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On Minimal and Maximal p-operator
Space Structures

Serap Öztop and Nico Spronk

Abstract. We show that L∞(µ), in its capacity as multiplication operators on Lp(µ), is minimal as a
p-operator space for a decomposable measure µ. We conclude that L1(µ) has a certain maximal type
p-operator space structure that facilitates computations with L1(µ) and the projective tensor product.

1 Introduction

In the theory of operator spaces, there are extremal operator space structures that can
be assigned to any Banach space. These arose in the papers [3, 7] and are exposed in
the monograph [8]. They have particular value when understanding mappings and
tensor products.

In this article we examine minimal and maximal p-operator space structures.
These structures’ existences were noted in [10], where they were used to characterize
certain algebras as algebras of operators on SQp-spaces. Our primary motivation is to
gain the isometric tensor product formula L1(µ)⊗̂p

V ∼= L1(µ,V) for the p-operator
projective tensor product of [5]. Here L1(µ) has a certain maximal operator space
structure, which appears naturally via the embedding of L1(µ) ↪→ L∞(µ)∗, where
L∞(µ) acts on Lp(µ) as multiplication operators. This is a less obvious task than we
had initially hoped and seems worth an exposition in its own right. The techniques
used in this article are all classical and elementary.

1.1 Background

Let 1 < p <∞, and let p ′ denote the conjugate index, so 1/p+1/p ′ = 1. The theory
of p-operator spaces is designed to give an analogue to the theory of operator spaces
on a Hilbert space, which we might call 2-operator spaces. The theory of p-operator
spaces has its origins in [12,13] and was studied extensively in [10]. Daws [5] presents
these spaces in the format we are using, a format also used extensively by An, Lee, and
Ruan [1]. We closely follow the presentation of [5] and use some concepts from [1].

We let `p(n) denote Cn with the `p-norm. Given a Banach space V, a p-operator
space structure on V is a sequence of norms ‖ · ‖n, each norm on n×n-matricies with
entries in V, which satisfy the axioms below:
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(D∞) For u in Mn(V) and v in Mm(V), ‖u⊕ v‖n+m = max{‖u‖n, ‖v‖m}.
(Mp) For u in Mn(V) and α, β in

Mn
∼= B

(
`p(n)

)
, ‖αuβ‖n ≤ ‖α‖B(`p(n))‖u‖n‖β‖B(`p(n)).

A Banach space V, equipped with a sequence of norms as above, will be called a
p-operator space. In the sequel we will drop the subscript n from the norm on
Mn(V). A linear map T : V → W gives rise to amplifications T(n) : Mn(V) →
Mn(W), T(n)[vi j] = [Tvi j]. Such a map is called completely bounded if ‖T‖pcb =
supn ‖T(n)‖ < ∞. Moreover it is called completely contractive if ‖T‖pcb ≤ 1 and a
complete isometry if each T(n) is an isometry. The space of such maps will be denoted
CBp(V,W).

We say a Banach space E is in the class SQp if it is a quotient of a subspace of
Lp(φ) for some measure φ. The space B(E) is a p-operator space given identifications
Mn(B(E)) ∼= B(`p(n)⊗p E) ∼= B(`p(n, E)). Here, Lp(φ)⊗p E is the completion with
respect to the norm given by embedding Lp(φ) ⊗ E ↪→ Lp(φ, E). Moreover, any
p-operator space admits a complete isometry into B(E) for some E in SQp [12, 13].
Spaces that admit complete isometries into B(Lp(φ)) will admit better properties
than general p-operator spaces. We will follow [1] and say that such spaces act on
(some) Lp.

