NEW APPROXIMATIONS FOR WIENER INTEGRALS,
WITH ERROR ESTIMATES

HENRY C. FINLAYSON

1. Introduction. The principal theorem of this paper, a generalization
of a theorem given by R. H. Cameron (2), provides a means of approximating
certain Wiener integrals to any desired degree of accuracy by an (z + 1)-fold
Riemann integral with sufficiently large #. The generalization is in the use of a
general complete orthonormal set of functions, whereas Cameron’s paper used
only the odd harmonic set.

Let C’ be the class of real-valued functions x(¢) defined on [0, 1] and such
that x(0) = 0 and which are continuous except perhaps for one left continuous
jump. Let C be the class of continuous members of C’. Finally, let {a,(s): n =
1,2,3,...} be a complete orthonormal set of right continuous functions of
bounded variation on [0, 1] and normalized to vanish at s = 1, and let

Yig = j;1< f()tai(s) ds>2dt.

In order that ch[x(-)]dx can be approximated by the techniques of this
paper, the existence of a certain (z + 1)-fold Riemann integral with integrand
dependent both on F and on the «’s mentioned above is required. This condition
being satisfied, F is given a third-degree ‘“Taylor’s expansion with remainder.”
Specifically for each x,(:) € C, there are assigned {unctions

Ki(xo(‘)lSh...,Si), 1= 11273)

which are right continuous and of bounded variation (4, pp. 345-7) in any
7 (G < %) of the variables for the other + — j variables fixed. (In the integrals
written below, the symbol f(l) is used rather than fé (2) f s and d; replaces the
usual d subscripted with 7 subscripted s’s.) F[xo(-) + x(-)] is, for each pair
[xo(+),x(-)] € C X C’, written as

Flxo(+) + x(-)] =
Flxo(-)] +i;1 J;x(sl) o x(si)d(i)Ki(xO(')lslr ooy S+ Qlxo(+), ()],

the above equation defining Q[xo(-), x(-)]. The right side of this equation is
called the third-degree Taylor’s expansion of F with remainder about x,(-).
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If Q satisfies the relation

0l = 0l < 4] l[x<s>12ds}2exp{3 Jioras+5 [ l[xwds}

with 0 < B < 72/12, and if the set of a's satisfies an extra condition (shown
to hold for all Sturm—Liouville sets (4, vol. 2, p. 272), the Fourier sine, and the
Haar set) it is shown that the error of the approximation is

O( Z ‘Yi,i) ’
i=n+1

and in fact a specific estimate is given for the error. It is also shown that the

order
0( Z Yi, 1)
i=n+1

for the error is the best possible for general sets of o’s satisfying the extra
condition. In certain cases, however, it is shown that the error of approximation is

© 2
O< Z ')’m) .
i=n+1

2. Notation. Let {a,(s):# = 1,2,3,...} be a complete orthonormal set
of functions of bounded variation on [0, 1] normalized to be right continuous
and to vanish at s = 1. A slight modification of a result in (5§, p. 356) shows
that «,(s) can be decomposed into its increasing and decreasing components
a, 1 (s) and o,® (s), each also normalized in this way. Consider the measurable
space (0, 1] with the o-ring generated by half-open intervals

(@,0l:0<a <b 1.

To a, b] assign the signed measure o,() — ay(e¢). Thus for 0 < p < g1
there exists, for any function Radon measurable for o,V and o,® (of course
Borel measurable will suffice), the Radon integral

| 15 danto)
(»,q]
(defined as the difference
[ i~ [ ) da®
(.4 (4]
of Lebesgue-Stieltjes integrals). This Radon integral will also be denoted by

f,, () dan(s).

Again, a slight modification of a result in (5, p. 339) proves (via the above-
mentioned decomposition of the integrator) that if f(s) is bounded and Radon
measurable and if

:f(s) dan (5)
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exists as Riemann-Stieltjes, then so does it as Radon and the two interpreta-
tions yield the same value. The prefix R.S. will sometimes be used to emphasize
that an integral is to be interpreted as Riemann-Stieltjes. Now x(s) € ' is
bounded and Borel measurable, so ¢, can be defined by

= — J;lx(s) da,(s).
Let

B.(t) = J;a,,(s) ds for t€[0,1]; »n=1,2,3,...,

J1 foro0<s<t<l,

p(s’t)=10 for 0 <t <s<K1,
() =D i Bi(t), n=123,...,
i=1
‘Pn(tf»t) zggzﬁl(t)) n = 1y2y31'-')

1
’)’i,j ‘I;ﬁi(t) B](t) dt, 1:,] = 1, 2, 3, ee ey

a@®) = 7" exp(— &' — ... = &)
It is to be noted that for p(s, t) considered as a function of £, the result

n

0" (s, 1) = 25 au(s) Ba(t)

i=1
can be obtained as follows.
For fixed s, let p*(s, t) be p(s, t) modified to be right continuous at s. Then

J; p(s, £) dens(t) = f:p(s, 1) dees(t) + fsp(s, ) dees(t)

s 1
_ RS. f o(s, £) das(t) + f o* (s, 1) das(t)
0 s
(because p(s, ¢) is continuous on [0, s] and p(s, £) = p*(s, ¢) on (s, 1])

_ RS, f:p(s, £) decs(t) + R.S. f o+ (5, £) dees(t)

(because p* (s, t) is continuous on [s, 1]).
Integration by parts gives at once the result

ot dant) = —auto)

Again, in connection with #-dimensional Radon integrals, it is to be noted that
the symbol fol is used rather than [o!(n) f o! and that the usual d subscripted
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with n subscripted s’s will be replaced by d¢y. As another abbreviation the
expression

[Tev@.m dun
will be used in place of ”
[ [Cawov@.mas. ...

If F[x(-)]is defined on C and the expression has meaning, we define

1) = | e, ) dn

and if F[x(-)]is defined on C’ and the expression has meaning, we define

nE =3 [ [ ) + ot )/ve = 86, ) /v2l
+ Fl(E, ) = o6, )/V2+ 9, )/ V2D ds da

3. The principal theorem. The main results of the paper are contained
in the following theorem and its corollary.

THEOREM 6. Let Flx(-)] be defined on C’' and integrable on C and be such that
J.(F) exists as a finite quantity. For each xo(-) € C let

Ki(xo(:)|sty - -y s0), 1=1,2,3,

be right continuous and of bounded variation (4, pp. 345-7) in any j (j < 1) of
the variables for the other 1 — j variables fixed. For each pair [xo(:), x(-)] €
C X C'let

(3.1) Plxo(-), x(-)] = Flxo()] +iZ=IJ;x(sl) o x(s)d K (o ()51, < ooy 54)
For each patr [xo(+), x(-)] € C X C'let Q[xo(+), x(-)] be defined by the equation

(3.2) Flao(+) + x(-)] = Plxo(-), 2(+)] + Qlxo(+), x(-)].
Then

[P = 70 + e,

where

o= [T fan ey - w10
1t n
~ 3 J @@ 3,065, V2 = 06 2]

+ Q[\l/n(g, ')y '—'p(sr °)/\/2 + pn(s, ')/'\/2]) dS} .
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In particular, if Q = 0, ¢, = 0, and if

0 sl < 4 4 [ o s el [+ 5 [aor )
with 0 < B < #n%/12, then

i=n

le] < [V/(15%)/4]4 V[seC\/(3B)]( m+lw,¢>
1 1 2
+ ;iA\/[seC\/B] fo{ J; [o(s, £) — p°(s, )] dt}

X exp{% fo 6.0 — 26, t)]2dt} ds.

CoroLLARY. If F[x(-)] satisfies the conditions of Theorem 6 and if

EI‘YM ai(s) a;(s) <K M

i j=

for N=1,2,3,... and all s € [0,1] (this condition holds for all Sturm-
Liouville sets of a’s) (4, 2, p. 272), then L, exisis for n = 1,2, ..., where

L, = 11;21; 01{ j;l[ iiuai(s) ﬁi(t)]2 dt}2 ds.

leal < [/(15%)/414 ¥/ [sec/ (3B)] (f: 7>

i=n+1

Moreover,

4 14+/[secn/Blexp{B(1 + M)*/2}L,,
and a crude estimate is provided for L, by
Ly <4AM 3 vi

i=n+1

In particular, if

=) 1+a
L,= O( Z ’Yzz) where 0 < a < 1,

i=n+1

lea] = 0(& w,i)m-

i=n+1

then

Theorem 1 (2, p. 118, Theorem 3) and Theorem 3 (which is proved by means
of Theorem 2; both Theorems 2 and 3 appear in Cameron’s unpublished notes,
though the proofs in this paper differ from Cameron’s) as well as Theorems
4 and 5 of the present paper are the main results used in the proof of Theorem 6.
The corollary to the theorem is proved by means of Lemmas 3.1 and 3.2. These
theorems and the lemmas are stated below, after which proofs of Theorem 6
and its corollary follow.
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THEOREM 1. Suppose that Flx(-)] s, for x(-) € C', of the form

Fle()] = Ko+ 3 | RIS IO 9y S

in which the K.'s are right continuous and of bounded variation (4, pp. 345-7)
in any j (j < 1) of the variables for the other © — j variables fixed, and where the
integrals are understood to be Radon integrals. Then

1

J P ax =3 [ R, /72 + Fl=ps, ) /v2) ds.

THEOREM 2. Let Flx(-)] be bounded and continuous in the Hilbert topology in
the space C. Then

lim I,(F) = fF[x(-)]dx.

n—co

THEOREM 3. If Flx(-)] € L, (C), then

Jreenae= |7 [P =20 + gt o du

THEOREM 4.
f{ J;l[x(t) — x"(t)]th}sdx < 1—85 (iglyi,i> "

THEOREM 5. For fixed 1 € {1,2,3}, let H(ty,...,t;) be right continuous and
of bounded variation (4, pp. 345-7) in any j (j < 1) of its variables for the other
1 — j variables fixed. Then there exists N(sy,...,s;) of bounded variation and
right continuous such that for all x(t) € C’

.[; [x(tl) -—_ x"(tl)] P [x(t,) — x"(l,)] d(i)H(h, ey ti)
is of the form
J; x(s1) .. .x(s;) dyN(sa, ..., Si).

(The integrals are to be interpreted as Radon if x(¢) € ¢’ — C and as either
Radon or Riemann-Stieltjes if x(¢) € C.)

LeEmMA 3.1. Let {ai(s), as(s), as(s), ...} be such that

i = 2
f LZai(s) Bi(t):l at < M for n =1,2,3,... and all s € |0, 1].
o L4
Then

O [ 1560 — el 0F ar < (1 + VY,

(ii) .‘;ll ZN: a(s) ﬁi(t)Tdt < 4M,

- i=n+1
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Gy 115 e 60]afs s .,

i=n-+1 i=n+1

1 1 N 2 2
(iv) lim { f [ > ails) Bi(t):l dt} ds exists and equals
0 0

N-co i=n+1

J;l{ J;l[p(s’ ) — "1 dt}zds.

