e−R2ρ2/16ε � Rn+a+1e−MR2 log

(
1
ε

)
,

(4.27)
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where we have used the fact that ||U ||L∞ � C to bound the integral∫
B
+
4|x0|/ρ

(x0)\B
+
|x0|/2(x0)

xa
n+1 U(X, t̃)2 e−

|X−(x0,0)|2
ε dX

in (4.27) above. Now if ε > 0 is chosen sufficiently small, then the term
CRn+a+1e−R2ρ2/16ε can be absorbed in the right-hand side of (4.27). Consequently,
we can conclude that for a new M (depending also on ε) the following estimate holds∫

B
+
|x0|/2((x0,0))

xa
n+1 U(X, t̃)2 dX � e−MR2

.

This completes the proof of (4.20).
To prove (4.21), we apply (4.2) to the function UR at the scale r = 1

R , which
yields ∫

B
+
1/R

U2
R(X, 0)xa

n+1dX � e−MR2 log(2R))

=⇒
∫

B
+
1 ((x0,0))

U2(X, t̃)xa
n+1dX � Rn+a+1e−MR2 log(2R)

=⇒
∫

B
+
1 ((x0,0))

U2(X, t̃)xa
n+1dX � e−MR2 log(2R), (4.28)

since R � 1. The conclusion thus follows with a larger M by noting that |x0| ∼ R
once ρ gets fixed as in theorem 4.1. �

As a direct consequence of estimate (4.21) in theorem 4.2, the following
asymptotic decay estimates holds for the extension problem (2.11) in space-time
regions.

Theorem 4.3. Under the assumption of theorem 4.2, there exist universal constants
M and δ̃ ∈ (0, 1) such that for |x0| � M we have∫

B
+
1 ((x0,0))×[t0+δ̃/2,t0+3δ̃/4)

U2(X, t)xa
n+1dX dt � e−M |x0|2 log(|x0|). (4.29)

where t0 is as in lemma 3.2.

4.1. Propagation of smallness and the proof of theorem 1.1

We now transfer the decay estimate at the bulk as in theorem 4.3 to the boundary
via an appropriate propagation of smallness estimate derived in [2, Corollary 4.4]
using which theorem 1.1 follows.

Proof of theorem 1.1. We first note that from the hypothesis of theorem 1.1 ( recall
that we are assuming K = 1), we infer that estimate (4.29) in theorem 4.3 holds. We
now use the following variant of the propagation of smallness estimate as derived
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in [2, Corollary 4.4].

||xa/2
n+1U ||L2(B+

1 ((x0,0))×[t0+δ̃/2,t0+3δ̃/4))

� C||u||1−ϑ
L2(Rn+1)

(
||V u||ϑ

L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6))

+ ||u||ϑ
W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6))

)
+ C

(
||V u||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) + ||u||W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6))

)
,

(4.30)

where ϑ ∈ (0, 1) is universal and

||u||W 2,2
def= ||u||L2 + ||∇xu||L2 + ||∇2

xu||L2 + ||ut||L2 .

Note that (4.30) follows from [2, Corollary 4.4] by a translation in space and a
standard covering argument. Note that in view of (3.1), the right-hand side of
(4.30) is upper bounded by

C
(
||u||W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) + ||u||ϑ

W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6))

)
.

Now since we are interested in a lower bound, so without loss of generality we may
assume that

||u||W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � 1.

Using this along with (4.29), we obtain that the following inequality holds for some
large universal M and |x0| � M

||u||W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � e−M |x0|2 log(|x0|). (4.31)

In order to get an L2 decay as claimed in theorem 1.1, we now make use of the
interpolation-type inequalities in lemma 2.7. Let φ be a smooth function supported
in B7/4((x0, 0)) × (t0 + δ̃/8, t0 + 11δ̃/12) such that φ ≡ 1 in B3/2((x0, 0)) × [t0 +
δ̃/4, t0 + 5δ̃/6)). Define f = φ U. Then by applying (2.15) to f we get also by using
the regularity estimates in lemma 2.1 that the following holds for any η1 ∈ (0, 1)

||∇xu||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � ||∇xf ||L2(Rn+1)

� Cηs
1||xa/2

n+1U ||L2(B+
7/4((x0,0))×(t0+δ̃/8,t0+11δ̃/12))

+ Cη−1
1 ||u||L2(B7/4(x0)×(t0+δ̃/8,t0+11δ̃/12)). (4.32)