We follow [5] when assigning p-operator space structures to mapping spaces. We
identify Mn(CBp(V,W)) ∼= CBp(V,Mn(W)), where Mn(W) is a p-operator space
via the identifications Mm(Mn(W)) ∼= Mmn(W). In particular, for the dual space,
Mn(V∗) ∼= CBp(V,B(`p(n))) completely isometrically. We have a p-version of
the projective tensor product ⊗γ and the injective tensor product ⊗λ, namely the
p-projective tensor product ⊗̂p

of [5] and the p-injective tensor product ⊗̌p
of [1]. The

p-projective tensor product enjoys all of the usual functorial properties that are ana-
logues of⊗γ , while the theory of ⊗̌p

is not as well understood. However, we do have
that Mn(V) ∼= V⊗̌p

B(`p(n)) completely isometrically.
As observed in [10, p. 89], for a p-operator space V, the algebraic identifica-

tion V ⊗ B(`p(n)) ∼= Mn(V) allows us to view ‖ · ‖n as a reasonable cross-norm
on V⊗B(`p(n)); see the terminology in [14], for example. Indeed, an application of
(Mp) then of (D∞) shows that ‖[αi jv]‖n ≤ ‖α‖B(`p(n))‖v‖ for α in Mn and v in V;
while [5, Lem. 4.2] (stating that contractive linear functions are automatically com-
pletely contractive) shows that |ϕ ⊗ ψ(v)| ≤ ‖ϕ‖V∗‖ψ‖B(`p(n))∗‖v‖n for any ϕ and
ψ, where v ∈ V ⊗ B(`p(n)). Moreover, if X is any Banach space, then the algebraic
identifications

(1.1) Mn(X) ∼= X⊗λ B
(
`p(n)

)
(injective tensor product on the right) are easily verified to produce a p-operator
space structure on X that is minimal in the sense that ‖ · ‖n ≤ ‖ · ‖ ′n (for each n)
with any other operator space structure on X. We call this operator space struc-
ture the minimimal p-operator space structure on X. If V is a p-operator space and
T : V → X is bounded, then T is completely bounded, with ‖T‖pcb = ‖T‖. Indeed,
by reasonableness of the injective tensor product, we see that

T(n) ∼= (T ⊗ id) ◦ ιn : V⊗̌p
B
(
`p(n)

)
→ V⊗λ B

(
`p(n)

)
→ X⊗λ B

(
`p(n)

)
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is bounded with norm at most ‖T‖, where ιn is the identity on V⊗B(`p(n)), which
is a contraction, as ⊗̌p

gives a reasonable cross-norm. Any p-operator space V whose
p-operator structure is the minimal one, i.e., such that V = minV completely iso-
metrically, is called a minimal p-operator space.

Proposition 1.1 The following are equivalent for a p-operator space V:

(i) V is minimal;
(ii) for any p-operator space W, CBp(W,V) = B(W,V) isometrically;

(iii) for any p-operator space W, W⊗̌p
V = W⊗λ V.

Proof Since CBp(W,V) ⊂ B(W,V) contractively, the observation above gives that
(i) implies (ii). Condition (ii) implies that id : minV→ V is completely contractive.
Since the converse is automatic, (i) holds.

If (ii) holds, then CBp(W∗,V) = B(W∗,V) isometrically. Thus, by virtue of the
definition of the p-operator injective tensor product ([1, §3]) and the well-known
injection W ⊗ V ↪→ B(W∗,V), the p-operator injective and injective tensor norms
agree on W⊗ V.

The definition of maximal p-operator space will be given in Section 3.
The following rudimentary fact will be referred to a couple of times in the se-

quel and is an obvious consequence of the density of simple functions in Lp ′(φ) and
duality.

Lemma 1.2 For any finite subset F ⊂ Lp(φ) and ε > 0, there is an m in N and a
contraction V : Lp(φ)→ `p(m) for which

(1− ε)‖ f ‖Lp ≤ ‖V f ‖`p ≤ (1 + ε)‖ f ‖Lp

for f in F.

2 On Minimal p-operator Spaces

In the theory of 2-operator spaces, a special role is played by commutative C*-alge-
bras and completely isometric copies of their subspaces. These are the minimal
operator spaces. Classical theory tells us that any representation of a commutative
C*-algebra A ∼= C0(Ω) on a Hilbert space can be realized as a direct sum of represen-
tations on cyclic subspaces, where each in turn produces a Radon measure ν on Ω by
which the representation is unitarily equivalent to a representation by multiplication
operators on L2(ν). We are not aware of any analogue of this result for representa-
tion on SQp-spaces, or even on Lp-spaces. This reduces our study to representations
that are already multiplication representations on Lp-spaces. This gives rise to a more
robust theory than might be anticipated.