LemmMA 3.2. The condition required tn Lemma 3.1 is satisfied by all Sturm-
Liouville sets of o's.

The proof of Theorem 6 {ollows. Since
a8 8) € G [x(-) — ()] € €', and [p(s, -)/v2 = p"(s, -)/vV2] €

for fixed £y, ..., &, it follows from (3.2) that the replacements below of F's
by sums of P’s and Q's are valid. Since Fx(-)] € L (C), Theorem 3 applies to
yield

Jroas = [ [Fue ) +20) - 20 d du,
or
63 [re@ia= [T [P 0 - 2]

+ Qln(&, -), 2(-) — 2" ()]} dx duy .
Now since F[x(+)] € L(C) so that

< ®,

J e

and since by assumption J,(F) exists as a finite quantity, i.e.
oo 1
(34‘) ‘I: % { lI;F[ll’n(fv ') + P(s: ')/\/2 - Pn(sv ')/\/2] + F["I’n(f» ')

—p(s, *)/V2+ 0" (s, ')/\/2]} ds duy

exists as a finite quantity, consider ¢, which by definition is given by the
second member of the following equations (the third member follows from

(3.3)):
(35) &= J;F[x(~)]dx

~ T3 Lt 406, 0ve = B Vvl
P ) = o, )/7/2 + 875, )/~/2] ds du
= [T JtPa 0, 20) = #O1 01 ), 2() = e
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7 S e 06, 0 ve = 86 /v

+ Q[‘pn(gv ')v p(S, ')/\/2 - Pn(sv ')/\/2]

+ Pl ), = os, )/V2+ "G5, -)/v2]

+ Qe ), —o(s, )/V/2 + 46, )/V21) ds di
1 J P 0,500 = 2 O1+ Qe ), 50) = 2

=5 J PG .06 )V = 26, ) /v2)

+ Q[\bn(gv ')y P(S, )/\/2 - Pn(sr )/\/2]

+ PlYu(t, +), — o(s, -)/V240"(s, 1) /2]

I

+ Qln (€, ) — (s, ) /V2 4+ 0°Cs, -)/vz]}ds]dun.

The combining of the two integrals on R" in passing from the second to the
third member of (3.5) can be justified by the finiteness of [, Flx(-)] dx and
of J,(F). It will now be noticed that the fact that fc Flx(-)] dx and J,(F) are
each finite implies that in the last member of (3.5) the integral on C and the
integral on [0, 1] are each finite for almost all £, ..., & € R" Also, it follows
from Theorem 5 that P[Y,(¢, -),x(-) — x"(-)] is, for fixed &,...,& € R*, a
functional satisfying the hypothesis of Theorem 1. Now it can be shown that
if G[x(-)] is a functional satisfying the hypothesis of Theorem 1, then
G[Ap(s, -)] is measurable and bounded in s on [0, 1] for each constant value
of A (for a proof one can assume without loss of generality that 4 > 0 and K,
is monotonically decreasing in all of its arguments for each 7). Thus the
integrals (in s) involving

P[‘A‘n(é» ')r + P(sv )/'\/2 =+ Pn(sv )/\/2]

in the last member of (3.5) can be combined and then, by Theorem 1, cancelled
with the integral (with respect to x) of P[y,(¢, +), x(-) — x"(-)]. Thus there

follows
= [T ot 250 - w1
L Qe 0 /v = G, ) /v2)
F Qlalts ) = 96y V2 575 )/v/2]) ds | d
If

0501l < 4] [Torasf esp{s [Timor a5 [ wras),
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there follows

66 el <a [ | [ [ 10 - rorafeos [[weora
8 [ - woras o+ 2 [ [ benrve
— g epls [ e ora+ 5 [ b0/

— o"(s, 1) /2] dt} ds] duy.

6.7) f 50 - eer s eols [ e ora

+ B fo [x(s) — x™(s)] ds} dx:| Ay,

(the complete notation for n-fold integration now being used)

o [ f{veer] [to-r0]

X V/[en(§)] exp B J:{[‘//n(z, O+ [x(s) — x"(s)]z}ds}dx dty . . . d,
< 34/[ .E, (n) f_z fe (5)[ fl[x(s) X (s)]zds]sdxdgl,,,dgn]z
X 1/[ f_m () f_w fe ® eXP{?»Bf (e, )T

+ [x(s) — x (s)]2}ds}dx dty .. .d&n]

(because of the Holder inequality)

"/j [J‘ [x(s) — « (s)]ds] dx}
/{7 [7 fvia@renl? [ +s0 - rorad

X V@l e 22 [150) — 5°6) - vale sz ..t}
(because a* + b2 = [(a + b)2 + (a — b)?]/2)

(compressed integration notation again used)

e/ J] [ —soraaf
X 61/[ _J: f exp{?»B fol[x(S) — x"(s) + ¥alt, S)JZdS} dx dun]
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X 61/ [ J‘_ Z J;eXp{3B foll—x(S) + 2"(s) + ¥alt, S)]2dS} dx dun]
(T - voralef
X 1/ [ I exp{sB [0 - w6 + e s>12ds} dx dyn]

(because if G[x(-)] is integrable, so also is G[—x(-)] and the integrals of the
two are equal)

/UL - corara /| flon Foor o]

(because of Theorem 3)

= V/[secv/(3B)] 4/{ [ [x(S) — ") dS] }2

(because of formula (4.15)).
Also

68 [ ewo(s [neorafan [] [beo/ve

— "5, 0)/V2I dt] exp{B f 1[p(s, 0/vV2 = 6" (s, t)/\/2]2dt} ds
-/ f_m ool [ e 0t auas Xk [ [0 = w0 arf
X eXP@ J; [o(s, &) — o' (s, )]* dt} ds <3 £ J_m eXp{B J; [¥u(E )] dt

+ B J; [x(s) — x"(S)de} dpn dx X J;{ J; [o(s, 8) — o°(s, t)lzdt}

X exp{g J; [o(s, t) — p"(s, 1)) dt} ds

(note integration notation again)

Syl * [l [t )+ 56) - #OF dsf s
<4/ [ ) expB [ T=56) +2°6) + oG P dsh 5 dun |
< [ f 66,0) = 66,0 e exp{Z [ 1ot = e 07t} 0

=7 cexp\B J; [x(s)]? ds} dx
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{ [o(s, £) — 7G5, t)]zdt}zexp{g f 06 0) — 2Gs, t)]"’dt} ds
—;1 V[sec/B] f {f (s, ) — o5, ) dt}

X exp{g J; [o(s, 8) — o"(s, )] dt} ds

(because of formula (4.15)).
From (3.6), (3.7), and (3.8) there now follows

69 lal <4 Vieev Bl 4/ [ [l1s6) - w2 as|ar

+14V/(ecv/B) | {660 - reoral

X exp{g J;l[p(s, 1) — (s, )] dt} ds.

Theorem 4 provides the estimate which, when substituted into (3.9), completes
the proof of Theorem 6.

The proof of the corollary is as follows: From Lemma 3.1(1),

(3.10) eXP{ f [o(s, t) — p"(s, )] dt} exp{ a+ \/M)Z}-

Then, from the estimate for |e,| in Theorem 6, from Lemma 3.1(iv) and from
(3.10), the asserted inequality concerning |e,| follows. Lemma 3.1 (iii)provides
the crude estimate required and Lemma 3.2 proves the parenthetical statement
of the corollary.

4. The proofs of Theorems 2 to 5 and of Lemmas 3.1 and 3.2. First
a sequence of seven lemmas from which will be obtained Theorems 2 and 3
will be given.

LeEMMA 4.1. Let {fi(s): 2 =1,2,...,n} be an orthogonal set of functions of
bounded variation on [0, 1]. Then there exists a normal function 0(s) of bounded
variation on [0, 1] such that f1(s), . . . , f.(s), 6(s) is an orthogonal set of functions
of bounded variation on [0, 1].

Proof. Let

st = aifis), i=1,2...,mn+1,
i=1
be the component of

s, i=4L2,...,n,n+1,
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which is orthogonal to the set

{fi(s):i=1,2,...,n}.

It is easy to show that the assumption that each of the equations

ST =D anifis) =0, j=1,2...,n,n+1,
i=1

holds for almost all s € [0, 1] leads to a contradiction of a corollary of the
fundamental theorem of algebra. (To do this, one multiplies the jth equation
by r; and notes that 7’s, not all zero, can be chosen to satisfy

n+1
Zaj.ifj=02 1=1,2,...,n)
=1

The existence of the required 6(s) follows at once.

LemMA 4.2. For fixed (4, t') € {(4,¢):0 <t <t <1}

t=2, B:(t) B:(t).
In particular, if 0 < ¢t < 1, then

t= 2 512(15)-

Proof. Suppose that p(s, ¢) and p(s, ') as functions of s € [0, 1] are given
generalized orthonormal expansions in terms of the set of functions {a;(s):
12 =1,2,...}. Parseval’s equation for the integral of p(s, t)p(s,#) on [0, 1]
yields the result.

LeEMMA 4.3. Let a;(s), as(s), . .., a,(s) be any orthonormal set of functions of
bounded variation on [0, 1]. Let

a0 - 4/ (5 p0).
0:( 1) = 3 BuD) BuV),

i=n+1

Qs(t, ") = Q2(t,8')/Qu(®)
(unless Q:(t) = 0, in which case let Q;(¢,¢') = 0 also),
Ri(t,¢') = vV {{Q1(#)]* — [Qs(t ¢)]2}
(note that [Q:(#')]? > [Qs(¢, t')]? follows at once from the Schwarz inequality),

Ral, ', 8") = Q2 ¢ ;{ 1%(;,;’)@3(;, )

(unless R;(t, ') = 0, in which case let R:(¢, ¢/, t"") = 0 also),
Uit ', t") = v/ {[Ru(t, ¢")]* — [Ra(t, ¥, £7)]?)
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(note that it will follow in the course of the proof of the lemma that

[Ri(t, ¢")]? > [Ra(t, ¢, £")]2).
Then
(1) There exists a function q(s,t) defined on [0,1] X [0, 1], which is, as a
Sfunction of s, for each fixed t, of bounded variation and orthogonal to each of the
a's and which is normal. Also, for each fixed ¢,

4.1) p(s,t) = kil Be(®) ax(s) + Q1(t)q(s, t) for almost all s € [0, 1].