Similarly, by applying (2.15) to ∇xf and by using the second derivative estimates
in lemma 2.1 we get for any η ∈ (0, 1)

||∇2
xu||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � Cηs||xa/2

n+1U ||L2(B+
2 ((x0,0))×(t0+δ̃/16,t0+δ̃))

+ Cη−1||∇xf ||L2(Rn+1). (4.33)
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Then using (4.32) in (4.33), we thus obtain

||∇2
xu||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � Cηs||xa/2

n+1U ||L2(B+
2 ((x0,0))×(t0+δ̃/16,t0+δ̃))

+ Cη−1ηs
1||xa/2

n+1U ||L2(B+
7/4((x0,0))×(t0+δ̃/8,t0+11δ̃/12))

+ C(ηη1)−1||u||L2(B7/4(x0)×(t0+δ̃/8,t0+11δ̃/12)). (4.34)

We now take η1 = η3. This ensures that

η−1ηs
1 = η3s−1 � ηs as s � 1/2 and η < 1. (4.35)

Substituting this value of η1 in (4.34), using (4.35) and also by using lemma 2.2
we find

||∇2
xu||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � Cηs + Cη−4||u||L2(B2(x0)×[t0+t0+δ̃)). (4.36)

Similarly by applying (2.16) to f and by using the estimates in lemmas 2.1 and 2.2
we find

||ut||L2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � Cηs + Cη−4||u||L2(B2(x0)×[t0+t0+δ̃)). (4.37)

Thus, from (4.32), (4.36) and (4.37) it follows that

||u||W 2,2(B3/2(x0)×[t0+δ̃/4,t0+5δ̃/6)) � Cηs + Cη−4||u||L2(B2(x0)×[t0,t0+δ̃)). (4.38)

Now using (4.31), we deduce from (4.38) that the following inequality holds for
|x0| � M ,

e−M |x0|2 log(|x0|) � Cηs + Cη−4||u||L2(B2(x0)×[t0,t0+δ̃)). (4.39)

Now by letting

ηs =
e−M |x0|2 log(|x0|)

2C
, (4.40)

we find that the first term on the right-hand side in (4.39) can be absorbed in the
left-hand side and we consequently obtain for a new M

η4e−M |x0|2 log(|x0|)

2C
� ||u||L2(B2(x0)×[t0,t0+δ̃)). (4.41)

Now by noting that in view of (4.40), we have that

η4 ∼ e−
M
s |x0|2 log(|x0|).

Using this in (4.41), we find that the conclusion follows with a new M by also using
that

||u||L2(B2(x0)×[0,1)) � ||u||L2(B2(x0)×[t0,t0+δ̃)).

This finishes the proof of theorem 1.1 by noting that we have assumed K = 1 in
theorem 1.1 (for the sake of simpler exposition of the ideas) and also by observing
that we are working with the backward version of the problem as in (2.11). �
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We now use the estimate in theorem 1.1 to finish the proof of the Landis–Oleinik
type result in corollary 1.2.

Proof of corollary 1.2. We show that

||u||L2(B1/2×(−1/4,0]) = 0. (4.42)

On the contrary we assume

||u||L2(B1/2×(−1/4,0]) � θ > 0. (4.43)

Then by applying theorem 1.1 corresponding to this θ, there exists some M = M(θ)
such that∫

B2(x0)×(−1,0)

u2(x, t) dxdt � e−M |x0|2 log |x0| holds for all |x0| � M. (4.44)

Now on the other hand, hypothesis (1.9) (assuming K = 1) implies that∫ 0

−1

u2(x, t) dt � Ce−|x|2+ε

for all x ∈ Rn. (4.45)

Therefore, by integrating (4.45) over the region B2(x0) for |x0| � M with M as
in theorem 1.1 ( corresponding to the θ in (4.43)) we find for a new C that the
following holds ∫

B2(x0)×(−1,0)

u2(x, t) dxdt � Ce−
|x0|2+ε

22+ε , (4.46)

where we have used that for x ∈ B2(x0), |x| � |x0|
2 which can be ensured for M > 4.

This clearly contradicts (4.44) for large |x0| as

e−M |x0|2 log |x0| � e−
|x0|2+ε

22+ε ,

as |x0| = R → ∞. Thus (4.42) holds. So in particular, we have that u vanishes to
infinite order in space-time at (0, 0). Now we can apply the backward uniqueness
result in [5, Theorem 1.2] to conclude that u ≡ 0 in Rn × [−T, 0]. �

Remark 4.4. In the case when the non-local equation (1.6) holds for t > 0, then
we can also conclude that u(·, t) = 0 for t > 0 by invoking the forward uniqueness
result in [7].
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