2.1 On the Space of Continuous Functions as a Minimal p-operator Space

We begin with the continuous bounded functions Cb(Ω) on a locally compact space
Ω. In this case a familiar formula for the injective tensor product gives, for each n, an
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isometric identification

(2.1) Mn

(
minCb(Ω)

) ∼= Cb

(
Ω,B(`p(n))

)
, [ fi j] 7→

(
ω 7→ [ fi j(ω)]

)
.

Indeed, the Stone–Čech compactification satisfies C(βΩ,M) ∼= Cb(Ω,M) for any
finite dimensional Banach space M. We let ν be a Radon measure on Ω and

Mν : Cb(Ω)→ B
(

Lp(ν)
)

the contractive injection given by Mν( f )ξ(ω) = f (ω)ξ(ω) for ν-a.e. ω. We say that
ν is faithful if ν(U ) > 0 for any open set U . If ν is faithful, then Mν is an isometry.

The following simple result is required for the next section. The result seems as if
it ought to hold for more general L∞-spaces, except for a certain localization of norm
argument at the end of the proof.

Proposition 2.1 Given a faithful Radon measure ν on Ω,

Mν : minCb(Ω)→ B
(

Lp(ν)
)

is a complete isometry.

Proof It suffices to verify that each amplification M(n)
ν is an isometry. We iden-

tify Mn(B(Lp(ν))) ∼= B(Lp(ν, `p(n))), and observe that under this identification,
M(n)
ν (F)ξ(ω) = F(ω)ξ(ω), for F in Cb(Ω,B(`p(n))), ξ in Lp(ν, `p(n)) and ν-a.e. ω.

We compute

‖M(n)
ν (F)ξ‖Lp(ν,`p) =

(∫
Ω

‖F(ω)ξ(ω)‖p
`p dν(ω)

) 1/p

≤
(∫

Ω

‖F(ω)‖p
B(`p)‖ξ(ω)‖p

`p dν(ω)

) 1/p

≤ ‖F‖Cb(Ω,B(`p))‖ξ‖Lp(ν,`p).

Thus M(n)
ν is a contraction.

Conversely, given ε > 0, find ω0 for which ‖F(ω0)‖B(`p) > ‖F‖Cb(Ω,B(`p)) − ε,
and then ξ0 in `p(n) with ‖ξ0‖`p = 1 and for which ‖F(ω0)ξ0‖`p = ‖F(ω0)‖B(`p).
Find a compact neighbourhood K of ω0 such that ‖F(ω)− F(ω0)‖B(`p) < ε for ω in
K. (This is the “localization of norm argument” to which we alluded above.) Then
ξ = ν(K)−1/p1K ( · )ξ0 in Lp(ν, `p(n)) is of norm 1 and satisfies

‖M(n)
ν (F)ξ − F(ω0)ξ‖Lp(ν,`p) < ε.

It is immediate that M(n)
ν is an isometry.

Of course, the above result applies to `∞(Ω) for any set Ω. Let X be a Banach
space. We let Ω denote any subset of the unit ball of X∗ that is norming for X, and
consider the isometric embedding

(2.2) X ↪→ `∞(Ω), x 7→
(
ω 7→ ω(x)

)
.

As already observed in [10], this is a complete isometry of minimal spaces, hence
minX acts on Lp.
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2.2 L∞ as a Minimal p-operator Space

We show that, for a suitable measure µ, L∞(µ) attains its minimal p-operator space
structure as multiplication operators on Lp(µ).

We say a measure µ is decomposable if we can write µ =
∑

ι∈I µι, where each
µι is finite and µι and µι ′ are mutually singular for distinct indices. For such mea-
sures, we have the duality L1(µ)∗ ∼= L∞(µ), provided we define L∞(µ) to be certain
equivalence classes of locally essentially bounded functions; see [9, p. 192]. We will
hereafter assume µ is a decomposable measure.

We require that a certain p-analogue of a familiar result in representation theory
of commutative C*-algebras holds; see [4, II.1.1], for example, whose standard proof
we modify. We let Mµ : L∞(µ)→ B(Lp(µ)) be the representation given by multipli-
cation operators.