(ii) For a fixed triple

@, ) € {@, ¢, 0)0<t<t << < 1}
such that
[Q1E) Q)] = [Qa(t, )]

there exist functions q(s,t), r(s,t,8'), u(s,t, ', t"") of bounded variation in s on
[0, 1] such that

ai(s), ..., a,(s),q(s, 8), r(s, t, '), u(s, ¢, ', ¢")

is an orthomormal set of functions of s on [0,1] and such that for almost all
s € [0,1], (4.1) holds as well as

(42) p(s,0) = é Bi()as(s) + Qa(t, 1)q(s, ) + Ru(t, )r (s, 1, 1),

4.3) p(s,¥") = 2231 Bi(t")ai(s) + Qs(t, t"")q(s, t)
+ Ro(t, 8, (s, b, 8') 4 Us(t, 8, ¢ )uls, ¢, ¢, 7).

Proof. (i) To prove (4.1) it is noted that for each fixed ¢, p(s, ) must satisly
exactly one of the following alternatives:

(4.4) p(s, 1) = ?—"‘1 bi (£ o (s)

for almost all s € [0, 1] for an appropriate choice of {8;(¢): k =1,2,...n},
(4.5) p(s,1) = 20 bBax(s)

for almost all s € [0, 1] is false for all choices of {#;(t): k = 1,2,...,n}.

Multiplication of both sides of (4.4) by «;(s), followed by integration with
respect to s from 0 to 1, yields 4;(¢) = 8,(¢). Hence, if (4.4) holds, then

(5, 1) = 32 B Deuls)

for almost all s € [0,1]. The squaring of both sides of the last equation
followed by integration with respect to s from 0 to 1 and an application of
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Lemma 4.2 yields 0,%(t) = 0. Hence, if (4.4) holds,

p(s1) = 25 BeDan(s) + Qi) (5, )
for almost all s € [0, 1], where ¢(s, ¢) is a normal function of bounded variation
orthogonal to each of a1 (s), as(s), . . ., a,(s). The existence of ¢ (s, £) is ensured

by Lemma 4.1 for each ¢ for the case in which (4.4) holds.
Now suppose (4.5) holds. Then

p(5,1) = 32 BrOn(s) = NG,

where N (s, t) is non-zero on a subset of positive measure of [0, 1]. Thus

(56,0 = 3 806 | = ¥,

where N2(s, t) is positive on a subset of positive measure of [0, 1]. Thus

n 1
t_kglﬁkz(t) = LNZ(S, t) ds > O,

so that, by Lemma 4.2, 0,2(t) > 0. It follows that

06,0 = [ o600 = 3 8006 |/ 0:0)

is a normal function of s on [0, 1]. It is easy to verify that ¢(s, ¢) is orthogonal
to each of ay(s),...,a,(s), and ¢(s, ¢) is clearly of bounded variation in s.
Hence, if (4.5) holds, then for all s € [0, 1]

06,0) = 5, 8e0m) + 00} 06,0 = 3 8000 |/ 00|

= 3 8.(0es(s) + Qa(a (s, ).

Thus, for all ¢ € [0, 1] for which (4.5) holds, ¢(s, ) has been defined for all
s € [0,1]. Finally then, for all ¢ € [0, 1], ¢(s,¢) has been defined for all
s € [0,1] and ¢ (s, t) satisfies the conclusions of the lemma.

(ii) The proof of the existence of ¢ (s, t) satisfying (4.1) has been completed
in part (i) of the proof. The existence of the required r(s, ¢, t') and u (s, ¢, ¢, ¢'")
will now be established. For fixed

@Gt t) e {1,100t <t K1},

p(s, ') must satisfy exactly one of the following:

4.6) s, ) = 3 maas) + ma(s, )
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for almost all s € [0, 1] for an appropriate choice of m1, ms, . . . , m,, m,
(4.7 p(s, 1) = Z_:lmiai(s) + mg(s, t)
for almost all s € [0, 1] is false for all choices of m1, ma, . . . , m,, m.

Suppose (4.6) is true. Then multiplication of both sides of (4.6) first by
a;(s) followed by integration from 0 to 1, and then by ¢(s, ¢) followed by
integration from 0 to 1, yields respectively m; = 8,(t') and

1
m= | o606, 1) ds.
0

It follows by the definition of ¢(s,¢) (note that Q:(f) # 0 by assumption)
that m = Q;(¢,¢'). Thus if (4.6) holds, then

4.8) p68) = 32 BiO)els) + 0ol )a(s, )

for almost all s € [0, 1], and thus from the squaring of both sides of (4.8)
and integrating with respect to s from 0 to 1 there follows [Q1(¢')]2 = [Qs(¢, #')]2,
contrary to the assumption that [Q:(¢')12[Q:(t)]? # [Q:(¢, ¢')]2. Thus, (4.7)
must hold and so

(4.9) p(s, t") — 1231 Bi(tees(s) — Qs(t, t")g(s, t) = R(s, ¢, t")

where R(s, t,t') is non-zero on a subset of positive measure of [0, 1].
The squaring of both sides of (4.9) followed by integration with respect to
s from 0 to 1 yields, again in view of Lemma 4.2, [R;(¢, ¢')]2 > 0. Hence

(5, ) = 22 BulEDls) — Qult V)als, 1)
Ri(t, t)

is a normal function of s on [0, 1]. Since «a;(s), ..., a,(s) are of bounded
variation and so also is ¢(s, ) (as observed above in the establishment of the
existence of ¢(s, t)) it follows that 7(s, ¢, ¢') is also of bounded variation. It is
easy to verify that r(s,t,¢) is orthogonal to each of a(s),...,a,(s) and
q(s, t). Hence, for almost all s € [0, 1],

r(s, 1, 1) =

(s, 1) = 35 Bul)as) + Qs )a(s, ) + Ralt, Or (5,1, 4)

and the existence of a normal 7(s, £, t') of bounded variation, orthogonal to
the o's and to ¢(s, ¢), and which satisfies (4.2), is established.

Now the existence of the required u(s, ¢, ¢/, t'’) will be established.
For fixed

@G, e (@, )0ty < <1},
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p(s, t"") must satisfy exactly one of the following alternatives:

(4.10) (5, ") = 3 mias(s) + agls, ) + br(s, 4, ¥)

for almost all s € [0, 1] for an appropriate choice of my, ms, . . ., m,, a, b,

@.11) (5, £") = 2 meals) + ag(s, ) + br(s, 1, 1)

for almost all s € [0, 1] is false for all choices of m;, . . . , m,, a, b.

If (4.10) holds, then multiplication of both sides by a;(s), ¢(s,t), and
r(s, ¢, ') in turn, followed by integration with respect to s from 0 to 1, yields
respectively m; = 8,(t"), a = Qs(t, "), and b = R.(¢, ¢, t"’). Hence, if (4.10)
holds,

o(s, &) = ;::1 Bt Vai(s) + Qs(t, £)q(s, £) + Ralt, ', 8"")r (s, 8, £)

for almost all s € [0, 1] so that

v = [l 00 as = 358267 + 106 01 + [Re 1, 01
Thus from Lemma 4.2 follows
0 = [Q:(¢")] — [Qs(t, ")) — [Re(2, &, #") ]
= [Ri(t, )] — [Ra(t, 8, 8")]2 = [UL(@, ¥, ")]2
(Note that it has now been shown that for case (4.10)
[Ri(t, ¢")]2 — [Ra(2, ¥, ¢")]2 = 0.)
Hence, if (4.10) holds, it follows that for almost all s € [0, 1],

(5, ") = 32 Bl Yss) + st a5,

4 Rot, 8, 8 (s, 8, 8) + Ust, £, ¢ Yu(s, 8,8, ¢,

where u(s,t,¢',#"’) is a normal function of bounded variation orthogonal to
each of a1 (5), ..., a, (5), q(s, 8), 7(s, ¢, t'). The existence of u(s, ¢, ¢, t"') is
ensured by Lemma 4.1.

Now suppose that (4.11) holds. Then

(4.12) p(s,t") — 2_31 Bi(t"ai(s) — Qalt, £")g(s, t) — Rat, ¢, ") (s, 8, ")

r o n

= U(s, tt,t)

where U(s, ¢, ¢/, ") is non-zero on a subset of positive measure of the set [0, 1].
If each side of (4.12) is squared and integrated with respect to s from 0 to 1
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there results

t" - g Bi2(t”) - [Q3(t) t")]2 - [R2(t1 tlr t")]2 = J; [U(S, t) t') t',)]2ds > 0

or, using Lemma 4.2 again,

[Ri(t, ¢")]* — [Ra(t, ¢, )2 > 0.
(Note that it has now been shown that for case (4.11)

[Ri(t, #")] — [Ro(2, ¢, )2 > 0.
Thus, from the assertion of the previous note, there now follows that for all

@, ) e (@, ) 0Kt <Y <YLY,

[Ri@t )] — [Re(t, ¢, 8")]2 > 0
as asserted in the lemma.) It follows that U(s, ¢, ¢, #'') has a normalized form
u(s,t,¢',¢"") and it is easy to verify, using the equations m, = 8,(t"),
a = Qs t"), and b = Rs(t,¢',¢') obtained above, that U(s, ¢ ¢,#’) and
hence u(s, ¢, t’, t"’) is orthogonal to each of

ai(s), ..., a,(s), q(s, 8), 7 (s, ¢, ¢).

Thus if (4.11) holds, then p(s, ') has the form given in the lemma where,
as noted above, u(s,t,t', ") is the normalized form of U(s, ¢, ¢, #'). Hence
the existence of a normal (s, ¢, t, t’’) of bounded variation, orthogonal to the
a’s, to g(s, t), and to 7 (s, ¢, '), and which satisfies (4.3), is established and the
proof of the lemma is complete.

Lemma 4.4. If ¢(s) = O for almost all s € [0, 1] and if ¢(s) is of bounded
variation and x(s) is continuous on [0, 1], then

fold;(s) dx(s) = 0.

Proof. Since ¢(s) is of bounded variation, it has at most countably many
discontinuities. It is easy to show that ¢(s) = 0 at each point of continuity.

Also, if s3, s2, ... is an enumeration of the s-values for which ¢(s) # 0, then
it is easily shown that since ¢ (s) is of bounded variation,
2:1 [$(se)| < .

A consideration of the definition of

1
J; é(s) dx(s),

combined with the last inequality, yields the desired result.

LeMMA 4.5. For all x € C and any orthonormal set of functions

{ar(s), a2(s), ..., a,(s)}
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of bounded variation on [0, 1], there extists q(s,t) defined on [0,1] X [0, 1], of
bounded variation in s and orthogonal to the o's and such that for all ¢ € [0, 1] 4t
1s possible to express x(t) by

2 =% [ w080 + 00 [ 61 a6

(where Q;(t) is as defined in Lemma 4.3) or

@13) 20 =3 c080) = 00 [ a5, 1) ax(6)

Proof. Stieltjes integrations, with respect to x(s), from 0 to 1 of both sides
of equation (4.1), followed by an application of Lemma 4.4, yield the desired
result.