Lemma 2.2 There is a locally compact space Ω such that L∞(µ) ∼= Cb(Ω) via a

∗-algebra isomorphism f 7→ f̂ , a faithful Radon measure ν on Ω, and a surjective

isometry U : Lp(ν)→ Lp(µ) such that U Mν( f̂ ) = Mµ( f )U .

Proof We first assume that µ is finite. (The proof will work for the σ-finite case as
well.) In this case there is a norm 1 cyclic and separating vector ξ for Mµ; indeed, let
ξ be any fully supported norm 1 element. We let Ω denote the Gelfand spectrum of

L∞(µ) and f 7→ f̂ the Gelfand transform. We observe that |̂ f |p = | f̂ |p.
We define ν on Ω by ∫

Ω

f̂ dν =

∫
f |ξ|p dµ.

Since ξ is fully supported, ν is faithful. We then define U : C(Ω) → Lp(µ) by U f̂ =
f ξ. We observe that

‖U f̂ ‖p
Lp(µ) =

∫
| f |p|ξ|p dµ =

∫
Ω

| f̂ |p dν = ‖ f̂ ‖p
Lp(ν).

Since C(Ω) is dense in Lp(ν), and ξ is a cyclic vector, U extends to a surjective isom-
etry on Lp(ν). Finally, if f , g ∈ L∞(µ), then

U Mν( f̂ )ĝ = U f̂ g = f gξ = Mµ( f )U ĝ

which, again by density of C(Ω) in Lp(ν), shows that U Mν( f̂ ) = Mµ( f )U .
Now consider general decomposable µ =

∑
ι∈I µι. For each ι, let Ωι denote the

Gelfand spectrum of L∞(µι) and we have C*-isomorphisms

L∞(µ) ∼= `∞ −
⊕
ι∈I

L∞(µι) ∼= `∞ −
⊕
ι∈I

C(Ωι) ∼= Cb(Ω),

where Ω =
⊔
ι∈I Ωι is the topological coproduct. Let f 7→ f̂ denote the compos-

ite isomorphism. We observe, moreover, that Lp(µ) ∼= `p-
⊕

ι∈I Lp(µι), where each
Lp(µι) is an Mµ-invariant subspace. We let νι be a measure supported on Ωι given
as above, and we let Uι : Lp(νι) → Lp(µι) be the associated surjective isometry in-
tertwining Mµι = Mµ|Lp(µι) and Mνι . Then U =

⊕
ι∈I Uι is the desired isometry

intertwining Mµ and Mν .
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Theorem 2.3 The map Mµ : min L∞(µ)→ B(Lp(µ)) is a complete isometry.

Proof The above lemma provides a map f 7→ f̂ : L∞(µ)→ Cb(Ω), which is a com-
plete isometry for the minimal p-operator space structure on both spaces, a faith-
ful Radon measure ν on Ω, and a surjective isometry U : Lp(ν) → Lp(µ) such that

Mµ( f ) = U−1Mν( f̂ )U . Since Mν is completely isometric by Proposition 2.1, we find
that Mµ is a complete isometry.

On the topic of L∞(µ), we record the following useful result, aspects of which are
folklore. This will be used in Section 3.3.

Lemma 2.4

(i) Mµ(L∞(µ)) is its own commutant in B(Lp(µ)) and hence a weak*-closed subal-
gebra.

(ii) There is a a completely contractive expectation E : B(Lp(µ))→ Mµ(L∞(µ)), i.e.,
E(Mµ( f )TMµ(g)) = Mµ( f )E(T)Mµ(g) for f , g in L∞(µ) and T in B(Lp(µ)).

Proof (i) Let F be the family of µ-finite sets. If F ∈ F, then 1F ∈ L∞ ∩ Lp(µ). Fix
T in the commutant of Mµ(L∞(µ)) in B(Lp(µ)) and let hF = T1F for F in F. We
observe that for ξ in L∞ ∩ Lp(µ), the space of which is dense in Lp(µ), that T(1Fξ) =
T(1F)ξ = hFξ, from which it easily follows that hF ∈ L∞(µ) with ‖hF‖∞ ≤ ‖T‖.
It is clear that 1FhF ′ = 0 and hF + hF ′ = hF∪F ′ if F ∩ F ′ is µ-null. We let {Fι}ι∈I

be a family of sets witnessing the decomposability of µ. We observe that the net
(
∑

ι∈ J hFι) J , indexed over the increasing family of finite subsets of I, converges weak*
to an element h of L∞(µ). Indeed if ψ ∈ L1(µ), then there is a σ-finite set S, so
1Sψ = ψ and

lim
J

∫ ∑
ι∈ J

hFιψ dµ =

∫ ∑
ι∈IS

hFιψ dµ,

where IS = {ι : µ(Fι ∩ S) > 0} is countable. In particular, hψ =
∑

ι∈IS
hFιψ. Now if

ξ ∈ Lp ∩ L∞(µ) and η ∈ Lp ′(µ), we let S be σ-finite so 1Sξ = ξ and we have∫
(Tξ)η dµ =

∫
T

(∑
ι∈IS

1Fιξ

)
η dµ =

∫ ∑
ι∈IS

T(1Fιξ)η dµ

=

∫ ∑
ι∈IS

hFιξη dµ =

∫
hξη dµ.

Thus T = Mµ(h). The commutant of any set in B(Lp(µ)) is weak*-closed.
(ii) We let U∞(µ) = {u ∈ L∞(µ) : u∗u = 1}. Let m be an invariant mean on

`∞(U∞(µ)), which we may consider, notationally, as a finitely additive measure. We
define E by

E(T) =

∫
U∞(µ)

Mµ(u)TMµ(u∗) dm(u),

where the “integral” is understood in the weak* sense. Since spanU∞(µ) = L∞(µ),
it is immediate that E is a contractive expectation. If

T ∈Mn(B(Lp(µ))) ∼= B(`p(n)⊗p Lp(µ)),
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then we observe that

E(n)(T) =

∫
U∞(µ)

(
I ⊗Mµ(u)

)
T
(

I ⊗Mµ(u∗)
)

dm(u).

Hence E is completely contractive.

3 Maximal p-operator Spaces

3.1 Definitions and Basic Properties

For a Banach spaceX, we consider the p-operator space structures onXwhose norms
on x in Mn(X) are given by

‖x‖maxLp = sup
{
‖π(n)(x)‖ : π : X→ B(Lp(φ)) is a contraction, φ is a measure

}
= sup

{
‖π(n)(x)‖ : π : X→ B(`p(m)) is a contraction, m ∈ N

}
‖x‖max = sup

{
‖π(n)(x)‖ : π : X→ B(E) is a contraction, E ∈ SQp

}
.

The equality of the two descriptions of ‖ · ‖maxLp is an immediate consequence of
Lemma 1.2. It is clear that these norms give p-operator space structures on X, which
we call the maximal structure on Lp and the maximal structure, respectively. We de-
note the associated operator spaces by maxLp X and maxX. There is an equivalent
formulation of maxX given in [10, p. 95], presented in a local context. It is clear
that id : maxX → maxLp X is a complete contraction. There is no loss of general-
ity if we replace contractions π, above, by isometries; simply consider the isometry
id : X→ minX that acts on Lp by (2.2).

It is clear that ‖v‖ ≤ ‖v‖max for every operator space V and v in Mn(V). It is un-
known to the authors whether the operator space structures max and maxLp coincide
on any non-trivial Banach space. We thus use the following definition. We say that a
p-operator space V is of maximal type if for v in Mn(V) we have

‖v‖maxLp ≤ ‖v‖.

Lemma 3.1 Let V be a p-operator space. Then the following are equivalent:

(i) V is of maximal type;
(ii) CBp(V,Z) = B(V,Z) isometrically for any p-operator space Z acting on Lp;
(iii) CBp(V,B(`p(n))) = B(V,B(`p(n))) isometrically for each n.