LEMMA 4.6. Let n be fixed. Then

[+0 -5 cn0 |

(1) for fixed x € C, is measurable with respect to t € [0, 1] and integrable with
respect to t,
(ii) for fixed t € [0, 1], is measurable with respect to x € C and integrable
with respect to x,
(iii) measurable with respect to (¢, x) € [0,1] X C and integrable with respect
to (¢, x).

Proof. (i) follows from the continuity of the expression in f. The statement
of measurability in (ii) follows from the facts that x(¢) is continuous (in the
uniform topology) in x for fixed ¢ and that ¢; is integrable (and thus measurable
of course). The statement of integrability in (ii) follows from the fact which will
be proved below, that

l:x(t) - 1231 ci m(l)T

is dominated by a functional in Z(C). Now
) - OF = |50 35 080 |
o0 -3 [ 660 ]
20) [ 20080 |+ 3 [ 20080 |

< O + 2;

< jmax |x(t)|} + 212::1 {r&a};{llx(t)[}{gr;;gllﬂi(t)l}- I J:) x(s) da;(s)

<1

+ [; IRG dai<s>-5i<t>]2.
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But

< f)réatlicl lx(@)] {Var ai(s)} .

0<s<1

I J;lx (s) day(s)
Thus

(@) — x"@®)])* < K{max |x(t)|} € L(C)
0< 1<1

for appropriate K > 0, and the desired dominance of [x(f) — x"(¥)]® is
established.

The statement of measurability in (iii) follows from the following observa-
tions. x(¢) is continuous in (¢, x) (in the topology induced in [0, 1] X C by the
usual topology on [0, 1] and the uniform topology on C) and thus x(¢) is
measurable in (¢, x). Since 8;(¢) is integrable in ¢, and ¢, is integrable in x, it
follows that ¢; 8,(t) is integrable in (¢, x) and thus of course is measurable in
(¢, x). The statement of integrability in (iii) now follows from the dominance
of

n 2
[x(t) -2 m(ﬂ]
again by K {max<<i|%(¢)|}2 now considered as a function on [0, 1] X C.

LemmA 4.7. Let {y(4;t):7 =1,2,3,...} be any subsequence of the sequence
{x*(t): m = 1,2,3,...}. Then for some subsubsequence {y(jy;t):k = 1,2,3,...}

[0,1]

LIM. y(i; t) = x(@),
k-0

1.e.

1
lim | [yG;t) — x()dt =0 for almost all x € C.
0

k>0

Proof. The existence of each of the following integrals is ensured by Lemma
4.6. Also note that y(j;t) = x™D(2).

f,fol[x(t) - ;:;C:Bi(t)Tdt dx = J;l fc[x(‘) -3 Bi(t)]de i

If both sides of (4.13), where % is replaced by 7 (j), are squared and integrated
on [0, 1] X C, there follows

fol fc["@ - ZZ?) 2 m<t>]2dx it
B f f[ j}mﬁ f@)][ folq(s, t) dx(s>]2dx dt

- [ S 5o |a

i=n(j)+1
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(because if f is the Stieltjes integral with respect to x(s), on the interval [0, 1],
of a normal function, then f,fz dx = 1)

1 [oe]

2i=7l(j)+1

Vi, i
But

O

lim Y, v;;= lim > Bl dt

1 ©
o0 t=n(H+1 Js0 Y0 i=n(H+1

1 =)
= | lim > B ¢t)dt=0

0 Josco t=n(H)+1

by Lemma 4.2. Hence there exists a subsubsequence {y(ji;¢): £ = 1,2,3,...}
such that

1
tim [ 1) — G OF di = 0
k>0 VY 0
for almost all x € C and the proof is complete.

The theorems mentioned prior to the seven lemmas will now be stated and
proved.

THEOREM 2. Let Flx(-)] be continuous in the Hilbert topology in the space C and
let Flx(-)] be bounded. Then

lim I,(F) = fF[x(-)]dx.

n->c0

Proof. Note first that
L) = [Pl s,
Let {v(j;t):7=1,2,3,...} be any subsequence of the sequence

{x"(t):mn =1,2,38,...}.

Then by Lemma 4.7, there exists a subsubsequence {y(js;2): k =1,2,3,...}
such that
[0,1]

L.kI.M.y(jk;t) = x(t).

Since F[x(-)] is continuous in the Hilbert topology, it follows that

lim Fly(ji; +)] = Flx(-)].

k—oo

Since F[x(-)] is bounded, Lebesgue’s bounded convergence theorem applies
to yield

Jrenar = tim [ PG e,
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that is, the limit of the sequence of I's based on this subsequence of x's is
equal to

ch[x(-)] dx.

The conclusion of the theorem follows at once.

If the o's are chosen to be the odd harmonic cosine functions
(i(s) = v/2cos {[{ — 1/2]xs}; 1=1,2,3,...)

then, as shown in (2, p. 112) (it should be noted that the g,(t) of (0.2) in
(2, p. 112) is called «;(¢) in the present paper) the conclusion of Theorem 2
(of the present paper) holds, provided F[x(:)] is dominated by a suitable
(unbounded) integrable functional. In the following example one does not
even need to know of such a dominating functional.

Example. Let
! 2
Fis()] = expl(B [ wora)
where 0 < B < ir% Then

lim I,(F) = f Fle(-)] dx.
Proof. As shown in (2, p. 112, (0.5))

» 2 & .

«"(t) = ;Z c;8(t)/ (% — 1),
j=1

where g;(¢):j =1,2,3,... is an orthonormal set of functions. (Note that
x"(t) is a partial sum in a Fourier expansion of x(¢)). Thus

n 4B - .

Ao ()] = exal B3 e — 17
=

Again it is noted that

L) = [ Fe))de

and that F[x"(-)]:» = 1,2,3,... is an increasing sequence of non-negative
functionals such that lim,, ., F[x"(-)] = F[x(-)]. The assertion of the example
is thus established.

F[x"(-)] can be easily computed by Wiener’'s formula for functions of »
linear functionals, viz.

w1y [ = [0 [ 0@ ..
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The infinite product in lim,_,, I,(F) can be found in (5, p. 114) and the result
is

(4.15) f exp(B fo 1 [x(t)]2dt> dx = v/(secv/B), 0<B< r’/4

[

THEOREM 3. If Flx(-)] € L,(C), then

Jraous= [T [T aw [ e -0

+ ¥t )]dxdts . . . dE,.

Proof. Assume first that F[x(-)] is bounded and continuous in the Hilbert
topology. By Theorem 2

J Pee(1ae = lim 1,(F)
= il—)rg f—i ) J:: (1/v/ ") exp(—&". .. —&7)
X { f_: (n —») f_ Z(l/x/w"‘”) exp(—fa’ ... —£)

X f{%(é, )+ j;;—l & B;(-):, Aty .. dsn} dt: . . . dE,.

Thus, by the use of the formula for functions of # linear functionals, viz.

J;f*{ fol () dx(0), . . ., fol an(t) dx(:)} dx

- ‘: m [ ‘: e©f s - -, &) dr - . . d,,

and from the definition of x"(¢), there follows
(4.16) J; Flx(:)]dx
=iim [T o) T a/verem-at - -6
X [ R ) +20) = ¥ (Oldzda. s

=tim [T o) [T a@ [ Fne )0 -2 Oldsdg

By Lemma 4.7 there exists a subsequence {y(j;¢):j7=1,2,3,...} of
{x"(t):n =1,2,3,...} such that

[0,1]
L.IM.y(@;t) = x(t).

J-o0
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By Lebesgue’s bounded convergence theorem

@an) tim [ R ) + a0 ) — v ()] ds

J->c0

= [ v +a0) =2 Olan
From (4.16) it follows that

(4.18) LF[x(-)]dx=1ji$ f_i ») f_z Le,(E)F[%(E,-)-{-yU;-)

—x"()]dx dg, . . . dE,.
Since Flx(-)]is bounded,

fc Fln(E, ) + 9G: ) — 2 ()] de

is also bounded. Thus, for fixed », Lebesgue’s bounded convergence theorem can
be applied to the right side of (4.18) to yield

LF[x(-)]dx

I

J oo [ a@in [ e +s60 - w Ol e

= f_i Q) f_ie»@ J:Fw»(s, YA x() — &' ()]dxd . .. dE,

because of (4.17). Thus the theorem is established in the case for which
Flx(-)] is bounded and continuous in the Hilbert topology.

Next, as in Cameron’s paper (2, p. 120), assume that Flx(-)] = xolx(-)]
is the characteristic functional of the quasi-interval

QZ>\j<x(tj)</.Lj, j=1,2,...,[);0<t1 <t <... <tp<1,

and let

2 1 tj

Fodle] =TT 60 2 7 x(oyas |,

j=1 tj—8
where ¢;.(u) is the continuous ‘‘trapezoidal’’ function that is zero outside
the interval \; < # < u; + ¢ equals unity in the interval \; + ¢ < u < u;,
and is linear in the remaining intervals. It is clear that F, ; is continuous in the
Hilbert topology and bounded, so it comes under the case of Theorem 3,

which has already been proved, and so the conclusion of Theorem 3 holds for it.
But it is also clear that for all x € C,

lim, Feale(-)] = Fe()]
where ?

Flx(-)] = I=I o5, e (1)),
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and by the principle of bounded convergence it follows that the conclusion of
Theorem 3 also holds for F.[x(-)]. Similarly for all x € C, there follows

lim Fefo()] = Fle(-)],

and again by bounded convergence it follows that the conclusion of Theorem 3
holds for Flx(-)], i.e. for the characteristic function of a quasi-interval. The
theorem can be established for simple functionals, positive functionals, and
then integrable functionals by standard procedures.

Another sequence of four lemmas will now be given to prove Theorem 4.