Proof It is the case for any operator space V that

CBp

(
V,B(`p(n))

)
⊂ B

(
V,B(`p(n))

)
contractively. We obtain the converse inclusion, contractively, only for maximal type
p-operator spaces, by definition. Thus (i) is equivalent to (ii). That (ii) implies (iii)
is obvious. That (iii) implies (ii) is a consequence of Lemma 1.2.
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Corollary 3.2 Let V be a p-operator space. The following are equivalent:

(i ′) V is of maximal type;

(ii ′) V⊗̂p
W = V⊗γ W, isometrically, for any p-operator space W;

(iii ′) V⊗̂p
N(`p(m)) = V⊗γ N(`p(m)), isometrically, for any m.

Proof We will show that each statement (n ′) of the present result is equivalent to
statement (n) of Lemma 3.1

We have that W∗ represents completely isometrically on some Lp by [5, Thm. 4.3].
Hence, thanks to the well-known dual paring 〈v ⊗ w,T〉 = Tv(w) of V ⊗W with
B(V,W∗) and its p-operator space analogue ([5, Prop. 4.9]), if (ii) of the lemma
holds, then the p-operator projective and projective tensor norms agree on V ⊗
W. If (ii ′) holds, then statement (ii) of the lemma holds whenever Z = W∗, i.e.,
for any p-operator dual space. Hence statement (ii) holds with Z∗∗ in place of Z.
We let κZ : Z → Z∗∗ denote the canonical embedding and have that B(V,Z) ∼=
κZ ◦ B(V,Z) ⊂ B(V,Z∗∗) = CBp(V,Z∗∗) isometrically. If Z acts on Lp, then,
by [5, Prop. 4.4], κZ is a complete isometry so CBp(V,Z) ∼= κZ ◦ CBp(V,Z) ⊂
CBp(V,Z∗∗) isometrically, hence B(V,Z) ∼= κZ ◦ B(V,Z) = κZ ◦ CBp(V,Z) ∼=
CBp(V,Z) isometrically, hence statement (ii) holds generally.

Just as above, (iii ′) holds if and only if (iii) of the lemma holds.

We observe that if V and W are each maximal type p-operator spaces, then V⊗̂p
W

is also of maximal type. Indeed, if Z acts on Lp, then [5, Prop. 4.9] provides isometric
identifications

CBp(V⊗̂p
W,Z) ∼= CBp(V,CBp(W,Z)) = B(V,B(W,Z)) = B(V⊗γ W,Z)

and we appeal to statements (ii) and (ii ′) above. We do not know whether
maxLp V⊗̂p

maxLp W is completely isometric to maxLp (V ⊗γ W), but this does hold
for L1-spaces, as we will see in Section 3.3.

3.2 Duality and Quotients

Proposition 3.3 (i) If V is a maximal type p-operator space, then the dual structure
is minimal, i.e., V∗ = minV∗. In particular, (maxV)∗ = minV∗ = (maxLp V)∗.

(ii) If V is a complete quotient of a maximal type p-operator space, then V is of maxi-
mal type.

Proof (i) We follow the proof from classical operator spaces (see [2, Cor. 2.8] or
[8, (3.3.13)]) and use Lemma 3.1. Letting Ω be a dense subset of the unit ball of V,
we have complete isometries

Mn(V∗) ∼= CB
(
V,B(`p(n))

)
= B

(
V,B(`p(n))

)
⊂̃`∞

(
Ω,B(`p(n))

)
whose composition is given by [ψi j] 7→ (ω 7→ [ψi j(ω)]). By (2.2) this is the minimal
p-operator structure on V∗.

(ii) If q : V → Z is a complete quotient map, and T : Z → B(`p(n)) is a linear
contraction, then T◦q : V→ B(`p(n)) is a contraction, hence a complete contraction
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by (i). Thus if z is in the open unit ball of Mn(Z), there exists v in the open unit ball
of Mn(V) so z = q(n)(v). Then for any linear contraction T : Z → B(`p(n)) we have
‖T(n)(z)‖B(`p) = ‖(T ◦ q)(n)(v)‖B(`p) < 1, so T is a complete contraction.