Lemma 4.8. If {a;(t):72=1,2,3,...} is a complete orthonormal set of
functions of bounded variation on [0, 1], then it is impossible for a specific function
f(t) and constants ¢; (1 =n + 1,n + 2,...), n being any fixed positive integer,
that

(4.19) ai(t) =cif@):i=n+1,n+2,...
on a subset E of [0, 1] where E has positive measure.
Proof. Assume that
a;(t) = c. f(@), i=n+1,n+2,...,

on a subset E of [0, 1] where E has positive measure, f(¢) is a specific function,

and ¢c;areconstants;s =n + 1,7 + 2,....Let
pi+1 fort € E, .
fj(t) = {0 elsewhere J = 0,1,...n,n-+1,
_4f@® fort € E,
gt) = {0 elsewhere,
and
_ fa;(@) fort € E, . _
&) = {O elsewhere, 7 L2...,n
The components of f;(#):j=0,1,...,n,# -+ 1 which are orthogonal to
all members of go(t), g1(¢), ..., g.(¢) on the set [0, 1] (or equivalently on the

set E, of course) are

fit) =2 an;8,(8), i=0,1,2,...,0,n+1,
=0

for appropriate constants a;; (¢ =0,1,2,...,n4+1;7=0,1,2,...,n).
Now it is impossible that

fi0) =2 a4, 8;8) =0, i=0,1,2,...,24+1,
=0
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should hold for almost all¢ € E. For otherwise let the ith equation be multiplied
byr; ¢ =0,1,2,...,n 4 1). Since the system of equations

n+1
S ai;ri=0, j=0,1,2...,n
i=0

has a non-trivial solution (for the 7;'s), it follows that
7ol + 1’1t2 + . + fntn'H + Tn+1tn+2 =0

for almost all ¢ € E with at least one of the #’s being non-zero. This contradicts
a corollary of the fundamental theorem of algebra. Thus

f1(t) — ]Aéaz.igf(f) # 0

for some I € {0,1,2,...,n,n 4 1} on a subset F C E where F has positive
measure. Now

(4.20) J;l [fz(t) - ]Z; ar,;&; (t)]ak (t) at

= L [f2(2) —ga,,jg,-(t)]ak(t) dt, k=123,...,

since
frt) — Zoaz.fg;‘(t) =0
=
save for t € E. Also, o (t) = gx(t) fort € Eand k € {1,2,...,n} and

n
fr(t) — ZO ar,;g5(t)
=
was constructed to be orthogonal on E to each {unction of the set

{g:(t):2=1,2,...,n}.
Thus

(4.21) «L; [f,(t) — ]z:% ar,; g,-(t)]ak(t) dt

= JE [fl(t) - z:oal,i g](t)]gk(t) dt = Oy k= 11 27 3) ceey R
=
Hence it is seen from (4.20) and (4.21) that
fi() — ZO ar,;€;()
=
is orthogonal on [0, 1] to the set of functions {a;(t): 7 = 1,2,...n}. Further-

more, from (4.19) there follows, because of the definition of go(¢) and the fact
that

fr(t) — ;al.j g;(t)
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was constructed orthogonal to go(f) on E, that

a2 [ [40 -5 o0 moa
e [ [0 S o a

Cx fE I:fz(t) - ]Z:%az,j gi(t):lgo(t) dt = 0,
E=n+1,n4+2....

I

From (4.20) and (4.22) it now follows that

fot) — Z_: 0

isorthogonal on [0, 1]also to the set of functions {a;(!): 2 =n + 1,7 4+ 2,...}.
Thus

£10) — g 0

is orthogonal on [0, 1] to the set of functions {a;(t):7 =1,2,3,...}, but is
non-zero on a subset of positive measure of [0, 1]. Hence a contradiction has
been obtained and the proof of Lemma 4.8 is complete.

LeEmMA 4.9. It s impossible that, for any positive integer n,

i 5;‘2('5) =0

i=n+1

should hold on an interval of [0, 1].
Proof. Assume that

2. B =0
i=n+1
on an interval. Then 8;(¢) =0:¢2=#n+1,n 4+ 2,... on an interval, say

{t:0 <a <t <b<1}. Since

t
B4(t) = fa,—(s)ds, 1=12...,n4+1,n+2...
0
it then follows that a;(!) = 0: 7 = n 4 1, + 2, ... for almost all
te {:0<a<t<bK1}.

This is impossible because of Lemma 4.8 and the proof of Lemma 4.9 is
complete.

LeMMA 4.10. It s impossible that, for any positive integer n,

wzm | 5 0] 5 ee]-[ 5 s0ne]

i=n+1 =n+

should hold on a subrectangle of {£:0 <t <1} X {£:0< ¥ < 1}.
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Proof. Assume the contrary. Without loss of generality assume that (4.23)
holdson {t:a <t < b} X {fic <t <d}where0 <a<b<c<1,0<c<
d < 1. By Lemma 4.9 it is impossible that §;(#) =0, =2+ 1,2 + 2, ...
for all ' € {t':c <t < d}. Thus, there exists t'g € {:¢ < ¢ < d} such that
B:{t'o) =0:2=mn+41,n 4 2,...1is false. From the last observation and the
fact that (4.23) is the equality part of a Schwarz inequality, it follows, for the
#'o mentioned above, that

(4.24) Bi(t) = k(2)B:(t), i=n+1,n+4+2...

for t € {t:a <t < b} where k(t) is a fixed function. Differentiation of (4.24)
with respect to ¢ yields

a(t) =k @)B:(t) ora;t) =c; k1), i=n+1,n+2...,

for almost all ¢ € {t:a < ¢ < b}. This is impossible according to Lemma 4.8
and the proof of Lemma 4.10 is complete.

Lemma 4.11. Let au(s), ..., a.(s) be any orthonormal set of functions of
bounded variation on [0, 1] and let Q:1(t), Q2(¢, '), Qs(t, t'), Ri(t, '), Ro(t, ¢, &),
and Uy(t, ', t") be defined as in Lemma 4.3. Then for fixed (t,¢,¢") such that

¢, ") € {(tt,¢):0<t<t <t <1}
and

(@) PO ()P # [Qa(E, )T

there exist functions q(s,t), r(s, t,t'), u(s,t,t',t"") of bounded variation in s on
[0, 1] such that

ai(s), ..., an(s), q(s, t), r(s, 8, 8'), u(s, ¢, ¢, ¢")
are orthonormal in s on [0, 1], and such that for x(-) € C it is possible to express
x(t),x(),and x(t"") as follows:
20 =380 [« a0 +00 [ o0,
x({') = ;1 B:(t") J; ai(s) dx(s) + Qs(¢, t') J; q(s, t) dx(s)
+ Ri(t, t') fl r(s, ¢, 1) dx(s),
@) =3 80 [ ) ) + 0t [ (s, a0

1 1
+ Rao(t, ¢, ¢7) fo r(s, t, ") dx(s) + Ui(t, ¢/, ¢'") f u(s, ¢, t', ") dx(s).
0

Proof. Integration (Stieltjes) of equations (4.2), (4.3), and (4.4) from
Lemma 4.3 in conjunction with Lemma 4.4 establishes the result.
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LEMMA 4.12. For fixed (¢, t',t") € {t,#,#"):0 <t <t < ¢’ < 1} such that

[Q1 () FIQ1 ()] = [Q=(2, )],
the following equation holds:

(4.25) fc [e(®) — 2" OV () — &" )T @”) — &"(¢")] dx

= QI
+ HIQ:0 OPIQ ) + [Qa(t, )[Q: ) + [Qa(t', #)1[ Q2 ()]}
+ (¥, 1) Q2 (¢, 1) Qa (¥, 27).

Proof. It will now be noted that if f is the Stieltjes integral with respect to
x(s), on the interval [0, 1], of a normal function, then

fcfdx =1/2, J;f‘dx = 3/4, fcﬁ dx = 15/8.

Lemma 4.11 along with a routine computation using the formula for functions
of n linear functionals (as in the proof of Theorem 3) completes the proof of
the lemma.

LeEMMA 4.13. For all triples (t,¢',8") such that 0 <t <t <t <1 the
Wiener integration formula, mentioned in Lemma 4.12, holds.

Proof. The result has been established in Lemma 4.12 for all (¢, #,t"") such
that 0 < ¢t < < ¢ <1 and such that

Q1) PIOLBO # [Qa(, )]

For arbitrary ¢’ € [0, 1], it follows from Lemma 4.10 that the only possible
pairs (¢, t') satisfying 0 < ¢ < ' < ¢’ <1 for which the result perhaps does
not hold are limit points of (¢, ¢') where the result does hold. But the right side
of (4.25) is continuous in (¢, ¢') since, by Lemma 4.2,

z"": 512@) =1t- Z 5120)
i=n+1 i=1
and

2 Bi0BE) = £ = 30 BB
(for 0 < t < ¥ < 1) and since each B;(¢) is continuous. It will be shown that
the left side of (4.25) is also continuous in (¢, ¢'). It then follows that (4.25)
must hold for all (¢,¢') pairs such that 0 <t < < ¢’ <t

To show that the left side of (4.25) is continuous in (¢, '), note is made of the
inequality

[x(®) — 2"()]* < K {maxecalx(®)]}? € L(O),
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for appropriate K > 0, which was obtained in the proof of Lemma 4.6. Then
it follows that

[x(@) — 2"OPxE) — @) PlxE’) — «* ()] < K*{maxocialc(£)]}°

so that by Lebesgue’s dominated convergence theorem

lim (@t + e — &+ Ol +») — "¢ + ) x¢”) — "¢ dx

0 c
v50

- f lim [ (¢ €) = "+ e +5) — 2" + D)) =€) d.

r50

The proof of the lemma is complete.

The theorem that provides the estimate for

SV{ Jc[ fol Le(s) — x"(S)]stjladx}2

will now be given.

THEOREM 4.

J; { J:)l [x () — x"(t)]zdt}gdx < % ( 1=2:+1 'ym> 3.
Proof.

f{ fol [e(t) — «" ()]’ dt}3dx

= 6‘fo ﬁ ﬁ ‘I‘ [x(t) _ x"(t)]2[x(t’) _ x"(t')]2[x(t") _ x"(t")]2dxdt dt’ dt".

Thus, by Lemma 4.13,

f{ J:,l [x(®) — x"(t)]2dt}3 dx
—6 f f ft'{l/S[lglﬂf(t)][ _Z+ 8, (t)][kgrlﬁg(lu)]
[; Bi(t)B: (t)][ Z B; (t")]
[2 8:(6)8: (t"):l LZ 82 t,)]
0]

[glm )84 <t")] [ > 8
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+ [iilﬁi(t)ﬁf(t')][ji Bf(t)ﬁj(t"):": Z 3k(t,)ﬁk(t")]}dt d' at"

=n+1 k=n+1

< S LA S 0] 5 0] £ 5]

{10 -RNG) )
+ [,;;530 ][ %ﬂf( ]Lglﬂf(t")]}dt d' dt”

15( & :
= —8_ ( E ‘Ym)
i=n+1

and the proof of the theorem is complete.
Seven more lemmas are required in the proof of Theorem 5.

LeEMMA 4.14. Suppose f(s) is continuous on [0, 1]. Then for every € > 0 there
exists a 8 > O such that for every partition of norm less than & and for every g(s)
such that

Varoc<1 g(s) < M
the following inequality holds:

3 60le6) — g6l — [, 563z

Proof. Hille (3, pp. 292-4) shows that if f(s) is continuous and g(s) is of
bounded variation, then for any partition of norm less than §

i:lf(si)[g(si) —g(si1)] — J; f(s)dg(s)
< 2max {[f@) = f@)]:u,0 € [0, 1], |u.— o] <8} Var g(s).
The proof is obvious from this inequality.

LeEmMA 4.15. If (s, t) is of bounded variation in the sense that it is of bounded
variation in (s, t) on [0, 1] X [0, 1], and is of bounded variation in s for a parti-
cular t and in t for a particular s and if g(s) is bounded and Riemann—Stieltjes
integrable with respect to f(s, t) for each t € [0, 1], then

J a0 a0

1s of bounded variation in t on [0, 1].
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Proof. Suppose g(s) is not identically zero (otherwise the proof is trivial).
Then

INCL B R CL T

n
=1

1 |
J syt = 16,101
<3 [ et 1) — £, ol

j=1 0

< sup g(s)| 2 Var [f(s,2)) — f(s, t4-1)].
0<s<1 =1 0<s<1
Now there exists an s-partition such that

Var [f(s, £5) — (s, t5-1)]
0<s<1

< i [f(s0r ts) — f(sr tym1) = f(Semny £5) + f(50-1, 1) + E/ (n sup lg(5)|>
=1 0<s<1

forj=1,2,...,n.
Thus

n
2
J=1

[ sy iy = [ ) arcs, 1)

< OS<USF<)1 lg(s)] jZ:)l é: [f(s0ts) — f(secns ty) — fser tjmr) + f(Semr, tm1)| + €

< sup |g(s)| Var f(s,¢) + e
0<s<1 [0,11X10,1]

LeEMMA 4.16. If k(s, t) is of bounded variation on [0, 1] X [0, 1] (as in Lemma
4.15) and is right continuous in s for each t, and if f(t) is bounded and Riemann—
Stieltjes integrable with respect to h(s, t) for each s, then

[ roae

1s right continuous in s.

Proof. Suppose f(t) is not identically zero (otherwise the proof is trivial).
It will be shown that Varoc,<: [b(s + 6,2) — h(s,t)] >0 as 6§ — 0 and then
the lemma follows from the observation that

‘ J:f(t) dh(s + 8,t) — J:f(t) dh(s, t)

The proof of the above-mentioned property follows: Since k(s,t) is of
bounded variation on [0, 1] X [0, 1], and hence on [s,0 1] X [0, 1]:0 < 50 < 1,

< sup |f(®)| Var [i(s + §,£) — h(s,8)].
0<i<1 0<1<1
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for any ¢ > 0, there exists a partition of [so, 1] X [0, 1] by the lines
s=s4 1=0,1,2,...m, andt=1¢; 7=0,1,2,...n,
such that
(426)  Var k(s t) — i i g(sa 25) — g(s4-1, £5)
[50,11X[0,1] =1 j=1
— g(su tjm1) + g(se-1, £-1)| < /3.

Furthermore, because of right continuity of g(s, ¢) in s it can be assumed (by
introducing one new column of points if necessary and using a new m) that

(4'27) Ig(s‘)y t]) - g(slv tf)l < G/[3(n + 1)]! j = 01 1: 2v RN (B
holds as well as (4.26). But

(4.28) Var h(s,) > Var k(s,t) > 2 3 |g(sat)) — g(si1, t5)
[s0,11X10,1] [s1,1]X00,1] =2 =1
— g(s4, t5-1) + g(se-1, t4-1)|
and thus from (4.26) and (4.28) it follows that

Var &k(s,t) = Var k(s,t) — Var k(s ¢t)

[s0,511X10,1] [s0,1]X%[0,1] [s1,11X[0,1]

< g Ig(slv tj) - g(SO’ tj) - g(51, tj—l) + g(So, tj—l)l + 5/3

< JZ::I lg(s1, 25) — g(so, 25)| + 12::1 lg(s1, t—1) — g(s0, 2;21)| + €/3

< 2ne/[3(n + 1)] 4+ ¢/3 < e
(because of (4.27)). Thus Var(s,11x0. 1% (s, t) is right continuous in s. Now

n

(}(/'aé'l [B(s + 8,8) — h(s, 8)] = sup'z*:1 |h(s + 8, t;) — h(s, ¢y)
—_ h(S + 5, tj_l) + h(S, t:]—l)l

(the supremum taken for sums over all partitions of interval [0, 1] of ¢) and
since the set of such sums is a subset of all sums over which the supremum is
taken in obtaining Varis,s181x10,1% (s, £), it follows that

Varocica[h(s + 6,t) — h(s,t)] > 0ass—0
to complete the proof.

LeMMA 4.17. If f(s, t) is right continuous in s and is of bounded variation in the
sense described in Lemma 4.15, and g(s) € C' and h(t) is continuous and of
bounded variation on [0, 1], then

[ feon0asen = [ ewrd [ romen).
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Also, as proved in Lemmas 4.15 and 4.16,

[ ro a6}

ts of bounded variation and is right continuous in s on [0, 1].

Proof. The result is obviously true if g(s) = 0 on [0, 1]; so assume that
g(s) is not identically zero on [0, 1]. First assume that g(s) € C, so the integral
can be interpreted as Riemann- Stieltjes. Let any partition of {s: 0 < s <1} by
the points {sq, S1, S2,...,Ss} such that 0 = 5o <51 <s2 < ... < s, =1 be
denoted by 7. For any 7 and 7, let the partition of

{s:0<s<1} X {0t 1}
by the lines

s=s4 1=0,1,...,m, andt=t¢; j=0,1,...,n,

be denoted by w; X 7, and name =, X m, the partition of [0, 1] X [0, 1]
induced by the partitions =, and =, of [0, 1]. For arbitrary positive e select a
specific partition =, of sufficiently small norm that for all partitions =, of
sufficiently small norm the induced partition n, X 7, is such that

@20 |3 g QIR G0 13) = Flsotss) — F( ity 1) + (s iy £y)]

_RS. fo fo gV dot 165, 8)| < /3

(the definition of

R.S. fo 1 f: g(n() ds, (s, 8)

ensures this possibility), and also is such that

{ folh(t)df(si, t) — f:h(t)df(si_h t)}

_RS. J;lg(s) d{ J;lh(t)df(s, t)}} <e/3

(the fact that
J o acn

is of bounded variation, according to Lemma 4.15, ensures this possibility).
Now select a specific partition =, of sufficiently small norm to satisfy (4.29)
(also (4.30) is satisfied, of course) and also to satisfy

43D | 56,0 — 6601~ [ 10ar 0] <o/ o max 1¢(o)1 |

0<s<1
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for all s € [0, 1] (this is possible according to Lemma 4.14 because
Varog,<1 f(s, £)

is bounded as a function of s on [0, 1]: cf. (4, 346)). Now for the particular
resulting 7, X 7,

(4.32)

é ;nl g(sDRENf (S0 t5) — F(Si=1y ;) — f(S1y £j—1) + f(si-1, j-1)]
m a1 1
S el [ p0 60t — [ 50 a6}

<| E el Srecnty — st - [ a0 i}
| B 6] 5160 i) = it = [ h0 a0 |

< 2m{ max Ig(s)|}e/ 6m{ max |g(s)]} = ¢/3
0<s<1 0<s<1
because of (4.31). The inequalities (4.29), (4.30), and (4.32) imply that

R.S. fol J;lg(s)k(t) ds, f(s, 8) — J;lg(s) d folh(t)df(s, t)

and the fact that e is an arbitrary positive number completes the proof for the
case in which g(s) € C. For the case g(s) € (', let o be the s-value for which
g(s) takes its jump and let g*(s) be g(s) modified to be right continuous at o.
Following the pattern used in obtaining the expression for p"(s, ¢) at the end
of §2, one obtains

[ [ eon® s,
f: folg(S)h(t)ds.zf(s,t)-k f 1 fo gD ot f s, 1)
-®s. ] f.:g@)h(t) duig(s,) +RS. | ‘ 1) RO i f s, 1),

The conclusion of the lemma (with the 1 for the upper limit on s replaced by «
for application to the first integral and a similar replacement for the second)
is applicable to each of the last two R.S. integrals and it follows that

< e

J;l fol g()h @) dy, . f(s, )
J;.;g(s) d{ J;‘h(t) df (s, t)} + J;lg(s) d{ﬁlh(t) ” t)}
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(because, as proved in Lemma 4.16,

IRCEY

is right continuous). The proof of the lemma for the case g(s) € C’ follows by
adding the last two integrals.

The proof of Lemma 4.18 is similar to that of Lemma 4.15 and those of
Lemmas 4.19 and 4.20 are similar to that of Lemma 4.17. Thus, only statements
of these lemmas will be given.

LeMMA 4.18. Suppose that f(r) € C' and g(s) and h(t) are continuous and of
bounded variation on [0, 1]. Suppose also that H(r, s, t) is right continuous and is
of bounded variation in the sense that

(i) 4t is of bounded variation in (r, s, t) on [0,1] X [0, 1] X [0, 1],
(i) 4t 1s of bounded variation in any pair of r, s, t for the third member fixed,

(iii) 4t is of bounded variation in any one of r, s, t for the other pair fixed.

Then

fol J;l f:f(r)g (S)h(t) d,.s, H(r,s,t)

= J;lf(r) d{j;l fol g(sh(@) dg,  H(r, s, t)}
{fol folg(s)h(t) ds, H(r, s, t)}

is of bounded variation and is right continuous in r.

and

LeEmMA 4.19. Suppose that f(r) and g(s) are in C' and that h(t) is continuous
and of bounded variation on [0, 1]. Suppose also that H (r, s, t) 1is right continuous
and of bounded variation in the sense described in Lemma 4.18. Then

J;l J:)l J:)lf(,)g(s)h(t) d,  H(rs,t)

_ ‘I;l J;lf(r)g(s) d, . {J;lh(t) dH (r, s, t)}
{J;l h(t) dH(r, s, t)}

s right continuous and of bounded variation in (r, s).

LeMMA 4.20. Suppose that f(r) and g(s) are in C' and h(t) € C. Suppose
furthermore that N(r,s) is right continuous and of bounded variation on
[0, 1] X [0, 1] and that M(t) is of bounded variation. Then

T 0h® da VG, MO
) Ve 1
- fo J; F(2(s) dr N, ) - fo R(t) dM ().

and
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The proof of Theorem 5 now follows. It is first noted that for fixed =

1
fo () — x"()dH () < .