We aim to obtain the dual statement to (i), above. We note that unlike in the
2-operator space setting, it is not a priori obvious that (minC(Ω))∗∗ = minC(Ω)∗∗

completely isometrically, though we will establish this fact below.
We require a preparatory idea from the theory of vector measures. For a com-

pact Hausdorff space Ω we let M(Ω) denote the space of complex Borel measures on
Ω. Furthermore, if E is a Banach space we let M(Ω, E) denote the E-valued Borel
measures on Ω of bounded variation. If E satisfies the Radon-Nikodym property of
[6, p. 61], we have

(3.1) M(Ω, E) =
⋃

ν∈M+(Ω)
L1(ν, E) ∼=

⋃
ν∈M+(Ω)

L1(ν)⊗γ E ∼= M(Ω)⊗γ E

where the implied isomorphism is isometric. Indeed, if G ∈ M(Ω, E), there is ν in
M+(Ω) and g in L1(ν, E) for which G(B) =

∫
B g dν, with ‖G‖M(Ω,E) = |G|(B) =

‖g‖L1(ν,E). It is well-known that L1(ν, E) ∼= L1(ν) ⊗γ E isometrically. Since, by
Lebesgue decomposition, L1(ν) is contractively complemented in M(Ω), we have
that L1(ν) ⊗γ E embeds isometrically into M(Ω) ⊗γ E. Moreover, each element
in M(Ω) ⊗γ E is an element of some L1(ν) ⊗γ E. Indeed, write an element of the
former as

∑∞
k=1 νk ⊗ xk, where each ‖xk‖E = 1 and

∑∞
k=1 ‖νk‖M < ∞. Then let

ν =
∑∞

k=1 |νk| and observe that each νk << ν, so the element is in L1(ν)⊗γ E.

Theorem 3.4 If W is a minimal operator space, then its dual operator space is maxi-
mal on Lp, i.e., (minW)∗ = maxLp W∗.

Proof We begin with minC(Ω) for a compact space. From the formula

V⊗̌p
B(`p(n)) ∼= Mn(V)

on one hand, and from (2.1) on the other, we obtain for each n, isometric identifica-
tions

minC(Ω)⊗̌p
B
(
`p(n)

) ∼= Mn

(
minC(Ω)

) ∼= C
(

Ω,B(`p(n))
)
.

Taking duals, we have from [1, Theo. 3.6] on one hand, and [15, 16] (or see [6, p.
182]) on the other, that(

minC(Ω)
)∗⊗̂p

N
(
`p(n)

) ∼= M
(

Ω,N(`p(n))
)
.

Thanks to the fact that finite dimensional spaces enjoy the Radon–Nikodym property,
we can use (3.1) on the right-hand side of the above identification to see that(

minC(Ω)
)∗⊗̂p

N
(
`p(n)

)
= M(Ω)⊗γ N

(
`p(n)

)
isometrically for each n. By Corollary 3.2 we see that M(Ω), in is capacity as the dual
of minC(Ω), admits a maximal type p-operator space structure. Since this is a dual
space, it follows from [5, Thm. 4.3] that this is the maximal structure on Lp.
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Now we consider minW⊂̃minC(Ω), where Ω is the unit ball of W∗ with weak*
topology. Hence W∗ ∼= maxLp M(Ω)/{ν : 〈ν,w〉 = 0 for w ∈ W} completely
isometrically. By Proposition 3.3(iii), W∗ is of p-maximal type. But by [5, Thm. 4.3],
W∗ acts on some Lp, hence the operator space structure is maxLp .

We observe that it is an immediate consequence of Theorem 3.4 and Proposi-
tion 3.3(i), that (minV)∗∗ = minV∗∗ completely isometrically.

As another consequence we see that for any Banach space X and Y

(3.2) minX⊗̌p
minY = min(X⊗λ Y)

completely isometrically. Indeed, we have from Lemma 3.1(ii) and (1.1), that

Mn

(
CBp(maxX∗,minY)

) ∼= CBp

(
maxX∗,Mn(minY)

)
= B

(
X∗,Mn(minY)

) ∼= B
(
X∗,Y⊗λ B(`p(n))

)
isometrically. Thus the embedding of Mn(X⊗Y) ∼= X⊗Y⊗B(`p(n)) into the space
above establishes that

Mn(minX⊗̌p
minY) = X⊗λ Y⊗λ B(`p(n))

isometrically, for each n. Then (3.2) follows from (1.1).

3.3 L1 Spaces

Spaces L1(µ), for a decomposable measure µ, are the most natural class of maximal
p-operator spaces.

Theorem 3.5 The operator space structure on L1(µ), as a subspace of (min L∞(µ))∗,
is the maximal structure on Lp, i.e., maxLp L1(µ).

Proof We will establish that with the operator space structure given by L1(µ) ↪→
(min L∞(µ))∗, we have CBp(L1(µ),V) = B(L1(µ),V) isometrically, for any p oper-
ator space V acting on some Lp. By Lemma 3.1, this implies that L1(µ) is of maximal
type. However, since (min L∞(µ))∗ acts on Lp ([5, Thm. 4.3]), this is the maxLp

structure.
The assumption that V acts on Lp implies that the embedding κV : V → V∗∗

is a complete isometry ([5, Prop. 4.4]). We also note that L1(µ)∗ ∼= min L∞(µ)
completely isometrically. Indeed, as noted in [11, Prop. 1.6.13], it is sufficient, by
virtue of [5, Prop. 5.5] to observe that min L∞(µ) ∼= Mµ(L∞(µ)) is weak* closed.
This was shown in Lemma 2.4.

We consider, first, the adjoint S∗ : V∗ → L1(Ω)∗ ∼= L∞(Ω), which is completely
bounded with ‖S∗‖pcb = ‖S∗‖ = ‖S‖ by Proposition 1.1(ii). We then have that
S = S∗∗ ◦ κL1(µ) : L1(µ) → κV(V) ∼= V satisfies ‖S‖pcb ≤ ‖S∗∗‖pcb, which, by
[5, Lem. 4.5], is no greater than ‖S∗‖pcb = ‖S‖.

The following is an immediate consequence of Lemma 2.4 and [5, Prop. 5.6].
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Corollary 3.6 The map η ⊗ ξ 7→ ηξ extends to a complete quotient map from
N(Lp(µ)) = Lp ′(µ)⊗γ Lp(µ) onto maxLp L1(µ).

We obtain the following useful tensor product formulas. IfV is a p-operator space,
Corollary 3.2 provides the isometric identifications

maxLp L1(µ)⊗̂p
V = L1(µ)⊗γ V ∼= L1(µ,V).

We also obtain a completely isometric identification

(3.3) maxLp L1(µ)⊗̂p
maxLp L1(ν) = maxLp (L1(µ)⊗γ L1(ν)) ∼= maxLp L1(µ× ν).

Indeed, we have an isometric identification maxLp L1(µ) ⊗̂p
maxLp L1(ν) = L1(µ)⊗γ

L1(ν) ∼= L1(µ × ν). The first space has dual min L∞(µ) ⊗F min L∞(ν) (Fubini
product) in B(Lp(µ)⊗p Lp(ν)) by [5, Thm. 6.3], while the third has dual L∞(µ×ν).
The latter space acts as multiplication operators on Lp(µ×ν) ∼= Lp(ν)⊗p Lp(ν). This
dual identification shows that min L∞(µ) ⊗F min L∞(ν) ∼= min L∞(µ × ν). Hence
(3.3) follows.

Acknowledgments The authors are grateful to M. Daws and J.-J. Lee for comments
and corrections, as well as to M. Junge for bringing [10] to their attention.

References
[1] G. An, J.-J. Lee, and Z.-J. Ruan, On p-approximation properties for p-operator spaces. J. Funct. Anal.

259(2010), no. 4, 933–974. http://dx.doi.org/10.1016/j.jfa.2010.04.007
[2] D. P. Blecher, The standard dual of an operator space. Pacific J. Math. 153(1992), 15–30.
[3] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces. J. Funct. Anal. 99(1991), no. 2,

262–292. http://dx.doi.org/10.1016/0022-1236(91)90042-4
[4] K. R. Davidson, C*-algebras by example. Fields Institute Monographs, 6, American Mathematical

Society, Providence, RI, 1996.
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