Because of the definition of x"(¢),
J w0 - vw1a0
fo [x(t) - ]Z::l J; x(S)daj(S)‘Bj(t)]dH(t)

J;l ()] dE () — ;l [ fol 8,0) dH () f:x(s) daj(s)] ,

where the equality of the second member to the third member of the last
equation is justified by the finiteness of

i

I

fo ) dEHQ)

and of

fo k() — ()] dH ().

Since
1
[ swaro, j=12...m
0

are finite constants, the proof of the theorem, for 7 = 1, is complete.
Now for fixed »

J f r6 — 200 - w0486 < -

Also, because of the definition of x*(t),

[ [ 5 - 2010 - 2014860

A ECE N ool

X [x(t) - ; ‘I;lx(v) de;(v) -B,-(t):' ds, H(s, t)
J;l fol x(s)x(t)ds,, H(s, t)
-3 [r0 o [ [ 080 a6

j=1

]

I

— {one similar term}

+ nz:i J;I fol Bi(s)B;(t) ds, H(s, t)- J;lx(u) da,(u)- J;lx(v) da;(v).

i=1 j=1
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An application of Lemma 4.17 and Fubini’s theorem completes the proof of
the theorem for the case 7 = 2.
In the case for which 7 = 3, it is noted that for fixed #

1 1 1
J; fo J; x(r) — 2*()][x(s) — " ()]x () — &™) dy.5. . H(r, s, £)

N N A ECES > e arorre]
x50 -5 [ 2600, ]
x |20 =3 [ a6, |drcti5,0)

_ fo 1 fo ' fo Ve )E() dy H (e, 1)

n n

+5 3 [r@ e [ 2w dnw)
x [ [ [ 08,080 dr B, 5,1

+ {two similar terms}

—k;"l J;lx(w)dak(w) fol J;l J;lx(r)x(s)ﬂk(t) do H(r s, 1)

— {two similar terms}

553 [ i [ 2@ dae) [ @ dow

i=1 j=1 k=1

< [ 864980 g5, 1),

An application of Lemmas 4.16 to 4.20 and Fubini's theorem completes the
proof of the theorem.

Now the proof of Lemma 3.1 will be given. Let a;(s), aa(s), . . . be such that

J;l [ é“f(s)ﬂi(t)Tdt <M

forn =1,2,3,...and all s € [0, 1]. Then
1
[ 60 = ot 02 a

<[ weorate [ reokenat [ eora

<M+2 1/[ f: [6" (s, )] dt - J;l [o(s, t)]*dt} +1

<MH+2VM+1=(1+ VM3
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and the proof of part (i) is complete. The proof of (ii) is as follows:

[ £ awsola- | | S O~ 50080 | a

i=n+1

2
<2 f [ =dozz(s)ﬁ (t):| dt + 2 f |: ai(s)ﬂ (t):l 4.

To prove part (iii) one need only note that

f{ f[ 3w (’>] dt} s<an | [ [ P} i(S)ﬁi(t):lzdtds

(because of (1))

— 4N fol fol[ =ZN+1 ai(s)ﬁz(t):lzds dt = 4M fol[ _Z+ 8, (t):ldt

N
=4M Z vi1 (< 2M).

i=n+1

The proof of part (iv) follows. Let € be an arbitrary positive number and let ¢;
be chosen to satisfy the following conditions:

(@) 0 < e <1,

(b) &1 < ¢/4/3,

(€) Vea < ¢/12(1 + /M)3,

d) e1 < ¢/3(1 + v/ M)4,

() va<e¢220 + VvM)2+1]12(0 + VM) + 1],
) e < ¢/32M2

Since
lim f J‘ [o(s, £) — p™(s, £)]%dt ds = lim f f lo(s, £) — p™(s, £)]* ds dt
= lim Z B (1) dt = lim f} vii=0,
M-300 0 i=m+1 Mm-3c0 t=m+1

it follows that there exists m such that for all m > m,

j; [o(s, £) — p"(s, )]*dt < e,

save for s € s(m) C [0, 1] where s(m) is of measure less than or equal to ;.
Now the Minkowski inequality yields

4/ < f: [6"(s, 1) = p(s, DT’ dt>
) 1/< INGETRRC ‘”2‘”) + 1/ ( [ e -, o)
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and

4/< J: (" (s, 8) = p" (s, t)lzdt)
< 1/( J: [0"(s, £) — os, t)]zdt> + 1/( J;l (5. 1) — o5, t)]2dt>

so that

lV( J; [0" (s, 8) — p"(s, t)]zdt> - 4/( J;l [0"(s, £) — o, If)]2dt>‘

1
< 4/( f (0" (s,t) — (s, t)lzdt)
0
Hence, for m > mgand s € s(m),

|1/< J; (0" (s, 8) — p"(s, t)]2dt> - 1/( J;l [0°(s, £) — n(s, t)]zdt>l < e
Equivalently, for m > mqand s ¢ s(m),
(4.33) [1/( _I;l [0"(s, 2) — o(s, t)]2dt> - \/61]4 -«

< [ fol [o"(s,2) — #"(s, t)]th]z

< [4/ ( [ w60 -t t)]2dt> + \/]

It will now be noted that for0 < 4 < 1
la+0]2=0a>+2ab+02<a?>+ 2ab+ b =0a?+ (2a + 1)b.

Thusfor0 < 8 <land0< (2a +1)6 < 1,

(4.34) [a + 8]% < a* + (20 + 1) (2a + 1)a.

Also, by part (i) of the lemma

(4.35) J 6 = et niar < a4+ van?

forn =1,2,3,...and all s € [0, 1]. Because of condition (a) on €, (4.34) in
conjunction with (4.35) yields

(4.36) [1/ ( NGRS t)]?dt) + v]
< [ NGRS mﬁdt]z

+ [2( + vM)* + 11200 + VM) + 1] Ve
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It will also be noted that

[e — 8)? = a? — 2ab + b > a®> — 2ab
and thus
[a — b]*t > a* — 4a3b.
Thus

(4.37) [4/ ( fol [0"(s, ) — o(s, O)]* dt) - \/el]4

> [ J; ["(s, 1) — p(s, t)]2dt:| —4(1 + VM)* e

Therefore for m > mq and s ¢ s(m) it follows from (4.33), (4.36), and (4.37)
that

[ J: [°(s, t) — o(s, 15)]203;]2 40+ VM) Ve — &

< [ 1) G, 1) — 4G ;)12d;]2

< [ J. G, 1) — s, t)fdt]z

+ [2(1 + VM) + 1121 + VM) + 1]Ve,

and thus, for m > m,,

1 2
(4.38) [ [ w6 = ot t)]ﬁdt] ds — 4(1 + vV M)ver — e
[0,1]1—s(m) 0

< ‘ﬁO,l]—s(m)[ J:) [pm(s' t) - pn(s’ t)]z dt:l ds

< [0,1]—s(m)[ .J:) [0"(s, 1) — (s, t)]Zdt] ds
+ 20+ VI + 120 + VM) + 1ve

Also, because of part (ii) of the lemma and the fact that the measure of s(m)
is no greater than e,

1 2
(4.39) 0< f [ f [0" (s, t) — p" (s, Hny dt] ds < 16M%e,.
s(m) 0
Addition of inequalities (4.38) and (4.39) yields, for m > m,,

flo U [ ‘fo [o"(s, £) — p(s, 1)]* dt:l ds — 41 + vVM)*Ve — &

< J;l[ J;l (" (s, 8) — 0" (s, t)]2dt]2ds

2
< I: fl [Pn(sv t) - p(S, t)]2 dt] ds
[0,1]—s(m) 0
+ 20 + VM) + 11200 + VM) + 1]1Ver + 16M%,.
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From (4.35) and the fact that s(m) has measure no greater than e, it now
{ollows, for m > m,, that

J;l[ J: [0"(s, t) — o(s, t)]zdt:rds —4(1 + VM)’V — (1 + vVM)'a — &

< J;l[ fol " (s, £) — p"(s, t)]2dt]2ds
<. [ J G0 = oG t)]zdt]zds

+ 20 + VM)’ + 1120 + VM) + 1]V e + 160 %,

Now, in view of conditions (b), (c), (d), (e), (f) on e, it follows that, for

m > Mo, ) . \
ﬁ [ j; [p"(s, t) — p(s, l)]zdt] ds — €
<J [ J ) — 56, m?dt]zds
< f[ f ["(s, £) — p(s, t)]zdt]zds te

which completes the proof of Lemma 3.1.

Finally the proof of Lemma 3.2 now follows. The required boundedness for
all Sturm-Liouville sets of a’s follows from the boundedness for the Fourier
cosine functions and the asymptotic approach of the functions of any Sturm-
Liouville set to the functions of the Fourier cosine set. More precisely, by
(4, vol. 2, p. 722) (it will be convenient here to suppose the indices on the a’s
begin at 0 rather than 1), the sum

> a()ay(s) — l:l + 2" cos imu cos ivrs]
=0 i=1
is bounded for all # and s on [0, 1] and for all positive integers #. Thus

J: { 3 au(mails) - [1 + 2; COs 17 COS i}rs]} p(u, t) du

=0

is bounded for all s and ¢ on [0, 1] and all #. Thus, to show that

3 Bials)

is bounded and hence that

S yuaa®(= [ 2 s0ae | a)

i,j=
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is bounded for all s on [0, 1] and all positive integers #, it suffices to notice that

1 n
(4.40) f l:l + 2" cos imu cos iws] p(u,t) du
0 =1

L+ %2 [sin émt cos ins]/i

i=1
=t+ %zn:l [sinem(t + s)/i + smnia(t — s) /7]

and that the boundedness of the last expression in ¢, s and # follows from the
boundedness of

n

2 sin iwu /1
i=

(4, vol. 2, pp. 493-8) in u and #. It is noted that the left member of (4.40) is
just

3. (o)

for the Fourier cosine functions and that no use was made of a possible averag-
ing effect from the integration on ¢ in establishing the boundedness of

S5 p0ao [ a(= £ roaeuno).

=0

5. In the present section the boundedness condition on

> vosaday(s),

1,]=
required in the corollary to Theorem 6 (which has been shown to hold for all
Sturm-Liouville sets of «’s) is also verified for the sine and Haar functions.
The author does not know whether it holds for all sets of a’s. Order estimates
are found for

1 N 2

lim f [ Z ’Yi.jai(s)aj(s):l ds
-0 0 i, j=n+1

for the Fourier cosine and the Fourier sine functions as well as for the Haar

functions. For the Fourier cosine and the Haar functions this order is

0< i 7m~>2,

i=n+1

whereas for the Fourier sine functions it is

P 1
0< Z ’Yi,i)
i=n+1

© 1+e
O( E 'Yi,i> for any ¢ > 0.

and not
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This shows that the best bound on |e,| provided by the corollary for all admis-
sible sets of s is

® 1
O( E Yi, i> .
i=n+1

It should be noted that, now that specific sets of a’s are being dealt with,
the o’s will not always be indexed by the indices 1, 2, 3,.... Any change in
the indexing of the o’s will of course give rise to corresponding changes in the
indexing of the §’'s and v's.

Though a specific bound is found in this paper for the sums of products
of v’s and o's for the Haar functions, it is of interest to note again that, just
as for Sturm-Liouville sets of a's, this boundedness really follows from the
boundedness of the sums of products of the 8’s and o's. This latter remark is
justified by a result given in (1, pp. 47-49) for which, by adopting the notation
there used and letting f(¢) = p(¢, u), one obtains that the sums of products
B(u)’s and a(x)’s are bounded by 1. Again, the author does not know whether,
for all sets of o’s the sums of products of 8’s and «’s is bounded.

Finally now the specific considerations are made for the three above-
mentioned sets of a's.

(1) The Fourier cosine functions:

ao(s) = {1 ifs € [0,1),

0 ifs=1,
a;(s) ={\/2cosi7rs ifs € [0, 1), 1=1,2,3,...,
0 ifs =1,
Bo(t) = ¢,
B:(t) = (+/2/ir) sin ixt, 1=1,2,3,...,
Yo,0 = 1/3,
Yo,1 = V2(—1)#1/7272 1=1,2,3,...,
vi,; = 0if 7 # 7, ,7=123,...,
Vi = 1/37?, 1=1,2,3,
N
(@) i,j=0‘y£,jai(s>aj<8) <4/3
for N =0,1,2,... and all s € [0,1]. The sum
iuf — /6
yields the estimate at once.
(b)
1/ ~ 2
(5.1) !\i’m . <1zj;nw,jai(s)aj(s)> ds < 16/7*n% n>1.
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To establish this inequality, it need only be noted that

> vasadsas) < @/7)Y 1/,

i, j=n i=n
© 2
(5.2) <Z w.i> > 1/ n>1,
i=n
is easy to verify from the definition of the v’s. From (5.1) and (5.2) it follows
that
o 2
lim [ > 'y,]a,(s)a,(s):l ds = 0<_Z 'y,-,i> .
S 1, j=n i=n

(ii) The Haar functions:

a®(s) = fors € [0, 1),

fors = 0,

fors € [0,1/2),
fors € [1/2,1),
fors =0,

1

1

0

V2 for s € [0, 1/4),

V2 fors € [1/4,1/2),
0 elsewhere,

V2 fors € [1/2,3/4),
a1 (s) =

O -

—4/2 fors € [3/4,1),
0 elsewhere,
and in general

an(])(o) = 27”2, an(2n)(1) = _2n/2,

n/2 fors € [(2k — 2)/21, 2k — 1)/2%1),
& (s) = < —2r2 fors € ((2k — 1)/2m+1, 2k /2n+1],
0 elsewhere,

where n ranges over 1, 2, 3, ... and krangesover 1,2, 3,...,2"
The two-indices notation is used also for the §’s as follows:

(k) _ M %)
800 = [ @) as.

It can be shown that

t fort € [0,1/2],
Aa®(®) = 1 B ) = {1 —t  fort€ [1/2,1],
and forn > 1,k =1,2,...,2%
0 for ¢ € [0, (2k — 2)/2%H1],
5.0 S\/2 "t — (2k — 2)/2"1)  fort € [(2k — 2)/2"1, (2k — 1)/27+1],
" l\ﬂ (—t + 2k/2m+1) for t € [(2k — 1)/2+1, 2k/20+1],
0 for ¢t € [2k/2%+1, 1].
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The two-indices notation on the B’s gives rise naturally to a four-indices
notation on the ¥’s. Thus

1
Yon®@ = [ 89089 0) .

It can be shown that the values for the various y’s are those given below:

70’0(0).(0) =1/3,
Yoo ® W = 1/8,
You® ® = \/2'(2k — 1)/2  forn > 1,k =1,2,...,2,
YO,n(l)'(l) = 1/12v

@), (k) — V2" (2k — 1)/2%+3 fork <21, n > 1,
Yo,n = _\/(2n/23n+3)[2n+1 — (2k — 1)] fork = 2m1 4 1,
214 2,...,2%

Yan®® =1/(12:27), n>1,k=12...,2"
Yan® P =0, n>1k#]j
(1/2%+9+3)[(2w — 1) — 27(2k — 1)]2"/27
if 2k —2)21+1 < w< (28 —1)20,
(1/28mrsri8)[— 2w — 1) + 2(2k)]2"v/2°
if (28 —1)201 4+ 1 < w < (2k)271,

Vtp®

0 otherwise,

n>1,p>1
(a) The expression

N
Z Y5 oi($)ay(s),
1, j=1

for fixed #n > 2, used where the o’s each have one index and the indices begin
at 1, is here replaced by

on  of

gn'TN,p(s) — Z Z ,yn'n(k).(w)an(k) (s)an(w) (S)

k=r w=r

N p
+ Z Z ,yi.j(k).(w)ai(k)(s)aj(w) (S)
< & (%), (w) (k) (w)

+ 20 2 vwrnvir™® Pay® ()ans 1™ (s)

+ 2 Z Z Z ,Yi,n(w),(k)ai(w)(s)an(k) (S)

2

2n
+23 3 Ywn® Pe® o™ ()

k=1 w=1

N ot

V4
+ 2 Z Z Z ’Yi.zv+1(k)'(w)ai<k)(S)aN+1(w) (s),

i=n+1 k=1 w=1
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where 1 <7 < 2" and 1 < p < 2Y*L. It can now be shown that this latter
sum is bounded independently of N, p, and s by a decreasing function of the
variables # and 7. (To show that the expression corresponding to

N
1;=n7i'j ai(s)a;(s)

is bounded is not more difficult. However, as seen from the corollary to
Theorem 6, it is the bound, as a decreasing function of # and 7, which is useful
in estimating the error in Theorem 6.)

A routine but long calculation yields

a1
lim sup J [gn. 7 ()]  ds < [13/(3.2M)]%
, 0
(1Zpcam
This result is based on the inequalities

2" on
Z} l,® (5)] < 242, Zl [® ()< 22, n=1,2,...;s€[0,1]
k= k=

Now the expression

used when the a's each have one index and the indices begin at 1, is here
replaced by

on o © ot o
Z ,Ynm(t),(t) _ Z Z 'Yi,i(j)’(])

=1 i=ntl j=1

= (2" —r)/(122") + iil 21/(12.2%) = (2" — r)/(12.2") + 1/(12.2")
> 1/(12.2").

Thus
1 o © 21 2
lim sup f [gn, " ? ()" ds < 2704(2 Va2 + PP ‘Yi,t(j)'(j)> .
N,p> 0 i=r i=n+1 j=1
(1<p<2N)

Thus the Haar functions, when ordered in a single sequence, satisfy the
condition

lea] = 0( > 7m>2.

i=n+1

(iii) The Fourier sine functions:

a;(s) = +/2sin i7ws fors € [0,1],2=1,2,3,...,
B:i(t) = v/2(1 — cos int)/ix, 1=1,2,3,...,
Yi,; = 2[1 + 8:,;/2]/1jn?, .,7=1,2,3,....
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In this case, it is false for each ¢, 0 < € < 1, that

1 N 2 ) 1+e
(5-3) lim f [ Z ‘Yi.j ai(S)aj(S):l dS = 0( Z ’Y'i,i) .
Noo 0 i, j=n+1 1

i=n+

The proof of this follows:

élw.jai(s)aj(s) = 4[(;:7‘,1 (sin i7rS)/i>2 + %(;: sin%,rs/fﬂ / x

and thus
1 N 2 16 1 N 4
(5.4) f [ > 'yi,,-ai(s)a,-(s):l ds > —3 J‘ l: > (sin iws)/i] ds.
0 i, j=n+1 ™ 0 i=n+1
Hence
1 N 2 ].6 1 N 4
lim I: > 'yi,jai(s)aj(s)] ds > =3 lim l: > (sin irs)/i] ds
Now 0 i, j=n+1 T Noo 0 i=n+1

(the existence of the limit on the left follows from Lemma 3.1(iv) and that
of the right follows below). Now, as noted just after (4.37), there exists M such

that
N

>, (sindws)/i| < M

i=n+1
foral #, N (> 7 4+ 1) and s € [0, 1]. Also

N n

lim D>, (siniws)/i= n(1 —s)/2 — Y (siniws)/i foralmostalls € [0,1].
Noow i=n+1 =1

Thus, Lebesgue’s bounded convergence theorem yields
1 N 4
(5.5) lim f [ > (sin m)/i] ds
Nooo 0 i=n+1

1 n 4
= f [r(l —5)/2 =Y (sin irs)/i:l ds.
0 =1
It will be shown below that
1 n 4
(5.6) J; [71-(1 —5)/2 =2 (sin iws)/i] ds > K/n for some K > 0
i=1

for all sufficiently large #.
From (5.5) and (5.6) follows

lim 01[ i (sini‘zrs)/i:rds}K/n

Noowo i=n+1

and thus from (5.4)

6.7 lim . [ ”;”H 'yt,ja,-(s)aj(s)] ds > K /n.

N-oeo
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Now
(6.8) ig-q-l Yi,i = % i (l/i < 3/(2n).

(5.7) and (5.8) clearly established (5.3).
To establish (5.7), note that (sin «)/u > 1 — u2/6 > 5/6 for 0 < u < 1.
Thus for fixed # > 0 and 0 < s < 2/[2n + 1)7],

(n+1/2)7s
(5.9) J; (sinu)/uwdu > 5(n 4+ 1/2)7s/6.

Now Hobson (4, vol. 2, p. 495) shows that
(5.10) > (siniws)/i — =1 — s5)/2
i=1

_ J; T i) fudu — w2+ 04/ (n + 1/9)

for 0 <s<1land n=1,2,3,..., where 4 is a constant independent of
nand s and —1 < 6 < 1. From (5.9) it can be seen that for sufficiently large #

(n+1/2)7s
(5.11) j; Ginu)/udu — 7/2 +04/(n +1/2) > 22n + 1)7s/6

for 1/[2n + 7] < s < 2/[(2n + 1)x]. It follows from (5.9) and (5.10)
that

J;l[g (sinimws) /i — #(1 — s)/Q:l4 ds

2/r(2n+1)
> fl [2n 4+ 1)7s/3) ds > K /n

/m(2n4-1)
for some K > 0 and all sufficiently large n. Thus (5.6) is established and the
proof is complete.

The author is very grateful to Professor R. H. Cameron for his encourage-
ment and guidance.
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